Merge tag 'devel-omap-device-for-v3.7' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / net / irda / ircomm / ircomm_tty.c
1 /*********************************************************************
2 *
3 * Filename: ircomm_tty.c
4 * Version: 1.0
5 * Description: IrCOMM serial TTY driver
6 * Status: Experimental.
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Jun 6 21:00:56 1999
9 * Modified at: Wed Feb 23 00:09:02 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
11 * Sources: serial.c and previous IrCOMM work by Takahide Higuchi
12 *
13 * Copyright (c) 1999-2000 Dag Brattli, All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 * MA 02111-1307 USA
30 *
31 ********************************************************************/
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/fs.h>
36 #include <linux/slab.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/termios.h>
40 #include <linux/tty.h>
41 #include <linux/tty_flip.h>
42 #include <linux/interrupt.h>
43 #include <linux/device.h> /* for MODULE_ALIAS_CHARDEV_MAJOR */
44
45 #include <asm/uaccess.h>
46
47 #include <net/irda/irda.h>
48 #include <net/irda/irmod.h>
49
50 #include <net/irda/ircomm_core.h>
51 #include <net/irda/ircomm_param.h>
52 #include <net/irda/ircomm_tty_attach.h>
53 #include <net/irda/ircomm_tty.h>
54
55 static int ircomm_tty_open(struct tty_struct *tty, struct file *filp);
56 static void ircomm_tty_close(struct tty_struct * tty, struct file *filp);
57 static int ircomm_tty_write(struct tty_struct * tty,
58 const unsigned char *buf, int count);
59 static int ircomm_tty_write_room(struct tty_struct *tty);
60 static void ircomm_tty_throttle(struct tty_struct *tty);
61 static void ircomm_tty_unthrottle(struct tty_struct *tty);
62 static int ircomm_tty_chars_in_buffer(struct tty_struct *tty);
63 static void ircomm_tty_flush_buffer(struct tty_struct *tty);
64 static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch);
65 static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout);
66 static void ircomm_tty_hangup(struct tty_struct *tty);
67 static void ircomm_tty_do_softint(struct work_struct *work);
68 static void ircomm_tty_shutdown(struct ircomm_tty_cb *self);
69 static void ircomm_tty_stop(struct tty_struct *tty);
70
71 static int ircomm_tty_data_indication(void *instance, void *sap,
72 struct sk_buff *skb);
73 static int ircomm_tty_control_indication(void *instance, void *sap,
74 struct sk_buff *skb);
75 static void ircomm_tty_flow_indication(void *instance, void *sap,
76 LOCAL_FLOW cmd);
77 #ifdef CONFIG_PROC_FS
78 static const struct file_operations ircomm_tty_proc_fops;
79 #endif /* CONFIG_PROC_FS */
80 static struct tty_driver *driver;
81
82 static hashbin_t *ircomm_tty = NULL;
83
84 static const struct tty_operations ops = {
85 .open = ircomm_tty_open,
86 .close = ircomm_tty_close,
87 .write = ircomm_tty_write,
88 .write_room = ircomm_tty_write_room,
89 .chars_in_buffer = ircomm_tty_chars_in_buffer,
90 .flush_buffer = ircomm_tty_flush_buffer,
91 .ioctl = ircomm_tty_ioctl, /* ircomm_tty_ioctl.c */
92 .tiocmget = ircomm_tty_tiocmget, /* ircomm_tty_ioctl.c */
93 .tiocmset = ircomm_tty_tiocmset, /* ircomm_tty_ioctl.c */
94 .throttle = ircomm_tty_throttle,
95 .unthrottle = ircomm_tty_unthrottle,
96 .send_xchar = ircomm_tty_send_xchar,
97 .set_termios = ircomm_tty_set_termios,
98 .stop = ircomm_tty_stop,
99 .start = ircomm_tty_start,
100 .hangup = ircomm_tty_hangup,
101 .wait_until_sent = ircomm_tty_wait_until_sent,
102 #ifdef CONFIG_PROC_FS
103 .proc_fops = &ircomm_tty_proc_fops,
104 #endif /* CONFIG_PROC_FS */
105 };
106
107 /*
108 * Function ircomm_tty_init()
109 *
110 * Init IrCOMM TTY layer/driver
111 *
112 */
113 static int __init ircomm_tty_init(void)
114 {
115 driver = alloc_tty_driver(IRCOMM_TTY_PORTS);
116 if (!driver)
117 return -ENOMEM;
118 ircomm_tty = hashbin_new(HB_LOCK);
119 if (ircomm_tty == NULL) {
120 IRDA_ERROR("%s(), can't allocate hashbin!\n", __func__);
121 put_tty_driver(driver);
122 return -ENOMEM;
123 }
124
125 driver->driver_name = "ircomm";
126 driver->name = "ircomm";
127 driver->major = IRCOMM_TTY_MAJOR;
128 driver->minor_start = IRCOMM_TTY_MINOR;
129 driver->type = TTY_DRIVER_TYPE_SERIAL;
130 driver->subtype = SERIAL_TYPE_NORMAL;
131 driver->init_termios = tty_std_termios;
132 driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
133 driver->flags = TTY_DRIVER_REAL_RAW;
134 tty_set_operations(driver, &ops);
135 if (tty_register_driver(driver)) {
136 IRDA_ERROR("%s(): Couldn't register serial driver\n",
137 __func__);
138 put_tty_driver(driver);
139 return -1;
140 }
141 return 0;
142 }
143
144 static void __exit __ircomm_tty_cleanup(struct ircomm_tty_cb *self)
145 {
146 IRDA_DEBUG(0, "%s()\n", __func__ );
147
148 IRDA_ASSERT(self != NULL, return;);
149 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
150
151 ircomm_tty_shutdown(self);
152
153 self->magic = 0;
154 kfree(self);
155 }
156
157 /*
158 * Function ircomm_tty_cleanup ()
159 *
160 * Remove IrCOMM TTY layer/driver
161 *
162 */
163 static void __exit ircomm_tty_cleanup(void)
164 {
165 int ret;
166
167 IRDA_DEBUG(4, "%s()\n", __func__ );
168
169 ret = tty_unregister_driver(driver);
170 if (ret) {
171 IRDA_ERROR("%s(), failed to unregister driver\n",
172 __func__);
173 return;
174 }
175
176 hashbin_delete(ircomm_tty, (FREE_FUNC) __ircomm_tty_cleanup);
177 put_tty_driver(driver);
178 }
179
180 /*
181 * Function ircomm_startup (self)
182 *
183 *
184 *
185 */
186 static int ircomm_tty_startup(struct ircomm_tty_cb *self)
187 {
188 notify_t notify;
189 int ret = -ENODEV;
190
191 IRDA_DEBUG(2, "%s()\n", __func__ );
192
193 IRDA_ASSERT(self != NULL, return -1;);
194 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
195
196 /* Check if already open */
197 if (test_and_set_bit(ASYNC_B_INITIALIZED, &self->flags)) {
198 IRDA_DEBUG(2, "%s(), already open so break out!\n", __func__ );
199 return 0;
200 }
201
202 /* Register with IrCOMM */
203 irda_notify_init(&notify);
204 /* These callbacks we must handle ourselves */
205 notify.data_indication = ircomm_tty_data_indication;
206 notify.udata_indication = ircomm_tty_control_indication;
207 notify.flow_indication = ircomm_tty_flow_indication;
208
209 /* Use the ircomm_tty interface for these ones */
210 notify.disconnect_indication = ircomm_tty_disconnect_indication;
211 notify.connect_confirm = ircomm_tty_connect_confirm;
212 notify.connect_indication = ircomm_tty_connect_indication;
213 strlcpy(notify.name, "ircomm_tty", sizeof(notify.name));
214 notify.instance = self;
215
216 if (!self->ircomm) {
217 self->ircomm = ircomm_open(&notify, self->service_type,
218 self->line);
219 }
220 if (!self->ircomm)
221 goto err;
222
223 self->slsap_sel = self->ircomm->slsap_sel;
224
225 /* Connect IrCOMM link with remote device */
226 ret = ircomm_tty_attach_cable(self);
227 if (ret < 0) {
228 IRDA_ERROR("%s(), error attaching cable!\n", __func__);
229 goto err;
230 }
231
232 return 0;
233 err:
234 clear_bit(ASYNC_B_INITIALIZED, &self->flags);
235 return ret;
236 }
237
238 /*
239 * Function ircomm_block_til_ready (self, filp)
240 *
241 *
242 *
243 */
244 static int ircomm_tty_block_til_ready(struct ircomm_tty_cb *self,
245 struct file *filp)
246 {
247 DECLARE_WAITQUEUE(wait, current);
248 int retval;
249 int do_clocal = 0, extra_count = 0;
250 unsigned long flags;
251 struct tty_struct *tty;
252
253 IRDA_DEBUG(2, "%s()\n", __func__ );
254
255 tty = self->tty;
256
257 /*
258 * If non-blocking mode is set, or the port is not enabled,
259 * then make the check up front and then exit.
260 */
261 if (filp->f_flags & O_NONBLOCK || tty->flags & (1 << TTY_IO_ERROR)){
262 /* nonblock mode is set or port is not enabled */
263 self->flags |= ASYNC_NORMAL_ACTIVE;
264 IRDA_DEBUG(1, "%s(), O_NONBLOCK requested!\n", __func__ );
265 return 0;
266 }
267
268 if (tty->termios->c_cflag & CLOCAL) {
269 IRDA_DEBUG(1, "%s(), doing CLOCAL!\n", __func__ );
270 do_clocal = 1;
271 }
272
273 /* Wait for carrier detect and the line to become
274 * free (i.e., not in use by the callout). While we are in
275 * this loop, self->open_count is dropped by one, so that
276 * mgsl_close() knows when to free things. We restore it upon
277 * exit, either normal or abnormal.
278 */
279
280 retval = 0;
281 add_wait_queue(&self->open_wait, &wait);
282
283 IRDA_DEBUG(2, "%s(%d):block_til_ready before block on %s open_count=%d\n",
284 __FILE__,__LINE__, tty->driver->name, self->open_count );
285
286 /* As far as I can see, we protect open_count - Jean II */
287 spin_lock_irqsave(&self->spinlock, flags);
288 if (!tty_hung_up_p(filp)) {
289 extra_count = 1;
290 self->open_count--;
291 }
292 spin_unlock_irqrestore(&self->spinlock, flags);
293 self->blocked_open++;
294
295 while (1) {
296 if (tty->termios->c_cflag & CBAUD) {
297 /* Here, we use to lock those two guys, but
298 * as ircomm_param_request() does it itself,
299 * I don't see the point (and I see the deadlock).
300 * Jean II */
301 self->settings.dte |= IRCOMM_RTS + IRCOMM_DTR;
302
303 ircomm_param_request(self, IRCOMM_DTE, TRUE);
304 }
305
306 current->state = TASK_INTERRUPTIBLE;
307
308 if (tty_hung_up_p(filp) ||
309 !test_bit(ASYNC_B_INITIALIZED, &self->flags)) {
310 retval = (self->flags & ASYNC_HUP_NOTIFY) ?
311 -EAGAIN : -ERESTARTSYS;
312 break;
313 }
314
315 /*
316 * Check if link is ready now. Even if CLOCAL is
317 * specified, we cannot return before the IrCOMM link is
318 * ready
319 */
320 if (!test_bit(ASYNC_B_CLOSING, &self->flags) &&
321 (do_clocal || (self->settings.dce & IRCOMM_CD)) &&
322 self->state == IRCOMM_TTY_READY)
323 {
324 break;
325 }
326
327 if (signal_pending(current)) {
328 retval = -ERESTARTSYS;
329 break;
330 }
331
332 IRDA_DEBUG(1, "%s(%d):block_til_ready blocking on %s open_count=%d\n",
333 __FILE__,__LINE__, tty->driver->name, self->open_count );
334
335 schedule();
336 }
337
338 __set_current_state(TASK_RUNNING);
339 remove_wait_queue(&self->open_wait, &wait);
340
341 if (extra_count) {
342 /* ++ is not atomic, so this should be protected - Jean II */
343 spin_lock_irqsave(&self->spinlock, flags);
344 self->open_count++;
345 spin_unlock_irqrestore(&self->spinlock, flags);
346 }
347 self->blocked_open--;
348
349 IRDA_DEBUG(1, "%s(%d):block_til_ready after blocking on %s open_count=%d\n",
350 __FILE__,__LINE__, tty->driver->name, self->open_count);
351
352 if (!retval)
353 self->flags |= ASYNC_NORMAL_ACTIVE;
354
355 return retval;
356 }
357
358 /*
359 * Function ircomm_tty_open (tty, filp)
360 *
361 * This routine is called when a particular tty device is opened. This
362 * routine is mandatory; if this routine is not filled in, the attempted
363 * open will fail with ENODEV.
364 */
365 static int ircomm_tty_open(struct tty_struct *tty, struct file *filp)
366 {
367 struct ircomm_tty_cb *self;
368 unsigned int line = tty->index;
369 unsigned long flags;
370 int ret;
371
372 IRDA_DEBUG(2, "%s()\n", __func__ );
373
374 /* Check if instance already exists */
375 self = hashbin_lock_find(ircomm_tty, line, NULL);
376 if (!self) {
377 /* No, so make new instance */
378 self = kzalloc(sizeof(struct ircomm_tty_cb), GFP_KERNEL);
379 if (self == NULL) {
380 IRDA_ERROR("%s(), kmalloc failed!\n", __func__);
381 return -ENOMEM;
382 }
383
384 self->magic = IRCOMM_TTY_MAGIC;
385 self->flow = FLOW_STOP;
386
387 self->line = line;
388 INIT_WORK(&self->tqueue, ircomm_tty_do_softint);
389 self->max_header_size = IRCOMM_TTY_HDR_UNINITIALISED;
390 self->max_data_size = IRCOMM_TTY_DATA_UNINITIALISED;
391 self->close_delay = 5*HZ/10;
392 self->closing_wait = 30*HZ;
393
394 /* Init some important stuff */
395 init_timer(&self->watchdog_timer);
396 init_waitqueue_head(&self->open_wait);
397 init_waitqueue_head(&self->close_wait);
398 spin_lock_init(&self->spinlock);
399
400 /*
401 * Force TTY into raw mode by default which is usually what
402 * we want for IrCOMM and IrLPT. This way applications will
403 * not have to twiddle with printcap etc.
404 *
405 * Note this is completely usafe and doesn't work properly
406 */
407 tty->termios->c_iflag = 0;
408 tty->termios->c_oflag = 0;
409
410 /* Insert into hash */
411 hashbin_insert(ircomm_tty, (irda_queue_t *) self, line, NULL);
412 }
413 /* ++ is not atomic, so this should be protected - Jean II */
414 spin_lock_irqsave(&self->spinlock, flags);
415 self->open_count++;
416
417 tty->driver_data = self;
418 self->tty = tty;
419 spin_unlock_irqrestore(&self->spinlock, flags);
420
421 IRDA_DEBUG(1, "%s(), %s%d, count = %d\n", __func__ , tty->driver->name,
422 self->line, self->open_count);
423
424 /* Not really used by us, but lets do it anyway */
425 self->tty->low_latency = (self->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
426
427 /*
428 * If the port is the middle of closing, bail out now
429 */
430 if (tty_hung_up_p(filp) ||
431 test_bit(ASYNC_B_CLOSING, &self->flags)) {
432
433 /* Hm, why are we blocking on ASYNC_CLOSING if we
434 * do return -EAGAIN/-ERESTARTSYS below anyway?
435 * IMHO it's either not needed in the first place
436 * or for some reason we need to make sure the async
437 * closing has been finished - if so, wouldn't we
438 * probably better sleep uninterruptible?
439 */
440
441 if (wait_event_interruptible(self->close_wait, !test_bit(ASYNC_B_CLOSING, &self->flags))) {
442 IRDA_WARNING("%s - got signal while blocking on ASYNC_CLOSING!\n",
443 __func__);
444 return -ERESTARTSYS;
445 }
446
447 #ifdef SERIAL_DO_RESTART
448 return (self->flags & ASYNC_HUP_NOTIFY) ?
449 -EAGAIN : -ERESTARTSYS;
450 #else
451 return -EAGAIN;
452 #endif
453 }
454
455 /* Check if this is a "normal" ircomm device, or an irlpt device */
456 if (line < 0x10) {
457 self->service_type = IRCOMM_3_WIRE | IRCOMM_9_WIRE;
458 self->settings.service_type = IRCOMM_9_WIRE; /* 9 wire as default */
459 /* Jan Kiszka -> add DSR/RI -> Conform to IrCOMM spec */
460 self->settings.dce = IRCOMM_CTS | IRCOMM_CD | IRCOMM_DSR | IRCOMM_RI; /* Default line settings */
461 IRDA_DEBUG(2, "%s(), IrCOMM device\n", __func__ );
462 } else {
463 IRDA_DEBUG(2, "%s(), IrLPT device\n", __func__ );
464 self->service_type = IRCOMM_3_WIRE_RAW;
465 self->settings.service_type = IRCOMM_3_WIRE_RAW; /* Default */
466 }
467
468 ret = ircomm_tty_startup(self);
469 if (ret)
470 return ret;
471
472 ret = ircomm_tty_block_til_ready(self, filp);
473 if (ret) {
474 IRDA_DEBUG(2,
475 "%s(), returning after block_til_ready with %d\n", __func__ ,
476 ret);
477
478 return ret;
479 }
480 return 0;
481 }
482
483 /*
484 * Function ircomm_tty_close (tty, filp)
485 *
486 * This routine is called when a particular tty device is closed.
487 *
488 */
489 static void ircomm_tty_close(struct tty_struct *tty, struct file *filp)
490 {
491 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
492 unsigned long flags;
493
494 IRDA_DEBUG(0, "%s()\n", __func__ );
495
496 IRDA_ASSERT(self != NULL, return;);
497 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
498
499 spin_lock_irqsave(&self->spinlock, flags);
500
501 if (tty_hung_up_p(filp)) {
502 spin_unlock_irqrestore(&self->spinlock, flags);
503
504 IRDA_DEBUG(0, "%s(), returning 1\n", __func__ );
505 return;
506 }
507
508 if ((tty->count == 1) && (self->open_count != 1)) {
509 /*
510 * Uh, oh. tty->count is 1, which means that the tty
511 * structure will be freed. state->count should always
512 * be one in these conditions. If it's greater than
513 * one, we've got real problems, since it means the
514 * serial port won't be shutdown.
515 */
516 IRDA_DEBUG(0, "%s(), bad serial port count; "
517 "tty->count is 1, state->count is %d\n", __func__ ,
518 self->open_count);
519 self->open_count = 1;
520 }
521
522 if (--self->open_count < 0) {
523 IRDA_ERROR("%s(), bad serial port count for ttys%d: %d\n",
524 __func__, self->line, self->open_count);
525 self->open_count = 0;
526 }
527 if (self->open_count) {
528 spin_unlock_irqrestore(&self->spinlock, flags);
529
530 IRDA_DEBUG(0, "%s(), open count > 0\n", __func__ );
531 return;
532 }
533
534 /* Hum... Should be test_and_set_bit ??? - Jean II */
535 set_bit(ASYNC_B_CLOSING, &self->flags);
536
537 /* We need to unlock here (we were unlocking at the end of this
538 * function), because tty_wait_until_sent() may schedule.
539 * I don't know if the rest should be protected somehow,
540 * so someone should check. - Jean II */
541 spin_unlock_irqrestore(&self->spinlock, flags);
542
543 /*
544 * Now we wait for the transmit buffer to clear; and we notify
545 * the line discipline to only process XON/XOFF characters.
546 */
547 tty->closing = 1;
548 if (self->closing_wait != ASYNC_CLOSING_WAIT_NONE)
549 tty_wait_until_sent_from_close(tty, self->closing_wait);
550
551 ircomm_tty_shutdown(self);
552
553 tty_driver_flush_buffer(tty);
554 tty_ldisc_flush(tty);
555
556 tty->closing = 0;
557 self->tty = NULL;
558
559 if (self->blocked_open) {
560 if (self->close_delay)
561 schedule_timeout_interruptible(self->close_delay);
562 wake_up_interruptible(&self->open_wait);
563 }
564
565 self->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
566 wake_up_interruptible(&self->close_wait);
567 }
568
569 /*
570 * Function ircomm_tty_flush_buffer (tty)
571 *
572 *
573 *
574 */
575 static void ircomm_tty_flush_buffer(struct tty_struct *tty)
576 {
577 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
578
579 IRDA_ASSERT(self != NULL, return;);
580 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
581
582 /*
583 * Let do_softint() do this to avoid race condition with
584 * do_softint() ;-)
585 */
586 schedule_work(&self->tqueue);
587 }
588
589 /*
590 * Function ircomm_tty_do_softint (work)
591 *
592 * We use this routine to give the write wakeup to the user at at a
593 * safe time (as fast as possible after write have completed). This
594 * can be compared to the Tx interrupt.
595 */
596 static void ircomm_tty_do_softint(struct work_struct *work)
597 {
598 struct ircomm_tty_cb *self =
599 container_of(work, struct ircomm_tty_cb, tqueue);
600 struct tty_struct *tty;
601 unsigned long flags;
602 struct sk_buff *skb, *ctrl_skb;
603
604 IRDA_DEBUG(2, "%s()\n", __func__ );
605
606 if (!self || self->magic != IRCOMM_TTY_MAGIC)
607 return;
608
609 tty = self->tty;
610 if (!tty)
611 return;
612
613 /* Unlink control buffer */
614 spin_lock_irqsave(&self->spinlock, flags);
615
616 ctrl_skb = self->ctrl_skb;
617 self->ctrl_skb = NULL;
618
619 spin_unlock_irqrestore(&self->spinlock, flags);
620
621 /* Flush control buffer if any */
622 if(ctrl_skb) {
623 if(self->flow == FLOW_START)
624 ircomm_control_request(self->ircomm, ctrl_skb);
625 /* Drop reference count - see ircomm_ttp_data_request(). */
626 dev_kfree_skb(ctrl_skb);
627 }
628
629 if (tty->hw_stopped)
630 return;
631
632 /* Unlink transmit buffer */
633 spin_lock_irqsave(&self->spinlock, flags);
634
635 skb = self->tx_skb;
636 self->tx_skb = NULL;
637
638 spin_unlock_irqrestore(&self->spinlock, flags);
639
640 /* Flush transmit buffer if any */
641 if (skb) {
642 ircomm_tty_do_event(self, IRCOMM_TTY_DATA_REQUEST, skb, NULL);
643 /* Drop reference count - see ircomm_ttp_data_request(). */
644 dev_kfree_skb(skb);
645 }
646
647 /* Check if user (still) wants to be waken up */
648 tty_wakeup(tty);
649 }
650
651 /*
652 * Function ircomm_tty_write (tty, buf, count)
653 *
654 * This routine is called by the kernel to write a series of characters
655 * to the tty device. The characters may come from user space or kernel
656 * space. This routine will return the number of characters actually
657 * accepted for writing. This routine is mandatory.
658 */
659 static int ircomm_tty_write(struct tty_struct *tty,
660 const unsigned char *buf, int count)
661 {
662 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
663 unsigned long flags;
664 struct sk_buff *skb;
665 int tailroom = 0;
666 int len = 0;
667 int size;
668
669 IRDA_DEBUG(2, "%s(), count=%d, hw_stopped=%d\n", __func__ , count,
670 tty->hw_stopped);
671
672 IRDA_ASSERT(self != NULL, return -1;);
673 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
674
675 /* We may receive packets from the TTY even before we have finished
676 * our setup. Not cool.
677 * The problem is that we don't know the final header and data size
678 * to create the proper skb, so any skb we would create would have
679 * bogus header and data size, so need care.
680 * We use a bogus header size to safely detect this condition.
681 * Another problem is that hw_stopped was set to 0 way before it
682 * should be, so we would drop this skb. It should now be fixed.
683 * One option is to not accept data until we are properly setup.
684 * But, I suspect that when it happens, the ppp line discipline
685 * just "drops" the data, which might screw up connect scripts.
686 * The second option is to create a "safe skb", with large header
687 * and small size (see ircomm_tty_open() for values).
688 * We just need to make sure that when the real values get filled,
689 * we don't mess up the original "safe skb" (see tx_data_size).
690 * Jean II */
691 if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED) {
692 IRDA_DEBUG(1, "%s() : not initialised\n", __func__);
693 #ifdef IRCOMM_NO_TX_BEFORE_INIT
694 /* We didn't consume anything, TTY will retry */
695 return 0;
696 #endif
697 }
698
699 if (count < 1)
700 return 0;
701
702 /* Protect our manipulation of self->tx_skb and related */
703 spin_lock_irqsave(&self->spinlock, flags);
704
705 /* Fetch current transmit buffer */
706 skb = self->tx_skb;
707
708 /*
709 * Send out all the data we get, possibly as multiple fragmented
710 * frames, but this will only happen if the data is larger than the
711 * max data size. The normal case however is just the opposite, and
712 * this function may be called multiple times, and will then actually
713 * defragment the data and send it out as one packet as soon as
714 * possible, but at a safer point in time
715 */
716 while (count) {
717 size = count;
718
719 /* Adjust data size to the max data size */
720 if (size > self->max_data_size)
721 size = self->max_data_size;
722
723 /*
724 * Do we already have a buffer ready for transmit, or do
725 * we need to allocate a new frame
726 */
727 if (skb) {
728 /*
729 * Any room for more data at the end of the current
730 * transmit buffer? Cannot use skb_tailroom, since
731 * dev_alloc_skb gives us a larger skb than we
732 * requested
733 * Note : use tx_data_size, because max_data_size
734 * may have changed and we don't want to overwrite
735 * the skb. - Jean II
736 */
737 if ((tailroom = (self->tx_data_size - skb->len)) > 0) {
738 /* Adjust data to tailroom */
739 if (size > tailroom)
740 size = tailroom;
741 } else {
742 /*
743 * Current transmit frame is full, so break
744 * out, so we can send it as soon as possible
745 */
746 break;
747 }
748 } else {
749 /* Prepare a full sized frame */
750 skb = alloc_skb(self->max_data_size+
751 self->max_header_size,
752 GFP_ATOMIC);
753 if (!skb) {
754 spin_unlock_irqrestore(&self->spinlock, flags);
755 return -ENOBUFS;
756 }
757 skb_reserve(skb, self->max_header_size);
758 self->tx_skb = skb;
759 /* Remember skb size because max_data_size may
760 * change later on - Jean II */
761 self->tx_data_size = self->max_data_size;
762 }
763
764 /* Copy data */
765 memcpy(skb_put(skb,size), buf + len, size);
766
767 count -= size;
768 len += size;
769 }
770
771 spin_unlock_irqrestore(&self->spinlock, flags);
772
773 /*
774 * Schedule a new thread which will transmit the frame as soon
775 * as possible, but at a safe point in time. We do this so the
776 * "user" can give us data multiple times, as PPP does (because of
777 * its 256 byte tx buffer). We will then defragment and send out
778 * all this data as one single packet.
779 */
780 schedule_work(&self->tqueue);
781
782 return len;
783 }
784
785 /*
786 * Function ircomm_tty_write_room (tty)
787 *
788 * This routine returns the numbers of characters the tty driver will
789 * accept for queuing to be written. This number is subject to change as
790 * output buffers get emptied, or if the output flow control is acted.
791 */
792 static int ircomm_tty_write_room(struct tty_struct *tty)
793 {
794 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
795 unsigned long flags;
796 int ret;
797
798 IRDA_ASSERT(self != NULL, return -1;);
799 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
800
801 #ifdef IRCOMM_NO_TX_BEFORE_INIT
802 /* max_header_size tells us if the channel is initialised or not. */
803 if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED)
804 /* Don't bother us yet */
805 return 0;
806 #endif
807
808 /* Check if we are allowed to transmit any data.
809 * hw_stopped is the regular flow control.
810 * Jean II */
811 if (tty->hw_stopped)
812 ret = 0;
813 else {
814 spin_lock_irqsave(&self->spinlock, flags);
815 if (self->tx_skb)
816 ret = self->tx_data_size - self->tx_skb->len;
817 else
818 ret = self->max_data_size;
819 spin_unlock_irqrestore(&self->spinlock, flags);
820 }
821 IRDA_DEBUG(2, "%s(), ret=%d\n", __func__ , ret);
822
823 return ret;
824 }
825
826 /*
827 * Function ircomm_tty_wait_until_sent (tty, timeout)
828 *
829 * This routine waits until the device has written out all of the
830 * characters in its transmitter FIFO.
831 */
832 static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout)
833 {
834 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
835 unsigned long orig_jiffies, poll_time;
836 unsigned long flags;
837
838 IRDA_DEBUG(2, "%s()\n", __func__ );
839
840 IRDA_ASSERT(self != NULL, return;);
841 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
842
843 orig_jiffies = jiffies;
844
845 /* Set poll time to 200 ms */
846 poll_time = IRDA_MIN(timeout, msecs_to_jiffies(200));
847
848 spin_lock_irqsave(&self->spinlock, flags);
849 while (self->tx_skb && self->tx_skb->len) {
850 spin_unlock_irqrestore(&self->spinlock, flags);
851 schedule_timeout_interruptible(poll_time);
852 spin_lock_irqsave(&self->spinlock, flags);
853 if (signal_pending(current))
854 break;
855 if (timeout && time_after(jiffies, orig_jiffies + timeout))
856 break;
857 }
858 spin_unlock_irqrestore(&self->spinlock, flags);
859 current->state = TASK_RUNNING;
860 }
861
862 /*
863 * Function ircomm_tty_throttle (tty)
864 *
865 * This routine notifies the tty driver that input buffers for the line
866 * discipline are close to full, and it should somehow signal that no
867 * more characters should be sent to the tty.
868 */
869 static void ircomm_tty_throttle(struct tty_struct *tty)
870 {
871 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
872
873 IRDA_DEBUG(2, "%s()\n", __func__ );
874
875 IRDA_ASSERT(self != NULL, return;);
876 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
877
878 /* Software flow control? */
879 if (I_IXOFF(tty))
880 ircomm_tty_send_xchar(tty, STOP_CHAR(tty));
881
882 /* Hardware flow control? */
883 if (tty->termios->c_cflag & CRTSCTS) {
884 self->settings.dte &= ~IRCOMM_RTS;
885 self->settings.dte |= IRCOMM_DELTA_RTS;
886
887 ircomm_param_request(self, IRCOMM_DTE, TRUE);
888 }
889
890 ircomm_flow_request(self->ircomm, FLOW_STOP);
891 }
892
893 /*
894 * Function ircomm_tty_unthrottle (tty)
895 *
896 * This routine notifies the tty drivers that it should signals that
897 * characters can now be sent to the tty without fear of overrunning the
898 * input buffers of the line disciplines.
899 */
900 static void ircomm_tty_unthrottle(struct tty_struct *tty)
901 {
902 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
903
904 IRDA_DEBUG(2, "%s()\n", __func__ );
905
906 IRDA_ASSERT(self != NULL, return;);
907 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
908
909 /* Using software flow control? */
910 if (I_IXOFF(tty)) {
911 ircomm_tty_send_xchar(tty, START_CHAR(tty));
912 }
913
914 /* Using hardware flow control? */
915 if (tty->termios->c_cflag & CRTSCTS) {
916 self->settings.dte |= (IRCOMM_RTS|IRCOMM_DELTA_RTS);
917
918 ircomm_param_request(self, IRCOMM_DTE, TRUE);
919 IRDA_DEBUG(1, "%s(), FLOW_START\n", __func__ );
920 }
921 ircomm_flow_request(self->ircomm, FLOW_START);
922 }
923
924 /*
925 * Function ircomm_tty_chars_in_buffer (tty)
926 *
927 * Indicates if there are any data in the buffer
928 *
929 */
930 static int ircomm_tty_chars_in_buffer(struct tty_struct *tty)
931 {
932 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
933 unsigned long flags;
934 int len = 0;
935
936 IRDA_ASSERT(self != NULL, return -1;);
937 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
938
939 spin_lock_irqsave(&self->spinlock, flags);
940
941 if (self->tx_skb)
942 len = self->tx_skb->len;
943
944 spin_unlock_irqrestore(&self->spinlock, flags);
945
946 return len;
947 }
948
949 static void ircomm_tty_shutdown(struct ircomm_tty_cb *self)
950 {
951 unsigned long flags;
952
953 IRDA_ASSERT(self != NULL, return;);
954 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
955
956 IRDA_DEBUG(0, "%s()\n", __func__ );
957
958 if (!test_and_clear_bit(ASYNC_B_INITIALIZED, &self->flags))
959 return;
960
961 ircomm_tty_detach_cable(self);
962
963 spin_lock_irqsave(&self->spinlock, flags);
964
965 del_timer(&self->watchdog_timer);
966
967 /* Free parameter buffer */
968 if (self->ctrl_skb) {
969 dev_kfree_skb(self->ctrl_skb);
970 self->ctrl_skb = NULL;
971 }
972
973 /* Free transmit buffer */
974 if (self->tx_skb) {
975 dev_kfree_skb(self->tx_skb);
976 self->tx_skb = NULL;
977 }
978
979 if (self->ircomm) {
980 ircomm_close(self->ircomm);
981 self->ircomm = NULL;
982 }
983
984 spin_unlock_irqrestore(&self->spinlock, flags);
985 }
986
987 /*
988 * Function ircomm_tty_hangup (tty)
989 *
990 * This routine notifies the tty driver that it should hangup the tty
991 * device.
992 *
993 */
994 static void ircomm_tty_hangup(struct tty_struct *tty)
995 {
996 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
997 unsigned long flags;
998
999 IRDA_DEBUG(0, "%s()\n", __func__ );
1000
1001 IRDA_ASSERT(self != NULL, return;);
1002 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1003
1004 /* ircomm_tty_flush_buffer(tty); */
1005 ircomm_tty_shutdown(self);
1006
1007 /* I guess we need to lock here - Jean II */
1008 spin_lock_irqsave(&self->spinlock, flags);
1009 self->flags &= ~ASYNC_NORMAL_ACTIVE;
1010 self->tty = NULL;
1011 self->open_count = 0;
1012 spin_unlock_irqrestore(&self->spinlock, flags);
1013
1014 wake_up_interruptible(&self->open_wait);
1015 }
1016
1017 /*
1018 * Function ircomm_tty_send_xchar (tty, ch)
1019 *
1020 * This routine is used to send a high-priority XON/XOFF character to
1021 * the device.
1022 */
1023 static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch)
1024 {
1025 IRDA_DEBUG(0, "%s(), not impl\n", __func__ );
1026 }
1027
1028 /*
1029 * Function ircomm_tty_start (tty)
1030 *
1031 * This routine notifies the tty driver that it resume sending
1032 * characters to the tty device.
1033 */
1034 void ircomm_tty_start(struct tty_struct *tty)
1035 {
1036 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1037
1038 ircomm_flow_request(self->ircomm, FLOW_START);
1039 }
1040
1041 /*
1042 * Function ircomm_tty_stop (tty)
1043 *
1044 * This routine notifies the tty driver that it should stop outputting
1045 * characters to the tty device.
1046 */
1047 static void ircomm_tty_stop(struct tty_struct *tty)
1048 {
1049 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1050
1051 IRDA_ASSERT(self != NULL, return;);
1052 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1053
1054 ircomm_flow_request(self->ircomm, FLOW_STOP);
1055 }
1056
1057 /*
1058 * Function ircomm_check_modem_status (self)
1059 *
1060 * Check for any changes in the DCE's line settings. This function should
1061 * be called whenever the dce parameter settings changes, to update the
1062 * flow control settings and other things
1063 */
1064 void ircomm_tty_check_modem_status(struct ircomm_tty_cb *self)
1065 {
1066 struct tty_struct *tty;
1067 int status;
1068
1069 IRDA_DEBUG(0, "%s()\n", __func__ );
1070
1071 IRDA_ASSERT(self != NULL, return;);
1072 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1073
1074 tty = self->tty;
1075
1076 status = self->settings.dce;
1077
1078 if (status & IRCOMM_DCE_DELTA_ANY) {
1079 /*wake_up_interruptible(&self->delta_msr_wait);*/
1080 }
1081 if ((self->flags & ASYNC_CHECK_CD) && (status & IRCOMM_DELTA_CD)) {
1082 IRDA_DEBUG(2,
1083 "%s(), ircomm%d CD now %s...\n", __func__ , self->line,
1084 (status & IRCOMM_CD) ? "on" : "off");
1085
1086 if (status & IRCOMM_CD) {
1087 wake_up_interruptible(&self->open_wait);
1088 } else {
1089 IRDA_DEBUG(2,
1090 "%s(), Doing serial hangup..\n", __func__ );
1091 if (tty)
1092 tty_hangup(tty);
1093
1094 /* Hangup will remote the tty, so better break out */
1095 return;
1096 }
1097 }
1098 if (self->flags & ASYNC_CTS_FLOW) {
1099 if (tty->hw_stopped) {
1100 if (status & IRCOMM_CTS) {
1101 IRDA_DEBUG(2,
1102 "%s(), CTS tx start...\n", __func__ );
1103 tty->hw_stopped = 0;
1104
1105 /* Wake up processes blocked on open */
1106 wake_up_interruptible(&self->open_wait);
1107
1108 schedule_work(&self->tqueue);
1109 return;
1110 }
1111 } else {
1112 if (!(status & IRCOMM_CTS)) {
1113 IRDA_DEBUG(2,
1114 "%s(), CTS tx stop...\n", __func__ );
1115 tty->hw_stopped = 1;
1116 }
1117 }
1118 }
1119 }
1120
1121 /*
1122 * Function ircomm_tty_data_indication (instance, sap, skb)
1123 *
1124 * Handle incoming data, and deliver it to the line discipline
1125 *
1126 */
1127 static int ircomm_tty_data_indication(void *instance, void *sap,
1128 struct sk_buff *skb)
1129 {
1130 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1131
1132 IRDA_DEBUG(2, "%s()\n", __func__ );
1133
1134 IRDA_ASSERT(self != NULL, return -1;);
1135 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
1136 IRDA_ASSERT(skb != NULL, return -1;);
1137
1138 if (!self->tty) {
1139 IRDA_DEBUG(0, "%s(), no tty!\n", __func__ );
1140 return 0;
1141 }
1142
1143 /*
1144 * If we receive data when hardware is stopped then something is wrong.
1145 * We try to poll the peers line settings to check if we are up todate.
1146 * Devices like WinCE can do this, and since they don't send any
1147 * params, we can just as well declare the hardware for running.
1148 */
1149 if (self->tty->hw_stopped && (self->flow == FLOW_START)) {
1150 IRDA_DEBUG(0, "%s(), polling for line settings!\n", __func__ );
1151 ircomm_param_request(self, IRCOMM_POLL, TRUE);
1152
1153 /* We can just as well declare the hardware for running */
1154 ircomm_tty_send_initial_parameters(self);
1155 ircomm_tty_link_established(self);
1156 }
1157
1158 /*
1159 * Use flip buffer functions since the code may be called from interrupt
1160 * context
1161 */
1162 tty_insert_flip_string(self->tty, skb->data, skb->len);
1163 tty_flip_buffer_push(self->tty);
1164
1165 /* No need to kfree_skb - see ircomm_ttp_data_indication() */
1166
1167 return 0;
1168 }
1169
1170 /*
1171 * Function ircomm_tty_control_indication (instance, sap, skb)
1172 *
1173 * Parse all incoming parameters (easy!)
1174 *
1175 */
1176 static int ircomm_tty_control_indication(void *instance, void *sap,
1177 struct sk_buff *skb)
1178 {
1179 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1180 int clen;
1181
1182 IRDA_DEBUG(4, "%s()\n", __func__ );
1183
1184 IRDA_ASSERT(self != NULL, return -1;);
1185 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
1186 IRDA_ASSERT(skb != NULL, return -1;);
1187
1188 clen = skb->data[0];
1189
1190 irda_param_extract_all(self, skb->data+1, IRDA_MIN(skb->len-1, clen),
1191 &ircomm_param_info);
1192
1193 /* No need to kfree_skb - see ircomm_control_indication() */
1194
1195 return 0;
1196 }
1197
1198 /*
1199 * Function ircomm_tty_flow_indication (instance, sap, cmd)
1200 *
1201 * This function is called by IrTTP when it wants us to slow down the
1202 * transmission of data. We just mark the hardware as stopped, and wait
1203 * for IrTTP to notify us that things are OK again.
1204 */
1205 static void ircomm_tty_flow_indication(void *instance, void *sap,
1206 LOCAL_FLOW cmd)
1207 {
1208 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1209 struct tty_struct *tty;
1210
1211 IRDA_ASSERT(self != NULL, return;);
1212 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1213
1214 tty = self->tty;
1215
1216 switch (cmd) {
1217 case FLOW_START:
1218 IRDA_DEBUG(2, "%s(), hw start!\n", __func__ );
1219 tty->hw_stopped = 0;
1220
1221 /* ircomm_tty_do_softint will take care of the rest */
1222 schedule_work(&self->tqueue);
1223 break;
1224 default: /* If we get here, something is very wrong, better stop */
1225 case FLOW_STOP:
1226 IRDA_DEBUG(2, "%s(), hw stopped!\n", __func__ );
1227 tty->hw_stopped = 1;
1228 break;
1229 }
1230 self->flow = cmd;
1231 }
1232
1233 #ifdef CONFIG_PROC_FS
1234 static void ircomm_tty_line_info(struct ircomm_tty_cb *self, struct seq_file *m)
1235 {
1236 char sep;
1237
1238 seq_printf(m, "State: %s\n", ircomm_tty_state[self->state]);
1239
1240 seq_puts(m, "Service type: ");
1241 if (self->service_type & IRCOMM_9_WIRE)
1242 seq_puts(m, "9_WIRE");
1243 else if (self->service_type & IRCOMM_3_WIRE)
1244 seq_puts(m, "3_WIRE");
1245 else if (self->service_type & IRCOMM_3_WIRE_RAW)
1246 seq_puts(m, "3_WIRE_RAW");
1247 else
1248 seq_puts(m, "No common service type!\n");
1249 seq_putc(m, '\n');
1250
1251 seq_printf(m, "Port name: %s\n", self->settings.port_name);
1252
1253 seq_printf(m, "DTE status:");
1254 sep = ' ';
1255 if (self->settings.dte & IRCOMM_RTS) {
1256 seq_printf(m, "%cRTS", sep);
1257 sep = '|';
1258 }
1259 if (self->settings.dte & IRCOMM_DTR) {
1260 seq_printf(m, "%cDTR", sep);
1261 sep = '|';
1262 }
1263 seq_putc(m, '\n');
1264
1265 seq_puts(m, "DCE status:");
1266 sep = ' ';
1267 if (self->settings.dce & IRCOMM_CTS) {
1268 seq_printf(m, "%cCTS", sep);
1269 sep = '|';
1270 }
1271 if (self->settings.dce & IRCOMM_DSR) {
1272 seq_printf(m, "%cDSR", sep);
1273 sep = '|';
1274 }
1275 if (self->settings.dce & IRCOMM_CD) {
1276 seq_printf(m, "%cCD", sep);
1277 sep = '|';
1278 }
1279 if (self->settings.dce & IRCOMM_RI) {
1280 seq_printf(m, "%cRI", sep);
1281 sep = '|';
1282 }
1283 seq_putc(m, '\n');
1284
1285 seq_puts(m, "Configuration: ");
1286 if (!self->settings.null_modem)
1287 seq_puts(m, "DTE <-> DCE\n");
1288 else
1289 seq_puts(m, "DTE <-> DTE (null modem emulation)\n");
1290
1291 seq_printf(m, "Data rate: %d\n", self->settings.data_rate);
1292
1293 seq_puts(m, "Flow control:");
1294 sep = ' ';
1295 if (self->settings.flow_control & IRCOMM_XON_XOFF_IN) {
1296 seq_printf(m, "%cXON_XOFF_IN", sep);
1297 sep = '|';
1298 }
1299 if (self->settings.flow_control & IRCOMM_XON_XOFF_OUT) {
1300 seq_printf(m, "%cXON_XOFF_OUT", sep);
1301 sep = '|';
1302 }
1303 if (self->settings.flow_control & IRCOMM_RTS_CTS_IN) {
1304 seq_printf(m, "%cRTS_CTS_IN", sep);
1305 sep = '|';
1306 }
1307 if (self->settings.flow_control & IRCOMM_RTS_CTS_OUT) {
1308 seq_printf(m, "%cRTS_CTS_OUT", sep);
1309 sep = '|';
1310 }
1311 if (self->settings.flow_control & IRCOMM_DSR_DTR_IN) {
1312 seq_printf(m, "%cDSR_DTR_IN", sep);
1313 sep = '|';
1314 }
1315 if (self->settings.flow_control & IRCOMM_DSR_DTR_OUT) {
1316 seq_printf(m, "%cDSR_DTR_OUT", sep);
1317 sep = '|';
1318 }
1319 if (self->settings.flow_control & IRCOMM_ENQ_ACK_IN) {
1320 seq_printf(m, "%cENQ_ACK_IN", sep);
1321 sep = '|';
1322 }
1323 if (self->settings.flow_control & IRCOMM_ENQ_ACK_OUT) {
1324 seq_printf(m, "%cENQ_ACK_OUT", sep);
1325 sep = '|';
1326 }
1327 seq_putc(m, '\n');
1328
1329 seq_puts(m, "Flags:");
1330 sep = ' ';
1331 if (self->flags & ASYNC_CTS_FLOW) {
1332 seq_printf(m, "%cASYNC_CTS_FLOW", sep);
1333 sep = '|';
1334 }
1335 if (self->flags & ASYNC_CHECK_CD) {
1336 seq_printf(m, "%cASYNC_CHECK_CD", sep);
1337 sep = '|';
1338 }
1339 if (self->flags & ASYNC_INITIALIZED) {
1340 seq_printf(m, "%cASYNC_INITIALIZED", sep);
1341 sep = '|';
1342 }
1343 if (self->flags & ASYNC_LOW_LATENCY) {
1344 seq_printf(m, "%cASYNC_LOW_LATENCY", sep);
1345 sep = '|';
1346 }
1347 if (self->flags & ASYNC_CLOSING) {
1348 seq_printf(m, "%cASYNC_CLOSING", sep);
1349 sep = '|';
1350 }
1351 if (self->flags & ASYNC_NORMAL_ACTIVE) {
1352 seq_printf(m, "%cASYNC_NORMAL_ACTIVE", sep);
1353 sep = '|';
1354 }
1355 seq_putc(m, '\n');
1356
1357 seq_printf(m, "Role: %s\n", self->client ? "client" : "server");
1358 seq_printf(m, "Open count: %d\n", self->open_count);
1359 seq_printf(m, "Max data size: %d\n", self->max_data_size);
1360 seq_printf(m, "Max header size: %d\n", self->max_header_size);
1361
1362 if (self->tty)
1363 seq_printf(m, "Hardware: %s\n",
1364 self->tty->hw_stopped ? "Stopped" : "Running");
1365 }
1366
1367 static int ircomm_tty_proc_show(struct seq_file *m, void *v)
1368 {
1369 struct ircomm_tty_cb *self;
1370 unsigned long flags;
1371
1372 spin_lock_irqsave(&ircomm_tty->hb_spinlock, flags);
1373
1374 self = (struct ircomm_tty_cb *) hashbin_get_first(ircomm_tty);
1375 while (self != NULL) {
1376 if (self->magic != IRCOMM_TTY_MAGIC)
1377 break;
1378
1379 ircomm_tty_line_info(self, m);
1380 self = (struct ircomm_tty_cb *) hashbin_get_next(ircomm_tty);
1381 }
1382 spin_unlock_irqrestore(&ircomm_tty->hb_spinlock, flags);
1383 return 0;
1384 }
1385
1386 static int ircomm_tty_proc_open(struct inode *inode, struct file *file)
1387 {
1388 return single_open(file, ircomm_tty_proc_show, NULL);
1389 }
1390
1391 static const struct file_operations ircomm_tty_proc_fops = {
1392 .owner = THIS_MODULE,
1393 .open = ircomm_tty_proc_open,
1394 .read = seq_read,
1395 .llseek = seq_lseek,
1396 .release = single_release,
1397 };
1398 #endif /* CONFIG_PROC_FS */
1399
1400 MODULE_AUTHOR("Dag Brattli <dagb@cs.uit.no>");
1401 MODULE_DESCRIPTION("IrCOMM serial TTY driver");
1402 MODULE_LICENSE("GPL");
1403 MODULE_ALIAS_CHARDEV_MAJOR(IRCOMM_TTY_MAJOR);
1404
1405 module_init(ircomm_tty_init);
1406 module_exit(ircomm_tty_cleanup);
This page took 0.067332 seconds and 5 git commands to generate.