Merge tag 'firewire-update2' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee139...
[deliverable/linux.git] / net / iucv / af_iucv.c
1 /*
2 * IUCV protocol stack for Linux on zSeries
3 *
4 * Copyright IBM Corp. 2006, 2009
5 *
6 * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
7 * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
8 * PM functions:
9 * Ursula Braun <ursula.braun@de.ibm.com>
10 */
11
12 #define KMSG_COMPONENT "af_iucv"
13 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
14
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/errno.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/skbuff.h>
23 #include <linux/init.h>
24 #include <linux/poll.h>
25 #include <net/sock.h>
26 #include <asm/ebcdic.h>
27 #include <asm/cpcmd.h>
28 #include <linux/kmod.h>
29
30 #include <net/iucv/af_iucv.h>
31
32 #define VERSION "1.2"
33
34 static char iucv_userid[80];
35
36 static const struct proto_ops iucv_sock_ops;
37
38 static struct proto iucv_proto = {
39 .name = "AF_IUCV",
40 .owner = THIS_MODULE,
41 .obj_size = sizeof(struct iucv_sock),
42 };
43
44 static struct iucv_interface *pr_iucv;
45
46 /* special AF_IUCV IPRM messages */
47 static const u8 iprm_shutdown[8] =
48 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
49
50 #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
51
52 #define __iucv_sock_wait(sk, condition, timeo, ret) \
53 do { \
54 DEFINE_WAIT(__wait); \
55 long __timeo = timeo; \
56 ret = 0; \
57 prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
58 while (!(condition)) { \
59 if (!__timeo) { \
60 ret = -EAGAIN; \
61 break; \
62 } \
63 if (signal_pending(current)) { \
64 ret = sock_intr_errno(__timeo); \
65 break; \
66 } \
67 release_sock(sk); \
68 __timeo = schedule_timeout(__timeo); \
69 lock_sock(sk); \
70 ret = sock_error(sk); \
71 if (ret) \
72 break; \
73 } \
74 finish_wait(sk_sleep(sk), &__wait); \
75 } while (0)
76
77 #define iucv_sock_wait(sk, condition, timeo) \
78 ({ \
79 int __ret = 0; \
80 if (!(condition)) \
81 __iucv_sock_wait(sk, condition, timeo, __ret); \
82 __ret; \
83 })
84
85 static void iucv_sock_kill(struct sock *sk);
86 static void iucv_sock_close(struct sock *sk);
87 static void iucv_sever_path(struct sock *, int);
88
89 static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
90 struct packet_type *pt, struct net_device *orig_dev);
91 static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
92 struct sk_buff *skb, u8 flags);
93 static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
94
95 /* Call Back functions */
96 static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
97 static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
98 static void iucv_callback_connack(struct iucv_path *, u8 *);
99 static int iucv_callback_connreq(struct iucv_path *, u8 *, u8 *);
100 static void iucv_callback_connrej(struct iucv_path *, u8 *);
101 static void iucv_callback_shutdown(struct iucv_path *, u8 *);
102
103 static struct iucv_sock_list iucv_sk_list = {
104 .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
105 .autobind_name = ATOMIC_INIT(0)
106 };
107
108 static struct iucv_handler af_iucv_handler = {
109 .path_pending = iucv_callback_connreq,
110 .path_complete = iucv_callback_connack,
111 .path_severed = iucv_callback_connrej,
112 .message_pending = iucv_callback_rx,
113 .message_complete = iucv_callback_txdone,
114 .path_quiesced = iucv_callback_shutdown,
115 };
116
117 static inline void high_nmcpy(unsigned char *dst, char *src)
118 {
119 memcpy(dst, src, 8);
120 }
121
122 static inline void low_nmcpy(unsigned char *dst, char *src)
123 {
124 memcpy(&dst[8], src, 8);
125 }
126
127 static int afiucv_pm_prepare(struct device *dev)
128 {
129 #ifdef CONFIG_PM_DEBUG
130 printk(KERN_WARNING "afiucv_pm_prepare\n");
131 #endif
132 return 0;
133 }
134
135 static void afiucv_pm_complete(struct device *dev)
136 {
137 #ifdef CONFIG_PM_DEBUG
138 printk(KERN_WARNING "afiucv_pm_complete\n");
139 #endif
140 }
141
142 /**
143 * afiucv_pm_freeze() - Freeze PM callback
144 * @dev: AFIUCV dummy device
145 *
146 * Sever all established IUCV communication pathes
147 */
148 static int afiucv_pm_freeze(struct device *dev)
149 {
150 struct iucv_sock *iucv;
151 struct sock *sk;
152 int err = 0;
153
154 #ifdef CONFIG_PM_DEBUG
155 printk(KERN_WARNING "afiucv_pm_freeze\n");
156 #endif
157 read_lock(&iucv_sk_list.lock);
158 sk_for_each(sk, &iucv_sk_list.head) {
159 iucv = iucv_sk(sk);
160 switch (sk->sk_state) {
161 case IUCV_DISCONN:
162 case IUCV_CLOSING:
163 case IUCV_CONNECTED:
164 iucv_sever_path(sk, 0);
165 break;
166 case IUCV_OPEN:
167 case IUCV_BOUND:
168 case IUCV_LISTEN:
169 case IUCV_CLOSED:
170 default:
171 break;
172 }
173 skb_queue_purge(&iucv->send_skb_q);
174 skb_queue_purge(&iucv->backlog_skb_q);
175 }
176 read_unlock(&iucv_sk_list.lock);
177 return err;
178 }
179
180 /**
181 * afiucv_pm_restore_thaw() - Thaw and restore PM callback
182 * @dev: AFIUCV dummy device
183 *
184 * socket clean up after freeze
185 */
186 static int afiucv_pm_restore_thaw(struct device *dev)
187 {
188 struct sock *sk;
189
190 #ifdef CONFIG_PM_DEBUG
191 printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
192 #endif
193 read_lock(&iucv_sk_list.lock);
194 sk_for_each(sk, &iucv_sk_list.head) {
195 switch (sk->sk_state) {
196 case IUCV_CONNECTED:
197 sk->sk_err = EPIPE;
198 sk->sk_state = IUCV_DISCONN;
199 sk->sk_state_change(sk);
200 break;
201 case IUCV_DISCONN:
202 case IUCV_CLOSING:
203 case IUCV_LISTEN:
204 case IUCV_BOUND:
205 case IUCV_OPEN:
206 default:
207 break;
208 }
209 }
210 read_unlock(&iucv_sk_list.lock);
211 return 0;
212 }
213
214 static const struct dev_pm_ops afiucv_pm_ops = {
215 .prepare = afiucv_pm_prepare,
216 .complete = afiucv_pm_complete,
217 .freeze = afiucv_pm_freeze,
218 .thaw = afiucv_pm_restore_thaw,
219 .restore = afiucv_pm_restore_thaw,
220 };
221
222 static struct device_driver af_iucv_driver = {
223 .owner = THIS_MODULE,
224 .name = "afiucv",
225 .bus = NULL,
226 .pm = &afiucv_pm_ops,
227 };
228
229 /* dummy device used as trigger for PM functions */
230 static struct device *af_iucv_dev;
231
232 /**
233 * iucv_msg_length() - Returns the length of an iucv message.
234 * @msg: Pointer to struct iucv_message, MUST NOT be NULL
235 *
236 * The function returns the length of the specified iucv message @msg of data
237 * stored in a buffer and of data stored in the parameter list (PRMDATA).
238 *
239 * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
240 * data:
241 * PRMDATA[0..6] socket data (max 7 bytes);
242 * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
243 *
244 * The socket data length is computed by subtracting the socket data length
245 * value from 0xFF.
246 * If the socket data len is greater 7, then PRMDATA can be used for special
247 * notifications (see iucv_sock_shutdown); and further,
248 * if the socket data len is > 7, the function returns 8.
249 *
250 * Use this function to allocate socket buffers to store iucv message data.
251 */
252 static inline size_t iucv_msg_length(struct iucv_message *msg)
253 {
254 size_t datalen;
255
256 if (msg->flags & IUCV_IPRMDATA) {
257 datalen = 0xff - msg->rmmsg[7];
258 return (datalen < 8) ? datalen : 8;
259 }
260 return msg->length;
261 }
262
263 /**
264 * iucv_sock_in_state() - check for specific states
265 * @sk: sock structure
266 * @state: first iucv sk state
267 * @state: second iucv sk state
268 *
269 * Returns true if the socket in either in the first or second state.
270 */
271 static int iucv_sock_in_state(struct sock *sk, int state, int state2)
272 {
273 return (sk->sk_state == state || sk->sk_state == state2);
274 }
275
276 /**
277 * iucv_below_msglim() - function to check if messages can be sent
278 * @sk: sock structure
279 *
280 * Returns true if the send queue length is lower than the message limit.
281 * Always returns true if the socket is not connected (no iucv path for
282 * checking the message limit).
283 */
284 static inline int iucv_below_msglim(struct sock *sk)
285 {
286 struct iucv_sock *iucv = iucv_sk(sk);
287
288 if (sk->sk_state != IUCV_CONNECTED)
289 return 1;
290 if (iucv->transport == AF_IUCV_TRANS_IUCV)
291 return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
292 else
293 return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
294 (atomic_read(&iucv->pendings) <= 0));
295 }
296
297 /**
298 * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
299 */
300 static void iucv_sock_wake_msglim(struct sock *sk)
301 {
302 struct socket_wq *wq;
303
304 rcu_read_lock();
305 wq = rcu_dereference(sk->sk_wq);
306 if (skwq_has_sleeper(wq))
307 wake_up_interruptible_all(&wq->wait);
308 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
309 rcu_read_unlock();
310 }
311
312 /**
313 * afiucv_hs_send() - send a message through HiperSockets transport
314 */
315 static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
316 struct sk_buff *skb, u8 flags)
317 {
318 struct iucv_sock *iucv = iucv_sk(sock);
319 struct af_iucv_trans_hdr *phs_hdr;
320 struct sk_buff *nskb;
321 int err, confirm_recv = 0;
322
323 memset(skb->head, 0, ETH_HLEN);
324 phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
325 sizeof(struct af_iucv_trans_hdr));
326 skb_reset_mac_header(skb);
327 skb_reset_network_header(skb);
328 skb_push(skb, ETH_HLEN);
329 skb_reset_mac_header(skb);
330 memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
331
332 phs_hdr->magic = ETH_P_AF_IUCV;
333 phs_hdr->version = 1;
334 phs_hdr->flags = flags;
335 if (flags == AF_IUCV_FLAG_SYN)
336 phs_hdr->window = iucv->msglimit;
337 else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
338 confirm_recv = atomic_read(&iucv->msg_recv);
339 phs_hdr->window = confirm_recv;
340 if (confirm_recv)
341 phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
342 }
343 memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
344 memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
345 memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
346 memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
347 ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
348 ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
349 ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
350 ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
351 if (imsg)
352 memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
353
354 skb->dev = iucv->hs_dev;
355 if (!skb->dev)
356 return -ENODEV;
357 if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev))
358 return -ENETDOWN;
359 if (skb->len > skb->dev->mtu) {
360 if (sock->sk_type == SOCK_SEQPACKET)
361 return -EMSGSIZE;
362 else
363 skb_trim(skb, skb->dev->mtu);
364 }
365 skb->protocol = ETH_P_AF_IUCV;
366 nskb = skb_clone(skb, GFP_ATOMIC);
367 if (!nskb)
368 return -ENOMEM;
369 skb_queue_tail(&iucv->send_skb_q, nskb);
370 err = dev_queue_xmit(skb);
371 if (net_xmit_eval(err)) {
372 skb_unlink(nskb, &iucv->send_skb_q);
373 kfree_skb(nskb);
374 } else {
375 atomic_sub(confirm_recv, &iucv->msg_recv);
376 WARN_ON(atomic_read(&iucv->msg_recv) < 0);
377 }
378 return net_xmit_eval(err);
379 }
380
381 static struct sock *__iucv_get_sock_by_name(char *nm)
382 {
383 struct sock *sk;
384
385 sk_for_each(sk, &iucv_sk_list.head)
386 if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
387 return sk;
388
389 return NULL;
390 }
391
392 static void iucv_sock_destruct(struct sock *sk)
393 {
394 skb_queue_purge(&sk->sk_receive_queue);
395 skb_queue_purge(&sk->sk_error_queue);
396
397 sk_mem_reclaim(sk);
398
399 if (!sock_flag(sk, SOCK_DEAD)) {
400 pr_err("Attempt to release alive iucv socket %p\n", sk);
401 return;
402 }
403
404 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
405 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
406 WARN_ON(sk->sk_wmem_queued);
407 WARN_ON(sk->sk_forward_alloc);
408 }
409
410 /* Cleanup Listen */
411 static void iucv_sock_cleanup_listen(struct sock *parent)
412 {
413 struct sock *sk;
414
415 /* Close non-accepted connections */
416 while ((sk = iucv_accept_dequeue(parent, NULL))) {
417 iucv_sock_close(sk);
418 iucv_sock_kill(sk);
419 }
420
421 parent->sk_state = IUCV_CLOSED;
422 }
423
424 /* Kill socket (only if zapped and orphaned) */
425 static void iucv_sock_kill(struct sock *sk)
426 {
427 if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
428 return;
429
430 iucv_sock_unlink(&iucv_sk_list, sk);
431 sock_set_flag(sk, SOCK_DEAD);
432 sock_put(sk);
433 }
434
435 /* Terminate an IUCV path */
436 static void iucv_sever_path(struct sock *sk, int with_user_data)
437 {
438 unsigned char user_data[16];
439 struct iucv_sock *iucv = iucv_sk(sk);
440 struct iucv_path *path = iucv->path;
441
442 if (iucv->path) {
443 iucv->path = NULL;
444 if (with_user_data) {
445 low_nmcpy(user_data, iucv->src_name);
446 high_nmcpy(user_data, iucv->dst_name);
447 ASCEBC(user_data, sizeof(user_data));
448 pr_iucv->path_sever(path, user_data);
449 } else
450 pr_iucv->path_sever(path, NULL);
451 iucv_path_free(path);
452 }
453 }
454
455 /* Send FIN through an IUCV socket for HIPER transport */
456 static int iucv_send_ctrl(struct sock *sk, u8 flags)
457 {
458 int err = 0;
459 int blen;
460 struct sk_buff *skb;
461
462 blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
463 skb = sock_alloc_send_skb(sk, blen, 1, &err);
464 if (skb) {
465 skb_reserve(skb, blen);
466 err = afiucv_hs_send(NULL, sk, skb, flags);
467 }
468 return err;
469 }
470
471 /* Close an IUCV socket */
472 static void iucv_sock_close(struct sock *sk)
473 {
474 struct iucv_sock *iucv = iucv_sk(sk);
475 unsigned long timeo;
476 int err = 0;
477
478 lock_sock(sk);
479
480 switch (sk->sk_state) {
481 case IUCV_LISTEN:
482 iucv_sock_cleanup_listen(sk);
483 break;
484
485 case IUCV_CONNECTED:
486 if (iucv->transport == AF_IUCV_TRANS_HIPER) {
487 err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
488 sk->sk_state = IUCV_DISCONN;
489 sk->sk_state_change(sk);
490 }
491 case IUCV_DISCONN: /* fall through */
492 sk->sk_state = IUCV_CLOSING;
493 sk->sk_state_change(sk);
494
495 if (!err && !skb_queue_empty(&iucv->send_skb_q)) {
496 if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
497 timeo = sk->sk_lingertime;
498 else
499 timeo = IUCV_DISCONN_TIMEOUT;
500 iucv_sock_wait(sk,
501 iucv_sock_in_state(sk, IUCV_CLOSED, 0),
502 timeo);
503 }
504
505 case IUCV_CLOSING: /* fall through */
506 sk->sk_state = IUCV_CLOSED;
507 sk->sk_state_change(sk);
508
509 sk->sk_err = ECONNRESET;
510 sk->sk_state_change(sk);
511
512 skb_queue_purge(&iucv->send_skb_q);
513 skb_queue_purge(&iucv->backlog_skb_q);
514
515 default: /* fall through */
516 iucv_sever_path(sk, 1);
517 }
518
519 if (iucv->hs_dev) {
520 dev_put(iucv->hs_dev);
521 iucv->hs_dev = NULL;
522 sk->sk_bound_dev_if = 0;
523 }
524
525 /* mark socket for deletion by iucv_sock_kill() */
526 sock_set_flag(sk, SOCK_ZAPPED);
527
528 release_sock(sk);
529 }
530
531 static void iucv_sock_init(struct sock *sk, struct sock *parent)
532 {
533 if (parent)
534 sk->sk_type = parent->sk_type;
535 }
536
537 static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio, int kern)
538 {
539 struct sock *sk;
540 struct iucv_sock *iucv;
541
542 sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto, kern);
543 if (!sk)
544 return NULL;
545 iucv = iucv_sk(sk);
546
547 sock_init_data(sock, sk);
548 INIT_LIST_HEAD(&iucv->accept_q);
549 spin_lock_init(&iucv->accept_q_lock);
550 skb_queue_head_init(&iucv->send_skb_q);
551 INIT_LIST_HEAD(&iucv->message_q.list);
552 spin_lock_init(&iucv->message_q.lock);
553 skb_queue_head_init(&iucv->backlog_skb_q);
554 iucv->send_tag = 0;
555 atomic_set(&iucv->pendings, 0);
556 iucv->flags = 0;
557 iucv->msglimit = 0;
558 atomic_set(&iucv->msg_sent, 0);
559 atomic_set(&iucv->msg_recv, 0);
560 iucv->path = NULL;
561 iucv->sk_txnotify = afiucv_hs_callback_txnotify;
562 memset(&iucv->src_user_id , 0, 32);
563 if (pr_iucv)
564 iucv->transport = AF_IUCV_TRANS_IUCV;
565 else
566 iucv->transport = AF_IUCV_TRANS_HIPER;
567
568 sk->sk_destruct = iucv_sock_destruct;
569 sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
570 sk->sk_allocation = GFP_DMA;
571
572 sock_reset_flag(sk, SOCK_ZAPPED);
573
574 sk->sk_protocol = proto;
575 sk->sk_state = IUCV_OPEN;
576
577 iucv_sock_link(&iucv_sk_list, sk);
578 return sk;
579 }
580
581 /* Create an IUCV socket */
582 static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
583 int kern)
584 {
585 struct sock *sk;
586
587 if (protocol && protocol != PF_IUCV)
588 return -EPROTONOSUPPORT;
589
590 sock->state = SS_UNCONNECTED;
591
592 switch (sock->type) {
593 case SOCK_STREAM:
594 sock->ops = &iucv_sock_ops;
595 break;
596 case SOCK_SEQPACKET:
597 /* currently, proto ops can handle both sk types */
598 sock->ops = &iucv_sock_ops;
599 break;
600 default:
601 return -ESOCKTNOSUPPORT;
602 }
603
604 sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL, kern);
605 if (!sk)
606 return -ENOMEM;
607
608 iucv_sock_init(sk, NULL);
609
610 return 0;
611 }
612
613 void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
614 {
615 write_lock_bh(&l->lock);
616 sk_add_node(sk, &l->head);
617 write_unlock_bh(&l->lock);
618 }
619
620 void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
621 {
622 write_lock_bh(&l->lock);
623 sk_del_node_init(sk);
624 write_unlock_bh(&l->lock);
625 }
626
627 void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
628 {
629 unsigned long flags;
630 struct iucv_sock *par = iucv_sk(parent);
631
632 sock_hold(sk);
633 spin_lock_irqsave(&par->accept_q_lock, flags);
634 list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
635 spin_unlock_irqrestore(&par->accept_q_lock, flags);
636 iucv_sk(sk)->parent = parent;
637 sk_acceptq_added(parent);
638 }
639
640 void iucv_accept_unlink(struct sock *sk)
641 {
642 unsigned long flags;
643 struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
644
645 spin_lock_irqsave(&par->accept_q_lock, flags);
646 list_del_init(&iucv_sk(sk)->accept_q);
647 spin_unlock_irqrestore(&par->accept_q_lock, flags);
648 sk_acceptq_removed(iucv_sk(sk)->parent);
649 iucv_sk(sk)->parent = NULL;
650 sock_put(sk);
651 }
652
653 struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
654 {
655 struct iucv_sock *isk, *n;
656 struct sock *sk;
657
658 list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
659 sk = (struct sock *) isk;
660 lock_sock(sk);
661
662 if (sk->sk_state == IUCV_CLOSED) {
663 iucv_accept_unlink(sk);
664 release_sock(sk);
665 continue;
666 }
667
668 if (sk->sk_state == IUCV_CONNECTED ||
669 sk->sk_state == IUCV_DISCONN ||
670 !newsock) {
671 iucv_accept_unlink(sk);
672 if (newsock)
673 sock_graft(sk, newsock);
674
675 release_sock(sk);
676 return sk;
677 }
678
679 release_sock(sk);
680 }
681 return NULL;
682 }
683
684 static void __iucv_auto_name(struct iucv_sock *iucv)
685 {
686 char name[12];
687
688 sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
689 while (__iucv_get_sock_by_name(name)) {
690 sprintf(name, "%08x",
691 atomic_inc_return(&iucv_sk_list.autobind_name));
692 }
693 memcpy(iucv->src_name, name, 8);
694 }
695
696 /* Bind an unbound socket */
697 static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
698 int addr_len)
699 {
700 struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
701 struct sock *sk = sock->sk;
702 struct iucv_sock *iucv;
703 int err = 0;
704 struct net_device *dev;
705 char uid[9];
706
707 /* Verify the input sockaddr */
708 if (!addr || addr->sa_family != AF_IUCV)
709 return -EINVAL;
710
711 if (addr_len < sizeof(struct sockaddr_iucv))
712 return -EINVAL;
713
714 lock_sock(sk);
715 if (sk->sk_state != IUCV_OPEN) {
716 err = -EBADFD;
717 goto done;
718 }
719
720 write_lock_bh(&iucv_sk_list.lock);
721
722 iucv = iucv_sk(sk);
723 if (__iucv_get_sock_by_name(sa->siucv_name)) {
724 err = -EADDRINUSE;
725 goto done_unlock;
726 }
727 if (iucv->path)
728 goto done_unlock;
729
730 /* Bind the socket */
731 if (pr_iucv)
732 if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
733 goto vm_bind; /* VM IUCV transport */
734
735 /* try hiper transport */
736 memcpy(uid, sa->siucv_user_id, sizeof(uid));
737 ASCEBC(uid, 8);
738 rcu_read_lock();
739 for_each_netdev_rcu(&init_net, dev) {
740 if (!memcmp(dev->perm_addr, uid, 8)) {
741 memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
742 /* Check for unitialized siucv_name */
743 if (strncmp(sa->siucv_name, " ", 8) == 0)
744 __iucv_auto_name(iucv);
745 else
746 memcpy(iucv->src_name, sa->siucv_name, 8);
747 sk->sk_bound_dev_if = dev->ifindex;
748 iucv->hs_dev = dev;
749 dev_hold(dev);
750 sk->sk_state = IUCV_BOUND;
751 iucv->transport = AF_IUCV_TRANS_HIPER;
752 if (!iucv->msglimit)
753 iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
754 rcu_read_unlock();
755 goto done_unlock;
756 }
757 }
758 rcu_read_unlock();
759 vm_bind:
760 if (pr_iucv) {
761 /* use local userid for backward compat */
762 memcpy(iucv->src_name, sa->siucv_name, 8);
763 memcpy(iucv->src_user_id, iucv_userid, 8);
764 sk->sk_state = IUCV_BOUND;
765 iucv->transport = AF_IUCV_TRANS_IUCV;
766 if (!iucv->msglimit)
767 iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
768 goto done_unlock;
769 }
770 /* found no dev to bind */
771 err = -ENODEV;
772 done_unlock:
773 /* Release the socket list lock */
774 write_unlock_bh(&iucv_sk_list.lock);
775 done:
776 release_sock(sk);
777 return err;
778 }
779
780 /* Automatically bind an unbound socket */
781 static int iucv_sock_autobind(struct sock *sk)
782 {
783 struct iucv_sock *iucv = iucv_sk(sk);
784 int err = 0;
785
786 if (unlikely(!pr_iucv))
787 return -EPROTO;
788
789 memcpy(iucv->src_user_id, iucv_userid, 8);
790
791 write_lock_bh(&iucv_sk_list.lock);
792 __iucv_auto_name(iucv);
793 write_unlock_bh(&iucv_sk_list.lock);
794
795 if (!iucv->msglimit)
796 iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
797
798 return err;
799 }
800
801 static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
802 {
803 struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
804 struct sock *sk = sock->sk;
805 struct iucv_sock *iucv = iucv_sk(sk);
806 unsigned char user_data[16];
807 int err;
808
809 high_nmcpy(user_data, sa->siucv_name);
810 low_nmcpy(user_data, iucv->src_name);
811 ASCEBC(user_data, sizeof(user_data));
812
813 /* Create path. */
814 iucv->path = iucv_path_alloc(iucv->msglimit,
815 IUCV_IPRMDATA, GFP_KERNEL);
816 if (!iucv->path) {
817 err = -ENOMEM;
818 goto done;
819 }
820 err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
821 sa->siucv_user_id, NULL, user_data,
822 sk);
823 if (err) {
824 iucv_path_free(iucv->path);
825 iucv->path = NULL;
826 switch (err) {
827 case 0x0b: /* Target communicator is not logged on */
828 err = -ENETUNREACH;
829 break;
830 case 0x0d: /* Max connections for this guest exceeded */
831 case 0x0e: /* Max connections for target guest exceeded */
832 err = -EAGAIN;
833 break;
834 case 0x0f: /* Missing IUCV authorization */
835 err = -EACCES;
836 break;
837 default:
838 err = -ECONNREFUSED;
839 break;
840 }
841 }
842 done:
843 return err;
844 }
845
846 /* Connect an unconnected socket */
847 static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
848 int alen, int flags)
849 {
850 struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
851 struct sock *sk = sock->sk;
852 struct iucv_sock *iucv = iucv_sk(sk);
853 int err;
854
855 if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
856 return -EINVAL;
857
858 if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
859 return -EBADFD;
860
861 if (sk->sk_state == IUCV_OPEN &&
862 iucv->transport == AF_IUCV_TRANS_HIPER)
863 return -EBADFD; /* explicit bind required */
864
865 if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
866 return -EINVAL;
867
868 if (sk->sk_state == IUCV_OPEN) {
869 err = iucv_sock_autobind(sk);
870 if (unlikely(err))
871 return err;
872 }
873
874 lock_sock(sk);
875
876 /* Set the destination information */
877 memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
878 memcpy(iucv->dst_name, sa->siucv_name, 8);
879
880 if (iucv->transport == AF_IUCV_TRANS_HIPER)
881 err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
882 else
883 err = afiucv_path_connect(sock, addr);
884 if (err)
885 goto done;
886
887 if (sk->sk_state != IUCV_CONNECTED)
888 err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
889 IUCV_DISCONN),
890 sock_sndtimeo(sk, flags & O_NONBLOCK));
891
892 if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
893 err = -ECONNREFUSED;
894
895 if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
896 iucv_sever_path(sk, 0);
897
898 done:
899 release_sock(sk);
900 return err;
901 }
902
903 /* Move a socket into listening state. */
904 static int iucv_sock_listen(struct socket *sock, int backlog)
905 {
906 struct sock *sk = sock->sk;
907 int err;
908
909 lock_sock(sk);
910
911 err = -EINVAL;
912 if (sk->sk_state != IUCV_BOUND)
913 goto done;
914
915 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
916 goto done;
917
918 sk->sk_max_ack_backlog = backlog;
919 sk->sk_ack_backlog = 0;
920 sk->sk_state = IUCV_LISTEN;
921 err = 0;
922
923 done:
924 release_sock(sk);
925 return err;
926 }
927
928 /* Accept a pending connection */
929 static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
930 int flags)
931 {
932 DECLARE_WAITQUEUE(wait, current);
933 struct sock *sk = sock->sk, *nsk;
934 long timeo;
935 int err = 0;
936
937 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
938
939 if (sk->sk_state != IUCV_LISTEN) {
940 err = -EBADFD;
941 goto done;
942 }
943
944 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
945
946 /* Wait for an incoming connection */
947 add_wait_queue_exclusive(sk_sleep(sk), &wait);
948 while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
949 set_current_state(TASK_INTERRUPTIBLE);
950 if (!timeo) {
951 err = -EAGAIN;
952 break;
953 }
954
955 release_sock(sk);
956 timeo = schedule_timeout(timeo);
957 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
958
959 if (sk->sk_state != IUCV_LISTEN) {
960 err = -EBADFD;
961 break;
962 }
963
964 if (signal_pending(current)) {
965 err = sock_intr_errno(timeo);
966 break;
967 }
968 }
969
970 set_current_state(TASK_RUNNING);
971 remove_wait_queue(sk_sleep(sk), &wait);
972
973 if (err)
974 goto done;
975
976 newsock->state = SS_CONNECTED;
977
978 done:
979 release_sock(sk);
980 return err;
981 }
982
983 static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
984 int *len, int peer)
985 {
986 struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
987 struct sock *sk = sock->sk;
988 struct iucv_sock *iucv = iucv_sk(sk);
989
990 addr->sa_family = AF_IUCV;
991 *len = sizeof(struct sockaddr_iucv);
992
993 if (peer) {
994 memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
995 memcpy(siucv->siucv_name, iucv->dst_name, 8);
996 } else {
997 memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
998 memcpy(siucv->siucv_name, iucv->src_name, 8);
999 }
1000 memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
1001 memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
1002 memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
1003
1004 return 0;
1005 }
1006
1007 /**
1008 * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
1009 * @path: IUCV path
1010 * @msg: Pointer to a struct iucv_message
1011 * @skb: The socket data to send, skb->len MUST BE <= 7
1012 *
1013 * Send the socket data in the parameter list in the iucv message
1014 * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
1015 * list and the socket data len at index 7 (last byte).
1016 * See also iucv_msg_length().
1017 *
1018 * Returns the error code from the iucv_message_send() call.
1019 */
1020 static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
1021 struct sk_buff *skb)
1022 {
1023 u8 prmdata[8];
1024
1025 memcpy(prmdata, (void *) skb->data, skb->len);
1026 prmdata[7] = 0xff - (u8) skb->len;
1027 return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
1028 (void *) prmdata, 8);
1029 }
1030
1031 static int iucv_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1032 size_t len)
1033 {
1034 struct sock *sk = sock->sk;
1035 struct iucv_sock *iucv = iucv_sk(sk);
1036 struct sk_buff *skb;
1037 struct iucv_message txmsg = {0};
1038 struct cmsghdr *cmsg;
1039 int cmsg_done;
1040 long timeo;
1041 char user_id[9];
1042 char appl_id[9];
1043 int err;
1044 int noblock = msg->msg_flags & MSG_DONTWAIT;
1045
1046 err = sock_error(sk);
1047 if (err)
1048 return err;
1049
1050 if (msg->msg_flags & MSG_OOB)
1051 return -EOPNOTSUPP;
1052
1053 /* SOCK_SEQPACKET: we do not support segmented records */
1054 if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
1055 return -EOPNOTSUPP;
1056
1057 lock_sock(sk);
1058
1059 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1060 err = -EPIPE;
1061 goto out;
1062 }
1063
1064 /* Return if the socket is not in connected state */
1065 if (sk->sk_state != IUCV_CONNECTED) {
1066 err = -ENOTCONN;
1067 goto out;
1068 }
1069
1070 /* initialize defaults */
1071 cmsg_done = 0; /* check for duplicate headers */
1072 txmsg.class = 0;
1073
1074 /* iterate over control messages */
1075 for_each_cmsghdr(cmsg, msg) {
1076 if (!CMSG_OK(msg, cmsg)) {
1077 err = -EINVAL;
1078 goto out;
1079 }
1080
1081 if (cmsg->cmsg_level != SOL_IUCV)
1082 continue;
1083
1084 if (cmsg->cmsg_type & cmsg_done) {
1085 err = -EINVAL;
1086 goto out;
1087 }
1088 cmsg_done |= cmsg->cmsg_type;
1089
1090 switch (cmsg->cmsg_type) {
1091 case SCM_IUCV_TRGCLS:
1092 if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
1093 err = -EINVAL;
1094 goto out;
1095 }
1096
1097 /* set iucv message target class */
1098 memcpy(&txmsg.class,
1099 (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
1100
1101 break;
1102
1103 default:
1104 err = -EINVAL;
1105 goto out;
1106 }
1107 }
1108
1109 /* allocate one skb for each iucv message:
1110 * this is fine for SOCK_SEQPACKET (unless we want to support
1111 * segmented records using the MSG_EOR flag), but
1112 * for SOCK_STREAM we might want to improve it in future */
1113 if (iucv->transport == AF_IUCV_TRANS_HIPER)
1114 skb = sock_alloc_send_skb(sk,
1115 len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN,
1116 noblock, &err);
1117 else
1118 skb = sock_alloc_send_skb(sk, len, noblock, &err);
1119 if (!skb)
1120 goto out;
1121 if (iucv->transport == AF_IUCV_TRANS_HIPER)
1122 skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN);
1123 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
1124 err = -EFAULT;
1125 goto fail;
1126 }
1127
1128 /* wait if outstanding messages for iucv path has reached */
1129 timeo = sock_sndtimeo(sk, noblock);
1130 err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
1131 if (err)
1132 goto fail;
1133
1134 /* return -ECONNRESET if the socket is no longer connected */
1135 if (sk->sk_state != IUCV_CONNECTED) {
1136 err = -ECONNRESET;
1137 goto fail;
1138 }
1139
1140 /* increment and save iucv message tag for msg_completion cbk */
1141 txmsg.tag = iucv->send_tag++;
1142 IUCV_SKB_CB(skb)->tag = txmsg.tag;
1143
1144 if (iucv->transport == AF_IUCV_TRANS_HIPER) {
1145 atomic_inc(&iucv->msg_sent);
1146 err = afiucv_hs_send(&txmsg, sk, skb, 0);
1147 if (err) {
1148 atomic_dec(&iucv->msg_sent);
1149 goto fail;
1150 }
1151 goto release;
1152 }
1153 skb_queue_tail(&iucv->send_skb_q, skb);
1154
1155 if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
1156 && skb->len <= 7) {
1157 err = iucv_send_iprm(iucv->path, &txmsg, skb);
1158
1159 /* on success: there is no message_complete callback
1160 * for an IPRMDATA msg; remove skb from send queue */
1161 if (err == 0) {
1162 skb_unlink(skb, &iucv->send_skb_q);
1163 kfree_skb(skb);
1164 }
1165
1166 /* this error should never happen since the
1167 * IUCV_IPRMDATA path flag is set... sever path */
1168 if (err == 0x15) {
1169 pr_iucv->path_sever(iucv->path, NULL);
1170 skb_unlink(skb, &iucv->send_skb_q);
1171 err = -EPIPE;
1172 goto fail;
1173 }
1174 } else
1175 err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
1176 (void *) skb->data, skb->len);
1177 if (err) {
1178 if (err == 3) {
1179 user_id[8] = 0;
1180 memcpy(user_id, iucv->dst_user_id, 8);
1181 appl_id[8] = 0;
1182 memcpy(appl_id, iucv->dst_name, 8);
1183 pr_err("Application %s on z/VM guest %s"
1184 " exceeds message limit\n",
1185 appl_id, user_id);
1186 err = -EAGAIN;
1187 } else
1188 err = -EPIPE;
1189 skb_unlink(skb, &iucv->send_skb_q);
1190 goto fail;
1191 }
1192
1193 release:
1194 release_sock(sk);
1195 return len;
1196
1197 fail:
1198 kfree_skb(skb);
1199 out:
1200 release_sock(sk);
1201 return err;
1202 }
1203
1204 /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
1205 *
1206 * Locking: must be called with message_q.lock held
1207 */
1208 static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
1209 {
1210 int dataleft, size, copied = 0;
1211 struct sk_buff *nskb;
1212
1213 dataleft = len;
1214 while (dataleft) {
1215 if (dataleft >= sk->sk_rcvbuf / 4)
1216 size = sk->sk_rcvbuf / 4;
1217 else
1218 size = dataleft;
1219
1220 nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
1221 if (!nskb)
1222 return -ENOMEM;
1223
1224 /* copy target class to control buffer of new skb */
1225 IUCV_SKB_CB(nskb)->class = IUCV_SKB_CB(skb)->class;
1226
1227 /* copy data fragment */
1228 memcpy(nskb->data, skb->data + copied, size);
1229 copied += size;
1230 dataleft -= size;
1231
1232 skb_reset_transport_header(nskb);
1233 skb_reset_network_header(nskb);
1234 nskb->len = size;
1235
1236 skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
1237 }
1238
1239 return 0;
1240 }
1241
1242 /* iucv_process_message() - Receive a single outstanding IUCV message
1243 *
1244 * Locking: must be called with message_q.lock held
1245 */
1246 static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
1247 struct iucv_path *path,
1248 struct iucv_message *msg)
1249 {
1250 int rc;
1251 unsigned int len;
1252
1253 len = iucv_msg_length(msg);
1254
1255 /* store msg target class in the second 4 bytes of skb ctrl buffer */
1256 /* Note: the first 4 bytes are reserved for msg tag */
1257 IUCV_SKB_CB(skb)->class = msg->class;
1258
1259 /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
1260 if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
1261 if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
1262 skb->data = NULL;
1263 skb->len = 0;
1264 }
1265 } else {
1266 rc = pr_iucv->message_receive(path, msg,
1267 msg->flags & IUCV_IPRMDATA,
1268 skb->data, len, NULL);
1269 if (rc) {
1270 kfree_skb(skb);
1271 return;
1272 }
1273 /* we need to fragment iucv messages for SOCK_STREAM only;
1274 * for SOCK_SEQPACKET, it is only relevant if we support
1275 * record segmentation using MSG_EOR (see also recvmsg()) */
1276 if (sk->sk_type == SOCK_STREAM &&
1277 skb->truesize >= sk->sk_rcvbuf / 4) {
1278 rc = iucv_fragment_skb(sk, skb, len);
1279 kfree_skb(skb);
1280 skb = NULL;
1281 if (rc) {
1282 pr_iucv->path_sever(path, NULL);
1283 return;
1284 }
1285 skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
1286 } else {
1287 skb_reset_transport_header(skb);
1288 skb_reset_network_header(skb);
1289 skb->len = len;
1290 }
1291 }
1292
1293 IUCV_SKB_CB(skb)->offset = 0;
1294 if (sock_queue_rcv_skb(sk, skb))
1295 skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
1296 }
1297
1298 /* iucv_process_message_q() - Process outstanding IUCV messages
1299 *
1300 * Locking: must be called with message_q.lock held
1301 */
1302 static void iucv_process_message_q(struct sock *sk)
1303 {
1304 struct iucv_sock *iucv = iucv_sk(sk);
1305 struct sk_buff *skb;
1306 struct sock_msg_q *p, *n;
1307
1308 list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
1309 skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
1310 if (!skb)
1311 break;
1312 iucv_process_message(sk, skb, p->path, &p->msg);
1313 list_del(&p->list);
1314 kfree(p);
1315 if (!skb_queue_empty(&iucv->backlog_skb_q))
1316 break;
1317 }
1318 }
1319
1320 static int iucv_sock_recvmsg(struct socket *sock, struct msghdr *msg,
1321 size_t len, int flags)
1322 {
1323 int noblock = flags & MSG_DONTWAIT;
1324 struct sock *sk = sock->sk;
1325 struct iucv_sock *iucv = iucv_sk(sk);
1326 unsigned int copied, rlen;
1327 struct sk_buff *skb, *rskb, *cskb;
1328 int err = 0;
1329 u32 offset;
1330
1331 if ((sk->sk_state == IUCV_DISCONN) &&
1332 skb_queue_empty(&iucv->backlog_skb_q) &&
1333 skb_queue_empty(&sk->sk_receive_queue) &&
1334 list_empty(&iucv->message_q.list))
1335 return 0;
1336
1337 if (flags & (MSG_OOB))
1338 return -EOPNOTSUPP;
1339
1340 /* receive/dequeue next skb:
1341 * the function understands MSG_PEEK and, thus, does not dequeue skb */
1342 skb = skb_recv_datagram(sk, flags, noblock, &err);
1343 if (!skb) {
1344 if (sk->sk_shutdown & RCV_SHUTDOWN)
1345 return 0;
1346 return err;
1347 }
1348
1349 offset = IUCV_SKB_CB(skb)->offset;
1350 rlen = skb->len - offset; /* real length of skb */
1351 copied = min_t(unsigned int, rlen, len);
1352 if (!rlen)
1353 sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN;
1354
1355 cskb = skb;
1356 if (skb_copy_datagram_msg(cskb, offset, msg, copied)) {
1357 if (!(flags & MSG_PEEK))
1358 skb_queue_head(&sk->sk_receive_queue, skb);
1359 return -EFAULT;
1360 }
1361
1362 /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
1363 if (sk->sk_type == SOCK_SEQPACKET) {
1364 if (copied < rlen)
1365 msg->msg_flags |= MSG_TRUNC;
1366 /* each iucv message contains a complete record */
1367 msg->msg_flags |= MSG_EOR;
1368 }
1369
1370 /* create control message to store iucv msg target class:
1371 * get the trgcls from the control buffer of the skb due to
1372 * fragmentation of original iucv message. */
1373 err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
1374 sizeof(IUCV_SKB_CB(skb)->class),
1375 (void *)&IUCV_SKB_CB(skb)->class);
1376 if (err) {
1377 if (!(flags & MSG_PEEK))
1378 skb_queue_head(&sk->sk_receive_queue, skb);
1379 return err;
1380 }
1381
1382 /* Mark read part of skb as used */
1383 if (!(flags & MSG_PEEK)) {
1384
1385 /* SOCK_STREAM: re-queue skb if it contains unreceived data */
1386 if (sk->sk_type == SOCK_STREAM) {
1387 if (copied < rlen) {
1388 IUCV_SKB_CB(skb)->offset = offset + copied;
1389 skb_queue_head(&sk->sk_receive_queue, skb);
1390 goto done;
1391 }
1392 }
1393
1394 kfree_skb(skb);
1395 if (iucv->transport == AF_IUCV_TRANS_HIPER) {
1396 atomic_inc(&iucv->msg_recv);
1397 if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
1398 WARN_ON(1);
1399 iucv_sock_close(sk);
1400 return -EFAULT;
1401 }
1402 }
1403
1404 /* Queue backlog skbs */
1405 spin_lock_bh(&iucv->message_q.lock);
1406 rskb = skb_dequeue(&iucv->backlog_skb_q);
1407 while (rskb) {
1408 IUCV_SKB_CB(rskb)->offset = 0;
1409 if (sock_queue_rcv_skb(sk, rskb)) {
1410 skb_queue_head(&iucv->backlog_skb_q,
1411 rskb);
1412 break;
1413 } else {
1414 rskb = skb_dequeue(&iucv->backlog_skb_q);
1415 }
1416 }
1417 if (skb_queue_empty(&iucv->backlog_skb_q)) {
1418 if (!list_empty(&iucv->message_q.list))
1419 iucv_process_message_q(sk);
1420 if (atomic_read(&iucv->msg_recv) >=
1421 iucv->msglimit / 2) {
1422 err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
1423 if (err) {
1424 sk->sk_state = IUCV_DISCONN;
1425 sk->sk_state_change(sk);
1426 }
1427 }
1428 }
1429 spin_unlock_bh(&iucv->message_q.lock);
1430 }
1431
1432 done:
1433 /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
1434 if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
1435 copied = rlen;
1436
1437 return copied;
1438 }
1439
1440 static inline unsigned int iucv_accept_poll(struct sock *parent)
1441 {
1442 struct iucv_sock *isk, *n;
1443 struct sock *sk;
1444
1445 list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
1446 sk = (struct sock *) isk;
1447
1448 if (sk->sk_state == IUCV_CONNECTED)
1449 return POLLIN | POLLRDNORM;
1450 }
1451
1452 return 0;
1453 }
1454
1455 unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
1456 poll_table *wait)
1457 {
1458 struct sock *sk = sock->sk;
1459 unsigned int mask = 0;
1460
1461 sock_poll_wait(file, sk_sleep(sk), wait);
1462
1463 if (sk->sk_state == IUCV_LISTEN)
1464 return iucv_accept_poll(sk);
1465
1466 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
1467 mask |= POLLERR |
1468 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
1469
1470 if (sk->sk_shutdown & RCV_SHUTDOWN)
1471 mask |= POLLRDHUP;
1472
1473 if (sk->sk_shutdown == SHUTDOWN_MASK)
1474 mask |= POLLHUP;
1475
1476 if (!skb_queue_empty(&sk->sk_receive_queue) ||
1477 (sk->sk_shutdown & RCV_SHUTDOWN))
1478 mask |= POLLIN | POLLRDNORM;
1479
1480 if (sk->sk_state == IUCV_CLOSED)
1481 mask |= POLLHUP;
1482
1483 if (sk->sk_state == IUCV_DISCONN)
1484 mask |= POLLIN;
1485
1486 if (sock_writeable(sk) && iucv_below_msglim(sk))
1487 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1488 else
1489 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1490
1491 return mask;
1492 }
1493
1494 static int iucv_sock_shutdown(struct socket *sock, int how)
1495 {
1496 struct sock *sk = sock->sk;
1497 struct iucv_sock *iucv = iucv_sk(sk);
1498 struct iucv_message txmsg;
1499 int err = 0;
1500
1501 how++;
1502
1503 if ((how & ~SHUTDOWN_MASK) || !how)
1504 return -EINVAL;
1505
1506 lock_sock(sk);
1507 switch (sk->sk_state) {
1508 case IUCV_LISTEN:
1509 case IUCV_DISCONN:
1510 case IUCV_CLOSING:
1511 case IUCV_CLOSED:
1512 err = -ENOTCONN;
1513 goto fail;
1514 default:
1515 break;
1516 }
1517
1518 if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
1519 if (iucv->transport == AF_IUCV_TRANS_IUCV) {
1520 txmsg.class = 0;
1521 txmsg.tag = 0;
1522 err = pr_iucv->message_send(iucv->path, &txmsg,
1523 IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8);
1524 if (err) {
1525 switch (err) {
1526 case 1:
1527 err = -ENOTCONN;
1528 break;
1529 case 2:
1530 err = -ECONNRESET;
1531 break;
1532 default:
1533 err = -ENOTCONN;
1534 break;
1535 }
1536 }
1537 } else
1538 iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT);
1539 }
1540
1541 sk->sk_shutdown |= how;
1542 if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
1543 if ((iucv->transport == AF_IUCV_TRANS_IUCV) &&
1544 iucv->path) {
1545 err = pr_iucv->path_quiesce(iucv->path, NULL);
1546 if (err)
1547 err = -ENOTCONN;
1548 /* skb_queue_purge(&sk->sk_receive_queue); */
1549 }
1550 skb_queue_purge(&sk->sk_receive_queue);
1551 }
1552
1553 /* Wake up anyone sleeping in poll */
1554 sk->sk_state_change(sk);
1555
1556 fail:
1557 release_sock(sk);
1558 return err;
1559 }
1560
1561 static int iucv_sock_release(struct socket *sock)
1562 {
1563 struct sock *sk = sock->sk;
1564 int err = 0;
1565
1566 if (!sk)
1567 return 0;
1568
1569 iucv_sock_close(sk);
1570
1571 sock_orphan(sk);
1572 iucv_sock_kill(sk);
1573 return err;
1574 }
1575
1576 /* getsockopt and setsockopt */
1577 static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
1578 char __user *optval, unsigned int optlen)
1579 {
1580 struct sock *sk = sock->sk;
1581 struct iucv_sock *iucv = iucv_sk(sk);
1582 int val;
1583 int rc;
1584
1585 if (level != SOL_IUCV)
1586 return -ENOPROTOOPT;
1587
1588 if (optlen < sizeof(int))
1589 return -EINVAL;
1590
1591 if (get_user(val, (int __user *) optval))
1592 return -EFAULT;
1593
1594 rc = 0;
1595
1596 lock_sock(sk);
1597 switch (optname) {
1598 case SO_IPRMDATA_MSG:
1599 if (val)
1600 iucv->flags |= IUCV_IPRMDATA;
1601 else
1602 iucv->flags &= ~IUCV_IPRMDATA;
1603 break;
1604 case SO_MSGLIMIT:
1605 switch (sk->sk_state) {
1606 case IUCV_OPEN:
1607 case IUCV_BOUND:
1608 if (val < 1 || val > (u16)(~0))
1609 rc = -EINVAL;
1610 else
1611 iucv->msglimit = val;
1612 break;
1613 default:
1614 rc = -EINVAL;
1615 break;
1616 }
1617 break;
1618 default:
1619 rc = -ENOPROTOOPT;
1620 break;
1621 }
1622 release_sock(sk);
1623
1624 return rc;
1625 }
1626
1627 static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
1628 char __user *optval, int __user *optlen)
1629 {
1630 struct sock *sk = sock->sk;
1631 struct iucv_sock *iucv = iucv_sk(sk);
1632 unsigned int val;
1633 int len;
1634
1635 if (level != SOL_IUCV)
1636 return -ENOPROTOOPT;
1637
1638 if (get_user(len, optlen))
1639 return -EFAULT;
1640
1641 if (len < 0)
1642 return -EINVAL;
1643
1644 len = min_t(unsigned int, len, sizeof(int));
1645
1646 switch (optname) {
1647 case SO_IPRMDATA_MSG:
1648 val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
1649 break;
1650 case SO_MSGLIMIT:
1651 lock_sock(sk);
1652 val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
1653 : iucv->msglimit; /* default */
1654 release_sock(sk);
1655 break;
1656 case SO_MSGSIZE:
1657 if (sk->sk_state == IUCV_OPEN)
1658 return -EBADFD;
1659 val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
1660 sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
1661 0x7fffffff;
1662 break;
1663 default:
1664 return -ENOPROTOOPT;
1665 }
1666
1667 if (put_user(len, optlen))
1668 return -EFAULT;
1669 if (copy_to_user(optval, &val, len))
1670 return -EFAULT;
1671
1672 return 0;
1673 }
1674
1675
1676 /* Callback wrappers - called from iucv base support */
1677 static int iucv_callback_connreq(struct iucv_path *path,
1678 u8 ipvmid[8], u8 ipuser[16])
1679 {
1680 unsigned char user_data[16];
1681 unsigned char nuser_data[16];
1682 unsigned char src_name[8];
1683 struct sock *sk, *nsk;
1684 struct iucv_sock *iucv, *niucv;
1685 int err;
1686
1687 memcpy(src_name, ipuser, 8);
1688 EBCASC(src_name, 8);
1689 /* Find out if this path belongs to af_iucv. */
1690 read_lock(&iucv_sk_list.lock);
1691 iucv = NULL;
1692 sk = NULL;
1693 sk_for_each(sk, &iucv_sk_list.head)
1694 if (sk->sk_state == IUCV_LISTEN &&
1695 !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
1696 /*
1697 * Found a listening socket with
1698 * src_name == ipuser[0-7].
1699 */
1700 iucv = iucv_sk(sk);
1701 break;
1702 }
1703 read_unlock(&iucv_sk_list.lock);
1704 if (!iucv)
1705 /* No socket found, not one of our paths. */
1706 return -EINVAL;
1707
1708 bh_lock_sock(sk);
1709
1710 /* Check if parent socket is listening */
1711 low_nmcpy(user_data, iucv->src_name);
1712 high_nmcpy(user_data, iucv->dst_name);
1713 ASCEBC(user_data, sizeof(user_data));
1714 if (sk->sk_state != IUCV_LISTEN) {
1715 err = pr_iucv->path_sever(path, user_data);
1716 iucv_path_free(path);
1717 goto fail;
1718 }
1719
1720 /* Check for backlog size */
1721 if (sk_acceptq_is_full(sk)) {
1722 err = pr_iucv->path_sever(path, user_data);
1723 iucv_path_free(path);
1724 goto fail;
1725 }
1726
1727 /* Create the new socket */
1728 nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
1729 if (!nsk) {
1730 err = pr_iucv->path_sever(path, user_data);
1731 iucv_path_free(path);
1732 goto fail;
1733 }
1734
1735 niucv = iucv_sk(nsk);
1736 iucv_sock_init(nsk, sk);
1737
1738 /* Set the new iucv_sock */
1739 memcpy(niucv->dst_name, ipuser + 8, 8);
1740 EBCASC(niucv->dst_name, 8);
1741 memcpy(niucv->dst_user_id, ipvmid, 8);
1742 memcpy(niucv->src_name, iucv->src_name, 8);
1743 memcpy(niucv->src_user_id, iucv->src_user_id, 8);
1744 niucv->path = path;
1745
1746 /* Call iucv_accept */
1747 high_nmcpy(nuser_data, ipuser + 8);
1748 memcpy(nuser_data + 8, niucv->src_name, 8);
1749 ASCEBC(nuser_data + 8, 8);
1750
1751 /* set message limit for path based on msglimit of accepting socket */
1752 niucv->msglimit = iucv->msglimit;
1753 path->msglim = iucv->msglimit;
1754 err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
1755 if (err) {
1756 iucv_sever_path(nsk, 1);
1757 iucv_sock_kill(nsk);
1758 goto fail;
1759 }
1760
1761 iucv_accept_enqueue(sk, nsk);
1762
1763 /* Wake up accept */
1764 nsk->sk_state = IUCV_CONNECTED;
1765 sk->sk_data_ready(sk);
1766 err = 0;
1767 fail:
1768 bh_unlock_sock(sk);
1769 return 0;
1770 }
1771
1772 static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
1773 {
1774 struct sock *sk = path->private;
1775
1776 sk->sk_state = IUCV_CONNECTED;
1777 sk->sk_state_change(sk);
1778 }
1779
1780 static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
1781 {
1782 struct sock *sk = path->private;
1783 struct iucv_sock *iucv = iucv_sk(sk);
1784 struct sk_buff *skb;
1785 struct sock_msg_q *save_msg;
1786 int len;
1787
1788 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1789 pr_iucv->message_reject(path, msg);
1790 return;
1791 }
1792
1793 spin_lock(&iucv->message_q.lock);
1794
1795 if (!list_empty(&iucv->message_q.list) ||
1796 !skb_queue_empty(&iucv->backlog_skb_q))
1797 goto save_message;
1798
1799 len = atomic_read(&sk->sk_rmem_alloc);
1800 len += SKB_TRUESIZE(iucv_msg_length(msg));
1801 if (len > sk->sk_rcvbuf)
1802 goto save_message;
1803
1804 skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
1805 if (!skb)
1806 goto save_message;
1807
1808 iucv_process_message(sk, skb, path, msg);
1809 goto out_unlock;
1810
1811 save_message:
1812 save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
1813 if (!save_msg)
1814 goto out_unlock;
1815 save_msg->path = path;
1816 save_msg->msg = *msg;
1817
1818 list_add_tail(&save_msg->list, &iucv->message_q.list);
1819
1820 out_unlock:
1821 spin_unlock(&iucv->message_q.lock);
1822 }
1823
1824 static void iucv_callback_txdone(struct iucv_path *path,
1825 struct iucv_message *msg)
1826 {
1827 struct sock *sk = path->private;
1828 struct sk_buff *this = NULL;
1829 struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
1830 struct sk_buff *list_skb = list->next;
1831 unsigned long flags;
1832
1833 bh_lock_sock(sk);
1834 if (!skb_queue_empty(list)) {
1835 spin_lock_irqsave(&list->lock, flags);
1836
1837 while (list_skb != (struct sk_buff *)list) {
1838 if (msg->tag == IUCV_SKB_CB(list_skb)->tag) {
1839 this = list_skb;
1840 break;
1841 }
1842 list_skb = list_skb->next;
1843 }
1844 if (this)
1845 __skb_unlink(this, list);
1846
1847 spin_unlock_irqrestore(&list->lock, flags);
1848
1849 if (this) {
1850 kfree_skb(this);
1851 /* wake up any process waiting for sending */
1852 iucv_sock_wake_msglim(sk);
1853 }
1854 }
1855
1856 if (sk->sk_state == IUCV_CLOSING) {
1857 if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
1858 sk->sk_state = IUCV_CLOSED;
1859 sk->sk_state_change(sk);
1860 }
1861 }
1862 bh_unlock_sock(sk);
1863
1864 }
1865
1866 static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
1867 {
1868 struct sock *sk = path->private;
1869
1870 if (sk->sk_state == IUCV_CLOSED)
1871 return;
1872
1873 bh_lock_sock(sk);
1874 iucv_sever_path(sk, 1);
1875 sk->sk_state = IUCV_DISCONN;
1876
1877 sk->sk_state_change(sk);
1878 bh_unlock_sock(sk);
1879 }
1880
1881 /* called if the other communication side shuts down its RECV direction;
1882 * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
1883 */
1884 static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
1885 {
1886 struct sock *sk = path->private;
1887
1888 bh_lock_sock(sk);
1889 if (sk->sk_state != IUCV_CLOSED) {
1890 sk->sk_shutdown |= SEND_SHUTDOWN;
1891 sk->sk_state_change(sk);
1892 }
1893 bh_unlock_sock(sk);
1894 }
1895
1896 /***************** HiperSockets transport callbacks ********************/
1897 static void afiucv_swap_src_dest(struct sk_buff *skb)
1898 {
1899 struct af_iucv_trans_hdr *trans_hdr =
1900 (struct af_iucv_trans_hdr *)skb->data;
1901 char tmpID[8];
1902 char tmpName[8];
1903
1904 ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
1905 ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
1906 ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
1907 ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
1908 memcpy(tmpID, trans_hdr->srcUserID, 8);
1909 memcpy(tmpName, trans_hdr->srcAppName, 8);
1910 memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
1911 memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
1912 memcpy(trans_hdr->destUserID, tmpID, 8);
1913 memcpy(trans_hdr->destAppName, tmpName, 8);
1914 skb_push(skb, ETH_HLEN);
1915 memset(skb->data, 0, ETH_HLEN);
1916 }
1917
1918 /**
1919 * afiucv_hs_callback_syn - react on received SYN
1920 **/
1921 static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
1922 {
1923 struct sock *nsk;
1924 struct iucv_sock *iucv, *niucv;
1925 struct af_iucv_trans_hdr *trans_hdr;
1926 int err;
1927
1928 iucv = iucv_sk(sk);
1929 trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
1930 if (!iucv) {
1931 /* no sock - connection refused */
1932 afiucv_swap_src_dest(skb);
1933 trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
1934 err = dev_queue_xmit(skb);
1935 goto out;
1936 }
1937
1938 nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
1939 bh_lock_sock(sk);
1940 if ((sk->sk_state != IUCV_LISTEN) ||
1941 sk_acceptq_is_full(sk) ||
1942 !nsk) {
1943 /* error on server socket - connection refused */
1944 afiucv_swap_src_dest(skb);
1945 trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
1946 err = dev_queue_xmit(skb);
1947 iucv_sock_kill(nsk);
1948 bh_unlock_sock(sk);
1949 goto out;
1950 }
1951
1952 niucv = iucv_sk(nsk);
1953 iucv_sock_init(nsk, sk);
1954 niucv->transport = AF_IUCV_TRANS_HIPER;
1955 niucv->msglimit = iucv->msglimit;
1956 if (!trans_hdr->window)
1957 niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
1958 else
1959 niucv->msglimit_peer = trans_hdr->window;
1960 memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
1961 memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
1962 memcpy(niucv->src_name, iucv->src_name, 8);
1963 memcpy(niucv->src_user_id, iucv->src_user_id, 8);
1964 nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
1965 niucv->hs_dev = iucv->hs_dev;
1966 dev_hold(niucv->hs_dev);
1967 afiucv_swap_src_dest(skb);
1968 trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
1969 trans_hdr->window = niucv->msglimit;
1970 /* if receiver acks the xmit connection is established */
1971 err = dev_queue_xmit(skb);
1972 if (!err) {
1973 iucv_accept_enqueue(sk, nsk);
1974 nsk->sk_state = IUCV_CONNECTED;
1975 sk->sk_data_ready(sk);
1976 } else
1977 iucv_sock_kill(nsk);
1978 bh_unlock_sock(sk);
1979
1980 out:
1981 return NET_RX_SUCCESS;
1982 }
1983
1984 /**
1985 * afiucv_hs_callback_synack() - react on received SYN-ACK
1986 **/
1987 static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
1988 {
1989 struct iucv_sock *iucv = iucv_sk(sk);
1990 struct af_iucv_trans_hdr *trans_hdr =
1991 (struct af_iucv_trans_hdr *)skb->data;
1992
1993 if (!iucv)
1994 goto out;
1995 if (sk->sk_state != IUCV_BOUND)
1996 goto out;
1997 bh_lock_sock(sk);
1998 iucv->msglimit_peer = trans_hdr->window;
1999 sk->sk_state = IUCV_CONNECTED;
2000 sk->sk_state_change(sk);
2001 bh_unlock_sock(sk);
2002 out:
2003 kfree_skb(skb);
2004 return NET_RX_SUCCESS;
2005 }
2006
2007 /**
2008 * afiucv_hs_callback_synfin() - react on received SYN_FIN
2009 **/
2010 static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
2011 {
2012 struct iucv_sock *iucv = iucv_sk(sk);
2013
2014 if (!iucv)
2015 goto out;
2016 if (sk->sk_state != IUCV_BOUND)
2017 goto out;
2018 bh_lock_sock(sk);
2019 sk->sk_state = IUCV_DISCONN;
2020 sk->sk_state_change(sk);
2021 bh_unlock_sock(sk);
2022 out:
2023 kfree_skb(skb);
2024 return NET_RX_SUCCESS;
2025 }
2026
2027 /**
2028 * afiucv_hs_callback_fin() - react on received FIN
2029 **/
2030 static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
2031 {
2032 struct iucv_sock *iucv = iucv_sk(sk);
2033
2034 /* other end of connection closed */
2035 if (!iucv)
2036 goto out;
2037 bh_lock_sock(sk);
2038 if (sk->sk_state == IUCV_CONNECTED) {
2039 sk->sk_state = IUCV_DISCONN;
2040 sk->sk_state_change(sk);
2041 }
2042 bh_unlock_sock(sk);
2043 out:
2044 kfree_skb(skb);
2045 return NET_RX_SUCCESS;
2046 }
2047
2048 /**
2049 * afiucv_hs_callback_win() - react on received WIN
2050 **/
2051 static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
2052 {
2053 struct iucv_sock *iucv = iucv_sk(sk);
2054 struct af_iucv_trans_hdr *trans_hdr =
2055 (struct af_iucv_trans_hdr *)skb->data;
2056
2057 if (!iucv)
2058 return NET_RX_SUCCESS;
2059
2060 if (sk->sk_state != IUCV_CONNECTED)
2061 return NET_RX_SUCCESS;
2062
2063 atomic_sub(trans_hdr->window, &iucv->msg_sent);
2064 iucv_sock_wake_msglim(sk);
2065 return NET_RX_SUCCESS;
2066 }
2067
2068 /**
2069 * afiucv_hs_callback_rx() - react on received data
2070 **/
2071 static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
2072 {
2073 struct iucv_sock *iucv = iucv_sk(sk);
2074
2075 if (!iucv) {
2076 kfree_skb(skb);
2077 return NET_RX_SUCCESS;
2078 }
2079
2080 if (sk->sk_state != IUCV_CONNECTED) {
2081 kfree_skb(skb);
2082 return NET_RX_SUCCESS;
2083 }
2084
2085 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2086 kfree_skb(skb);
2087 return NET_RX_SUCCESS;
2088 }
2089
2090 /* write stuff from iucv_msg to skb cb */
2091 skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
2092 skb_reset_transport_header(skb);
2093 skb_reset_network_header(skb);
2094 IUCV_SKB_CB(skb)->offset = 0;
2095 spin_lock(&iucv->message_q.lock);
2096 if (skb_queue_empty(&iucv->backlog_skb_q)) {
2097 if (sock_queue_rcv_skb(sk, skb)) {
2098 /* handle rcv queue full */
2099 skb_queue_tail(&iucv->backlog_skb_q, skb);
2100 }
2101 } else
2102 skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
2103 spin_unlock(&iucv->message_q.lock);
2104 return NET_RX_SUCCESS;
2105 }
2106
2107 /**
2108 * afiucv_hs_rcv() - base function for arriving data through HiperSockets
2109 * transport
2110 * called from netif RX softirq
2111 **/
2112 static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
2113 struct packet_type *pt, struct net_device *orig_dev)
2114 {
2115 struct sock *sk;
2116 struct iucv_sock *iucv;
2117 struct af_iucv_trans_hdr *trans_hdr;
2118 char nullstring[8];
2119 int err = 0;
2120
2121 if (skb->len < (ETH_HLEN + sizeof(struct af_iucv_trans_hdr))) {
2122 WARN_ONCE(1, "AF_IUCV too short skb, len=%d, min=%d",
2123 (int)skb->len,
2124 (int)(ETH_HLEN + sizeof(struct af_iucv_trans_hdr)));
2125 kfree_skb(skb);
2126 return NET_RX_SUCCESS;
2127 }
2128 if (skb_headlen(skb) < (ETH_HLEN + sizeof(struct af_iucv_trans_hdr)))
2129 if (skb_linearize(skb)) {
2130 WARN_ONCE(1, "AF_IUCV skb_linearize failed, len=%d",
2131 (int)skb->len);
2132 kfree_skb(skb);
2133 return NET_RX_SUCCESS;
2134 }
2135 skb_pull(skb, ETH_HLEN);
2136 trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
2137 EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
2138 EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
2139 EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
2140 EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
2141 memset(nullstring, 0, sizeof(nullstring));
2142 iucv = NULL;
2143 sk = NULL;
2144 read_lock(&iucv_sk_list.lock);
2145 sk_for_each(sk, &iucv_sk_list.head) {
2146 if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
2147 if ((!memcmp(&iucv_sk(sk)->src_name,
2148 trans_hdr->destAppName, 8)) &&
2149 (!memcmp(&iucv_sk(sk)->src_user_id,
2150 trans_hdr->destUserID, 8)) &&
2151 (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
2152 (!memcmp(&iucv_sk(sk)->dst_user_id,
2153 nullstring, 8))) {
2154 iucv = iucv_sk(sk);
2155 break;
2156 }
2157 } else {
2158 if ((!memcmp(&iucv_sk(sk)->src_name,
2159 trans_hdr->destAppName, 8)) &&
2160 (!memcmp(&iucv_sk(sk)->src_user_id,
2161 trans_hdr->destUserID, 8)) &&
2162 (!memcmp(&iucv_sk(sk)->dst_name,
2163 trans_hdr->srcAppName, 8)) &&
2164 (!memcmp(&iucv_sk(sk)->dst_user_id,
2165 trans_hdr->srcUserID, 8))) {
2166 iucv = iucv_sk(sk);
2167 break;
2168 }
2169 }
2170 }
2171 read_unlock(&iucv_sk_list.lock);
2172 if (!iucv)
2173 sk = NULL;
2174
2175 /* no sock
2176 how should we send with no sock
2177 1) send without sock no send rc checking?
2178 2) introduce default sock to handle this cases
2179
2180 SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
2181 data -> send FIN
2182 SYN|ACK, SYN|FIN, FIN -> no action? */
2183
2184 switch (trans_hdr->flags) {
2185 case AF_IUCV_FLAG_SYN:
2186 /* connect request */
2187 err = afiucv_hs_callback_syn(sk, skb);
2188 break;
2189 case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
2190 /* connect request confirmed */
2191 err = afiucv_hs_callback_synack(sk, skb);
2192 break;
2193 case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
2194 /* connect request refused */
2195 err = afiucv_hs_callback_synfin(sk, skb);
2196 break;
2197 case (AF_IUCV_FLAG_FIN):
2198 /* close request */
2199 err = afiucv_hs_callback_fin(sk, skb);
2200 break;
2201 case (AF_IUCV_FLAG_WIN):
2202 err = afiucv_hs_callback_win(sk, skb);
2203 if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
2204 kfree_skb(skb);
2205 break;
2206 }
2207 /* fall through and receive non-zero length data */
2208 case (AF_IUCV_FLAG_SHT):
2209 /* shutdown request */
2210 /* fall through and receive zero length data */
2211 case 0:
2212 /* plain data frame */
2213 IUCV_SKB_CB(skb)->class = trans_hdr->iucv_hdr.class;
2214 err = afiucv_hs_callback_rx(sk, skb);
2215 break;
2216 default:
2217 ;
2218 }
2219
2220 return err;
2221 }
2222
2223 /**
2224 * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
2225 * transport
2226 **/
2227 static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
2228 enum iucv_tx_notify n)
2229 {
2230 struct sock *isk = skb->sk;
2231 struct sock *sk = NULL;
2232 struct iucv_sock *iucv = NULL;
2233 struct sk_buff_head *list;
2234 struct sk_buff *list_skb;
2235 struct sk_buff *nskb;
2236 unsigned long flags;
2237
2238 read_lock_irqsave(&iucv_sk_list.lock, flags);
2239 sk_for_each(sk, &iucv_sk_list.head)
2240 if (sk == isk) {
2241 iucv = iucv_sk(sk);
2242 break;
2243 }
2244 read_unlock_irqrestore(&iucv_sk_list.lock, flags);
2245
2246 if (!iucv || sock_flag(sk, SOCK_ZAPPED))
2247 return;
2248
2249 list = &iucv->send_skb_q;
2250 spin_lock_irqsave(&list->lock, flags);
2251 if (skb_queue_empty(list))
2252 goto out_unlock;
2253 list_skb = list->next;
2254 nskb = list_skb->next;
2255 while (list_skb != (struct sk_buff *)list) {
2256 if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
2257 switch (n) {
2258 case TX_NOTIFY_OK:
2259 __skb_unlink(list_skb, list);
2260 kfree_skb(list_skb);
2261 iucv_sock_wake_msglim(sk);
2262 break;
2263 case TX_NOTIFY_PENDING:
2264 atomic_inc(&iucv->pendings);
2265 break;
2266 case TX_NOTIFY_DELAYED_OK:
2267 __skb_unlink(list_skb, list);
2268 atomic_dec(&iucv->pendings);
2269 if (atomic_read(&iucv->pendings) <= 0)
2270 iucv_sock_wake_msglim(sk);
2271 kfree_skb(list_skb);
2272 break;
2273 case TX_NOTIFY_UNREACHABLE:
2274 case TX_NOTIFY_DELAYED_UNREACHABLE:
2275 case TX_NOTIFY_TPQFULL: /* not yet used */
2276 case TX_NOTIFY_GENERALERROR:
2277 case TX_NOTIFY_DELAYED_GENERALERROR:
2278 __skb_unlink(list_skb, list);
2279 kfree_skb(list_skb);
2280 if (sk->sk_state == IUCV_CONNECTED) {
2281 sk->sk_state = IUCV_DISCONN;
2282 sk->sk_state_change(sk);
2283 }
2284 break;
2285 }
2286 break;
2287 }
2288 list_skb = nskb;
2289 nskb = nskb->next;
2290 }
2291 out_unlock:
2292 spin_unlock_irqrestore(&list->lock, flags);
2293
2294 if (sk->sk_state == IUCV_CLOSING) {
2295 if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
2296 sk->sk_state = IUCV_CLOSED;
2297 sk->sk_state_change(sk);
2298 }
2299 }
2300
2301 }
2302
2303 /*
2304 * afiucv_netdev_event: handle netdev notifier chain events
2305 */
2306 static int afiucv_netdev_event(struct notifier_block *this,
2307 unsigned long event, void *ptr)
2308 {
2309 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2310 struct sock *sk;
2311 struct iucv_sock *iucv;
2312
2313 switch (event) {
2314 case NETDEV_REBOOT:
2315 case NETDEV_GOING_DOWN:
2316 sk_for_each(sk, &iucv_sk_list.head) {
2317 iucv = iucv_sk(sk);
2318 if ((iucv->hs_dev == event_dev) &&
2319 (sk->sk_state == IUCV_CONNECTED)) {
2320 if (event == NETDEV_GOING_DOWN)
2321 iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
2322 sk->sk_state = IUCV_DISCONN;
2323 sk->sk_state_change(sk);
2324 }
2325 }
2326 break;
2327 case NETDEV_DOWN:
2328 case NETDEV_UNREGISTER:
2329 default:
2330 break;
2331 }
2332 return NOTIFY_DONE;
2333 }
2334
2335 static struct notifier_block afiucv_netdev_notifier = {
2336 .notifier_call = afiucv_netdev_event,
2337 };
2338
2339 static const struct proto_ops iucv_sock_ops = {
2340 .family = PF_IUCV,
2341 .owner = THIS_MODULE,
2342 .release = iucv_sock_release,
2343 .bind = iucv_sock_bind,
2344 .connect = iucv_sock_connect,
2345 .listen = iucv_sock_listen,
2346 .accept = iucv_sock_accept,
2347 .getname = iucv_sock_getname,
2348 .sendmsg = iucv_sock_sendmsg,
2349 .recvmsg = iucv_sock_recvmsg,
2350 .poll = iucv_sock_poll,
2351 .ioctl = sock_no_ioctl,
2352 .mmap = sock_no_mmap,
2353 .socketpair = sock_no_socketpair,
2354 .shutdown = iucv_sock_shutdown,
2355 .setsockopt = iucv_sock_setsockopt,
2356 .getsockopt = iucv_sock_getsockopt,
2357 };
2358
2359 static const struct net_proto_family iucv_sock_family_ops = {
2360 .family = AF_IUCV,
2361 .owner = THIS_MODULE,
2362 .create = iucv_sock_create,
2363 };
2364
2365 static struct packet_type iucv_packet_type = {
2366 .type = cpu_to_be16(ETH_P_AF_IUCV),
2367 .func = afiucv_hs_rcv,
2368 };
2369
2370 static int afiucv_iucv_init(void)
2371 {
2372 int err;
2373
2374 err = pr_iucv->iucv_register(&af_iucv_handler, 0);
2375 if (err)
2376 goto out;
2377 /* establish dummy device */
2378 af_iucv_driver.bus = pr_iucv->bus;
2379 err = driver_register(&af_iucv_driver);
2380 if (err)
2381 goto out_iucv;
2382 af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
2383 if (!af_iucv_dev) {
2384 err = -ENOMEM;
2385 goto out_driver;
2386 }
2387 dev_set_name(af_iucv_dev, "af_iucv");
2388 af_iucv_dev->bus = pr_iucv->bus;
2389 af_iucv_dev->parent = pr_iucv->root;
2390 af_iucv_dev->release = (void (*)(struct device *))kfree;
2391 af_iucv_dev->driver = &af_iucv_driver;
2392 err = device_register(af_iucv_dev);
2393 if (err)
2394 goto out_driver;
2395 return 0;
2396
2397 out_driver:
2398 driver_unregister(&af_iucv_driver);
2399 out_iucv:
2400 pr_iucv->iucv_unregister(&af_iucv_handler, 0);
2401 out:
2402 return err;
2403 }
2404
2405 static int __init afiucv_init(void)
2406 {
2407 int err;
2408
2409 if (MACHINE_IS_VM) {
2410 cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
2411 if (unlikely(err)) {
2412 WARN_ON(err);
2413 err = -EPROTONOSUPPORT;
2414 goto out;
2415 }
2416
2417 pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
2418 if (!pr_iucv) {
2419 printk(KERN_WARNING "iucv_if lookup failed\n");
2420 memset(&iucv_userid, 0, sizeof(iucv_userid));
2421 }
2422 } else {
2423 memset(&iucv_userid, 0, sizeof(iucv_userid));
2424 pr_iucv = NULL;
2425 }
2426
2427 err = proto_register(&iucv_proto, 0);
2428 if (err)
2429 goto out;
2430 err = sock_register(&iucv_sock_family_ops);
2431 if (err)
2432 goto out_proto;
2433
2434 if (pr_iucv) {
2435 err = afiucv_iucv_init();
2436 if (err)
2437 goto out_sock;
2438 } else
2439 register_netdevice_notifier(&afiucv_netdev_notifier);
2440 dev_add_pack(&iucv_packet_type);
2441 return 0;
2442
2443 out_sock:
2444 sock_unregister(PF_IUCV);
2445 out_proto:
2446 proto_unregister(&iucv_proto);
2447 out:
2448 if (pr_iucv)
2449 symbol_put(iucv_if);
2450 return err;
2451 }
2452
2453 static void __exit afiucv_exit(void)
2454 {
2455 if (pr_iucv) {
2456 device_unregister(af_iucv_dev);
2457 driver_unregister(&af_iucv_driver);
2458 pr_iucv->iucv_unregister(&af_iucv_handler, 0);
2459 symbol_put(iucv_if);
2460 } else
2461 unregister_netdevice_notifier(&afiucv_netdev_notifier);
2462 dev_remove_pack(&iucv_packet_type);
2463 sock_unregister(PF_IUCV);
2464 proto_unregister(&iucv_proto);
2465 }
2466
2467 module_init(afiucv_init);
2468 module_exit(afiucv_exit);
2469
2470 MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
2471 MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
2472 MODULE_VERSION(VERSION);
2473 MODULE_LICENSE("GPL");
2474 MODULE_ALIAS_NETPROTO(PF_IUCV);
2475
This page took 0.144573 seconds and 6 git commands to generate.