netns: dont alloc ipv6 fib timer list
[deliverable/linux.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /*
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
20 */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29
30 #ifdef CONFIG_PROC_FS
31 #include <linux/proc_fs.h>
32 #endif
33
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40
41 #define RT6_DEBUG 2
42
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54 FWS_S,
55 #endif
56 FWS_L,
57 FWS_R,
58 FWS_C,
59 FWS_U
60 };
61
62 struct fib6_cleaner_t
63 {
64 struct fib6_walker_t w;
65 struct net *net;
66 int (*func)(struct rt6_info *, void *arg);
67 void *arg;
68 };
69
70 static DEFINE_RWLOCK(fib6_walker_lock);
71
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84
85 /*
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
90 */
91
92 static __u32 rt_sernum;
93
94 static void fib6_gc_timer_cb(unsigned long arg);
95
96 static struct fib6_walker_t fib6_walker_list = {
97 .prev = &fib6_walker_list,
98 .next = &fib6_walker_list,
99 };
100
101 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
102
103 static inline void fib6_walker_link(struct fib6_walker_t *w)
104 {
105 write_lock_bh(&fib6_walker_lock);
106 w->next = fib6_walker_list.next;
107 w->prev = &fib6_walker_list;
108 w->next->prev = w;
109 w->prev->next = w;
110 write_unlock_bh(&fib6_walker_lock);
111 }
112
113 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
114 {
115 write_lock_bh(&fib6_walker_lock);
116 w->next->prev = w->prev;
117 w->prev->next = w->next;
118 w->prev = w->next = w;
119 write_unlock_bh(&fib6_walker_lock);
120 }
121 static __inline__ u32 fib6_new_sernum(void)
122 {
123 u32 n = ++rt_sernum;
124 if ((__s32)n <= 0)
125 rt_sernum = n = 1;
126 return n;
127 }
128
129 /*
130 * Auxiliary address test functions for the radix tree.
131 *
132 * These assume a 32bit processor (although it will work on
133 * 64bit processors)
134 */
135
136 /*
137 * test bit
138 */
139
140 static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
141 {
142 __be32 *addr = token;
143
144 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
145 }
146
147 static __inline__ struct fib6_node * node_alloc(void)
148 {
149 struct fib6_node *fn;
150
151 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152
153 return fn;
154 }
155
156 static __inline__ void node_free(struct fib6_node * fn)
157 {
158 kmem_cache_free(fib6_node_kmem, fn);
159 }
160
161 static __inline__ void rt6_release(struct rt6_info *rt)
162 {
163 if (atomic_dec_and_test(&rt->rt6i_ref))
164 dst_free(&rt->u.dst);
165 }
166
167 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
168 #define FIB_TABLE_HASHSZ 256
169 #else
170 #define FIB_TABLE_HASHSZ 1
171 #endif
172
173 static void fib6_link_table(struct net *net, struct fib6_table *tb)
174 {
175 unsigned int h;
176
177 /*
178 * Initialize table lock at a single place to give lockdep a key,
179 * tables aren't visible prior to being linked to the list.
180 */
181 rwlock_init(&tb->tb6_lock);
182
183 h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
184
185 /*
186 * No protection necessary, this is the only list mutatation
187 * operation, tables never disappear once they exist.
188 */
189 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
190 }
191
192 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
193
194 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
195 {
196 struct fib6_table *table;
197
198 table = kzalloc(sizeof(*table), GFP_ATOMIC);
199 if (table != NULL) {
200 table->tb6_id = id;
201 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
202 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
203 }
204
205 return table;
206 }
207
208 struct fib6_table *fib6_new_table(struct net *net, u32 id)
209 {
210 struct fib6_table *tb;
211
212 if (id == 0)
213 id = RT6_TABLE_MAIN;
214 tb = fib6_get_table(net, id);
215 if (tb)
216 return tb;
217
218 tb = fib6_alloc_table(net, id);
219 if (tb != NULL)
220 fib6_link_table(net, tb);
221
222 return tb;
223 }
224
225 struct fib6_table *fib6_get_table(struct net *net, u32 id)
226 {
227 struct fib6_table *tb;
228 struct hlist_head *head;
229 struct hlist_node *node;
230 unsigned int h;
231
232 if (id == 0)
233 id = RT6_TABLE_MAIN;
234 h = id & (FIB_TABLE_HASHSZ - 1);
235 rcu_read_lock();
236 head = &net->ipv6.fib_table_hash[h];
237 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
238 if (tb->tb6_id == id) {
239 rcu_read_unlock();
240 return tb;
241 }
242 }
243 rcu_read_unlock();
244
245 return NULL;
246 }
247
248 static void fib6_tables_init(struct net *net)
249 {
250 fib6_link_table(net, net->ipv6.fib6_main_tbl);
251 fib6_link_table(net, net->ipv6.fib6_local_tbl);
252 }
253 #else
254
255 struct fib6_table *fib6_new_table(struct net *net, u32 id)
256 {
257 return fib6_get_table(net, id);
258 }
259
260 struct fib6_table *fib6_get_table(struct net *net, u32 id)
261 {
262 return net->ipv6.fib6_main_tbl;
263 }
264
265 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
266 int flags, pol_lookup_t lookup)
267 {
268 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags);
269 }
270
271 static void fib6_tables_init(struct net *net)
272 {
273 fib6_link_table(net, net->ipv6.fib6_main_tbl);
274 }
275
276 #endif
277
278 static int fib6_dump_node(struct fib6_walker_t *w)
279 {
280 int res;
281 struct rt6_info *rt;
282
283 for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
284 res = rt6_dump_route(rt, w->args);
285 if (res < 0) {
286 /* Frame is full, suspend walking */
287 w->leaf = rt;
288 return 1;
289 }
290 BUG_TRAP(res!=0);
291 }
292 w->leaf = NULL;
293 return 0;
294 }
295
296 static void fib6_dump_end(struct netlink_callback *cb)
297 {
298 struct fib6_walker_t *w = (void*)cb->args[2];
299
300 if (w) {
301 cb->args[2] = 0;
302 kfree(w);
303 }
304 cb->done = (void*)cb->args[3];
305 cb->args[1] = 3;
306 }
307
308 static int fib6_dump_done(struct netlink_callback *cb)
309 {
310 fib6_dump_end(cb);
311 return cb->done ? cb->done(cb) : 0;
312 }
313
314 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
315 struct netlink_callback *cb)
316 {
317 struct fib6_walker_t *w;
318 int res;
319
320 w = (void *)cb->args[2];
321 w->root = &table->tb6_root;
322
323 if (cb->args[4] == 0) {
324 read_lock_bh(&table->tb6_lock);
325 res = fib6_walk(w);
326 read_unlock_bh(&table->tb6_lock);
327 if (res > 0)
328 cb->args[4] = 1;
329 } else {
330 read_lock_bh(&table->tb6_lock);
331 res = fib6_walk_continue(w);
332 read_unlock_bh(&table->tb6_lock);
333 if (res != 0) {
334 if (res < 0)
335 fib6_walker_unlink(w);
336 goto end;
337 }
338 fib6_walker_unlink(w);
339 cb->args[4] = 0;
340 }
341 end:
342 return res;
343 }
344
345 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
346 {
347 struct net *net = sock_net(skb->sk);
348 unsigned int h, s_h;
349 unsigned int e = 0, s_e;
350 struct rt6_rtnl_dump_arg arg;
351 struct fib6_walker_t *w;
352 struct fib6_table *tb;
353 struct hlist_node *node;
354 struct hlist_head *head;
355 int res = 0;
356
357 s_h = cb->args[0];
358 s_e = cb->args[1];
359
360 w = (void *)cb->args[2];
361 if (w == NULL) {
362 /* New dump:
363 *
364 * 1. hook callback destructor.
365 */
366 cb->args[3] = (long)cb->done;
367 cb->done = fib6_dump_done;
368
369 /*
370 * 2. allocate and initialize walker.
371 */
372 w = kzalloc(sizeof(*w), GFP_ATOMIC);
373 if (w == NULL)
374 return -ENOMEM;
375 w->func = fib6_dump_node;
376 cb->args[2] = (long)w;
377 }
378
379 arg.skb = skb;
380 arg.cb = cb;
381 w->args = &arg;
382
383 for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
384 e = 0;
385 head = &net->ipv6.fib_table_hash[h];
386 hlist_for_each_entry(tb, node, head, tb6_hlist) {
387 if (e < s_e)
388 goto next;
389 res = fib6_dump_table(tb, skb, cb);
390 if (res != 0)
391 goto out;
392 next:
393 e++;
394 }
395 }
396 out:
397 cb->args[1] = e;
398 cb->args[0] = h;
399
400 res = res < 0 ? res : skb->len;
401 if (res <= 0)
402 fib6_dump_end(cb);
403 return res;
404 }
405
406 /*
407 * Routing Table
408 *
409 * return the appropriate node for a routing tree "add" operation
410 * by either creating and inserting or by returning an existing
411 * node.
412 */
413
414 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
415 int addrlen, int plen,
416 int offset)
417 {
418 struct fib6_node *fn, *in, *ln;
419 struct fib6_node *pn = NULL;
420 struct rt6key *key;
421 int bit;
422 __be32 dir = 0;
423 __u32 sernum = fib6_new_sernum();
424
425 RT6_TRACE("fib6_add_1\n");
426
427 /* insert node in tree */
428
429 fn = root;
430
431 do {
432 key = (struct rt6key *)((u8 *)fn->leaf + offset);
433
434 /*
435 * Prefix match
436 */
437 if (plen < fn->fn_bit ||
438 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
439 goto insert_above;
440
441 /*
442 * Exact match ?
443 */
444
445 if (plen == fn->fn_bit) {
446 /* clean up an intermediate node */
447 if ((fn->fn_flags & RTN_RTINFO) == 0) {
448 rt6_release(fn->leaf);
449 fn->leaf = NULL;
450 }
451
452 fn->fn_sernum = sernum;
453
454 return fn;
455 }
456
457 /*
458 * We have more bits to go
459 */
460
461 /* Try to walk down on tree. */
462 fn->fn_sernum = sernum;
463 dir = addr_bit_set(addr, fn->fn_bit);
464 pn = fn;
465 fn = dir ? fn->right: fn->left;
466 } while (fn);
467
468 /*
469 * We walked to the bottom of tree.
470 * Create new leaf node without children.
471 */
472
473 ln = node_alloc();
474
475 if (ln == NULL)
476 return NULL;
477 ln->fn_bit = plen;
478
479 ln->parent = pn;
480 ln->fn_sernum = sernum;
481
482 if (dir)
483 pn->right = ln;
484 else
485 pn->left = ln;
486
487 return ln;
488
489
490 insert_above:
491 /*
492 * split since we don't have a common prefix anymore or
493 * we have a less significant route.
494 * we've to insert an intermediate node on the list
495 * this new node will point to the one we need to create
496 * and the current
497 */
498
499 pn = fn->parent;
500
501 /* find 1st bit in difference between the 2 addrs.
502
503 See comment in __ipv6_addr_diff: bit may be an invalid value,
504 but if it is >= plen, the value is ignored in any case.
505 */
506
507 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
508
509 /*
510 * (intermediate)[in]
511 * / \
512 * (new leaf node)[ln] (old node)[fn]
513 */
514 if (plen > bit) {
515 in = node_alloc();
516 ln = node_alloc();
517
518 if (in == NULL || ln == NULL) {
519 if (in)
520 node_free(in);
521 if (ln)
522 node_free(ln);
523 return NULL;
524 }
525
526 /*
527 * new intermediate node.
528 * RTN_RTINFO will
529 * be off since that an address that chooses one of
530 * the branches would not match less specific routes
531 * in the other branch
532 */
533
534 in->fn_bit = bit;
535
536 in->parent = pn;
537 in->leaf = fn->leaf;
538 atomic_inc(&in->leaf->rt6i_ref);
539
540 in->fn_sernum = sernum;
541
542 /* update parent pointer */
543 if (dir)
544 pn->right = in;
545 else
546 pn->left = in;
547
548 ln->fn_bit = plen;
549
550 ln->parent = in;
551 fn->parent = in;
552
553 ln->fn_sernum = sernum;
554
555 if (addr_bit_set(addr, bit)) {
556 in->right = ln;
557 in->left = fn;
558 } else {
559 in->left = ln;
560 in->right = fn;
561 }
562 } else { /* plen <= bit */
563
564 /*
565 * (new leaf node)[ln]
566 * / \
567 * (old node)[fn] NULL
568 */
569
570 ln = node_alloc();
571
572 if (ln == NULL)
573 return NULL;
574
575 ln->fn_bit = plen;
576
577 ln->parent = pn;
578
579 ln->fn_sernum = sernum;
580
581 if (dir)
582 pn->right = ln;
583 else
584 pn->left = ln;
585
586 if (addr_bit_set(&key->addr, plen))
587 ln->right = fn;
588 else
589 ln->left = fn;
590
591 fn->parent = ln;
592 }
593 return ln;
594 }
595
596 /*
597 * Insert routing information in a node.
598 */
599
600 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
601 struct nl_info *info)
602 {
603 struct rt6_info *iter = NULL;
604 struct rt6_info **ins;
605
606 ins = &fn->leaf;
607
608 for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
609 /*
610 * Search for duplicates
611 */
612
613 if (iter->rt6i_metric == rt->rt6i_metric) {
614 /*
615 * Same priority level
616 */
617
618 if (iter->rt6i_dev == rt->rt6i_dev &&
619 iter->rt6i_idev == rt->rt6i_idev &&
620 ipv6_addr_equal(&iter->rt6i_gateway,
621 &rt->rt6i_gateway)) {
622 if (!(iter->rt6i_flags&RTF_EXPIRES))
623 return -EEXIST;
624 iter->rt6i_expires = rt->rt6i_expires;
625 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
626 iter->rt6i_flags &= ~RTF_EXPIRES;
627 iter->rt6i_expires = 0;
628 }
629 return -EEXIST;
630 }
631 }
632
633 if (iter->rt6i_metric > rt->rt6i_metric)
634 break;
635
636 ins = &iter->u.dst.rt6_next;
637 }
638
639 /* Reset round-robin state, if necessary */
640 if (ins == &fn->leaf)
641 fn->rr_ptr = NULL;
642
643 /*
644 * insert node
645 */
646
647 rt->u.dst.rt6_next = iter;
648 *ins = rt;
649 rt->rt6i_node = fn;
650 atomic_inc(&rt->rt6i_ref);
651 inet6_rt_notify(RTM_NEWROUTE, rt, info);
652 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
653
654 if ((fn->fn_flags & RTN_RTINFO) == 0) {
655 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
656 fn->fn_flags |= RTN_RTINFO;
657 }
658
659 return 0;
660 }
661
662 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
663 {
664 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
665 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
666 mod_timer(&net->ipv6.ip6_fib_timer,
667 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
668 }
669
670 void fib6_force_start_gc(struct net *net)
671 {
672 if (!timer_pending(&net->ipv6.ip6_fib_timer))
673 mod_timer(&net->ipv6.ip6_fib_timer,
674 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
675 }
676
677 /*
678 * Add routing information to the routing tree.
679 * <destination addr>/<source addr>
680 * with source addr info in sub-trees
681 */
682
683 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
684 {
685 struct fib6_node *fn, *pn = NULL;
686 int err = -ENOMEM;
687
688 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
689 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
690
691 if (fn == NULL)
692 goto out;
693
694 pn = fn;
695
696 #ifdef CONFIG_IPV6_SUBTREES
697 if (rt->rt6i_src.plen) {
698 struct fib6_node *sn;
699
700 if (fn->subtree == NULL) {
701 struct fib6_node *sfn;
702
703 /*
704 * Create subtree.
705 *
706 * fn[main tree]
707 * |
708 * sfn[subtree root]
709 * \
710 * sn[new leaf node]
711 */
712
713 /* Create subtree root node */
714 sfn = node_alloc();
715 if (sfn == NULL)
716 goto st_failure;
717
718 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
719 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
720 sfn->fn_flags = RTN_ROOT;
721 sfn->fn_sernum = fib6_new_sernum();
722
723 /* Now add the first leaf node to new subtree */
724
725 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
726 sizeof(struct in6_addr), rt->rt6i_src.plen,
727 offsetof(struct rt6_info, rt6i_src));
728
729 if (sn == NULL) {
730 /* If it is failed, discard just allocated
731 root, and then (in st_failure) stale node
732 in main tree.
733 */
734 node_free(sfn);
735 goto st_failure;
736 }
737
738 /* Now link new subtree to main tree */
739 sfn->parent = fn;
740 fn->subtree = sfn;
741 } else {
742 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
743 sizeof(struct in6_addr), rt->rt6i_src.plen,
744 offsetof(struct rt6_info, rt6i_src));
745
746 if (sn == NULL)
747 goto st_failure;
748 }
749
750 if (fn->leaf == NULL) {
751 fn->leaf = rt;
752 atomic_inc(&rt->rt6i_ref);
753 }
754 fn = sn;
755 }
756 #endif
757
758 err = fib6_add_rt2node(fn, rt, info);
759
760 if (err == 0) {
761 fib6_start_gc(info->nl_net, rt);
762 if (!(rt->rt6i_flags&RTF_CACHE))
763 fib6_prune_clones(info->nl_net, pn, rt);
764 }
765
766 out:
767 if (err) {
768 #ifdef CONFIG_IPV6_SUBTREES
769 /*
770 * If fib6_add_1 has cleared the old leaf pointer in the
771 * super-tree leaf node we have to find a new one for it.
772 */
773 if (pn != fn && pn->leaf == rt) {
774 pn->leaf = NULL;
775 atomic_dec(&rt->rt6i_ref);
776 }
777 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
778 pn->leaf = fib6_find_prefix(info->nl_net, pn);
779 #if RT6_DEBUG >= 2
780 if (!pn->leaf) {
781 BUG_TRAP(pn->leaf != NULL);
782 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
783 }
784 #endif
785 atomic_inc(&pn->leaf->rt6i_ref);
786 }
787 #endif
788 dst_free(&rt->u.dst);
789 }
790 return err;
791
792 #ifdef CONFIG_IPV6_SUBTREES
793 /* Subtree creation failed, probably main tree node
794 is orphan. If it is, shoot it.
795 */
796 st_failure:
797 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
798 fib6_repair_tree(info->nl_net, fn);
799 dst_free(&rt->u.dst);
800 return err;
801 #endif
802 }
803
804 /*
805 * Routing tree lookup
806 *
807 */
808
809 struct lookup_args {
810 int offset; /* key offset on rt6_info */
811 struct in6_addr *addr; /* search key */
812 };
813
814 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
815 struct lookup_args *args)
816 {
817 struct fib6_node *fn;
818 __be32 dir;
819
820 if (unlikely(args->offset == 0))
821 return NULL;
822
823 /*
824 * Descend on a tree
825 */
826
827 fn = root;
828
829 for (;;) {
830 struct fib6_node *next;
831
832 dir = addr_bit_set(args->addr, fn->fn_bit);
833
834 next = dir ? fn->right : fn->left;
835
836 if (next) {
837 fn = next;
838 continue;
839 }
840
841 break;
842 }
843
844 while(fn) {
845 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
846 struct rt6key *key;
847
848 key = (struct rt6key *) ((u8 *) fn->leaf +
849 args->offset);
850
851 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
852 #ifdef CONFIG_IPV6_SUBTREES
853 if (fn->subtree)
854 fn = fib6_lookup_1(fn->subtree, args + 1);
855 #endif
856 if (!fn || fn->fn_flags & RTN_RTINFO)
857 return fn;
858 }
859 }
860
861 if (fn->fn_flags & RTN_ROOT)
862 break;
863
864 fn = fn->parent;
865 }
866
867 return NULL;
868 }
869
870 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
871 struct in6_addr *saddr)
872 {
873 struct fib6_node *fn;
874 struct lookup_args args[] = {
875 {
876 .offset = offsetof(struct rt6_info, rt6i_dst),
877 .addr = daddr,
878 },
879 #ifdef CONFIG_IPV6_SUBTREES
880 {
881 .offset = offsetof(struct rt6_info, rt6i_src),
882 .addr = saddr,
883 },
884 #endif
885 {
886 .offset = 0, /* sentinel */
887 }
888 };
889
890 fn = fib6_lookup_1(root, daddr ? args : args + 1);
891
892 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
893 fn = root;
894
895 return fn;
896 }
897
898 /*
899 * Get node with specified destination prefix (and source prefix,
900 * if subtrees are used)
901 */
902
903
904 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
905 struct in6_addr *addr,
906 int plen, int offset)
907 {
908 struct fib6_node *fn;
909
910 for (fn = root; fn ; ) {
911 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
912
913 /*
914 * Prefix match
915 */
916 if (plen < fn->fn_bit ||
917 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
918 return NULL;
919
920 if (plen == fn->fn_bit)
921 return fn;
922
923 /*
924 * We have more bits to go
925 */
926 if (addr_bit_set(addr, fn->fn_bit))
927 fn = fn->right;
928 else
929 fn = fn->left;
930 }
931 return NULL;
932 }
933
934 struct fib6_node * fib6_locate(struct fib6_node *root,
935 struct in6_addr *daddr, int dst_len,
936 struct in6_addr *saddr, int src_len)
937 {
938 struct fib6_node *fn;
939
940 fn = fib6_locate_1(root, daddr, dst_len,
941 offsetof(struct rt6_info, rt6i_dst));
942
943 #ifdef CONFIG_IPV6_SUBTREES
944 if (src_len) {
945 BUG_TRAP(saddr!=NULL);
946 if (fn && fn->subtree)
947 fn = fib6_locate_1(fn->subtree, saddr, src_len,
948 offsetof(struct rt6_info, rt6i_src));
949 }
950 #endif
951
952 if (fn && fn->fn_flags&RTN_RTINFO)
953 return fn;
954
955 return NULL;
956 }
957
958
959 /*
960 * Deletion
961 *
962 */
963
964 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
965 {
966 if (fn->fn_flags&RTN_ROOT)
967 return net->ipv6.ip6_null_entry;
968
969 while(fn) {
970 if(fn->left)
971 return fn->left->leaf;
972
973 if(fn->right)
974 return fn->right->leaf;
975
976 fn = FIB6_SUBTREE(fn);
977 }
978 return NULL;
979 }
980
981 /*
982 * Called to trim the tree of intermediate nodes when possible. "fn"
983 * is the node we want to try and remove.
984 */
985
986 static struct fib6_node *fib6_repair_tree(struct net *net,
987 struct fib6_node *fn)
988 {
989 int children;
990 int nstate;
991 struct fib6_node *child, *pn;
992 struct fib6_walker_t *w;
993 int iter = 0;
994
995 for (;;) {
996 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
997 iter++;
998
999 BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
1000 BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
1001 BUG_TRAP(fn->leaf==NULL);
1002
1003 children = 0;
1004 child = NULL;
1005 if (fn->right) child = fn->right, children |= 1;
1006 if (fn->left) child = fn->left, children |= 2;
1007
1008 if (children == 3 || FIB6_SUBTREE(fn)
1009 #ifdef CONFIG_IPV6_SUBTREES
1010 /* Subtree root (i.e. fn) may have one child */
1011 || (children && fn->fn_flags&RTN_ROOT)
1012 #endif
1013 ) {
1014 fn->leaf = fib6_find_prefix(net, fn);
1015 #if RT6_DEBUG >= 2
1016 if (fn->leaf==NULL) {
1017 BUG_TRAP(fn->leaf);
1018 fn->leaf = net->ipv6.ip6_null_entry;
1019 }
1020 #endif
1021 atomic_inc(&fn->leaf->rt6i_ref);
1022 return fn->parent;
1023 }
1024
1025 pn = fn->parent;
1026 #ifdef CONFIG_IPV6_SUBTREES
1027 if (FIB6_SUBTREE(pn) == fn) {
1028 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1029 FIB6_SUBTREE(pn) = NULL;
1030 nstate = FWS_L;
1031 } else {
1032 BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
1033 #endif
1034 if (pn->right == fn) pn->right = child;
1035 else if (pn->left == fn) pn->left = child;
1036 #if RT6_DEBUG >= 2
1037 else BUG_TRAP(0);
1038 #endif
1039 if (child)
1040 child->parent = pn;
1041 nstate = FWS_R;
1042 #ifdef CONFIG_IPV6_SUBTREES
1043 }
1044 #endif
1045
1046 read_lock(&fib6_walker_lock);
1047 FOR_WALKERS(w) {
1048 if (child == NULL) {
1049 if (w->root == fn) {
1050 w->root = w->node = NULL;
1051 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1052 } else if (w->node == fn) {
1053 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1054 w->node = pn;
1055 w->state = nstate;
1056 }
1057 } else {
1058 if (w->root == fn) {
1059 w->root = child;
1060 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1061 }
1062 if (w->node == fn) {
1063 w->node = child;
1064 if (children&2) {
1065 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1066 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1067 } else {
1068 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1069 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1070 }
1071 }
1072 }
1073 }
1074 read_unlock(&fib6_walker_lock);
1075
1076 node_free(fn);
1077 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1078 return pn;
1079
1080 rt6_release(pn->leaf);
1081 pn->leaf = NULL;
1082 fn = pn;
1083 }
1084 }
1085
1086 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1087 struct nl_info *info)
1088 {
1089 struct fib6_walker_t *w;
1090 struct rt6_info *rt = *rtp;
1091 struct net *net = info->nl_net;
1092
1093 RT6_TRACE("fib6_del_route\n");
1094
1095 /* Unlink it */
1096 *rtp = rt->u.dst.rt6_next;
1097 rt->rt6i_node = NULL;
1098 net->ipv6.rt6_stats->fib_rt_entries--;
1099 net->ipv6.rt6_stats->fib_discarded_routes++;
1100
1101 /* Reset round-robin state, if necessary */
1102 if (fn->rr_ptr == rt)
1103 fn->rr_ptr = NULL;
1104
1105 /* Adjust walkers */
1106 read_lock(&fib6_walker_lock);
1107 FOR_WALKERS(w) {
1108 if (w->state == FWS_C && w->leaf == rt) {
1109 RT6_TRACE("walker %p adjusted by delroute\n", w);
1110 w->leaf = rt->u.dst.rt6_next;
1111 if (w->leaf == NULL)
1112 w->state = FWS_U;
1113 }
1114 }
1115 read_unlock(&fib6_walker_lock);
1116
1117 rt->u.dst.rt6_next = NULL;
1118
1119 /* If it was last route, expunge its radix tree node */
1120 if (fn->leaf == NULL) {
1121 fn->fn_flags &= ~RTN_RTINFO;
1122 net->ipv6.rt6_stats->fib_route_nodes--;
1123 fn = fib6_repair_tree(net, fn);
1124 }
1125
1126 if (atomic_read(&rt->rt6i_ref) != 1) {
1127 /* This route is used as dummy address holder in some split
1128 * nodes. It is not leaked, but it still holds other resources,
1129 * which must be released in time. So, scan ascendant nodes
1130 * and replace dummy references to this route with references
1131 * to still alive ones.
1132 */
1133 while (fn) {
1134 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1135 fn->leaf = fib6_find_prefix(net, fn);
1136 atomic_inc(&fn->leaf->rt6i_ref);
1137 rt6_release(rt);
1138 }
1139 fn = fn->parent;
1140 }
1141 /* No more references are possible at this point. */
1142 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1143 }
1144
1145 inet6_rt_notify(RTM_DELROUTE, rt, info);
1146 rt6_release(rt);
1147 }
1148
1149 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1150 {
1151 struct net *net = info->nl_net;
1152 struct fib6_node *fn = rt->rt6i_node;
1153 struct rt6_info **rtp;
1154
1155 #if RT6_DEBUG >= 2
1156 if (rt->u.dst.obsolete>0) {
1157 BUG_TRAP(fn==NULL);
1158 return -ENOENT;
1159 }
1160 #endif
1161 if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1162 return -ENOENT;
1163
1164 BUG_TRAP(fn->fn_flags&RTN_RTINFO);
1165
1166 if (!(rt->rt6i_flags&RTF_CACHE)) {
1167 struct fib6_node *pn = fn;
1168 #ifdef CONFIG_IPV6_SUBTREES
1169 /* clones of this route might be in another subtree */
1170 if (rt->rt6i_src.plen) {
1171 while (!(pn->fn_flags&RTN_ROOT))
1172 pn = pn->parent;
1173 pn = pn->parent;
1174 }
1175 #endif
1176 fib6_prune_clones(info->nl_net, pn, rt);
1177 }
1178
1179 /*
1180 * Walk the leaf entries looking for ourself
1181 */
1182
1183 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1184 if (*rtp == rt) {
1185 fib6_del_route(fn, rtp, info);
1186 return 0;
1187 }
1188 }
1189 return -ENOENT;
1190 }
1191
1192 /*
1193 * Tree traversal function.
1194 *
1195 * Certainly, it is not interrupt safe.
1196 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1197 * It means, that we can modify tree during walking
1198 * and use this function for garbage collection, clone pruning,
1199 * cleaning tree when a device goes down etc. etc.
1200 *
1201 * It guarantees that every node will be traversed,
1202 * and that it will be traversed only once.
1203 *
1204 * Callback function w->func may return:
1205 * 0 -> continue walking.
1206 * positive value -> walking is suspended (used by tree dumps,
1207 * and probably by gc, if it will be split to several slices)
1208 * negative value -> terminate walking.
1209 *
1210 * The function itself returns:
1211 * 0 -> walk is complete.
1212 * >0 -> walk is incomplete (i.e. suspended)
1213 * <0 -> walk is terminated by an error.
1214 */
1215
1216 static int fib6_walk_continue(struct fib6_walker_t *w)
1217 {
1218 struct fib6_node *fn, *pn;
1219
1220 for (;;) {
1221 fn = w->node;
1222 if (fn == NULL)
1223 return 0;
1224
1225 if (w->prune && fn != w->root &&
1226 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1227 w->state = FWS_C;
1228 w->leaf = fn->leaf;
1229 }
1230 switch (w->state) {
1231 #ifdef CONFIG_IPV6_SUBTREES
1232 case FWS_S:
1233 if (FIB6_SUBTREE(fn)) {
1234 w->node = FIB6_SUBTREE(fn);
1235 continue;
1236 }
1237 w->state = FWS_L;
1238 #endif
1239 case FWS_L:
1240 if (fn->left) {
1241 w->node = fn->left;
1242 w->state = FWS_INIT;
1243 continue;
1244 }
1245 w->state = FWS_R;
1246 case FWS_R:
1247 if (fn->right) {
1248 w->node = fn->right;
1249 w->state = FWS_INIT;
1250 continue;
1251 }
1252 w->state = FWS_C;
1253 w->leaf = fn->leaf;
1254 case FWS_C:
1255 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1256 int err = w->func(w);
1257 if (err)
1258 return err;
1259 continue;
1260 }
1261 w->state = FWS_U;
1262 case FWS_U:
1263 if (fn == w->root)
1264 return 0;
1265 pn = fn->parent;
1266 w->node = pn;
1267 #ifdef CONFIG_IPV6_SUBTREES
1268 if (FIB6_SUBTREE(pn) == fn) {
1269 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1270 w->state = FWS_L;
1271 continue;
1272 }
1273 #endif
1274 if (pn->left == fn) {
1275 w->state = FWS_R;
1276 continue;
1277 }
1278 if (pn->right == fn) {
1279 w->state = FWS_C;
1280 w->leaf = w->node->leaf;
1281 continue;
1282 }
1283 #if RT6_DEBUG >= 2
1284 BUG_TRAP(0);
1285 #endif
1286 }
1287 }
1288 }
1289
1290 static int fib6_walk(struct fib6_walker_t *w)
1291 {
1292 int res;
1293
1294 w->state = FWS_INIT;
1295 w->node = w->root;
1296
1297 fib6_walker_link(w);
1298 res = fib6_walk_continue(w);
1299 if (res <= 0)
1300 fib6_walker_unlink(w);
1301 return res;
1302 }
1303
1304 static int fib6_clean_node(struct fib6_walker_t *w)
1305 {
1306 int res;
1307 struct rt6_info *rt;
1308 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1309 struct nl_info info = {
1310 .nl_net = c->net,
1311 };
1312
1313 for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1314 res = c->func(rt, c->arg);
1315 if (res < 0) {
1316 w->leaf = rt;
1317 res = fib6_del(rt, &info);
1318 if (res) {
1319 #if RT6_DEBUG >= 2
1320 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1321 #endif
1322 continue;
1323 }
1324 return 0;
1325 }
1326 BUG_TRAP(res==0);
1327 }
1328 w->leaf = rt;
1329 return 0;
1330 }
1331
1332 /*
1333 * Convenient frontend to tree walker.
1334 *
1335 * func is called on each route.
1336 * It may return -1 -> delete this route.
1337 * 0 -> continue walking
1338 *
1339 * prune==1 -> only immediate children of node (certainly,
1340 * ignoring pure split nodes) will be scanned.
1341 */
1342
1343 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1344 int (*func)(struct rt6_info *, void *arg),
1345 int prune, void *arg)
1346 {
1347 struct fib6_cleaner_t c;
1348
1349 c.w.root = root;
1350 c.w.func = fib6_clean_node;
1351 c.w.prune = prune;
1352 c.func = func;
1353 c.arg = arg;
1354 c.net = net;
1355
1356 fib6_walk(&c.w);
1357 }
1358
1359 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1360 int prune, void *arg)
1361 {
1362 struct fib6_table *table;
1363 struct hlist_node *node;
1364 struct hlist_head *head;
1365 unsigned int h;
1366
1367 rcu_read_lock();
1368 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1369 head = &net->ipv6.fib_table_hash[h];
1370 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1371 write_lock_bh(&table->tb6_lock);
1372 fib6_clean_tree(net, &table->tb6_root,
1373 func, prune, arg);
1374 write_unlock_bh(&table->tb6_lock);
1375 }
1376 }
1377 rcu_read_unlock();
1378 }
1379
1380 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1381 {
1382 if (rt->rt6i_flags & RTF_CACHE) {
1383 RT6_TRACE("pruning clone %p\n", rt);
1384 return -1;
1385 }
1386
1387 return 0;
1388 }
1389
1390 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1391 struct rt6_info *rt)
1392 {
1393 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1394 }
1395
1396 /*
1397 * Garbage collection
1398 */
1399
1400 static struct fib6_gc_args
1401 {
1402 int timeout;
1403 int more;
1404 } gc_args;
1405
1406 static int fib6_age(struct rt6_info *rt, void *arg)
1407 {
1408 unsigned long now = jiffies;
1409
1410 /*
1411 * check addrconf expiration here.
1412 * Routes are expired even if they are in use.
1413 *
1414 * Also age clones. Note, that clones are aged out
1415 * only if they are not in use now.
1416 */
1417
1418 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1419 if (time_after(now, rt->rt6i_expires)) {
1420 RT6_TRACE("expiring %p\n", rt);
1421 return -1;
1422 }
1423 gc_args.more++;
1424 } else if (rt->rt6i_flags & RTF_CACHE) {
1425 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1426 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1427 RT6_TRACE("aging clone %p\n", rt);
1428 return -1;
1429 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1430 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1431 RT6_TRACE("purging route %p via non-router but gateway\n",
1432 rt);
1433 return -1;
1434 }
1435 gc_args.more++;
1436 }
1437
1438 return 0;
1439 }
1440
1441 static DEFINE_SPINLOCK(fib6_gc_lock);
1442
1443 void fib6_run_gc(unsigned long expires, struct net *net)
1444 {
1445 if (expires != ~0UL) {
1446 spin_lock_bh(&fib6_gc_lock);
1447 gc_args.timeout = expires ? (int)expires :
1448 net->ipv6.sysctl.ip6_rt_gc_interval;
1449 } else {
1450 local_bh_disable();
1451 if (!spin_trylock(&fib6_gc_lock)) {
1452 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1453 local_bh_enable();
1454 return;
1455 }
1456 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1457 }
1458 gc_args.more = 0;
1459
1460 icmp6_dst_gc(&gc_args.more);
1461
1462 fib6_clean_all(net, fib6_age, 0, NULL);
1463
1464 if (gc_args.more)
1465 mod_timer(&net->ipv6.ip6_fib_timer, jiffies +
1466 net->ipv6.sysctl.ip6_rt_gc_interval);
1467 else
1468 del_timer(&net->ipv6.ip6_fib_timer);
1469 spin_unlock_bh(&fib6_gc_lock);
1470 }
1471
1472 static void fib6_gc_timer_cb(unsigned long arg)
1473 {
1474 fib6_run_gc(0, (struct net *)arg);
1475 }
1476
1477 static int fib6_net_init(struct net *net)
1478 {
1479 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1480
1481 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1482 if (!net->ipv6.rt6_stats)
1483 goto out_timer;
1484
1485 net->ipv6.fib_table_hash =
1486 kzalloc(sizeof(*net->ipv6.fib_table_hash)*FIB_TABLE_HASHSZ,
1487 GFP_KERNEL);
1488 if (!net->ipv6.fib_table_hash)
1489 goto out_rt6_stats;
1490
1491 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1492 GFP_KERNEL);
1493 if (!net->ipv6.fib6_main_tbl)
1494 goto out_fib_table_hash;
1495
1496 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1497 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1498 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1499 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1500
1501 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1502 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1503 GFP_KERNEL);
1504 if (!net->ipv6.fib6_local_tbl)
1505 goto out_fib6_main_tbl;
1506 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1507 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1508 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1509 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1510 #endif
1511 fib6_tables_init(net);
1512
1513 return 0;
1514
1515 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1516 out_fib6_main_tbl:
1517 kfree(net->ipv6.fib6_main_tbl);
1518 #endif
1519 out_fib_table_hash:
1520 kfree(net->ipv6.fib_table_hash);
1521 out_rt6_stats:
1522 kfree(net->ipv6.rt6_stats);
1523 out_timer:
1524 return -ENOMEM;
1525 }
1526
1527 static void fib6_net_exit(struct net *net)
1528 {
1529 rt6_ifdown(net, NULL);
1530 del_timer_sync(&net->ipv6.ip6_fib_timer);
1531
1532 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1533 kfree(net->ipv6.fib6_local_tbl);
1534 #endif
1535 kfree(net->ipv6.fib6_main_tbl);
1536 kfree(net->ipv6.fib_table_hash);
1537 kfree(net->ipv6.rt6_stats);
1538 }
1539
1540 static struct pernet_operations fib6_net_ops = {
1541 .init = fib6_net_init,
1542 .exit = fib6_net_exit,
1543 };
1544
1545 int __init fib6_init(void)
1546 {
1547 int ret = -ENOMEM;
1548
1549 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1550 sizeof(struct fib6_node),
1551 0, SLAB_HWCACHE_ALIGN,
1552 NULL);
1553 if (!fib6_node_kmem)
1554 goto out;
1555
1556 ret = register_pernet_subsys(&fib6_net_ops);
1557 if (ret)
1558 goto out_kmem_cache_create;
1559
1560 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1561 if (ret)
1562 goto out_unregister_subsys;
1563 out:
1564 return ret;
1565
1566 out_unregister_subsys:
1567 unregister_pernet_subsys(&fib6_net_ops);
1568 out_kmem_cache_create:
1569 kmem_cache_destroy(fib6_node_kmem);
1570 goto out;
1571 }
1572
1573 void fib6_gc_cleanup(void)
1574 {
1575 unregister_pernet_subsys(&fib6_net_ops);
1576 kmem_cache_destroy(fib6_node_kmem);
1577 }
This page took 0.065754 seconds and 5 git commands to generate.