[PATCH] VM: early zone reclaim
[deliverable/linux.git] / net / key / af_key.c
1 /*
2 * net/key/af_key.c An implementation of PF_KEYv2 sockets.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Maxim Giryaev <gem@asplinux.ru>
10 * David S. Miller <davem@redhat.com>
11 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
12 * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
13 * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
14 * Derek Atkins <derek@ihtfp.com>
15 */
16
17 #include <linux/config.h>
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/socket.h>
21 #include <linux/pfkeyv2.h>
22 #include <linux/ipsec.h>
23 #include <linux/skbuff.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/in.h>
26 #include <linux/in6.h>
27 #include <linux/proc_fs.h>
28 #include <linux/init.h>
29 #include <net/xfrm.h>
30
31 #include <net/sock.h>
32
33 #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
34 #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
35
36
37 /* List of all pfkey sockets. */
38 static HLIST_HEAD(pfkey_table);
39 static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
40 static DEFINE_RWLOCK(pfkey_table_lock);
41 static atomic_t pfkey_table_users = ATOMIC_INIT(0);
42
43 static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
44
45 struct pfkey_sock {
46 /* struct sock must be the first member of struct pfkey_sock */
47 struct sock sk;
48 int registered;
49 int promisc;
50 };
51
52 static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
53 {
54 return (struct pfkey_sock *)sk;
55 }
56
57 static void pfkey_sock_destruct(struct sock *sk)
58 {
59 skb_queue_purge(&sk->sk_receive_queue);
60
61 if (!sock_flag(sk, SOCK_DEAD)) {
62 printk("Attempt to release alive pfkey socket: %p\n", sk);
63 return;
64 }
65
66 BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
67 BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
68
69 atomic_dec(&pfkey_socks_nr);
70 }
71
72 static void pfkey_table_grab(void)
73 {
74 write_lock_bh(&pfkey_table_lock);
75
76 if (atomic_read(&pfkey_table_users)) {
77 DECLARE_WAITQUEUE(wait, current);
78
79 add_wait_queue_exclusive(&pfkey_table_wait, &wait);
80 for(;;) {
81 set_current_state(TASK_UNINTERRUPTIBLE);
82 if (atomic_read(&pfkey_table_users) == 0)
83 break;
84 write_unlock_bh(&pfkey_table_lock);
85 schedule();
86 write_lock_bh(&pfkey_table_lock);
87 }
88
89 __set_current_state(TASK_RUNNING);
90 remove_wait_queue(&pfkey_table_wait, &wait);
91 }
92 }
93
94 static __inline__ void pfkey_table_ungrab(void)
95 {
96 write_unlock_bh(&pfkey_table_lock);
97 wake_up(&pfkey_table_wait);
98 }
99
100 static __inline__ void pfkey_lock_table(void)
101 {
102 /* read_lock() synchronizes us to pfkey_table_grab */
103
104 read_lock(&pfkey_table_lock);
105 atomic_inc(&pfkey_table_users);
106 read_unlock(&pfkey_table_lock);
107 }
108
109 static __inline__ void pfkey_unlock_table(void)
110 {
111 if (atomic_dec_and_test(&pfkey_table_users))
112 wake_up(&pfkey_table_wait);
113 }
114
115
116 static struct proto_ops pfkey_ops;
117
118 static void pfkey_insert(struct sock *sk)
119 {
120 pfkey_table_grab();
121 sk_add_node(sk, &pfkey_table);
122 pfkey_table_ungrab();
123 }
124
125 static void pfkey_remove(struct sock *sk)
126 {
127 pfkey_table_grab();
128 sk_del_node_init(sk);
129 pfkey_table_ungrab();
130 }
131
132 static struct proto key_proto = {
133 .name = "KEY",
134 .owner = THIS_MODULE,
135 .obj_size = sizeof(struct pfkey_sock),
136 };
137
138 static int pfkey_create(struct socket *sock, int protocol)
139 {
140 struct sock *sk;
141 int err;
142
143 if (!capable(CAP_NET_ADMIN))
144 return -EPERM;
145 if (sock->type != SOCK_RAW)
146 return -ESOCKTNOSUPPORT;
147 if (protocol != PF_KEY_V2)
148 return -EPROTONOSUPPORT;
149
150 err = -ENOMEM;
151 sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
152 if (sk == NULL)
153 goto out;
154
155 sock->ops = &pfkey_ops;
156 sock_init_data(sock, sk);
157
158 sk->sk_family = PF_KEY;
159 sk->sk_destruct = pfkey_sock_destruct;
160
161 atomic_inc(&pfkey_socks_nr);
162
163 pfkey_insert(sk);
164
165 return 0;
166 out:
167 return err;
168 }
169
170 static int pfkey_release(struct socket *sock)
171 {
172 struct sock *sk = sock->sk;
173
174 if (!sk)
175 return 0;
176
177 pfkey_remove(sk);
178
179 sock_orphan(sk);
180 sock->sk = NULL;
181 skb_queue_purge(&sk->sk_write_queue);
182 sock_put(sk);
183
184 return 0;
185 }
186
187 static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
188 int allocation, struct sock *sk)
189 {
190 int err = -ENOBUFS;
191
192 sock_hold(sk);
193 if (*skb2 == NULL) {
194 if (atomic_read(&skb->users) != 1) {
195 *skb2 = skb_clone(skb, allocation);
196 } else {
197 *skb2 = skb;
198 atomic_inc(&skb->users);
199 }
200 }
201 if (*skb2 != NULL) {
202 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
203 skb_orphan(*skb2);
204 skb_set_owner_r(*skb2, sk);
205 skb_queue_tail(&sk->sk_receive_queue, *skb2);
206 sk->sk_data_ready(sk, (*skb2)->len);
207 *skb2 = NULL;
208 err = 0;
209 }
210 }
211 sock_put(sk);
212 return err;
213 }
214
215 /* Send SKB to all pfkey sockets matching selected criteria. */
216 #define BROADCAST_ALL 0
217 #define BROADCAST_ONE 1
218 #define BROADCAST_REGISTERED 2
219 #define BROADCAST_PROMISC_ONLY 4
220 static int pfkey_broadcast(struct sk_buff *skb, int allocation,
221 int broadcast_flags, struct sock *one_sk)
222 {
223 struct sock *sk;
224 struct hlist_node *node;
225 struct sk_buff *skb2 = NULL;
226 int err = -ESRCH;
227
228 /* XXX Do we need something like netlink_overrun? I think
229 * XXX PF_KEY socket apps will not mind current behavior.
230 */
231 if (!skb)
232 return -ENOMEM;
233
234 pfkey_lock_table();
235 sk_for_each(sk, node, &pfkey_table) {
236 struct pfkey_sock *pfk = pfkey_sk(sk);
237 int err2;
238
239 /* Yes, it means that if you are meant to receive this
240 * pfkey message you receive it twice as promiscuous
241 * socket.
242 */
243 if (pfk->promisc)
244 pfkey_broadcast_one(skb, &skb2, allocation, sk);
245
246 /* the exact target will be processed later */
247 if (sk == one_sk)
248 continue;
249 if (broadcast_flags != BROADCAST_ALL) {
250 if (broadcast_flags & BROADCAST_PROMISC_ONLY)
251 continue;
252 if ((broadcast_flags & BROADCAST_REGISTERED) &&
253 !pfk->registered)
254 continue;
255 if (broadcast_flags & BROADCAST_ONE)
256 continue;
257 }
258
259 err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
260
261 /* Error is cleare after succecful sending to at least one
262 * registered KM */
263 if ((broadcast_flags & BROADCAST_REGISTERED) && err)
264 err = err2;
265 }
266 pfkey_unlock_table();
267
268 if (one_sk != NULL)
269 err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
270
271 if (skb2)
272 kfree_skb(skb2);
273 kfree_skb(skb);
274 return err;
275 }
276
277 static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
278 {
279 *new = *orig;
280 }
281
282 static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
283 {
284 struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
285 struct sadb_msg *hdr;
286
287 if (!skb)
288 return -ENOBUFS;
289
290 /* Woe be to the platform trying to support PFKEY yet
291 * having normal errnos outside the 1-255 range, inclusive.
292 */
293 err = -err;
294 if (err == ERESTARTSYS ||
295 err == ERESTARTNOHAND ||
296 err == ERESTARTNOINTR)
297 err = EINTR;
298 if (err >= 512)
299 err = EINVAL;
300 if (err <= 0 || err >= 256)
301 BUG();
302
303 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
304 pfkey_hdr_dup(hdr, orig);
305 hdr->sadb_msg_errno = (uint8_t) err;
306 hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
307 sizeof(uint64_t));
308
309 pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
310
311 return 0;
312 }
313
314 static u8 sadb_ext_min_len[] = {
315 [SADB_EXT_RESERVED] = (u8) 0,
316 [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
317 [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
318 [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
319 [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
320 [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
321 [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
322 [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
323 [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
324 [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
325 [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
326 [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
327 [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
328 [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
329 [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
330 [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
331 [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
332 [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
333 [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
334 [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
335 [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
336 [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
337 [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
338 [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
339 };
340
341 /* Verify sadb_address_{len,prefixlen} against sa_family. */
342 static int verify_address_len(void *p)
343 {
344 struct sadb_address *sp = p;
345 struct sockaddr *addr = (struct sockaddr *)(sp + 1);
346 struct sockaddr_in *sin;
347 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
348 struct sockaddr_in6 *sin6;
349 #endif
350 int len;
351
352 switch (addr->sa_family) {
353 case AF_INET:
354 len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1);
355 len /= sizeof(uint64_t);
356 if (sp->sadb_address_len != len ||
357 sp->sadb_address_prefixlen > 32)
358 return -EINVAL;
359 break;
360 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
361 case AF_INET6:
362 len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1);
363 len /= sizeof(uint64_t);
364 if (sp->sadb_address_len != len ||
365 sp->sadb_address_prefixlen > 128)
366 return -EINVAL;
367 break;
368 #endif
369 default:
370 /* It is user using kernel to keep track of security
371 * associations for another protocol, such as
372 * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
373 * lengths.
374 *
375 * XXX Actually, association/policy database is not yet
376 * XXX able to cope with arbitrary sockaddr families.
377 * XXX When it can, remove this -EINVAL. -DaveM
378 */
379 return -EINVAL;
380 break;
381 };
382
383 return 0;
384 }
385
386 static int present_and_same_family(struct sadb_address *src,
387 struct sadb_address *dst)
388 {
389 struct sockaddr *s_addr, *d_addr;
390
391 if (!src || !dst)
392 return 0;
393
394 s_addr = (struct sockaddr *)(src + 1);
395 d_addr = (struct sockaddr *)(dst + 1);
396 if (s_addr->sa_family != d_addr->sa_family)
397 return 0;
398 if (s_addr->sa_family != AF_INET
399 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
400 && s_addr->sa_family != AF_INET6
401 #endif
402 )
403 return 0;
404
405 return 1;
406 }
407
408 static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
409 {
410 char *p = (char *) hdr;
411 int len = skb->len;
412
413 len -= sizeof(*hdr);
414 p += sizeof(*hdr);
415 while (len > 0) {
416 struct sadb_ext *ehdr = (struct sadb_ext *) p;
417 uint16_t ext_type;
418 int ext_len;
419
420 ext_len = ehdr->sadb_ext_len;
421 ext_len *= sizeof(uint64_t);
422 ext_type = ehdr->sadb_ext_type;
423 if (ext_len < sizeof(uint64_t) ||
424 ext_len > len ||
425 ext_type == SADB_EXT_RESERVED)
426 return -EINVAL;
427
428 if (ext_type <= SADB_EXT_MAX) {
429 int min = (int) sadb_ext_min_len[ext_type];
430 if (ext_len < min)
431 return -EINVAL;
432 if (ext_hdrs[ext_type-1] != NULL)
433 return -EINVAL;
434 if (ext_type == SADB_EXT_ADDRESS_SRC ||
435 ext_type == SADB_EXT_ADDRESS_DST ||
436 ext_type == SADB_EXT_ADDRESS_PROXY ||
437 ext_type == SADB_X_EXT_NAT_T_OA) {
438 if (verify_address_len(p))
439 return -EINVAL;
440 }
441 ext_hdrs[ext_type-1] = p;
442 }
443 p += ext_len;
444 len -= ext_len;
445 }
446
447 return 0;
448 }
449
450 static uint16_t
451 pfkey_satype2proto(uint8_t satype)
452 {
453 switch (satype) {
454 case SADB_SATYPE_UNSPEC:
455 return IPSEC_PROTO_ANY;
456 case SADB_SATYPE_AH:
457 return IPPROTO_AH;
458 case SADB_SATYPE_ESP:
459 return IPPROTO_ESP;
460 case SADB_X_SATYPE_IPCOMP:
461 return IPPROTO_COMP;
462 break;
463 default:
464 return 0;
465 }
466 /* NOTREACHED */
467 }
468
469 static uint8_t
470 pfkey_proto2satype(uint16_t proto)
471 {
472 switch (proto) {
473 case IPPROTO_AH:
474 return SADB_SATYPE_AH;
475 case IPPROTO_ESP:
476 return SADB_SATYPE_ESP;
477 case IPPROTO_COMP:
478 return SADB_X_SATYPE_IPCOMP;
479 break;
480 default:
481 return 0;
482 }
483 /* NOTREACHED */
484 }
485
486 /* BTW, this scheme means that there is no way with PFKEY2 sockets to
487 * say specifically 'just raw sockets' as we encode them as 255.
488 */
489
490 static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
491 {
492 return (proto == IPSEC_PROTO_ANY ? 0 : proto);
493 }
494
495 static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
496 {
497 return (proto ? proto : IPSEC_PROTO_ANY);
498 }
499
500 static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
501 xfrm_address_t *xaddr)
502 {
503 switch (((struct sockaddr*)(addr + 1))->sa_family) {
504 case AF_INET:
505 xaddr->a4 =
506 ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
507 return AF_INET;
508 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
509 case AF_INET6:
510 memcpy(xaddr->a6,
511 &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
512 sizeof(struct in6_addr));
513 return AF_INET6;
514 #endif
515 default:
516 return 0;
517 }
518 /* NOTREACHED */
519 }
520
521 static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
522 {
523 struct sadb_sa *sa;
524 struct sadb_address *addr;
525 uint16_t proto;
526 unsigned short family;
527 xfrm_address_t *xaddr;
528
529 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
530 if (sa == NULL)
531 return NULL;
532
533 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
534 if (proto == 0)
535 return NULL;
536
537 /* sadb_address_len should be checked by caller */
538 addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
539 if (addr == NULL)
540 return NULL;
541
542 family = ((struct sockaddr *)(addr + 1))->sa_family;
543 switch (family) {
544 case AF_INET:
545 xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
546 break;
547 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
548 case AF_INET6:
549 xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
550 break;
551 #endif
552 default:
553 xaddr = NULL;
554 }
555
556 if (!xaddr)
557 return NULL;
558
559 return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
560 }
561
562 #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
563 static int
564 pfkey_sockaddr_size(sa_family_t family)
565 {
566 switch (family) {
567 case AF_INET:
568 return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
569 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
570 case AF_INET6:
571 return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
572 #endif
573 default:
574 return 0;
575 }
576 /* NOTREACHED */
577 }
578
579 static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
580 {
581 struct sk_buff *skb;
582 struct sadb_msg *hdr;
583 struct sadb_sa *sa;
584 struct sadb_lifetime *lifetime;
585 struct sadb_address *addr;
586 struct sadb_key *key;
587 struct sadb_x_sa2 *sa2;
588 struct sockaddr_in *sin;
589 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
590 struct sockaddr_in6 *sin6;
591 #endif
592 int size;
593 int auth_key_size = 0;
594 int encrypt_key_size = 0;
595 int sockaddr_size;
596 struct xfrm_encap_tmpl *natt = NULL;
597
598 /* address family check */
599 sockaddr_size = pfkey_sockaddr_size(x->props.family);
600 if (!sockaddr_size)
601 return ERR_PTR(-EINVAL);
602
603 /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
604 key(AE), (identity(SD),) (sensitivity)> */
605 size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
606 sizeof(struct sadb_lifetime) +
607 ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
608 ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
609 sizeof(struct sadb_address)*2 +
610 sockaddr_size*2 +
611 sizeof(struct sadb_x_sa2);
612 /* identity & sensitivity */
613
614 if ((x->props.family == AF_INET &&
615 x->sel.saddr.a4 != x->props.saddr.a4)
616 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
617 || (x->props.family == AF_INET6 &&
618 memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
619 #endif
620 )
621 size += sizeof(struct sadb_address) + sockaddr_size;
622
623 if (add_keys) {
624 if (x->aalg && x->aalg->alg_key_len) {
625 auth_key_size =
626 PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
627 size += sizeof(struct sadb_key) + auth_key_size;
628 }
629 if (x->ealg && x->ealg->alg_key_len) {
630 encrypt_key_size =
631 PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
632 size += sizeof(struct sadb_key) + encrypt_key_size;
633 }
634 }
635 if (x->encap)
636 natt = x->encap;
637
638 if (natt && natt->encap_type) {
639 size += sizeof(struct sadb_x_nat_t_type);
640 size += sizeof(struct sadb_x_nat_t_port);
641 size += sizeof(struct sadb_x_nat_t_port);
642 }
643
644 skb = alloc_skb(size + 16, GFP_ATOMIC);
645 if (skb == NULL)
646 return ERR_PTR(-ENOBUFS);
647
648 /* call should fill header later */
649 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
650 memset(hdr, 0, size); /* XXX do we need this ? */
651 hdr->sadb_msg_len = size / sizeof(uint64_t);
652
653 /* sa */
654 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
655 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
656 sa->sadb_sa_exttype = SADB_EXT_SA;
657 sa->sadb_sa_spi = x->id.spi;
658 sa->sadb_sa_replay = x->props.replay_window;
659 switch (x->km.state) {
660 case XFRM_STATE_VALID:
661 sa->sadb_sa_state = x->km.dying ?
662 SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
663 break;
664 case XFRM_STATE_ACQ:
665 sa->sadb_sa_state = SADB_SASTATE_LARVAL;
666 break;
667 default:
668 sa->sadb_sa_state = SADB_SASTATE_DEAD;
669 break;
670 }
671 sa->sadb_sa_auth = 0;
672 if (x->aalg) {
673 struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
674 sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
675 }
676 sa->sadb_sa_encrypt = 0;
677 BUG_ON(x->ealg && x->calg);
678 if (x->ealg) {
679 struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
680 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
681 }
682 /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
683 if (x->calg) {
684 struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
685 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
686 }
687
688 sa->sadb_sa_flags = 0;
689 if (x->props.flags & XFRM_STATE_NOECN)
690 sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
691 if (x->props.flags & XFRM_STATE_DECAP_DSCP)
692 sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
693 if (x->props.flags & XFRM_STATE_NOPMTUDISC)
694 sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
695
696 /* hard time */
697 if (hsc & 2) {
698 lifetime = (struct sadb_lifetime *) skb_put(skb,
699 sizeof(struct sadb_lifetime));
700 lifetime->sadb_lifetime_len =
701 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
702 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
703 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
704 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
705 lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
706 lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
707 }
708 /* soft time */
709 if (hsc & 1) {
710 lifetime = (struct sadb_lifetime *) skb_put(skb,
711 sizeof(struct sadb_lifetime));
712 lifetime->sadb_lifetime_len =
713 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
714 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
715 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
716 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
717 lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
718 lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
719 }
720 /* current time */
721 lifetime = (struct sadb_lifetime *) skb_put(skb,
722 sizeof(struct sadb_lifetime));
723 lifetime->sadb_lifetime_len =
724 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
725 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
726 lifetime->sadb_lifetime_allocations = x->curlft.packets;
727 lifetime->sadb_lifetime_bytes = x->curlft.bytes;
728 lifetime->sadb_lifetime_addtime = x->curlft.add_time;
729 lifetime->sadb_lifetime_usetime = x->curlft.use_time;
730 /* src address */
731 addr = (struct sadb_address*) skb_put(skb,
732 sizeof(struct sadb_address)+sockaddr_size);
733 addr->sadb_address_len =
734 (sizeof(struct sadb_address)+sockaddr_size)/
735 sizeof(uint64_t);
736 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
737 /* "if the ports are non-zero, then the sadb_address_proto field,
738 normally zero, MUST be filled in with the transport
739 protocol's number." - RFC2367 */
740 addr->sadb_address_proto = 0;
741 addr->sadb_address_reserved = 0;
742 if (x->props.family == AF_INET) {
743 addr->sadb_address_prefixlen = 32;
744
745 sin = (struct sockaddr_in *) (addr + 1);
746 sin->sin_family = AF_INET;
747 sin->sin_addr.s_addr = x->props.saddr.a4;
748 sin->sin_port = 0;
749 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
750 }
751 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
752 else if (x->props.family == AF_INET6) {
753 addr->sadb_address_prefixlen = 128;
754
755 sin6 = (struct sockaddr_in6 *) (addr + 1);
756 sin6->sin6_family = AF_INET6;
757 sin6->sin6_port = 0;
758 sin6->sin6_flowinfo = 0;
759 memcpy(&sin6->sin6_addr, x->props.saddr.a6,
760 sizeof(struct in6_addr));
761 sin6->sin6_scope_id = 0;
762 }
763 #endif
764 else
765 BUG();
766
767 /* dst address */
768 addr = (struct sadb_address*) skb_put(skb,
769 sizeof(struct sadb_address)+sockaddr_size);
770 addr->sadb_address_len =
771 (sizeof(struct sadb_address)+sockaddr_size)/
772 sizeof(uint64_t);
773 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
774 addr->sadb_address_proto = 0;
775 addr->sadb_address_prefixlen = 32; /* XXX */
776 addr->sadb_address_reserved = 0;
777 if (x->props.family == AF_INET) {
778 sin = (struct sockaddr_in *) (addr + 1);
779 sin->sin_family = AF_INET;
780 sin->sin_addr.s_addr = x->id.daddr.a4;
781 sin->sin_port = 0;
782 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
783
784 if (x->sel.saddr.a4 != x->props.saddr.a4) {
785 addr = (struct sadb_address*) skb_put(skb,
786 sizeof(struct sadb_address)+sockaddr_size);
787 addr->sadb_address_len =
788 (sizeof(struct sadb_address)+sockaddr_size)/
789 sizeof(uint64_t);
790 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
791 addr->sadb_address_proto =
792 pfkey_proto_from_xfrm(x->sel.proto);
793 addr->sadb_address_prefixlen = x->sel.prefixlen_s;
794 addr->sadb_address_reserved = 0;
795
796 sin = (struct sockaddr_in *) (addr + 1);
797 sin->sin_family = AF_INET;
798 sin->sin_addr.s_addr = x->sel.saddr.a4;
799 sin->sin_port = x->sel.sport;
800 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
801 }
802 }
803 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
804 else if (x->props.family == AF_INET6) {
805 addr->sadb_address_prefixlen = 128;
806
807 sin6 = (struct sockaddr_in6 *) (addr + 1);
808 sin6->sin6_family = AF_INET6;
809 sin6->sin6_port = 0;
810 sin6->sin6_flowinfo = 0;
811 memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
812 sin6->sin6_scope_id = 0;
813
814 if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
815 sizeof(struct in6_addr))) {
816 addr = (struct sadb_address *) skb_put(skb,
817 sizeof(struct sadb_address)+sockaddr_size);
818 addr->sadb_address_len =
819 (sizeof(struct sadb_address)+sockaddr_size)/
820 sizeof(uint64_t);
821 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
822 addr->sadb_address_proto =
823 pfkey_proto_from_xfrm(x->sel.proto);
824 addr->sadb_address_prefixlen = x->sel.prefixlen_s;
825 addr->sadb_address_reserved = 0;
826
827 sin6 = (struct sockaddr_in6 *) (addr + 1);
828 sin6->sin6_family = AF_INET6;
829 sin6->sin6_port = x->sel.sport;
830 sin6->sin6_flowinfo = 0;
831 memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
832 sizeof(struct in6_addr));
833 sin6->sin6_scope_id = 0;
834 }
835 }
836 #endif
837 else
838 BUG();
839
840 /* auth key */
841 if (add_keys && auth_key_size) {
842 key = (struct sadb_key *) skb_put(skb,
843 sizeof(struct sadb_key)+auth_key_size);
844 key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
845 sizeof(uint64_t);
846 key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
847 key->sadb_key_bits = x->aalg->alg_key_len;
848 key->sadb_key_reserved = 0;
849 memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
850 }
851 /* encrypt key */
852 if (add_keys && encrypt_key_size) {
853 key = (struct sadb_key *) skb_put(skb,
854 sizeof(struct sadb_key)+encrypt_key_size);
855 key->sadb_key_len = (sizeof(struct sadb_key) +
856 encrypt_key_size) / sizeof(uint64_t);
857 key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
858 key->sadb_key_bits = x->ealg->alg_key_len;
859 key->sadb_key_reserved = 0;
860 memcpy(key + 1, x->ealg->alg_key,
861 (x->ealg->alg_key_len+7)/8);
862 }
863
864 /* sa */
865 sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
866 sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
867 sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
868 sa2->sadb_x_sa2_mode = x->props.mode + 1;
869 sa2->sadb_x_sa2_reserved1 = 0;
870 sa2->sadb_x_sa2_reserved2 = 0;
871 sa2->sadb_x_sa2_sequence = 0;
872 sa2->sadb_x_sa2_reqid = x->props.reqid;
873
874 if (natt && natt->encap_type) {
875 struct sadb_x_nat_t_type *n_type;
876 struct sadb_x_nat_t_port *n_port;
877
878 /* type */
879 n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
880 n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
881 n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
882 n_type->sadb_x_nat_t_type_type = natt->encap_type;
883 n_type->sadb_x_nat_t_type_reserved[0] = 0;
884 n_type->sadb_x_nat_t_type_reserved[1] = 0;
885 n_type->sadb_x_nat_t_type_reserved[2] = 0;
886
887 /* source port */
888 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
889 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
890 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
891 n_port->sadb_x_nat_t_port_port = natt->encap_sport;
892 n_port->sadb_x_nat_t_port_reserved = 0;
893
894 /* dest port */
895 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
896 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
897 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
898 n_port->sadb_x_nat_t_port_port = natt->encap_dport;
899 n_port->sadb_x_nat_t_port_reserved = 0;
900 }
901
902 return skb;
903 }
904
905 static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
906 void **ext_hdrs)
907 {
908 struct xfrm_state *x;
909 struct sadb_lifetime *lifetime;
910 struct sadb_sa *sa;
911 struct sadb_key *key;
912 uint16_t proto;
913 int err;
914
915
916 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
917 if (!sa ||
918 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
919 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
920 return ERR_PTR(-EINVAL);
921 if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
922 !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
923 return ERR_PTR(-EINVAL);
924 if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
925 !ext_hdrs[SADB_EXT_KEY_AUTH-1])
926 return ERR_PTR(-EINVAL);
927 if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
928 !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
929 return ERR_PTR(-EINVAL);
930
931 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
932 if (proto == 0)
933 return ERR_PTR(-EINVAL);
934
935 /* default error is no buffer space */
936 err = -ENOBUFS;
937
938 /* RFC2367:
939
940 Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
941 SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
942 sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
943 Therefore, the sadb_sa_state field of all submitted SAs MUST be
944 SADB_SASTATE_MATURE and the kernel MUST return an error if this is
945 not true.
946
947 However, KAME setkey always uses SADB_SASTATE_LARVAL.
948 Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
949 */
950 if (sa->sadb_sa_auth > SADB_AALG_MAX ||
951 (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
952 sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
953 sa->sadb_sa_encrypt > SADB_EALG_MAX)
954 return ERR_PTR(-EINVAL);
955 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
956 if (key != NULL &&
957 sa->sadb_sa_auth != SADB_X_AALG_NULL &&
958 ((key->sadb_key_bits+7) / 8 == 0 ||
959 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
960 return ERR_PTR(-EINVAL);
961 key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
962 if (key != NULL &&
963 sa->sadb_sa_encrypt != SADB_EALG_NULL &&
964 ((key->sadb_key_bits+7) / 8 == 0 ||
965 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
966 return ERR_PTR(-EINVAL);
967
968 x = xfrm_state_alloc();
969 if (x == NULL)
970 return ERR_PTR(-ENOBUFS);
971
972 x->id.proto = proto;
973 x->id.spi = sa->sadb_sa_spi;
974 x->props.replay_window = sa->sadb_sa_replay;
975 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
976 x->props.flags |= XFRM_STATE_NOECN;
977 if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
978 x->props.flags |= XFRM_STATE_DECAP_DSCP;
979 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
980 x->props.flags |= XFRM_STATE_NOPMTUDISC;
981
982 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
983 if (lifetime != NULL) {
984 x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
985 x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
986 x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
987 x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
988 }
989 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
990 if (lifetime != NULL) {
991 x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
992 x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
993 x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
994 x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
995 }
996 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
997 if (sa->sadb_sa_auth) {
998 int keysize = 0;
999 struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
1000 if (!a) {
1001 err = -ENOSYS;
1002 goto out;
1003 }
1004 if (key)
1005 keysize = (key->sadb_key_bits + 7) / 8;
1006 x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
1007 if (!x->aalg)
1008 goto out;
1009 strcpy(x->aalg->alg_name, a->name);
1010 x->aalg->alg_key_len = 0;
1011 if (key) {
1012 x->aalg->alg_key_len = key->sadb_key_bits;
1013 memcpy(x->aalg->alg_key, key+1, keysize);
1014 }
1015 x->props.aalgo = sa->sadb_sa_auth;
1016 /* x->algo.flags = sa->sadb_sa_flags; */
1017 }
1018 if (sa->sadb_sa_encrypt) {
1019 if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
1020 struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
1021 if (!a) {
1022 err = -ENOSYS;
1023 goto out;
1024 }
1025 x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
1026 if (!x->calg)
1027 goto out;
1028 strcpy(x->calg->alg_name, a->name);
1029 x->props.calgo = sa->sadb_sa_encrypt;
1030 } else {
1031 int keysize = 0;
1032 struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
1033 if (!a) {
1034 err = -ENOSYS;
1035 goto out;
1036 }
1037 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
1038 if (key)
1039 keysize = (key->sadb_key_bits + 7) / 8;
1040 x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
1041 if (!x->ealg)
1042 goto out;
1043 strcpy(x->ealg->alg_name, a->name);
1044 x->ealg->alg_key_len = 0;
1045 if (key) {
1046 x->ealg->alg_key_len = key->sadb_key_bits;
1047 memcpy(x->ealg->alg_key, key+1, keysize);
1048 }
1049 x->props.ealgo = sa->sadb_sa_encrypt;
1050 }
1051 }
1052 /* x->algo.flags = sa->sadb_sa_flags; */
1053
1054 x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1055 &x->props.saddr);
1056 if (!x->props.family) {
1057 err = -EAFNOSUPPORT;
1058 goto out;
1059 }
1060 pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
1061 &x->id.daddr);
1062
1063 if (ext_hdrs[SADB_X_EXT_SA2-1]) {
1064 struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
1065 x->props.mode = sa2->sadb_x_sa2_mode;
1066 if (x->props.mode)
1067 x->props.mode--;
1068 x->props.reqid = sa2->sadb_x_sa2_reqid;
1069 }
1070
1071 if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
1072 struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
1073
1074 /* Nobody uses this, but we try. */
1075 x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
1076 x->sel.prefixlen_s = addr->sadb_address_prefixlen;
1077 }
1078
1079 if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
1080 struct sadb_x_nat_t_type* n_type;
1081 struct xfrm_encap_tmpl *natt;
1082
1083 x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
1084 if (!x->encap)
1085 goto out;
1086
1087 natt = x->encap;
1088 n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
1089 natt->encap_type = n_type->sadb_x_nat_t_type_type;
1090
1091 if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
1092 struct sadb_x_nat_t_port* n_port =
1093 ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
1094 natt->encap_sport = n_port->sadb_x_nat_t_port_port;
1095 }
1096 if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
1097 struct sadb_x_nat_t_port* n_port =
1098 ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
1099 natt->encap_dport = n_port->sadb_x_nat_t_port_port;
1100 }
1101 }
1102
1103 err = xfrm_init_state(x);
1104 if (err)
1105 goto out;
1106
1107 x->km.seq = hdr->sadb_msg_seq;
1108 return x;
1109
1110 out:
1111 x->km.state = XFRM_STATE_DEAD;
1112 xfrm_state_put(x);
1113 return ERR_PTR(err);
1114 }
1115
1116 static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1117 {
1118 return -EOPNOTSUPP;
1119 }
1120
1121 static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1122 {
1123 struct sk_buff *resp_skb;
1124 struct sadb_x_sa2 *sa2;
1125 struct sadb_address *saddr, *daddr;
1126 struct sadb_msg *out_hdr;
1127 struct xfrm_state *x = NULL;
1128 u8 mode;
1129 u32 reqid;
1130 u8 proto;
1131 unsigned short family;
1132 xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
1133
1134 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1135 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1136 return -EINVAL;
1137
1138 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1139 if (proto == 0)
1140 return -EINVAL;
1141
1142 if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
1143 mode = sa2->sadb_x_sa2_mode - 1;
1144 reqid = sa2->sadb_x_sa2_reqid;
1145 } else {
1146 mode = 0;
1147 reqid = 0;
1148 }
1149
1150 saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
1151 daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
1152
1153 family = ((struct sockaddr *)(saddr + 1))->sa_family;
1154 switch (family) {
1155 case AF_INET:
1156 xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
1157 xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
1158 break;
1159 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1160 case AF_INET6:
1161 xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
1162 xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
1163 break;
1164 #endif
1165 }
1166
1167 if (hdr->sadb_msg_seq) {
1168 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
1169 if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
1170 xfrm_state_put(x);
1171 x = NULL;
1172 }
1173 }
1174
1175 if (!x)
1176 x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
1177
1178 if (x == NULL)
1179 return -ENOENT;
1180
1181 resp_skb = ERR_PTR(-ENOENT);
1182
1183 spin_lock_bh(&x->lock);
1184 if (x->km.state != XFRM_STATE_DEAD) {
1185 struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
1186 u32 min_spi, max_spi;
1187
1188 if (range != NULL) {
1189 min_spi = range->sadb_spirange_min;
1190 max_spi = range->sadb_spirange_max;
1191 } else {
1192 min_spi = 0x100;
1193 max_spi = 0x0fffffff;
1194 }
1195 xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
1196 if (x->id.spi)
1197 resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
1198 }
1199 spin_unlock_bh(&x->lock);
1200
1201 if (IS_ERR(resp_skb)) {
1202 xfrm_state_put(x);
1203 return PTR_ERR(resp_skb);
1204 }
1205
1206 out_hdr = (struct sadb_msg *) resp_skb->data;
1207 out_hdr->sadb_msg_version = hdr->sadb_msg_version;
1208 out_hdr->sadb_msg_type = SADB_GETSPI;
1209 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
1210 out_hdr->sadb_msg_errno = 0;
1211 out_hdr->sadb_msg_reserved = 0;
1212 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
1213 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
1214
1215 xfrm_state_put(x);
1216
1217 pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
1218
1219 return 0;
1220 }
1221
1222 static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1223 {
1224 struct xfrm_state *x;
1225
1226 if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
1227 return -EOPNOTSUPP;
1228
1229 if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
1230 return 0;
1231
1232 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
1233 if (x == NULL)
1234 return 0;
1235
1236 spin_lock_bh(&x->lock);
1237 if (x->km.state == XFRM_STATE_ACQ) {
1238 x->km.state = XFRM_STATE_ERROR;
1239 wake_up(&km_waitq);
1240 }
1241 spin_unlock_bh(&x->lock);
1242 xfrm_state_put(x);
1243 return 0;
1244 }
1245
1246 static inline int event2poltype(int event)
1247 {
1248 switch (event) {
1249 case XFRM_MSG_DELPOLICY:
1250 return SADB_X_SPDDELETE;
1251 case XFRM_MSG_NEWPOLICY:
1252 return SADB_X_SPDADD;
1253 case XFRM_MSG_UPDPOLICY:
1254 return SADB_X_SPDUPDATE;
1255 case XFRM_MSG_POLEXPIRE:
1256 // return SADB_X_SPDEXPIRE;
1257 default:
1258 printk("pfkey: Unknown policy event %d\n", event);
1259 break;
1260 }
1261
1262 return 0;
1263 }
1264
1265 static inline int event2keytype(int event)
1266 {
1267 switch (event) {
1268 case XFRM_MSG_DELSA:
1269 return SADB_DELETE;
1270 case XFRM_MSG_NEWSA:
1271 return SADB_ADD;
1272 case XFRM_MSG_UPDSA:
1273 return SADB_UPDATE;
1274 case XFRM_MSG_EXPIRE:
1275 return SADB_EXPIRE;
1276 default:
1277 printk("pfkey: Unknown SA event %d\n", event);
1278 break;
1279 }
1280
1281 return 0;
1282 }
1283
1284 /* ADD/UPD/DEL */
1285 static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
1286 {
1287 struct sk_buff *skb;
1288 struct sadb_msg *hdr;
1289 int hsc = 3;
1290
1291 if (c->event == XFRM_MSG_DELSA)
1292 hsc = 0;
1293
1294 skb = pfkey_xfrm_state2msg(x, 0, hsc);
1295
1296 if (IS_ERR(skb))
1297 return PTR_ERR(skb);
1298
1299 hdr = (struct sadb_msg *) skb->data;
1300 hdr->sadb_msg_version = PF_KEY_V2;
1301 hdr->sadb_msg_type = event2keytype(c->event);
1302 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
1303 hdr->sadb_msg_errno = 0;
1304 hdr->sadb_msg_reserved = 0;
1305 hdr->sadb_msg_seq = c->seq;
1306 hdr->sadb_msg_pid = c->pid;
1307
1308 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
1309
1310 return 0;
1311 }
1312
1313 static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1314 {
1315 struct xfrm_state *x;
1316 int err;
1317 struct km_event c;
1318
1319 xfrm_probe_algs();
1320
1321 x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
1322 if (IS_ERR(x))
1323 return PTR_ERR(x);
1324
1325 xfrm_state_hold(x);
1326 if (hdr->sadb_msg_type == SADB_ADD)
1327 err = xfrm_state_add(x);
1328 else
1329 err = xfrm_state_update(x);
1330
1331 if (err < 0) {
1332 x->km.state = XFRM_STATE_DEAD;
1333 xfrm_state_put(x);
1334 goto out;
1335 }
1336
1337 if (hdr->sadb_msg_type == SADB_ADD)
1338 c.event = XFRM_MSG_NEWSA;
1339 else
1340 c.event = XFRM_MSG_UPDSA;
1341 c.seq = hdr->sadb_msg_seq;
1342 c.pid = hdr->sadb_msg_pid;
1343 km_state_notify(x, &c);
1344 out:
1345 xfrm_state_put(x);
1346 return err;
1347 }
1348
1349 static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1350 {
1351 struct xfrm_state *x;
1352 struct km_event c;
1353 int err;
1354
1355 if (!ext_hdrs[SADB_EXT_SA-1] ||
1356 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1357 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1358 return -EINVAL;
1359
1360 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
1361 if (x == NULL)
1362 return -ESRCH;
1363
1364 if (xfrm_state_kern(x)) {
1365 xfrm_state_put(x);
1366 return -EPERM;
1367 }
1368
1369 err = xfrm_state_delete(x);
1370 if (err < 0) {
1371 xfrm_state_put(x);
1372 return err;
1373 }
1374
1375 c.seq = hdr->sadb_msg_seq;
1376 c.pid = hdr->sadb_msg_pid;
1377 c.event = XFRM_MSG_DELSA;
1378 km_state_notify(x, &c);
1379 xfrm_state_put(x);
1380
1381 return err;
1382 }
1383
1384 static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1385 {
1386 __u8 proto;
1387 struct sk_buff *out_skb;
1388 struct sadb_msg *out_hdr;
1389 struct xfrm_state *x;
1390
1391 if (!ext_hdrs[SADB_EXT_SA-1] ||
1392 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1393 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1394 return -EINVAL;
1395
1396 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
1397 if (x == NULL)
1398 return -ESRCH;
1399
1400 out_skb = pfkey_xfrm_state2msg(x, 1, 3);
1401 proto = x->id.proto;
1402 xfrm_state_put(x);
1403 if (IS_ERR(out_skb))
1404 return PTR_ERR(out_skb);
1405
1406 out_hdr = (struct sadb_msg *) out_skb->data;
1407 out_hdr->sadb_msg_version = hdr->sadb_msg_version;
1408 out_hdr->sadb_msg_type = SADB_DUMP;
1409 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
1410 out_hdr->sadb_msg_errno = 0;
1411 out_hdr->sadb_msg_reserved = 0;
1412 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
1413 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
1414 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
1415
1416 return 0;
1417 }
1418
1419 static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig, int allocation)
1420 {
1421 struct sk_buff *skb;
1422 struct sadb_msg *hdr;
1423 int len, auth_len, enc_len, i;
1424
1425 auth_len = xfrm_count_auth_supported();
1426 if (auth_len) {
1427 auth_len *= sizeof(struct sadb_alg);
1428 auth_len += sizeof(struct sadb_supported);
1429 }
1430
1431 enc_len = xfrm_count_enc_supported();
1432 if (enc_len) {
1433 enc_len *= sizeof(struct sadb_alg);
1434 enc_len += sizeof(struct sadb_supported);
1435 }
1436
1437 len = enc_len + auth_len + sizeof(struct sadb_msg);
1438
1439 skb = alloc_skb(len + 16, allocation);
1440 if (!skb)
1441 goto out_put_algs;
1442
1443 hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
1444 pfkey_hdr_dup(hdr, orig);
1445 hdr->sadb_msg_errno = 0;
1446 hdr->sadb_msg_len = len / sizeof(uint64_t);
1447
1448 if (auth_len) {
1449 struct sadb_supported *sp;
1450 struct sadb_alg *ap;
1451
1452 sp = (struct sadb_supported *) skb_put(skb, auth_len);
1453 ap = (struct sadb_alg *) (sp + 1);
1454
1455 sp->sadb_supported_len = auth_len / sizeof(uint64_t);
1456 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
1457
1458 for (i = 0; ; i++) {
1459 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
1460 if (!aalg)
1461 break;
1462 if (aalg->available)
1463 *ap++ = aalg->desc;
1464 }
1465 }
1466
1467 if (enc_len) {
1468 struct sadb_supported *sp;
1469 struct sadb_alg *ap;
1470
1471 sp = (struct sadb_supported *) skb_put(skb, enc_len);
1472 ap = (struct sadb_alg *) (sp + 1);
1473
1474 sp->sadb_supported_len = enc_len / sizeof(uint64_t);
1475 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
1476
1477 for (i = 0; ; i++) {
1478 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
1479 if (!ealg)
1480 break;
1481 if (ealg->available)
1482 *ap++ = ealg->desc;
1483 }
1484 }
1485
1486 out_put_algs:
1487 return skb;
1488 }
1489
1490 static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1491 {
1492 struct pfkey_sock *pfk = pfkey_sk(sk);
1493 struct sk_buff *supp_skb;
1494
1495 if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
1496 return -EINVAL;
1497
1498 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
1499 if (pfk->registered&(1<<hdr->sadb_msg_satype))
1500 return -EEXIST;
1501 pfk->registered |= (1<<hdr->sadb_msg_satype);
1502 }
1503
1504 xfrm_probe_algs();
1505
1506 supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
1507 if (!supp_skb) {
1508 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
1509 pfk->registered &= ~(1<<hdr->sadb_msg_satype);
1510
1511 return -ENOBUFS;
1512 }
1513
1514 pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
1515
1516 return 0;
1517 }
1518
1519 static int key_notify_sa_flush(struct km_event *c)
1520 {
1521 struct sk_buff *skb;
1522 struct sadb_msg *hdr;
1523
1524 skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
1525 if (!skb)
1526 return -ENOBUFS;
1527 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
1528 hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
1529 hdr->sadb_msg_seq = c->seq;
1530 hdr->sadb_msg_pid = c->pid;
1531 hdr->sadb_msg_version = PF_KEY_V2;
1532 hdr->sadb_msg_errno = (uint8_t) 0;
1533 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
1534
1535 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
1536
1537 return 0;
1538 }
1539
1540 static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1541 {
1542 unsigned proto;
1543 struct km_event c;
1544
1545 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1546 if (proto == 0)
1547 return -EINVAL;
1548
1549 xfrm_state_flush(proto);
1550 c.data.proto = proto;
1551 c.seq = hdr->sadb_msg_seq;
1552 c.pid = hdr->sadb_msg_pid;
1553 c.event = XFRM_MSG_FLUSHSA;
1554 km_state_notify(NULL, &c);
1555
1556 return 0;
1557 }
1558
1559 struct pfkey_dump_data
1560 {
1561 struct sk_buff *skb;
1562 struct sadb_msg *hdr;
1563 struct sock *sk;
1564 };
1565
1566 static int dump_sa(struct xfrm_state *x, int count, void *ptr)
1567 {
1568 struct pfkey_dump_data *data = ptr;
1569 struct sk_buff *out_skb;
1570 struct sadb_msg *out_hdr;
1571
1572 out_skb = pfkey_xfrm_state2msg(x, 1, 3);
1573 if (IS_ERR(out_skb))
1574 return PTR_ERR(out_skb);
1575
1576 out_hdr = (struct sadb_msg *) out_skb->data;
1577 out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
1578 out_hdr->sadb_msg_type = SADB_DUMP;
1579 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
1580 out_hdr->sadb_msg_errno = 0;
1581 out_hdr->sadb_msg_reserved = 0;
1582 out_hdr->sadb_msg_seq = count;
1583 out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
1584 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
1585 return 0;
1586 }
1587
1588 static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1589 {
1590 u8 proto;
1591 struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
1592
1593 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1594 if (proto == 0)
1595 return -EINVAL;
1596
1597 return xfrm_state_walk(proto, dump_sa, &data);
1598 }
1599
1600 static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1601 {
1602 struct pfkey_sock *pfk = pfkey_sk(sk);
1603 int satype = hdr->sadb_msg_satype;
1604
1605 if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
1606 /* XXX we mangle packet... */
1607 hdr->sadb_msg_errno = 0;
1608 if (satype != 0 && satype != 1)
1609 return -EINVAL;
1610 pfk->promisc = satype;
1611 }
1612 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
1613 return 0;
1614 }
1615
1616 static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
1617 {
1618 int i;
1619 u32 reqid = *(u32*)ptr;
1620
1621 for (i=0; i<xp->xfrm_nr; i++) {
1622 if (xp->xfrm_vec[i].reqid == reqid)
1623 return -EEXIST;
1624 }
1625 return 0;
1626 }
1627
1628 static u32 gen_reqid(void)
1629 {
1630 u32 start;
1631 static u32 reqid = IPSEC_MANUAL_REQID_MAX;
1632
1633 start = reqid;
1634 do {
1635 ++reqid;
1636 if (reqid == 0)
1637 reqid = IPSEC_MANUAL_REQID_MAX+1;
1638 if (xfrm_policy_walk(check_reqid, (void*)&reqid) != -EEXIST)
1639 return reqid;
1640 } while (reqid != start);
1641 return 0;
1642 }
1643
1644 static int
1645 parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
1646 {
1647 struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
1648 struct sockaddr_in *sin;
1649 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1650 struct sockaddr_in6 *sin6;
1651 #endif
1652
1653 if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
1654 return -ELOOP;
1655
1656 if (rq->sadb_x_ipsecrequest_mode == 0)
1657 return -EINVAL;
1658
1659 t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
1660 t->mode = rq->sadb_x_ipsecrequest_mode-1;
1661 if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
1662 t->optional = 1;
1663 else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
1664 t->reqid = rq->sadb_x_ipsecrequest_reqid;
1665 if (t->reqid > IPSEC_MANUAL_REQID_MAX)
1666 t->reqid = 0;
1667 if (!t->reqid && !(t->reqid = gen_reqid()))
1668 return -ENOBUFS;
1669 }
1670
1671 /* addresses present only in tunnel mode */
1672 if (t->mode) {
1673 switch (xp->family) {
1674 case AF_INET:
1675 sin = (void*)(rq+1);
1676 if (sin->sin_family != AF_INET)
1677 return -EINVAL;
1678 t->saddr.a4 = sin->sin_addr.s_addr;
1679 sin++;
1680 if (sin->sin_family != AF_INET)
1681 return -EINVAL;
1682 t->id.daddr.a4 = sin->sin_addr.s_addr;
1683 break;
1684 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1685 case AF_INET6:
1686 sin6 = (void *)(rq+1);
1687 if (sin6->sin6_family != AF_INET6)
1688 return -EINVAL;
1689 memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
1690 sin6++;
1691 if (sin6->sin6_family != AF_INET6)
1692 return -EINVAL;
1693 memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
1694 break;
1695 #endif
1696 default:
1697 return -EINVAL;
1698 }
1699 }
1700 /* No way to set this via kame pfkey */
1701 t->aalgos = t->ealgos = t->calgos = ~0;
1702 xp->xfrm_nr++;
1703 return 0;
1704 }
1705
1706 static int
1707 parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
1708 {
1709 int err;
1710 int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
1711 struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
1712
1713 while (len >= sizeof(struct sadb_x_ipsecrequest)) {
1714 if ((err = parse_ipsecrequest(xp, rq)) < 0)
1715 return err;
1716 len -= rq->sadb_x_ipsecrequest_len;
1717 rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
1718 }
1719 return 0;
1720 }
1721
1722 static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
1723 {
1724 int sockaddr_size = pfkey_sockaddr_size(xp->family);
1725 int socklen = (xp->family == AF_INET ?
1726 sizeof(struct sockaddr_in) :
1727 sizeof(struct sockaddr_in6));
1728
1729 return sizeof(struct sadb_msg) +
1730 (sizeof(struct sadb_lifetime) * 3) +
1731 (sizeof(struct sadb_address) * 2) +
1732 (sockaddr_size * 2) +
1733 sizeof(struct sadb_x_policy) +
1734 (xp->xfrm_nr * (sizeof(struct sadb_x_ipsecrequest) +
1735 (socklen * 2)));
1736 }
1737
1738 static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
1739 {
1740 struct sk_buff *skb;
1741 int size;
1742
1743 size = pfkey_xfrm_policy2msg_size(xp);
1744
1745 skb = alloc_skb(size + 16, GFP_ATOMIC);
1746 if (skb == NULL)
1747 return ERR_PTR(-ENOBUFS);
1748
1749 return skb;
1750 }
1751
1752 static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
1753 {
1754 struct sadb_msg *hdr;
1755 struct sadb_address *addr;
1756 struct sadb_lifetime *lifetime;
1757 struct sadb_x_policy *pol;
1758 struct sockaddr_in *sin;
1759 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1760 struct sockaddr_in6 *sin6;
1761 #endif
1762 int i;
1763 int size;
1764 int sockaddr_size = pfkey_sockaddr_size(xp->family);
1765 int socklen = (xp->family == AF_INET ?
1766 sizeof(struct sockaddr_in) :
1767 sizeof(struct sockaddr_in6));
1768
1769 size = pfkey_xfrm_policy2msg_size(xp);
1770
1771 /* call should fill header later */
1772 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
1773 memset(hdr, 0, size); /* XXX do we need this ? */
1774
1775 /* src address */
1776 addr = (struct sadb_address*) skb_put(skb,
1777 sizeof(struct sadb_address)+sockaddr_size);
1778 addr->sadb_address_len =
1779 (sizeof(struct sadb_address)+sockaddr_size)/
1780 sizeof(uint64_t);
1781 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
1782 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
1783 addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
1784 addr->sadb_address_reserved = 0;
1785 /* src address */
1786 if (xp->family == AF_INET) {
1787 sin = (struct sockaddr_in *) (addr + 1);
1788 sin->sin_family = AF_INET;
1789 sin->sin_addr.s_addr = xp->selector.saddr.a4;
1790 sin->sin_port = xp->selector.sport;
1791 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1792 }
1793 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1794 else if (xp->family == AF_INET6) {
1795 sin6 = (struct sockaddr_in6 *) (addr + 1);
1796 sin6->sin6_family = AF_INET6;
1797 sin6->sin6_port = xp->selector.sport;
1798 sin6->sin6_flowinfo = 0;
1799 memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
1800 sizeof(struct in6_addr));
1801 sin6->sin6_scope_id = 0;
1802 }
1803 #endif
1804 else
1805 BUG();
1806
1807 /* dst address */
1808 addr = (struct sadb_address*) skb_put(skb,
1809 sizeof(struct sadb_address)+sockaddr_size);
1810 addr->sadb_address_len =
1811 (sizeof(struct sadb_address)+sockaddr_size)/
1812 sizeof(uint64_t);
1813 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
1814 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
1815 addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
1816 addr->sadb_address_reserved = 0;
1817 if (xp->family == AF_INET) {
1818 sin = (struct sockaddr_in *) (addr + 1);
1819 sin->sin_family = AF_INET;
1820 sin->sin_addr.s_addr = xp->selector.daddr.a4;
1821 sin->sin_port = xp->selector.dport;
1822 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1823 }
1824 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1825 else if (xp->family == AF_INET6) {
1826 sin6 = (struct sockaddr_in6 *) (addr + 1);
1827 sin6->sin6_family = AF_INET6;
1828 sin6->sin6_port = xp->selector.dport;
1829 sin6->sin6_flowinfo = 0;
1830 memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
1831 sizeof(struct in6_addr));
1832 sin6->sin6_scope_id = 0;
1833 }
1834 #endif
1835 else
1836 BUG();
1837
1838 /* hard time */
1839 lifetime = (struct sadb_lifetime *) skb_put(skb,
1840 sizeof(struct sadb_lifetime));
1841 lifetime->sadb_lifetime_len =
1842 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
1843 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
1844 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
1845 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
1846 lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
1847 lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
1848 /* soft time */
1849 lifetime = (struct sadb_lifetime *) skb_put(skb,
1850 sizeof(struct sadb_lifetime));
1851 lifetime->sadb_lifetime_len =
1852 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
1853 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
1854 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
1855 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
1856 lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
1857 lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
1858 /* current time */
1859 lifetime = (struct sadb_lifetime *) skb_put(skb,
1860 sizeof(struct sadb_lifetime));
1861 lifetime->sadb_lifetime_len =
1862 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
1863 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
1864 lifetime->sadb_lifetime_allocations = xp->curlft.packets;
1865 lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
1866 lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
1867 lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
1868
1869 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
1870 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
1871 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1872 pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
1873 if (xp->action == XFRM_POLICY_ALLOW) {
1874 if (xp->xfrm_nr)
1875 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
1876 else
1877 pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
1878 }
1879 pol->sadb_x_policy_dir = dir+1;
1880 pol->sadb_x_policy_id = xp->index;
1881 pol->sadb_x_policy_priority = xp->priority;
1882
1883 for (i=0; i<xp->xfrm_nr; i++) {
1884 struct sadb_x_ipsecrequest *rq;
1885 struct xfrm_tmpl *t = xp->xfrm_vec + i;
1886 int req_size;
1887
1888 req_size = sizeof(struct sadb_x_ipsecrequest);
1889 if (t->mode)
1890 req_size += 2*socklen;
1891 else
1892 size -= 2*socklen;
1893 rq = (void*)skb_put(skb, req_size);
1894 pol->sadb_x_policy_len += req_size/8;
1895 memset(rq, 0, sizeof(*rq));
1896 rq->sadb_x_ipsecrequest_len = req_size;
1897 rq->sadb_x_ipsecrequest_proto = t->id.proto;
1898 rq->sadb_x_ipsecrequest_mode = t->mode+1;
1899 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
1900 if (t->reqid)
1901 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
1902 if (t->optional)
1903 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
1904 rq->sadb_x_ipsecrequest_reqid = t->reqid;
1905 if (t->mode) {
1906 switch (xp->family) {
1907 case AF_INET:
1908 sin = (void*)(rq+1);
1909 sin->sin_family = AF_INET;
1910 sin->sin_addr.s_addr = t->saddr.a4;
1911 sin->sin_port = 0;
1912 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1913 sin++;
1914 sin->sin_family = AF_INET;
1915 sin->sin_addr.s_addr = t->id.daddr.a4;
1916 sin->sin_port = 0;
1917 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1918 break;
1919 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1920 case AF_INET6:
1921 sin6 = (void*)(rq+1);
1922 sin6->sin6_family = AF_INET6;
1923 sin6->sin6_port = 0;
1924 sin6->sin6_flowinfo = 0;
1925 memcpy(&sin6->sin6_addr, t->saddr.a6,
1926 sizeof(struct in6_addr));
1927 sin6->sin6_scope_id = 0;
1928
1929 sin6++;
1930 sin6->sin6_family = AF_INET6;
1931 sin6->sin6_port = 0;
1932 sin6->sin6_flowinfo = 0;
1933 memcpy(&sin6->sin6_addr, t->id.daddr.a6,
1934 sizeof(struct in6_addr));
1935 sin6->sin6_scope_id = 0;
1936 break;
1937 #endif
1938 default:
1939 break;
1940 }
1941 }
1942 }
1943 hdr->sadb_msg_len = size / sizeof(uint64_t);
1944 hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
1945 }
1946
1947 static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
1948 {
1949 struct sk_buff *out_skb;
1950 struct sadb_msg *out_hdr;
1951 int err;
1952
1953 out_skb = pfkey_xfrm_policy2msg_prep(xp);
1954 if (IS_ERR(out_skb)) {
1955 err = PTR_ERR(out_skb);
1956 goto out;
1957 }
1958 pfkey_xfrm_policy2msg(out_skb, xp, dir);
1959
1960 out_hdr = (struct sadb_msg *) out_skb->data;
1961 out_hdr->sadb_msg_version = PF_KEY_V2;
1962
1963 if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
1964 out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
1965 else
1966 out_hdr->sadb_msg_type = event2poltype(c->event);
1967 out_hdr->sadb_msg_errno = 0;
1968 out_hdr->sadb_msg_seq = c->seq;
1969 out_hdr->sadb_msg_pid = c->pid;
1970 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
1971 out:
1972 return 0;
1973
1974 }
1975
1976 static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1977 {
1978 int err;
1979 struct sadb_lifetime *lifetime;
1980 struct sadb_address *sa;
1981 struct sadb_x_policy *pol;
1982 struct xfrm_policy *xp;
1983 struct km_event c;
1984
1985 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1986 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
1987 !ext_hdrs[SADB_X_EXT_POLICY-1])
1988 return -EINVAL;
1989
1990 pol = ext_hdrs[SADB_X_EXT_POLICY-1];
1991 if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
1992 return -EINVAL;
1993 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
1994 return -EINVAL;
1995
1996 xp = xfrm_policy_alloc(GFP_KERNEL);
1997 if (xp == NULL)
1998 return -ENOBUFS;
1999
2000 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
2001 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
2002 xp->priority = pol->sadb_x_policy_priority;
2003
2004 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2005 xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
2006 if (!xp->family) {
2007 err = -EINVAL;
2008 goto out;
2009 }
2010 xp->selector.family = xp->family;
2011 xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
2012 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2013 xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
2014 if (xp->selector.sport)
2015 xp->selector.sport_mask = ~0;
2016
2017 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
2018 pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
2019 xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
2020
2021 /* Amusing, we set this twice. KAME apps appear to set same value
2022 * in both addresses.
2023 */
2024 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2025
2026 xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
2027 if (xp->selector.dport)
2028 xp->selector.dport_mask = ~0;
2029
2030 xp->lft.soft_byte_limit = XFRM_INF;
2031 xp->lft.hard_byte_limit = XFRM_INF;
2032 xp->lft.soft_packet_limit = XFRM_INF;
2033 xp->lft.hard_packet_limit = XFRM_INF;
2034 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
2035 xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
2036 xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
2037 xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
2038 xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
2039 }
2040 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
2041 xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
2042 xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
2043 xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
2044 xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
2045 }
2046 xp->xfrm_nr = 0;
2047 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2048 (err = parse_ipsecrequests(xp, pol)) < 0)
2049 goto out;
2050
2051 err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
2052 hdr->sadb_msg_type != SADB_X_SPDUPDATE);
2053 if (err) {
2054 kfree(xp);
2055 return err;
2056 }
2057
2058 if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
2059 c.event = XFRM_MSG_UPDPOLICY;
2060 else
2061 c.event = XFRM_MSG_NEWPOLICY;
2062
2063 c.seq = hdr->sadb_msg_seq;
2064 c.pid = hdr->sadb_msg_pid;
2065
2066 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
2067 xfrm_pol_put(xp);
2068 return 0;
2069
2070 out:
2071 kfree(xp);
2072 return err;
2073 }
2074
2075 static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2076 {
2077 int err;
2078 struct sadb_address *sa;
2079 struct sadb_x_policy *pol;
2080 struct xfrm_policy *xp;
2081 struct xfrm_selector sel;
2082 struct km_event c;
2083
2084 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2085 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
2086 !ext_hdrs[SADB_X_EXT_POLICY-1])
2087 return -EINVAL;
2088
2089 pol = ext_hdrs[SADB_X_EXT_POLICY-1];
2090 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
2091 return -EINVAL;
2092
2093 memset(&sel, 0, sizeof(sel));
2094
2095 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2096 sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
2097 sel.prefixlen_s = sa->sadb_address_prefixlen;
2098 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2099 sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
2100 if (sel.sport)
2101 sel.sport_mask = ~0;
2102
2103 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
2104 pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
2105 sel.prefixlen_d = sa->sadb_address_prefixlen;
2106 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2107 sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
2108 if (sel.dport)
2109 sel.dport_mask = ~0;
2110
2111 xp = xfrm_policy_bysel(pol->sadb_x_policy_dir-1, &sel, 1);
2112 if (xp == NULL)
2113 return -ENOENT;
2114
2115 err = 0;
2116
2117 c.seq = hdr->sadb_msg_seq;
2118 c.pid = hdr->sadb_msg_pid;
2119 c.event = XFRM_MSG_DELPOLICY;
2120 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
2121
2122 xfrm_pol_put(xp);
2123 return err;
2124 }
2125
2126 static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
2127 {
2128 int err;
2129 struct sk_buff *out_skb;
2130 struct sadb_msg *out_hdr;
2131 err = 0;
2132
2133 out_skb = pfkey_xfrm_policy2msg_prep(xp);
2134 if (IS_ERR(out_skb)) {
2135 err = PTR_ERR(out_skb);
2136 goto out;
2137 }
2138 pfkey_xfrm_policy2msg(out_skb, xp, dir);
2139
2140 out_hdr = (struct sadb_msg *) out_skb->data;
2141 out_hdr->sadb_msg_version = hdr->sadb_msg_version;
2142 out_hdr->sadb_msg_type = hdr->sadb_msg_type;
2143 out_hdr->sadb_msg_satype = 0;
2144 out_hdr->sadb_msg_errno = 0;
2145 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
2146 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
2147 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
2148 err = 0;
2149
2150 out:
2151 return err;
2152 }
2153
2154 static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2155 {
2156 int err;
2157 struct sadb_x_policy *pol;
2158 struct xfrm_policy *xp;
2159 struct km_event c;
2160
2161 if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
2162 return -EINVAL;
2163
2164 xp = xfrm_policy_byid(0, pol->sadb_x_policy_id,
2165 hdr->sadb_msg_type == SADB_X_SPDDELETE2);
2166 if (xp == NULL)
2167 return -ENOENT;
2168
2169 err = 0;
2170
2171 c.seq = hdr->sadb_msg_seq;
2172 c.pid = hdr->sadb_msg_pid;
2173 if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) {
2174 c.data.byid = 1;
2175 c.event = XFRM_MSG_DELPOLICY;
2176 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
2177 } else {
2178 err = key_pol_get_resp(sk, xp, hdr, pol->sadb_x_policy_dir-1);
2179 }
2180
2181 xfrm_pol_put(xp);
2182 return err;
2183 }
2184
2185 static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
2186 {
2187 struct pfkey_dump_data *data = ptr;
2188 struct sk_buff *out_skb;
2189 struct sadb_msg *out_hdr;
2190
2191 out_skb = pfkey_xfrm_policy2msg_prep(xp);
2192 if (IS_ERR(out_skb))
2193 return PTR_ERR(out_skb);
2194
2195 pfkey_xfrm_policy2msg(out_skb, xp, dir);
2196
2197 out_hdr = (struct sadb_msg *) out_skb->data;
2198 out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
2199 out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
2200 out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
2201 out_hdr->sadb_msg_errno = 0;
2202 out_hdr->sadb_msg_seq = count;
2203 out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
2204 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
2205 return 0;
2206 }
2207
2208 static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2209 {
2210 struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
2211
2212 return xfrm_policy_walk(dump_sp, &data);
2213 }
2214
2215 static int key_notify_policy_flush(struct km_event *c)
2216 {
2217 struct sk_buff *skb_out;
2218 struct sadb_msg *hdr;
2219
2220 skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
2221 if (!skb_out)
2222 return -ENOBUFS;
2223 hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
2224 hdr->sadb_msg_seq = c->seq;
2225 hdr->sadb_msg_pid = c->pid;
2226 hdr->sadb_msg_version = PF_KEY_V2;
2227 hdr->sadb_msg_errno = (uint8_t) 0;
2228 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
2229 pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
2230 return 0;
2231
2232 }
2233
2234 static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2235 {
2236 struct km_event c;
2237
2238 xfrm_policy_flush();
2239 c.event = XFRM_MSG_FLUSHPOLICY;
2240 c.pid = hdr->sadb_msg_pid;
2241 c.seq = hdr->sadb_msg_seq;
2242 km_policy_notify(NULL, 0, &c);
2243
2244 return 0;
2245 }
2246
2247 typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
2248 struct sadb_msg *hdr, void **ext_hdrs);
2249 static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
2250 [SADB_RESERVED] = pfkey_reserved,
2251 [SADB_GETSPI] = pfkey_getspi,
2252 [SADB_UPDATE] = pfkey_add,
2253 [SADB_ADD] = pfkey_add,
2254 [SADB_DELETE] = pfkey_delete,
2255 [SADB_GET] = pfkey_get,
2256 [SADB_ACQUIRE] = pfkey_acquire,
2257 [SADB_REGISTER] = pfkey_register,
2258 [SADB_EXPIRE] = NULL,
2259 [SADB_FLUSH] = pfkey_flush,
2260 [SADB_DUMP] = pfkey_dump,
2261 [SADB_X_PROMISC] = pfkey_promisc,
2262 [SADB_X_PCHANGE] = NULL,
2263 [SADB_X_SPDUPDATE] = pfkey_spdadd,
2264 [SADB_X_SPDADD] = pfkey_spdadd,
2265 [SADB_X_SPDDELETE] = pfkey_spddelete,
2266 [SADB_X_SPDGET] = pfkey_spdget,
2267 [SADB_X_SPDACQUIRE] = NULL,
2268 [SADB_X_SPDDUMP] = pfkey_spddump,
2269 [SADB_X_SPDFLUSH] = pfkey_spdflush,
2270 [SADB_X_SPDSETIDX] = pfkey_spdadd,
2271 [SADB_X_SPDDELETE2] = pfkey_spdget,
2272 };
2273
2274 static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
2275 {
2276 void *ext_hdrs[SADB_EXT_MAX];
2277 int err;
2278
2279 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
2280 BROADCAST_PROMISC_ONLY, NULL);
2281
2282 memset(ext_hdrs, 0, sizeof(ext_hdrs));
2283 err = parse_exthdrs(skb, hdr, ext_hdrs);
2284 if (!err) {
2285 err = -EOPNOTSUPP;
2286 if (pfkey_funcs[hdr->sadb_msg_type])
2287 err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
2288 }
2289 return err;
2290 }
2291
2292 static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
2293 {
2294 struct sadb_msg *hdr = NULL;
2295
2296 if (skb->len < sizeof(*hdr)) {
2297 *errp = -EMSGSIZE;
2298 } else {
2299 hdr = (struct sadb_msg *) skb->data;
2300 if (hdr->sadb_msg_version != PF_KEY_V2 ||
2301 hdr->sadb_msg_reserved != 0 ||
2302 (hdr->sadb_msg_type <= SADB_RESERVED ||
2303 hdr->sadb_msg_type > SADB_MAX)) {
2304 hdr = NULL;
2305 *errp = -EINVAL;
2306 } else if (hdr->sadb_msg_len != (skb->len /
2307 sizeof(uint64_t)) ||
2308 hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
2309 sizeof(uint64_t))) {
2310 hdr = NULL;
2311 *errp = -EMSGSIZE;
2312 } else {
2313 *errp = 0;
2314 }
2315 }
2316 return hdr;
2317 }
2318
2319 static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
2320 {
2321 return t->aalgos & (1 << d->desc.sadb_alg_id);
2322 }
2323
2324 static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
2325 {
2326 return t->ealgos & (1 << d->desc.sadb_alg_id);
2327 }
2328
2329 static int count_ah_combs(struct xfrm_tmpl *t)
2330 {
2331 int i, sz = 0;
2332
2333 for (i = 0; ; i++) {
2334 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
2335 if (!aalg)
2336 break;
2337 if (aalg_tmpl_set(t, aalg) && aalg->available)
2338 sz += sizeof(struct sadb_comb);
2339 }
2340 return sz + sizeof(struct sadb_prop);
2341 }
2342
2343 static int count_esp_combs(struct xfrm_tmpl *t)
2344 {
2345 int i, k, sz = 0;
2346
2347 for (i = 0; ; i++) {
2348 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
2349 if (!ealg)
2350 break;
2351
2352 if (!(ealg_tmpl_set(t, ealg) && ealg->available))
2353 continue;
2354
2355 for (k = 1; ; k++) {
2356 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
2357 if (!aalg)
2358 break;
2359
2360 if (aalg_tmpl_set(t, aalg) && aalg->available)
2361 sz += sizeof(struct sadb_comb);
2362 }
2363 }
2364 return sz + sizeof(struct sadb_prop);
2365 }
2366
2367 static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
2368 {
2369 struct sadb_prop *p;
2370 int i;
2371
2372 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
2373 p->sadb_prop_len = sizeof(struct sadb_prop)/8;
2374 p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
2375 p->sadb_prop_replay = 32;
2376 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
2377
2378 for (i = 0; ; i++) {
2379 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
2380 if (!aalg)
2381 break;
2382
2383 if (aalg_tmpl_set(t, aalg) && aalg->available) {
2384 struct sadb_comb *c;
2385 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
2386 memset(c, 0, sizeof(*c));
2387 p->sadb_prop_len += sizeof(struct sadb_comb)/8;
2388 c->sadb_comb_auth = aalg->desc.sadb_alg_id;
2389 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
2390 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
2391 c->sadb_comb_hard_addtime = 24*60*60;
2392 c->sadb_comb_soft_addtime = 20*60*60;
2393 c->sadb_comb_hard_usetime = 8*60*60;
2394 c->sadb_comb_soft_usetime = 7*60*60;
2395 }
2396 }
2397 }
2398
2399 static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
2400 {
2401 struct sadb_prop *p;
2402 int i, k;
2403
2404 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
2405 p->sadb_prop_len = sizeof(struct sadb_prop)/8;
2406 p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
2407 p->sadb_prop_replay = 32;
2408 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
2409
2410 for (i=0; ; i++) {
2411 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
2412 if (!ealg)
2413 break;
2414
2415 if (!(ealg_tmpl_set(t, ealg) && ealg->available))
2416 continue;
2417
2418 for (k = 1; ; k++) {
2419 struct sadb_comb *c;
2420 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
2421 if (!aalg)
2422 break;
2423 if (!(aalg_tmpl_set(t, aalg) && aalg->available))
2424 continue;
2425 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
2426 memset(c, 0, sizeof(*c));
2427 p->sadb_prop_len += sizeof(struct sadb_comb)/8;
2428 c->sadb_comb_auth = aalg->desc.sadb_alg_id;
2429 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
2430 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
2431 c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
2432 c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
2433 c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
2434 c->sadb_comb_hard_addtime = 24*60*60;
2435 c->sadb_comb_soft_addtime = 20*60*60;
2436 c->sadb_comb_hard_usetime = 8*60*60;
2437 c->sadb_comb_soft_usetime = 7*60*60;
2438 }
2439 }
2440 }
2441
2442 static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
2443 {
2444 return 0;
2445 }
2446
2447 static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
2448 {
2449 struct sk_buff *out_skb;
2450 struct sadb_msg *out_hdr;
2451 int hard;
2452 int hsc;
2453
2454 hard = c->data.hard;
2455 if (hard)
2456 hsc = 2;
2457 else
2458 hsc = 1;
2459
2460 out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
2461 if (IS_ERR(out_skb))
2462 return PTR_ERR(out_skb);
2463
2464 out_hdr = (struct sadb_msg *) out_skb->data;
2465 out_hdr->sadb_msg_version = PF_KEY_V2;
2466 out_hdr->sadb_msg_type = SADB_EXPIRE;
2467 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
2468 out_hdr->sadb_msg_errno = 0;
2469 out_hdr->sadb_msg_reserved = 0;
2470 out_hdr->sadb_msg_seq = 0;
2471 out_hdr->sadb_msg_pid = 0;
2472
2473 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
2474 return 0;
2475 }
2476
2477 static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
2478 {
2479 switch (c->event) {
2480 case XFRM_MSG_EXPIRE:
2481 return key_notify_sa_expire(x, c);
2482 case XFRM_MSG_DELSA:
2483 case XFRM_MSG_NEWSA:
2484 case XFRM_MSG_UPDSA:
2485 return key_notify_sa(x, c);
2486 case XFRM_MSG_FLUSHSA:
2487 return key_notify_sa_flush(c);
2488 default:
2489 printk("pfkey: Unknown SA event %d\n", c->event);
2490 break;
2491 }
2492
2493 return 0;
2494 }
2495
2496 static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
2497 {
2498 switch (c->event) {
2499 case XFRM_MSG_POLEXPIRE:
2500 return key_notify_policy_expire(xp, c);
2501 case XFRM_MSG_DELPOLICY:
2502 case XFRM_MSG_NEWPOLICY:
2503 case XFRM_MSG_UPDPOLICY:
2504 return key_notify_policy(xp, dir, c);
2505 case XFRM_MSG_FLUSHPOLICY:
2506 return key_notify_policy_flush(c);
2507 default:
2508 printk("pfkey: Unknown policy event %d\n", c->event);
2509 break;
2510 }
2511
2512 return 0;
2513 }
2514
2515 static u32 get_acqseq(void)
2516 {
2517 u32 res;
2518 static u32 acqseq;
2519 static DEFINE_SPINLOCK(acqseq_lock);
2520
2521 spin_lock_bh(&acqseq_lock);
2522 res = (++acqseq ? : ++acqseq);
2523 spin_unlock_bh(&acqseq_lock);
2524 return res;
2525 }
2526
2527 static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
2528 {
2529 struct sk_buff *skb;
2530 struct sadb_msg *hdr;
2531 struct sadb_address *addr;
2532 struct sadb_x_policy *pol;
2533 struct sockaddr_in *sin;
2534 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2535 struct sockaddr_in6 *sin6;
2536 #endif
2537 int sockaddr_size;
2538 int size;
2539
2540 sockaddr_size = pfkey_sockaddr_size(x->props.family);
2541 if (!sockaddr_size)
2542 return -EINVAL;
2543
2544 size = sizeof(struct sadb_msg) +
2545 (sizeof(struct sadb_address) * 2) +
2546 (sockaddr_size * 2) +
2547 sizeof(struct sadb_x_policy);
2548
2549 if (x->id.proto == IPPROTO_AH)
2550 size += count_ah_combs(t);
2551 else if (x->id.proto == IPPROTO_ESP)
2552 size += count_esp_combs(t);
2553
2554 skb = alloc_skb(size + 16, GFP_ATOMIC);
2555 if (skb == NULL)
2556 return -ENOMEM;
2557
2558 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
2559 hdr->sadb_msg_version = PF_KEY_V2;
2560 hdr->sadb_msg_type = SADB_ACQUIRE;
2561 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
2562 hdr->sadb_msg_len = size / sizeof(uint64_t);
2563 hdr->sadb_msg_errno = 0;
2564 hdr->sadb_msg_reserved = 0;
2565 hdr->sadb_msg_seq = x->km.seq = get_acqseq();
2566 hdr->sadb_msg_pid = 0;
2567
2568 /* src address */
2569 addr = (struct sadb_address*) skb_put(skb,
2570 sizeof(struct sadb_address)+sockaddr_size);
2571 addr->sadb_address_len =
2572 (sizeof(struct sadb_address)+sockaddr_size)/
2573 sizeof(uint64_t);
2574 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
2575 addr->sadb_address_proto = 0;
2576 addr->sadb_address_reserved = 0;
2577 if (x->props.family == AF_INET) {
2578 addr->sadb_address_prefixlen = 32;
2579
2580 sin = (struct sockaddr_in *) (addr + 1);
2581 sin->sin_family = AF_INET;
2582 sin->sin_addr.s_addr = x->props.saddr.a4;
2583 sin->sin_port = 0;
2584 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2585 }
2586 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2587 else if (x->props.family == AF_INET6) {
2588 addr->sadb_address_prefixlen = 128;
2589
2590 sin6 = (struct sockaddr_in6 *) (addr + 1);
2591 sin6->sin6_family = AF_INET6;
2592 sin6->sin6_port = 0;
2593 sin6->sin6_flowinfo = 0;
2594 memcpy(&sin6->sin6_addr,
2595 x->props.saddr.a6, sizeof(struct in6_addr));
2596 sin6->sin6_scope_id = 0;
2597 }
2598 #endif
2599 else
2600 BUG();
2601
2602 /* dst address */
2603 addr = (struct sadb_address*) skb_put(skb,
2604 sizeof(struct sadb_address)+sockaddr_size);
2605 addr->sadb_address_len =
2606 (sizeof(struct sadb_address)+sockaddr_size)/
2607 sizeof(uint64_t);
2608 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
2609 addr->sadb_address_proto = 0;
2610 addr->sadb_address_reserved = 0;
2611 if (x->props.family == AF_INET) {
2612 addr->sadb_address_prefixlen = 32;
2613
2614 sin = (struct sockaddr_in *) (addr + 1);
2615 sin->sin_family = AF_INET;
2616 sin->sin_addr.s_addr = x->id.daddr.a4;
2617 sin->sin_port = 0;
2618 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2619 }
2620 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2621 else if (x->props.family == AF_INET6) {
2622 addr->sadb_address_prefixlen = 128;
2623
2624 sin6 = (struct sockaddr_in6 *) (addr + 1);
2625 sin6->sin6_family = AF_INET6;
2626 sin6->sin6_port = 0;
2627 sin6->sin6_flowinfo = 0;
2628 memcpy(&sin6->sin6_addr,
2629 x->id.daddr.a6, sizeof(struct in6_addr));
2630 sin6->sin6_scope_id = 0;
2631 }
2632 #endif
2633 else
2634 BUG();
2635
2636 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
2637 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
2638 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
2639 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
2640 pol->sadb_x_policy_dir = dir+1;
2641 pol->sadb_x_policy_id = xp->index;
2642
2643 /* Set sadb_comb's. */
2644 if (x->id.proto == IPPROTO_AH)
2645 dump_ah_combs(skb, t);
2646 else if (x->id.proto == IPPROTO_ESP)
2647 dump_esp_combs(skb, t);
2648
2649 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
2650 }
2651
2652 static struct xfrm_policy *pfkey_compile_policy(u16 family, int opt,
2653 u8 *data, int len, int *dir)
2654 {
2655 struct xfrm_policy *xp;
2656 struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
2657
2658 switch (family) {
2659 case AF_INET:
2660 if (opt != IP_IPSEC_POLICY) {
2661 *dir = -EOPNOTSUPP;
2662 return NULL;
2663 }
2664 break;
2665 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2666 case AF_INET6:
2667 if (opt != IPV6_IPSEC_POLICY) {
2668 *dir = -EOPNOTSUPP;
2669 return NULL;
2670 }
2671 break;
2672 #endif
2673 default:
2674 *dir = -EINVAL;
2675 return NULL;
2676 }
2677
2678 *dir = -EINVAL;
2679
2680 if (len < sizeof(struct sadb_x_policy) ||
2681 pol->sadb_x_policy_len*8 > len ||
2682 pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
2683 (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
2684 return NULL;
2685
2686 xp = xfrm_policy_alloc(GFP_ATOMIC);
2687 if (xp == NULL) {
2688 *dir = -ENOBUFS;
2689 return NULL;
2690 }
2691
2692 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
2693 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
2694
2695 xp->lft.soft_byte_limit = XFRM_INF;
2696 xp->lft.hard_byte_limit = XFRM_INF;
2697 xp->lft.soft_packet_limit = XFRM_INF;
2698 xp->lft.hard_packet_limit = XFRM_INF;
2699 xp->family = family;
2700
2701 xp->xfrm_nr = 0;
2702 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2703 (*dir = parse_ipsecrequests(xp, pol)) < 0)
2704 goto out;
2705
2706 *dir = pol->sadb_x_policy_dir-1;
2707 return xp;
2708
2709 out:
2710 kfree(xp);
2711 return NULL;
2712 }
2713
2714 static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport)
2715 {
2716 struct sk_buff *skb;
2717 struct sadb_msg *hdr;
2718 struct sadb_sa *sa;
2719 struct sadb_address *addr;
2720 struct sadb_x_nat_t_port *n_port;
2721 struct sockaddr_in *sin;
2722 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2723 struct sockaddr_in6 *sin6;
2724 #endif
2725 int sockaddr_size;
2726 int size;
2727 __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
2728 struct xfrm_encap_tmpl *natt = NULL;
2729
2730 sockaddr_size = pfkey_sockaddr_size(x->props.family);
2731 if (!sockaddr_size)
2732 return -EINVAL;
2733
2734 if (!satype)
2735 return -EINVAL;
2736
2737 if (!x->encap)
2738 return -EINVAL;
2739
2740 natt = x->encap;
2741
2742 /* Build an SADB_X_NAT_T_NEW_MAPPING message:
2743 *
2744 * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
2745 * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
2746 */
2747
2748 size = sizeof(struct sadb_msg) +
2749 sizeof(struct sadb_sa) +
2750 (sizeof(struct sadb_address) * 2) +
2751 (sockaddr_size * 2) +
2752 (sizeof(struct sadb_x_nat_t_port) * 2);
2753
2754 skb = alloc_skb(size + 16, GFP_ATOMIC);
2755 if (skb == NULL)
2756 return -ENOMEM;
2757
2758 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
2759 hdr->sadb_msg_version = PF_KEY_V2;
2760 hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
2761 hdr->sadb_msg_satype = satype;
2762 hdr->sadb_msg_len = size / sizeof(uint64_t);
2763 hdr->sadb_msg_errno = 0;
2764 hdr->sadb_msg_reserved = 0;
2765 hdr->sadb_msg_seq = x->km.seq = get_acqseq();
2766 hdr->sadb_msg_pid = 0;
2767
2768 /* SA */
2769 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
2770 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
2771 sa->sadb_sa_exttype = SADB_EXT_SA;
2772 sa->sadb_sa_spi = x->id.spi;
2773 sa->sadb_sa_replay = 0;
2774 sa->sadb_sa_state = 0;
2775 sa->sadb_sa_auth = 0;
2776 sa->sadb_sa_encrypt = 0;
2777 sa->sadb_sa_flags = 0;
2778
2779 /* ADDRESS_SRC (old addr) */
2780 addr = (struct sadb_address*)
2781 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
2782 addr->sadb_address_len =
2783 (sizeof(struct sadb_address)+sockaddr_size)/
2784 sizeof(uint64_t);
2785 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
2786 addr->sadb_address_proto = 0;
2787 addr->sadb_address_reserved = 0;
2788 if (x->props.family == AF_INET) {
2789 addr->sadb_address_prefixlen = 32;
2790
2791 sin = (struct sockaddr_in *) (addr + 1);
2792 sin->sin_family = AF_INET;
2793 sin->sin_addr.s_addr = x->props.saddr.a4;
2794 sin->sin_port = 0;
2795 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2796 }
2797 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2798 else if (x->props.family == AF_INET6) {
2799 addr->sadb_address_prefixlen = 128;
2800
2801 sin6 = (struct sockaddr_in6 *) (addr + 1);
2802 sin6->sin6_family = AF_INET6;
2803 sin6->sin6_port = 0;
2804 sin6->sin6_flowinfo = 0;
2805 memcpy(&sin6->sin6_addr,
2806 x->props.saddr.a6, sizeof(struct in6_addr));
2807 sin6->sin6_scope_id = 0;
2808 }
2809 #endif
2810 else
2811 BUG();
2812
2813 /* NAT_T_SPORT (old port) */
2814 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
2815 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
2816 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
2817 n_port->sadb_x_nat_t_port_port = natt->encap_sport;
2818 n_port->sadb_x_nat_t_port_reserved = 0;
2819
2820 /* ADDRESS_DST (new addr) */
2821 addr = (struct sadb_address*)
2822 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
2823 addr->sadb_address_len =
2824 (sizeof(struct sadb_address)+sockaddr_size)/
2825 sizeof(uint64_t);
2826 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
2827 addr->sadb_address_proto = 0;
2828 addr->sadb_address_reserved = 0;
2829 if (x->props.family == AF_INET) {
2830 addr->sadb_address_prefixlen = 32;
2831
2832 sin = (struct sockaddr_in *) (addr + 1);
2833 sin->sin_family = AF_INET;
2834 sin->sin_addr.s_addr = ipaddr->a4;
2835 sin->sin_port = 0;
2836 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2837 }
2838 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2839 else if (x->props.family == AF_INET6) {
2840 addr->sadb_address_prefixlen = 128;
2841
2842 sin6 = (struct sockaddr_in6 *) (addr + 1);
2843 sin6->sin6_family = AF_INET6;
2844 sin6->sin6_port = 0;
2845 sin6->sin6_flowinfo = 0;
2846 memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
2847 sin6->sin6_scope_id = 0;
2848 }
2849 #endif
2850 else
2851 BUG();
2852
2853 /* NAT_T_DPORT (new port) */
2854 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
2855 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
2856 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
2857 n_port->sadb_x_nat_t_port_port = sport;
2858 n_port->sadb_x_nat_t_port_reserved = 0;
2859
2860 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
2861 }
2862
2863 static int pfkey_sendmsg(struct kiocb *kiocb,
2864 struct socket *sock, struct msghdr *msg, size_t len)
2865 {
2866 struct sock *sk = sock->sk;
2867 struct sk_buff *skb = NULL;
2868 struct sadb_msg *hdr = NULL;
2869 int err;
2870
2871 err = -EOPNOTSUPP;
2872 if (msg->msg_flags & MSG_OOB)
2873 goto out;
2874
2875 err = -EMSGSIZE;
2876 if ((unsigned)len > sk->sk_sndbuf - 32)
2877 goto out;
2878
2879 err = -ENOBUFS;
2880 skb = alloc_skb(len, GFP_KERNEL);
2881 if (skb == NULL)
2882 goto out;
2883
2884 err = -EFAULT;
2885 if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
2886 goto out;
2887
2888 hdr = pfkey_get_base_msg(skb, &err);
2889 if (!hdr)
2890 goto out;
2891
2892 down(&xfrm_cfg_sem);
2893 err = pfkey_process(sk, skb, hdr);
2894 up(&xfrm_cfg_sem);
2895
2896 out:
2897 if (err && hdr && pfkey_error(hdr, err, sk) == 0)
2898 err = 0;
2899 if (skb)
2900 kfree_skb(skb);
2901
2902 return err ? : len;
2903 }
2904
2905 static int pfkey_recvmsg(struct kiocb *kiocb,
2906 struct socket *sock, struct msghdr *msg, size_t len,
2907 int flags)
2908 {
2909 struct sock *sk = sock->sk;
2910 struct sk_buff *skb;
2911 int copied, err;
2912
2913 err = -EINVAL;
2914 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
2915 goto out;
2916
2917 msg->msg_namelen = 0;
2918 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2919 if (skb == NULL)
2920 goto out;
2921
2922 copied = skb->len;
2923 if (copied > len) {
2924 msg->msg_flags |= MSG_TRUNC;
2925 copied = len;
2926 }
2927
2928 skb->h.raw = skb->data;
2929 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2930 if (err)
2931 goto out_free;
2932
2933 sock_recv_timestamp(msg, sk, skb);
2934
2935 err = (flags & MSG_TRUNC) ? skb->len : copied;
2936
2937 out_free:
2938 skb_free_datagram(sk, skb);
2939 out:
2940 return err;
2941 }
2942
2943 static struct proto_ops pfkey_ops = {
2944 .family = PF_KEY,
2945 .owner = THIS_MODULE,
2946 /* Operations that make no sense on pfkey sockets. */
2947 .bind = sock_no_bind,
2948 .connect = sock_no_connect,
2949 .socketpair = sock_no_socketpair,
2950 .accept = sock_no_accept,
2951 .getname = sock_no_getname,
2952 .ioctl = sock_no_ioctl,
2953 .listen = sock_no_listen,
2954 .shutdown = sock_no_shutdown,
2955 .setsockopt = sock_no_setsockopt,
2956 .getsockopt = sock_no_getsockopt,
2957 .mmap = sock_no_mmap,
2958 .sendpage = sock_no_sendpage,
2959
2960 /* Now the operations that really occur. */
2961 .release = pfkey_release,
2962 .poll = datagram_poll,
2963 .sendmsg = pfkey_sendmsg,
2964 .recvmsg = pfkey_recvmsg,
2965 };
2966
2967 static struct net_proto_family pfkey_family_ops = {
2968 .family = PF_KEY,
2969 .create = pfkey_create,
2970 .owner = THIS_MODULE,
2971 };
2972
2973 #ifdef CONFIG_PROC_FS
2974 static int pfkey_read_proc(char *buffer, char **start, off_t offset,
2975 int length, int *eof, void *data)
2976 {
2977 off_t pos = 0;
2978 off_t begin = 0;
2979 int len = 0;
2980 struct sock *s;
2981 struct hlist_node *node;
2982
2983 len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
2984
2985 read_lock(&pfkey_table_lock);
2986
2987 sk_for_each(s, node, &pfkey_table) {
2988 len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
2989 s,
2990 atomic_read(&s->sk_refcnt),
2991 atomic_read(&s->sk_rmem_alloc),
2992 atomic_read(&s->sk_wmem_alloc),
2993 sock_i_uid(s),
2994 sock_i_ino(s)
2995 );
2996
2997 buffer[len++] = '\n';
2998
2999 pos = begin + len;
3000 if (pos < offset) {
3001 len = 0;
3002 begin = pos;
3003 }
3004 if(pos > offset + length)
3005 goto done;
3006 }
3007 *eof = 1;
3008
3009 done:
3010 read_unlock(&pfkey_table_lock);
3011
3012 *start = buffer + (offset - begin);
3013 len -= (offset - begin);
3014
3015 if (len > length)
3016 len = length;
3017 if (len < 0)
3018 len = 0;
3019
3020 return len;
3021 }
3022 #endif
3023
3024 static struct xfrm_mgr pfkeyv2_mgr =
3025 {
3026 .id = "pfkeyv2",
3027 .notify = pfkey_send_notify,
3028 .acquire = pfkey_send_acquire,
3029 .compile_policy = pfkey_compile_policy,
3030 .new_mapping = pfkey_send_new_mapping,
3031 .notify_policy = pfkey_send_policy_notify,
3032 };
3033
3034 static void __exit ipsec_pfkey_exit(void)
3035 {
3036 xfrm_unregister_km(&pfkeyv2_mgr);
3037 remove_proc_entry("net/pfkey", NULL);
3038 sock_unregister(PF_KEY);
3039 proto_unregister(&key_proto);
3040 }
3041
3042 static int __init ipsec_pfkey_init(void)
3043 {
3044 int err = proto_register(&key_proto, 0);
3045
3046 if (err != 0)
3047 goto out;
3048
3049 err = sock_register(&pfkey_family_ops);
3050 if (err != 0)
3051 goto out_unregister_key_proto;
3052 #ifdef CONFIG_PROC_FS
3053 err = -ENOMEM;
3054 if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
3055 goto out_sock_unregister;
3056 #endif
3057 err = xfrm_register_km(&pfkeyv2_mgr);
3058 if (err != 0)
3059 goto out_remove_proc_entry;
3060 out:
3061 return err;
3062 out_remove_proc_entry:
3063 #ifdef CONFIG_PROC_FS
3064 remove_proc_entry("net/pfkey", NULL);
3065 out_sock_unregister:
3066 #endif
3067 sock_unregister(PF_KEY);
3068 out_unregister_key_proto:
3069 proto_unregister(&key_proto);
3070 goto out;
3071 }
3072
3073 module_init(ipsec_pfkey_init);
3074 module_exit(ipsec_pfkey_exit);
3075 MODULE_LICENSE("GPL");
3076 MODULE_ALIAS_NETPROTO(PF_KEY);
This page took 0.096885 seconds and 5 git commands to generate.