batman-adv: prepare lq_update_lock to be shared among different protocols
[deliverable/linux.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /*
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
20 */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <net/ipv6.h>
32 #include <net/ndisc.h>
33 #include <net/addrconf.h>
34
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37
38 #define RT6_DEBUG 2
39
40 #if RT6_DEBUG >= 3
41 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
42 #else
43 #define RT6_TRACE(x...) do { ; } while (0)
44 #endif
45
46 static struct kmem_cache * fib6_node_kmem __read_mostly;
47
48 enum fib_walk_state_t
49 {
50 #ifdef CONFIG_IPV6_SUBTREES
51 FWS_S,
52 #endif
53 FWS_L,
54 FWS_R,
55 FWS_C,
56 FWS_U
57 };
58
59 struct fib6_cleaner_t
60 {
61 struct fib6_walker_t w;
62 struct net *net;
63 int (*func)(struct rt6_info *, void *arg);
64 void *arg;
65 };
66
67 static DEFINE_RWLOCK(fib6_walker_lock);
68
69 #ifdef CONFIG_IPV6_SUBTREES
70 #define FWS_INIT FWS_S
71 #else
72 #define FWS_INIT FWS_L
73 #endif
74
75 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
76 struct rt6_info *rt);
77 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
78 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
79 static int fib6_walk(struct fib6_walker_t *w);
80 static int fib6_walk_continue(struct fib6_walker_t *w);
81
82 /*
83 * A routing update causes an increase of the serial number on the
84 * affected subtree. This allows for cached routes to be asynchronously
85 * tested when modifications are made to the destination cache as a
86 * result of redirects, path MTU changes, etc.
87 */
88
89 static __u32 rt_sernum;
90
91 static void fib6_gc_timer_cb(unsigned long arg);
92
93 static LIST_HEAD(fib6_walkers);
94 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
95
96 static inline void fib6_walker_link(struct fib6_walker_t *w)
97 {
98 write_lock_bh(&fib6_walker_lock);
99 list_add(&w->lh, &fib6_walkers);
100 write_unlock_bh(&fib6_walker_lock);
101 }
102
103 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
104 {
105 write_lock_bh(&fib6_walker_lock);
106 list_del(&w->lh);
107 write_unlock_bh(&fib6_walker_lock);
108 }
109 static __inline__ u32 fib6_new_sernum(void)
110 {
111 u32 n = ++rt_sernum;
112 if ((__s32)n <= 0)
113 rt_sernum = n = 1;
114 return n;
115 }
116
117 /*
118 * Auxiliary address test functions for the radix tree.
119 *
120 * These assume a 32bit processor (although it will work on
121 * 64bit processors)
122 */
123
124 /*
125 * test bit
126 */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE 0
131 #endif
132
133 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 const __be32 *addr = token;
136 /*
137 * Here,
138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 * is optimized version of
140 * htonl(1 << ((~fn_bit)&0x1F))
141 * See include/asm-generic/bitops/le.h.
142 */
143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 addr[fn_bit >> 5];
145 }
146
147 static __inline__ struct fib6_node * node_alloc(void)
148 {
149 struct fib6_node *fn;
150
151 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152
153 return fn;
154 }
155
156 static __inline__ void node_free(struct fib6_node * fn)
157 {
158 kmem_cache_free(fib6_node_kmem, fn);
159 }
160
161 static __inline__ void rt6_release(struct rt6_info *rt)
162 {
163 if (atomic_dec_and_test(&rt->rt6i_ref))
164 dst_free(&rt->dst);
165 }
166
167 static void fib6_link_table(struct net *net, struct fib6_table *tb)
168 {
169 unsigned int h;
170
171 /*
172 * Initialize table lock at a single place to give lockdep a key,
173 * tables aren't visible prior to being linked to the list.
174 */
175 rwlock_init(&tb->tb6_lock);
176
177 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
178
179 /*
180 * No protection necessary, this is the only list mutatation
181 * operation, tables never disappear once they exist.
182 */
183 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
184 }
185
186 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
187
188 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
189 {
190 struct fib6_table *table;
191
192 table = kzalloc(sizeof(*table), GFP_ATOMIC);
193 if (table) {
194 table->tb6_id = id;
195 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
196 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
197 }
198
199 return table;
200 }
201
202 struct fib6_table *fib6_new_table(struct net *net, u32 id)
203 {
204 struct fib6_table *tb;
205
206 if (id == 0)
207 id = RT6_TABLE_MAIN;
208 tb = fib6_get_table(net, id);
209 if (tb)
210 return tb;
211
212 tb = fib6_alloc_table(net, id);
213 if (tb)
214 fib6_link_table(net, tb);
215
216 return tb;
217 }
218
219 struct fib6_table *fib6_get_table(struct net *net, u32 id)
220 {
221 struct fib6_table *tb;
222 struct hlist_head *head;
223 struct hlist_node *node;
224 unsigned int h;
225
226 if (id == 0)
227 id = RT6_TABLE_MAIN;
228 h = id & (FIB6_TABLE_HASHSZ - 1);
229 rcu_read_lock();
230 head = &net->ipv6.fib_table_hash[h];
231 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
232 if (tb->tb6_id == id) {
233 rcu_read_unlock();
234 return tb;
235 }
236 }
237 rcu_read_unlock();
238
239 return NULL;
240 }
241
242 static void __net_init fib6_tables_init(struct net *net)
243 {
244 fib6_link_table(net, net->ipv6.fib6_main_tbl);
245 fib6_link_table(net, net->ipv6.fib6_local_tbl);
246 }
247 #else
248
249 struct fib6_table *fib6_new_table(struct net *net, u32 id)
250 {
251 return fib6_get_table(net, id);
252 }
253
254 struct fib6_table *fib6_get_table(struct net *net, u32 id)
255 {
256 return net->ipv6.fib6_main_tbl;
257 }
258
259 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
260 int flags, pol_lookup_t lookup)
261 {
262 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
263 }
264
265 static void __net_init fib6_tables_init(struct net *net)
266 {
267 fib6_link_table(net, net->ipv6.fib6_main_tbl);
268 }
269
270 #endif
271
272 static int fib6_dump_node(struct fib6_walker_t *w)
273 {
274 int res;
275 struct rt6_info *rt;
276
277 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
278 res = rt6_dump_route(rt, w->args);
279 if (res < 0) {
280 /* Frame is full, suspend walking */
281 w->leaf = rt;
282 return 1;
283 }
284 WARN_ON(res == 0);
285 }
286 w->leaf = NULL;
287 return 0;
288 }
289
290 static void fib6_dump_end(struct netlink_callback *cb)
291 {
292 struct fib6_walker_t *w = (void*)cb->args[2];
293
294 if (w) {
295 if (cb->args[4]) {
296 cb->args[4] = 0;
297 fib6_walker_unlink(w);
298 }
299 cb->args[2] = 0;
300 kfree(w);
301 }
302 cb->done = (void*)cb->args[3];
303 cb->args[1] = 3;
304 }
305
306 static int fib6_dump_done(struct netlink_callback *cb)
307 {
308 fib6_dump_end(cb);
309 return cb->done ? cb->done(cb) : 0;
310 }
311
312 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
313 struct netlink_callback *cb)
314 {
315 struct fib6_walker_t *w;
316 int res;
317
318 w = (void *)cb->args[2];
319 w->root = &table->tb6_root;
320
321 if (cb->args[4] == 0) {
322 w->count = 0;
323 w->skip = 0;
324
325 read_lock_bh(&table->tb6_lock);
326 res = fib6_walk(w);
327 read_unlock_bh(&table->tb6_lock);
328 if (res > 0) {
329 cb->args[4] = 1;
330 cb->args[5] = w->root->fn_sernum;
331 }
332 } else {
333 if (cb->args[5] != w->root->fn_sernum) {
334 /* Begin at the root if the tree changed */
335 cb->args[5] = w->root->fn_sernum;
336 w->state = FWS_INIT;
337 w->node = w->root;
338 w->skip = w->count;
339 } else
340 w->skip = 0;
341
342 read_lock_bh(&table->tb6_lock);
343 res = fib6_walk_continue(w);
344 read_unlock_bh(&table->tb6_lock);
345 if (res <= 0) {
346 fib6_walker_unlink(w);
347 cb->args[4] = 0;
348 }
349 }
350
351 return res;
352 }
353
354 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
355 {
356 struct net *net = sock_net(skb->sk);
357 unsigned int h, s_h;
358 unsigned int e = 0, s_e;
359 struct rt6_rtnl_dump_arg arg;
360 struct fib6_walker_t *w;
361 struct fib6_table *tb;
362 struct hlist_node *node;
363 struct hlist_head *head;
364 int res = 0;
365
366 s_h = cb->args[0];
367 s_e = cb->args[1];
368
369 w = (void *)cb->args[2];
370 if (!w) {
371 /* New dump:
372 *
373 * 1. hook callback destructor.
374 */
375 cb->args[3] = (long)cb->done;
376 cb->done = fib6_dump_done;
377
378 /*
379 * 2. allocate and initialize walker.
380 */
381 w = kzalloc(sizeof(*w), GFP_ATOMIC);
382 if (!w)
383 return -ENOMEM;
384 w->func = fib6_dump_node;
385 cb->args[2] = (long)w;
386 }
387
388 arg.skb = skb;
389 arg.cb = cb;
390 arg.net = net;
391 w->args = &arg;
392
393 rcu_read_lock();
394 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
395 e = 0;
396 head = &net->ipv6.fib_table_hash[h];
397 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
398 if (e < s_e)
399 goto next;
400 res = fib6_dump_table(tb, skb, cb);
401 if (res != 0)
402 goto out;
403 next:
404 e++;
405 }
406 }
407 out:
408 rcu_read_unlock();
409 cb->args[1] = e;
410 cb->args[0] = h;
411
412 res = res < 0 ? res : skb->len;
413 if (res <= 0)
414 fib6_dump_end(cb);
415 return res;
416 }
417
418 /*
419 * Routing Table
420 *
421 * return the appropriate node for a routing tree "add" operation
422 * by either creating and inserting or by returning an existing
423 * node.
424 */
425
426 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
427 int addrlen, int plen,
428 int offset, int allow_create,
429 int replace_required)
430 {
431 struct fib6_node *fn, *in, *ln;
432 struct fib6_node *pn = NULL;
433 struct rt6key *key;
434 int bit;
435 __be32 dir = 0;
436 __u32 sernum = fib6_new_sernum();
437
438 RT6_TRACE("fib6_add_1\n");
439
440 /* insert node in tree */
441
442 fn = root;
443
444 do {
445 key = (struct rt6key *)((u8 *)fn->leaf + offset);
446
447 /*
448 * Prefix match
449 */
450 if (plen < fn->fn_bit ||
451 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
452 if (!allow_create) {
453 if (replace_required) {
454 pr_warn("IPv6: Can't replace route, "
455 "no match found\n");
456 return ERR_PTR(-ENOENT);
457 }
458 pr_warn("IPv6: NLM_F_CREATE should be set "
459 "when creating new route\n");
460 }
461 goto insert_above;
462 }
463
464 /*
465 * Exact match ?
466 */
467
468 if (plen == fn->fn_bit) {
469 /* clean up an intermediate node */
470 if (!(fn->fn_flags & RTN_RTINFO)) {
471 rt6_release(fn->leaf);
472 fn->leaf = NULL;
473 }
474
475 fn->fn_sernum = sernum;
476
477 return fn;
478 }
479
480 /*
481 * We have more bits to go
482 */
483
484 /* Try to walk down on tree. */
485 fn->fn_sernum = sernum;
486 dir = addr_bit_set(addr, fn->fn_bit);
487 pn = fn;
488 fn = dir ? fn->right: fn->left;
489 } while (fn);
490
491 if (!allow_create) {
492 /* We should not create new node because
493 * NLM_F_REPLACE was specified without NLM_F_CREATE
494 * I assume it is safe to require NLM_F_CREATE when
495 * REPLACE flag is used! Later we may want to remove the
496 * check for replace_required, because according
497 * to netlink specification, NLM_F_CREATE
498 * MUST be specified if new route is created.
499 * That would keep IPv6 consistent with IPv4
500 */
501 if (replace_required) {
502 pr_warn("IPv6: Can't replace route, no match found\n");
503 return ERR_PTR(-ENOENT);
504 }
505 pr_warn("IPv6: NLM_F_CREATE should be set "
506 "when creating new route\n");
507 }
508 /*
509 * We walked to the bottom of tree.
510 * Create new leaf node without children.
511 */
512
513 ln = node_alloc();
514
515 if (!ln)
516 return NULL;
517 ln->fn_bit = plen;
518
519 ln->parent = pn;
520 ln->fn_sernum = sernum;
521
522 if (dir)
523 pn->right = ln;
524 else
525 pn->left = ln;
526
527 return ln;
528
529
530 insert_above:
531 /*
532 * split since we don't have a common prefix anymore or
533 * we have a less significant route.
534 * we've to insert an intermediate node on the list
535 * this new node will point to the one we need to create
536 * and the current
537 */
538
539 pn = fn->parent;
540
541 /* find 1st bit in difference between the 2 addrs.
542
543 See comment in __ipv6_addr_diff: bit may be an invalid value,
544 but if it is >= plen, the value is ignored in any case.
545 */
546
547 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
548
549 /*
550 * (intermediate)[in]
551 * / \
552 * (new leaf node)[ln] (old node)[fn]
553 */
554 if (plen > bit) {
555 in = node_alloc();
556 ln = node_alloc();
557
558 if (!in || !ln) {
559 if (in)
560 node_free(in);
561 if (ln)
562 node_free(ln);
563 return NULL;
564 }
565
566 /*
567 * new intermediate node.
568 * RTN_RTINFO will
569 * be off since that an address that chooses one of
570 * the branches would not match less specific routes
571 * in the other branch
572 */
573
574 in->fn_bit = bit;
575
576 in->parent = pn;
577 in->leaf = fn->leaf;
578 atomic_inc(&in->leaf->rt6i_ref);
579
580 in->fn_sernum = sernum;
581
582 /* update parent pointer */
583 if (dir)
584 pn->right = in;
585 else
586 pn->left = in;
587
588 ln->fn_bit = plen;
589
590 ln->parent = in;
591 fn->parent = in;
592
593 ln->fn_sernum = sernum;
594
595 if (addr_bit_set(addr, bit)) {
596 in->right = ln;
597 in->left = fn;
598 } else {
599 in->left = ln;
600 in->right = fn;
601 }
602 } else { /* plen <= bit */
603
604 /*
605 * (new leaf node)[ln]
606 * / \
607 * (old node)[fn] NULL
608 */
609
610 ln = node_alloc();
611
612 if (!ln)
613 return NULL;
614
615 ln->fn_bit = plen;
616
617 ln->parent = pn;
618
619 ln->fn_sernum = sernum;
620
621 if (dir)
622 pn->right = ln;
623 else
624 pn->left = ln;
625
626 if (addr_bit_set(&key->addr, plen))
627 ln->right = fn;
628 else
629 ln->left = fn;
630
631 fn->parent = ln;
632 }
633 return ln;
634 }
635
636 /*
637 * Insert routing information in a node.
638 */
639
640 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
641 struct nl_info *info)
642 {
643 struct rt6_info *iter = NULL;
644 struct rt6_info **ins;
645 int replace = (info->nlh &&
646 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
647 int add = (!info->nlh ||
648 (info->nlh->nlmsg_flags & NLM_F_CREATE));
649 int found = 0;
650
651 ins = &fn->leaf;
652
653 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
654 /*
655 * Search for duplicates
656 */
657
658 if (iter->rt6i_metric == rt->rt6i_metric) {
659 /*
660 * Same priority level
661 */
662 if (info->nlh &&
663 (info->nlh->nlmsg_flags & NLM_F_EXCL))
664 return -EEXIST;
665 if (replace) {
666 found++;
667 break;
668 }
669
670 if (iter->dst.dev == rt->dst.dev &&
671 iter->rt6i_idev == rt->rt6i_idev &&
672 ipv6_addr_equal(&iter->rt6i_gateway,
673 &rt->rt6i_gateway)) {
674 if (!(iter->rt6i_flags & RTF_EXPIRES))
675 return -EEXIST;
676 if (!(rt->rt6i_flags & RTF_EXPIRES))
677 rt6_clean_expires(iter);
678 else
679 rt6_set_expires(iter, rt->dst.expires);
680 return -EEXIST;
681 }
682 }
683
684 if (iter->rt6i_metric > rt->rt6i_metric)
685 break;
686
687 ins = &iter->dst.rt6_next;
688 }
689
690 /* Reset round-robin state, if necessary */
691 if (ins == &fn->leaf)
692 fn->rr_ptr = NULL;
693
694 /*
695 * insert node
696 */
697 if (!replace) {
698 if (!add)
699 pr_warn("IPv6: NLM_F_CREATE should be set when creating new route\n");
700
701 add:
702 rt->dst.rt6_next = iter;
703 *ins = rt;
704 rt->rt6i_node = fn;
705 atomic_inc(&rt->rt6i_ref);
706 inet6_rt_notify(RTM_NEWROUTE, rt, info);
707 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
708
709 if (!(fn->fn_flags & RTN_RTINFO)) {
710 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
711 fn->fn_flags |= RTN_RTINFO;
712 }
713
714 } else {
715 if (!found) {
716 if (add)
717 goto add;
718 pr_warn("IPv6: NLM_F_REPLACE set, but no existing node found!\n");
719 return -ENOENT;
720 }
721 *ins = rt;
722 rt->rt6i_node = fn;
723 rt->dst.rt6_next = iter->dst.rt6_next;
724 atomic_inc(&rt->rt6i_ref);
725 inet6_rt_notify(RTM_NEWROUTE, rt, info);
726 rt6_release(iter);
727 if (!(fn->fn_flags & RTN_RTINFO)) {
728 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
729 fn->fn_flags |= RTN_RTINFO;
730 }
731 }
732
733 return 0;
734 }
735
736 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
737 {
738 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
739 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
740 mod_timer(&net->ipv6.ip6_fib_timer,
741 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
742 }
743
744 void fib6_force_start_gc(struct net *net)
745 {
746 if (!timer_pending(&net->ipv6.ip6_fib_timer))
747 mod_timer(&net->ipv6.ip6_fib_timer,
748 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
749 }
750
751 /*
752 * Add routing information to the routing tree.
753 * <destination addr>/<source addr>
754 * with source addr info in sub-trees
755 */
756
757 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
758 {
759 struct fib6_node *fn, *pn = NULL;
760 int err = -ENOMEM;
761 int allow_create = 1;
762 int replace_required = 0;
763
764 if (info->nlh) {
765 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
766 allow_create = 0;
767 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
768 replace_required = 1;
769 }
770 if (!allow_create && !replace_required)
771 pr_warn("IPv6: RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
772
773 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
774 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
775 allow_create, replace_required);
776
777 if (IS_ERR(fn)) {
778 err = PTR_ERR(fn);
779 fn = NULL;
780 }
781
782 if (!fn)
783 goto out;
784
785 pn = fn;
786
787 #ifdef CONFIG_IPV6_SUBTREES
788 if (rt->rt6i_src.plen) {
789 struct fib6_node *sn;
790
791 if (!fn->subtree) {
792 struct fib6_node *sfn;
793
794 /*
795 * Create subtree.
796 *
797 * fn[main tree]
798 * |
799 * sfn[subtree root]
800 * \
801 * sn[new leaf node]
802 */
803
804 /* Create subtree root node */
805 sfn = node_alloc();
806 if (!sfn)
807 goto st_failure;
808
809 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
810 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
811 sfn->fn_flags = RTN_ROOT;
812 sfn->fn_sernum = fib6_new_sernum();
813
814 /* Now add the first leaf node to new subtree */
815
816 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
817 sizeof(struct in6_addr), rt->rt6i_src.plen,
818 offsetof(struct rt6_info, rt6i_src),
819 allow_create, replace_required);
820
821 if (!sn) {
822 /* If it is failed, discard just allocated
823 root, and then (in st_failure) stale node
824 in main tree.
825 */
826 node_free(sfn);
827 goto st_failure;
828 }
829
830 /* Now link new subtree to main tree */
831 sfn->parent = fn;
832 fn->subtree = sfn;
833 } else {
834 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
835 sizeof(struct in6_addr), rt->rt6i_src.plen,
836 offsetof(struct rt6_info, rt6i_src),
837 allow_create, replace_required);
838
839 if (IS_ERR(sn)) {
840 err = PTR_ERR(sn);
841 sn = NULL;
842 }
843 if (!sn)
844 goto st_failure;
845 }
846
847 if (!fn->leaf) {
848 fn->leaf = rt;
849 atomic_inc(&rt->rt6i_ref);
850 }
851 fn = sn;
852 }
853 #endif
854
855 err = fib6_add_rt2node(fn, rt, info);
856 if (!err) {
857 fib6_start_gc(info->nl_net, rt);
858 if (!(rt->rt6i_flags & RTF_CACHE))
859 fib6_prune_clones(info->nl_net, pn, rt);
860 }
861
862 out:
863 if (err) {
864 #ifdef CONFIG_IPV6_SUBTREES
865 /*
866 * If fib6_add_1 has cleared the old leaf pointer in the
867 * super-tree leaf node we have to find a new one for it.
868 */
869 if (pn != fn && pn->leaf == rt) {
870 pn->leaf = NULL;
871 atomic_dec(&rt->rt6i_ref);
872 }
873 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
874 pn->leaf = fib6_find_prefix(info->nl_net, pn);
875 #if RT6_DEBUG >= 2
876 if (!pn->leaf) {
877 WARN_ON(pn->leaf == NULL);
878 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
879 }
880 #endif
881 atomic_inc(&pn->leaf->rt6i_ref);
882 }
883 #endif
884 dst_free(&rt->dst);
885 }
886 return err;
887
888 #ifdef CONFIG_IPV6_SUBTREES
889 /* Subtree creation failed, probably main tree node
890 is orphan. If it is, shoot it.
891 */
892 st_failure:
893 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
894 fib6_repair_tree(info->nl_net, fn);
895 dst_free(&rt->dst);
896 return err;
897 #endif
898 }
899
900 /*
901 * Routing tree lookup
902 *
903 */
904
905 struct lookup_args {
906 int offset; /* key offset on rt6_info */
907 const struct in6_addr *addr; /* search key */
908 };
909
910 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
911 struct lookup_args *args)
912 {
913 struct fib6_node *fn;
914 __be32 dir;
915
916 if (unlikely(args->offset == 0))
917 return NULL;
918
919 /*
920 * Descend on a tree
921 */
922
923 fn = root;
924
925 for (;;) {
926 struct fib6_node *next;
927
928 dir = addr_bit_set(args->addr, fn->fn_bit);
929
930 next = dir ? fn->right : fn->left;
931
932 if (next) {
933 fn = next;
934 continue;
935 }
936 break;
937 }
938
939 while (fn) {
940 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
941 struct rt6key *key;
942
943 key = (struct rt6key *) ((u8 *) fn->leaf +
944 args->offset);
945
946 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
947 #ifdef CONFIG_IPV6_SUBTREES
948 if (fn->subtree)
949 fn = fib6_lookup_1(fn->subtree, args + 1);
950 #endif
951 if (!fn || fn->fn_flags & RTN_RTINFO)
952 return fn;
953 }
954 }
955
956 if (fn->fn_flags & RTN_ROOT)
957 break;
958
959 fn = fn->parent;
960 }
961
962 return NULL;
963 }
964
965 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
966 const struct in6_addr *saddr)
967 {
968 struct fib6_node *fn;
969 struct lookup_args args[] = {
970 {
971 .offset = offsetof(struct rt6_info, rt6i_dst),
972 .addr = daddr,
973 },
974 #ifdef CONFIG_IPV6_SUBTREES
975 {
976 .offset = offsetof(struct rt6_info, rt6i_src),
977 .addr = saddr,
978 },
979 #endif
980 {
981 .offset = 0, /* sentinel */
982 }
983 };
984
985 fn = fib6_lookup_1(root, daddr ? args : args + 1);
986 if (!fn || fn->fn_flags & RTN_TL_ROOT)
987 fn = root;
988
989 return fn;
990 }
991
992 /*
993 * Get node with specified destination prefix (and source prefix,
994 * if subtrees are used)
995 */
996
997
998 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
999 const struct in6_addr *addr,
1000 int plen, int offset)
1001 {
1002 struct fib6_node *fn;
1003
1004 for (fn = root; fn ; ) {
1005 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1006
1007 /*
1008 * Prefix match
1009 */
1010 if (plen < fn->fn_bit ||
1011 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1012 return NULL;
1013
1014 if (plen == fn->fn_bit)
1015 return fn;
1016
1017 /*
1018 * We have more bits to go
1019 */
1020 if (addr_bit_set(addr, fn->fn_bit))
1021 fn = fn->right;
1022 else
1023 fn = fn->left;
1024 }
1025 return NULL;
1026 }
1027
1028 struct fib6_node * fib6_locate(struct fib6_node *root,
1029 const struct in6_addr *daddr, int dst_len,
1030 const struct in6_addr *saddr, int src_len)
1031 {
1032 struct fib6_node *fn;
1033
1034 fn = fib6_locate_1(root, daddr, dst_len,
1035 offsetof(struct rt6_info, rt6i_dst));
1036
1037 #ifdef CONFIG_IPV6_SUBTREES
1038 if (src_len) {
1039 WARN_ON(saddr == NULL);
1040 if (fn && fn->subtree)
1041 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1042 offsetof(struct rt6_info, rt6i_src));
1043 }
1044 #endif
1045
1046 if (fn && fn->fn_flags & RTN_RTINFO)
1047 return fn;
1048
1049 return NULL;
1050 }
1051
1052
1053 /*
1054 * Deletion
1055 *
1056 */
1057
1058 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1059 {
1060 if (fn->fn_flags & RTN_ROOT)
1061 return net->ipv6.ip6_null_entry;
1062
1063 while (fn) {
1064 if (fn->left)
1065 return fn->left->leaf;
1066 if (fn->right)
1067 return fn->right->leaf;
1068
1069 fn = FIB6_SUBTREE(fn);
1070 }
1071 return NULL;
1072 }
1073
1074 /*
1075 * Called to trim the tree of intermediate nodes when possible. "fn"
1076 * is the node we want to try and remove.
1077 */
1078
1079 static struct fib6_node *fib6_repair_tree(struct net *net,
1080 struct fib6_node *fn)
1081 {
1082 int children;
1083 int nstate;
1084 struct fib6_node *child, *pn;
1085 struct fib6_walker_t *w;
1086 int iter = 0;
1087
1088 for (;;) {
1089 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1090 iter++;
1091
1092 WARN_ON(fn->fn_flags & RTN_RTINFO);
1093 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1094 WARN_ON(fn->leaf != NULL);
1095
1096 children = 0;
1097 child = NULL;
1098 if (fn->right) child = fn->right, children |= 1;
1099 if (fn->left) child = fn->left, children |= 2;
1100
1101 if (children == 3 || FIB6_SUBTREE(fn)
1102 #ifdef CONFIG_IPV6_SUBTREES
1103 /* Subtree root (i.e. fn) may have one child */
1104 || (children && fn->fn_flags & RTN_ROOT)
1105 #endif
1106 ) {
1107 fn->leaf = fib6_find_prefix(net, fn);
1108 #if RT6_DEBUG >= 2
1109 if (!fn->leaf) {
1110 WARN_ON(!fn->leaf);
1111 fn->leaf = net->ipv6.ip6_null_entry;
1112 }
1113 #endif
1114 atomic_inc(&fn->leaf->rt6i_ref);
1115 return fn->parent;
1116 }
1117
1118 pn = fn->parent;
1119 #ifdef CONFIG_IPV6_SUBTREES
1120 if (FIB6_SUBTREE(pn) == fn) {
1121 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1122 FIB6_SUBTREE(pn) = NULL;
1123 nstate = FWS_L;
1124 } else {
1125 WARN_ON(fn->fn_flags & RTN_ROOT);
1126 #endif
1127 if (pn->right == fn) pn->right = child;
1128 else if (pn->left == fn) pn->left = child;
1129 #if RT6_DEBUG >= 2
1130 else
1131 WARN_ON(1);
1132 #endif
1133 if (child)
1134 child->parent = pn;
1135 nstate = FWS_R;
1136 #ifdef CONFIG_IPV6_SUBTREES
1137 }
1138 #endif
1139
1140 read_lock(&fib6_walker_lock);
1141 FOR_WALKERS(w) {
1142 if (!child) {
1143 if (w->root == fn) {
1144 w->root = w->node = NULL;
1145 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1146 } else if (w->node == fn) {
1147 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1148 w->node = pn;
1149 w->state = nstate;
1150 }
1151 } else {
1152 if (w->root == fn) {
1153 w->root = child;
1154 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1155 }
1156 if (w->node == fn) {
1157 w->node = child;
1158 if (children&2) {
1159 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1160 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1161 } else {
1162 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1163 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1164 }
1165 }
1166 }
1167 }
1168 read_unlock(&fib6_walker_lock);
1169
1170 node_free(fn);
1171 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1172 return pn;
1173
1174 rt6_release(pn->leaf);
1175 pn->leaf = NULL;
1176 fn = pn;
1177 }
1178 }
1179
1180 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1181 struct nl_info *info)
1182 {
1183 struct fib6_walker_t *w;
1184 struct rt6_info *rt = *rtp;
1185 struct net *net = info->nl_net;
1186
1187 RT6_TRACE("fib6_del_route\n");
1188
1189 /* Unlink it */
1190 *rtp = rt->dst.rt6_next;
1191 rt->rt6i_node = NULL;
1192 net->ipv6.rt6_stats->fib_rt_entries--;
1193 net->ipv6.rt6_stats->fib_discarded_routes++;
1194
1195 /* Reset round-robin state, if necessary */
1196 if (fn->rr_ptr == rt)
1197 fn->rr_ptr = NULL;
1198
1199 /* Adjust walkers */
1200 read_lock(&fib6_walker_lock);
1201 FOR_WALKERS(w) {
1202 if (w->state == FWS_C && w->leaf == rt) {
1203 RT6_TRACE("walker %p adjusted by delroute\n", w);
1204 w->leaf = rt->dst.rt6_next;
1205 if (!w->leaf)
1206 w->state = FWS_U;
1207 }
1208 }
1209 read_unlock(&fib6_walker_lock);
1210
1211 rt->dst.rt6_next = NULL;
1212
1213 /* If it was last route, expunge its radix tree node */
1214 if (!fn->leaf) {
1215 fn->fn_flags &= ~RTN_RTINFO;
1216 net->ipv6.rt6_stats->fib_route_nodes--;
1217 fn = fib6_repair_tree(net, fn);
1218 }
1219
1220 if (atomic_read(&rt->rt6i_ref) != 1) {
1221 /* This route is used as dummy address holder in some split
1222 * nodes. It is not leaked, but it still holds other resources,
1223 * which must be released in time. So, scan ascendant nodes
1224 * and replace dummy references to this route with references
1225 * to still alive ones.
1226 */
1227 while (fn) {
1228 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1229 fn->leaf = fib6_find_prefix(net, fn);
1230 atomic_inc(&fn->leaf->rt6i_ref);
1231 rt6_release(rt);
1232 }
1233 fn = fn->parent;
1234 }
1235 /* No more references are possible at this point. */
1236 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1237 }
1238
1239 inet6_rt_notify(RTM_DELROUTE, rt, info);
1240 rt6_release(rt);
1241 }
1242
1243 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1244 {
1245 struct net *net = info->nl_net;
1246 struct fib6_node *fn = rt->rt6i_node;
1247 struct rt6_info **rtp;
1248
1249 #if RT6_DEBUG >= 2
1250 if (rt->dst.obsolete>0) {
1251 WARN_ON(fn != NULL);
1252 return -ENOENT;
1253 }
1254 #endif
1255 if (!fn || rt == net->ipv6.ip6_null_entry)
1256 return -ENOENT;
1257
1258 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1259
1260 if (!(rt->rt6i_flags & RTF_CACHE)) {
1261 struct fib6_node *pn = fn;
1262 #ifdef CONFIG_IPV6_SUBTREES
1263 /* clones of this route might be in another subtree */
1264 if (rt->rt6i_src.plen) {
1265 while (!(pn->fn_flags & RTN_ROOT))
1266 pn = pn->parent;
1267 pn = pn->parent;
1268 }
1269 #endif
1270 fib6_prune_clones(info->nl_net, pn, rt);
1271 }
1272
1273 /*
1274 * Walk the leaf entries looking for ourself
1275 */
1276
1277 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1278 if (*rtp == rt) {
1279 fib6_del_route(fn, rtp, info);
1280 return 0;
1281 }
1282 }
1283 return -ENOENT;
1284 }
1285
1286 /*
1287 * Tree traversal function.
1288 *
1289 * Certainly, it is not interrupt safe.
1290 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1291 * It means, that we can modify tree during walking
1292 * and use this function for garbage collection, clone pruning,
1293 * cleaning tree when a device goes down etc. etc.
1294 *
1295 * It guarantees that every node will be traversed,
1296 * and that it will be traversed only once.
1297 *
1298 * Callback function w->func may return:
1299 * 0 -> continue walking.
1300 * positive value -> walking is suspended (used by tree dumps,
1301 * and probably by gc, if it will be split to several slices)
1302 * negative value -> terminate walking.
1303 *
1304 * The function itself returns:
1305 * 0 -> walk is complete.
1306 * >0 -> walk is incomplete (i.e. suspended)
1307 * <0 -> walk is terminated by an error.
1308 */
1309
1310 static int fib6_walk_continue(struct fib6_walker_t *w)
1311 {
1312 struct fib6_node *fn, *pn;
1313
1314 for (;;) {
1315 fn = w->node;
1316 if (!fn)
1317 return 0;
1318
1319 if (w->prune && fn != w->root &&
1320 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1321 w->state = FWS_C;
1322 w->leaf = fn->leaf;
1323 }
1324 switch (w->state) {
1325 #ifdef CONFIG_IPV6_SUBTREES
1326 case FWS_S:
1327 if (FIB6_SUBTREE(fn)) {
1328 w->node = FIB6_SUBTREE(fn);
1329 continue;
1330 }
1331 w->state = FWS_L;
1332 #endif
1333 case FWS_L:
1334 if (fn->left) {
1335 w->node = fn->left;
1336 w->state = FWS_INIT;
1337 continue;
1338 }
1339 w->state = FWS_R;
1340 case FWS_R:
1341 if (fn->right) {
1342 w->node = fn->right;
1343 w->state = FWS_INIT;
1344 continue;
1345 }
1346 w->state = FWS_C;
1347 w->leaf = fn->leaf;
1348 case FWS_C:
1349 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1350 int err;
1351
1352 if (w->count < w->skip) {
1353 w->count++;
1354 continue;
1355 }
1356
1357 err = w->func(w);
1358 if (err)
1359 return err;
1360
1361 w->count++;
1362 continue;
1363 }
1364 w->state = FWS_U;
1365 case FWS_U:
1366 if (fn == w->root)
1367 return 0;
1368 pn = fn->parent;
1369 w->node = pn;
1370 #ifdef CONFIG_IPV6_SUBTREES
1371 if (FIB6_SUBTREE(pn) == fn) {
1372 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1373 w->state = FWS_L;
1374 continue;
1375 }
1376 #endif
1377 if (pn->left == fn) {
1378 w->state = FWS_R;
1379 continue;
1380 }
1381 if (pn->right == fn) {
1382 w->state = FWS_C;
1383 w->leaf = w->node->leaf;
1384 continue;
1385 }
1386 #if RT6_DEBUG >= 2
1387 WARN_ON(1);
1388 #endif
1389 }
1390 }
1391 }
1392
1393 static int fib6_walk(struct fib6_walker_t *w)
1394 {
1395 int res;
1396
1397 w->state = FWS_INIT;
1398 w->node = w->root;
1399
1400 fib6_walker_link(w);
1401 res = fib6_walk_continue(w);
1402 if (res <= 0)
1403 fib6_walker_unlink(w);
1404 return res;
1405 }
1406
1407 static int fib6_clean_node(struct fib6_walker_t *w)
1408 {
1409 int res;
1410 struct rt6_info *rt;
1411 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1412 struct nl_info info = {
1413 .nl_net = c->net,
1414 };
1415
1416 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1417 res = c->func(rt, c->arg);
1418 if (res < 0) {
1419 w->leaf = rt;
1420 res = fib6_del(rt, &info);
1421 if (res) {
1422 #if RT6_DEBUG >= 2
1423 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1424 #endif
1425 continue;
1426 }
1427 return 0;
1428 }
1429 WARN_ON(res != 0);
1430 }
1431 w->leaf = rt;
1432 return 0;
1433 }
1434
1435 /*
1436 * Convenient frontend to tree walker.
1437 *
1438 * func is called on each route.
1439 * It may return -1 -> delete this route.
1440 * 0 -> continue walking
1441 *
1442 * prune==1 -> only immediate children of node (certainly,
1443 * ignoring pure split nodes) will be scanned.
1444 */
1445
1446 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1447 int (*func)(struct rt6_info *, void *arg),
1448 int prune, void *arg)
1449 {
1450 struct fib6_cleaner_t c;
1451
1452 c.w.root = root;
1453 c.w.func = fib6_clean_node;
1454 c.w.prune = prune;
1455 c.w.count = 0;
1456 c.w.skip = 0;
1457 c.func = func;
1458 c.arg = arg;
1459 c.net = net;
1460
1461 fib6_walk(&c.w);
1462 }
1463
1464 void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1465 int prune, void *arg)
1466 {
1467 struct fib6_table *table;
1468 struct hlist_node *node;
1469 struct hlist_head *head;
1470 unsigned int h;
1471
1472 rcu_read_lock();
1473 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1474 head = &net->ipv6.fib_table_hash[h];
1475 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1476 read_lock_bh(&table->tb6_lock);
1477 fib6_clean_tree(net, &table->tb6_root,
1478 func, prune, arg);
1479 read_unlock_bh(&table->tb6_lock);
1480 }
1481 }
1482 rcu_read_unlock();
1483 }
1484 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1485 int prune, void *arg)
1486 {
1487 struct fib6_table *table;
1488 struct hlist_node *node;
1489 struct hlist_head *head;
1490 unsigned int h;
1491
1492 rcu_read_lock();
1493 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1494 head = &net->ipv6.fib_table_hash[h];
1495 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1496 write_lock_bh(&table->tb6_lock);
1497 fib6_clean_tree(net, &table->tb6_root,
1498 func, prune, arg);
1499 write_unlock_bh(&table->tb6_lock);
1500 }
1501 }
1502 rcu_read_unlock();
1503 }
1504
1505 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1506 {
1507 if (rt->rt6i_flags & RTF_CACHE) {
1508 RT6_TRACE("pruning clone %p\n", rt);
1509 return -1;
1510 }
1511
1512 return 0;
1513 }
1514
1515 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1516 struct rt6_info *rt)
1517 {
1518 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1519 }
1520
1521 /*
1522 * Garbage collection
1523 */
1524
1525 static struct fib6_gc_args
1526 {
1527 int timeout;
1528 int more;
1529 } gc_args;
1530
1531 static int fib6_age(struct rt6_info *rt, void *arg)
1532 {
1533 unsigned long now = jiffies;
1534
1535 /*
1536 * check addrconf expiration here.
1537 * Routes are expired even if they are in use.
1538 *
1539 * Also age clones. Note, that clones are aged out
1540 * only if they are not in use now.
1541 */
1542
1543 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1544 if (time_after(now, rt->dst.expires)) {
1545 RT6_TRACE("expiring %p\n", rt);
1546 return -1;
1547 }
1548 gc_args.more++;
1549 } else if (rt->rt6i_flags & RTF_CACHE) {
1550 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1551 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1552 RT6_TRACE("aging clone %p\n", rt);
1553 return -1;
1554 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1555 struct neighbour *neigh;
1556 __u8 neigh_flags = 0;
1557
1558 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1559 if (neigh) {
1560 neigh_flags = neigh->flags;
1561 neigh_release(neigh);
1562 }
1563 if (neigh_flags & NTF_ROUTER) {
1564 RT6_TRACE("purging route %p via non-router but gateway\n",
1565 rt);
1566 return -1;
1567 }
1568 }
1569 gc_args.more++;
1570 }
1571
1572 return 0;
1573 }
1574
1575 static DEFINE_SPINLOCK(fib6_gc_lock);
1576
1577 void fib6_run_gc(unsigned long expires, struct net *net)
1578 {
1579 if (expires != ~0UL) {
1580 spin_lock_bh(&fib6_gc_lock);
1581 gc_args.timeout = expires ? (int)expires :
1582 net->ipv6.sysctl.ip6_rt_gc_interval;
1583 } else {
1584 if (!spin_trylock_bh(&fib6_gc_lock)) {
1585 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1586 return;
1587 }
1588 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1589 }
1590
1591 gc_args.more = icmp6_dst_gc();
1592
1593 fib6_clean_all(net, fib6_age, 0, NULL);
1594
1595 if (gc_args.more)
1596 mod_timer(&net->ipv6.ip6_fib_timer,
1597 round_jiffies(jiffies
1598 + net->ipv6.sysctl.ip6_rt_gc_interval));
1599 else
1600 del_timer(&net->ipv6.ip6_fib_timer);
1601 spin_unlock_bh(&fib6_gc_lock);
1602 }
1603
1604 static void fib6_gc_timer_cb(unsigned long arg)
1605 {
1606 fib6_run_gc(0, (struct net *)arg);
1607 }
1608
1609 static int __net_init fib6_net_init(struct net *net)
1610 {
1611 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1612
1613 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1614
1615 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1616 if (!net->ipv6.rt6_stats)
1617 goto out_timer;
1618
1619 /* Avoid false sharing : Use at least a full cache line */
1620 size = max_t(size_t, size, L1_CACHE_BYTES);
1621
1622 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1623 if (!net->ipv6.fib_table_hash)
1624 goto out_rt6_stats;
1625
1626 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1627 GFP_KERNEL);
1628 if (!net->ipv6.fib6_main_tbl)
1629 goto out_fib_table_hash;
1630
1631 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1632 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1633 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1634 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1635
1636 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1637 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1638 GFP_KERNEL);
1639 if (!net->ipv6.fib6_local_tbl)
1640 goto out_fib6_main_tbl;
1641 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1642 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1643 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1644 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1645 #endif
1646 fib6_tables_init(net);
1647
1648 return 0;
1649
1650 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1651 out_fib6_main_tbl:
1652 kfree(net->ipv6.fib6_main_tbl);
1653 #endif
1654 out_fib_table_hash:
1655 kfree(net->ipv6.fib_table_hash);
1656 out_rt6_stats:
1657 kfree(net->ipv6.rt6_stats);
1658 out_timer:
1659 return -ENOMEM;
1660 }
1661
1662 static void fib6_net_exit(struct net *net)
1663 {
1664 rt6_ifdown(net, NULL);
1665 del_timer_sync(&net->ipv6.ip6_fib_timer);
1666
1667 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1668 kfree(net->ipv6.fib6_local_tbl);
1669 #endif
1670 kfree(net->ipv6.fib6_main_tbl);
1671 kfree(net->ipv6.fib_table_hash);
1672 kfree(net->ipv6.rt6_stats);
1673 }
1674
1675 static struct pernet_operations fib6_net_ops = {
1676 .init = fib6_net_init,
1677 .exit = fib6_net_exit,
1678 };
1679
1680 int __init fib6_init(void)
1681 {
1682 int ret = -ENOMEM;
1683
1684 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1685 sizeof(struct fib6_node),
1686 0, SLAB_HWCACHE_ALIGN,
1687 NULL);
1688 if (!fib6_node_kmem)
1689 goto out;
1690
1691 ret = register_pernet_subsys(&fib6_net_ops);
1692 if (ret)
1693 goto out_kmem_cache_create;
1694
1695 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1696 NULL);
1697 if (ret)
1698 goto out_unregister_subsys;
1699 out:
1700 return ret;
1701
1702 out_unregister_subsys:
1703 unregister_pernet_subsys(&fib6_net_ops);
1704 out_kmem_cache_create:
1705 kmem_cache_destroy(fib6_node_kmem);
1706 goto out;
1707 }
1708
1709 void fib6_gc_cleanup(void)
1710 {
1711 unregister_pernet_subsys(&fib6_net_ops);
1712 kmem_cache_destroy(fib6_node_kmem);
1713 }
This page took 0.066894 seconds and 5 git commands to generate.