Merge master.kernel.org:/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[deliverable/linux.git] / net / key / af_key.c
1 /*
2 * net/key/af_key.c An implementation of PF_KEYv2 sockets.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Maxim Giryaev <gem@asplinux.ru>
10 * David S. Miller <davem@redhat.com>
11 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
12 * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
13 * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
14 * Derek Atkins <derek@ihtfp.com>
15 */
16
17 #include <linux/config.h>
18 #include <linux/capability.h>
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/socket.h>
22 #include <linux/pfkeyv2.h>
23 #include <linux/ipsec.h>
24 #include <linux/skbuff.h>
25 #include <linux/rtnetlink.h>
26 #include <linux/in.h>
27 #include <linux/in6.h>
28 #include <linux/proc_fs.h>
29 #include <linux/init.h>
30 #include <net/xfrm.h>
31
32 #include <net/sock.h>
33
34 #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
35 #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
36
37
38 /* List of all pfkey sockets. */
39 static HLIST_HEAD(pfkey_table);
40 static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
41 static DEFINE_RWLOCK(pfkey_table_lock);
42 static atomic_t pfkey_table_users = ATOMIC_INIT(0);
43
44 static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
45
46 struct pfkey_sock {
47 /* struct sock must be the first member of struct pfkey_sock */
48 struct sock sk;
49 int registered;
50 int promisc;
51 };
52
53 static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
54 {
55 return (struct pfkey_sock *)sk;
56 }
57
58 static void pfkey_sock_destruct(struct sock *sk)
59 {
60 skb_queue_purge(&sk->sk_receive_queue);
61
62 if (!sock_flag(sk, SOCK_DEAD)) {
63 printk("Attempt to release alive pfkey socket: %p\n", sk);
64 return;
65 }
66
67 BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
68 BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
69
70 atomic_dec(&pfkey_socks_nr);
71 }
72
73 static void pfkey_table_grab(void)
74 {
75 write_lock_bh(&pfkey_table_lock);
76
77 if (atomic_read(&pfkey_table_users)) {
78 DECLARE_WAITQUEUE(wait, current);
79
80 add_wait_queue_exclusive(&pfkey_table_wait, &wait);
81 for(;;) {
82 set_current_state(TASK_UNINTERRUPTIBLE);
83 if (atomic_read(&pfkey_table_users) == 0)
84 break;
85 write_unlock_bh(&pfkey_table_lock);
86 schedule();
87 write_lock_bh(&pfkey_table_lock);
88 }
89
90 __set_current_state(TASK_RUNNING);
91 remove_wait_queue(&pfkey_table_wait, &wait);
92 }
93 }
94
95 static __inline__ void pfkey_table_ungrab(void)
96 {
97 write_unlock_bh(&pfkey_table_lock);
98 wake_up(&pfkey_table_wait);
99 }
100
101 static __inline__ void pfkey_lock_table(void)
102 {
103 /* read_lock() synchronizes us to pfkey_table_grab */
104
105 read_lock(&pfkey_table_lock);
106 atomic_inc(&pfkey_table_users);
107 read_unlock(&pfkey_table_lock);
108 }
109
110 static __inline__ void pfkey_unlock_table(void)
111 {
112 if (atomic_dec_and_test(&pfkey_table_users))
113 wake_up(&pfkey_table_wait);
114 }
115
116
117 static const struct proto_ops pfkey_ops;
118
119 static void pfkey_insert(struct sock *sk)
120 {
121 pfkey_table_grab();
122 sk_add_node(sk, &pfkey_table);
123 pfkey_table_ungrab();
124 }
125
126 static void pfkey_remove(struct sock *sk)
127 {
128 pfkey_table_grab();
129 sk_del_node_init(sk);
130 pfkey_table_ungrab();
131 }
132
133 static struct proto key_proto = {
134 .name = "KEY",
135 .owner = THIS_MODULE,
136 .obj_size = sizeof(struct pfkey_sock),
137 };
138
139 static int pfkey_create(struct socket *sock, int protocol)
140 {
141 struct sock *sk;
142 int err;
143
144 if (!capable(CAP_NET_ADMIN))
145 return -EPERM;
146 if (sock->type != SOCK_RAW)
147 return -ESOCKTNOSUPPORT;
148 if (protocol != PF_KEY_V2)
149 return -EPROTONOSUPPORT;
150
151 err = -ENOMEM;
152 sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
153 if (sk == NULL)
154 goto out;
155
156 sock->ops = &pfkey_ops;
157 sock_init_data(sock, sk);
158
159 sk->sk_family = PF_KEY;
160 sk->sk_destruct = pfkey_sock_destruct;
161
162 atomic_inc(&pfkey_socks_nr);
163
164 pfkey_insert(sk);
165
166 return 0;
167 out:
168 return err;
169 }
170
171 static int pfkey_release(struct socket *sock)
172 {
173 struct sock *sk = sock->sk;
174
175 if (!sk)
176 return 0;
177
178 pfkey_remove(sk);
179
180 sock_orphan(sk);
181 sock->sk = NULL;
182 skb_queue_purge(&sk->sk_write_queue);
183 sock_put(sk);
184
185 return 0;
186 }
187
188 static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
189 gfp_t allocation, struct sock *sk)
190 {
191 int err = -ENOBUFS;
192
193 sock_hold(sk);
194 if (*skb2 == NULL) {
195 if (atomic_read(&skb->users) != 1) {
196 *skb2 = skb_clone(skb, allocation);
197 } else {
198 *skb2 = skb;
199 atomic_inc(&skb->users);
200 }
201 }
202 if (*skb2 != NULL) {
203 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
204 skb_orphan(*skb2);
205 skb_set_owner_r(*skb2, sk);
206 skb_queue_tail(&sk->sk_receive_queue, *skb2);
207 sk->sk_data_ready(sk, (*skb2)->len);
208 *skb2 = NULL;
209 err = 0;
210 }
211 }
212 sock_put(sk);
213 return err;
214 }
215
216 /* Send SKB to all pfkey sockets matching selected criteria. */
217 #define BROADCAST_ALL 0
218 #define BROADCAST_ONE 1
219 #define BROADCAST_REGISTERED 2
220 #define BROADCAST_PROMISC_ONLY 4
221 static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
222 int broadcast_flags, struct sock *one_sk)
223 {
224 struct sock *sk;
225 struct hlist_node *node;
226 struct sk_buff *skb2 = NULL;
227 int err = -ESRCH;
228
229 /* XXX Do we need something like netlink_overrun? I think
230 * XXX PF_KEY socket apps will not mind current behavior.
231 */
232 if (!skb)
233 return -ENOMEM;
234
235 pfkey_lock_table();
236 sk_for_each(sk, node, &pfkey_table) {
237 struct pfkey_sock *pfk = pfkey_sk(sk);
238 int err2;
239
240 /* Yes, it means that if you are meant to receive this
241 * pfkey message you receive it twice as promiscuous
242 * socket.
243 */
244 if (pfk->promisc)
245 pfkey_broadcast_one(skb, &skb2, allocation, sk);
246
247 /* the exact target will be processed later */
248 if (sk == one_sk)
249 continue;
250 if (broadcast_flags != BROADCAST_ALL) {
251 if (broadcast_flags & BROADCAST_PROMISC_ONLY)
252 continue;
253 if ((broadcast_flags & BROADCAST_REGISTERED) &&
254 !pfk->registered)
255 continue;
256 if (broadcast_flags & BROADCAST_ONE)
257 continue;
258 }
259
260 err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
261
262 /* Error is cleare after succecful sending to at least one
263 * registered KM */
264 if ((broadcast_flags & BROADCAST_REGISTERED) && err)
265 err = err2;
266 }
267 pfkey_unlock_table();
268
269 if (one_sk != NULL)
270 err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
271
272 if (skb2)
273 kfree_skb(skb2);
274 kfree_skb(skb);
275 return err;
276 }
277
278 static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
279 {
280 *new = *orig;
281 }
282
283 static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
284 {
285 struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
286 struct sadb_msg *hdr;
287
288 if (!skb)
289 return -ENOBUFS;
290
291 /* Woe be to the platform trying to support PFKEY yet
292 * having normal errnos outside the 1-255 range, inclusive.
293 */
294 err = -err;
295 if (err == ERESTARTSYS ||
296 err == ERESTARTNOHAND ||
297 err == ERESTARTNOINTR)
298 err = EINTR;
299 if (err >= 512)
300 err = EINVAL;
301 BUG_ON(err <= 0 || err >= 256);
302
303 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
304 pfkey_hdr_dup(hdr, orig);
305 hdr->sadb_msg_errno = (uint8_t) err;
306 hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
307 sizeof(uint64_t));
308
309 pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
310
311 return 0;
312 }
313
314 static u8 sadb_ext_min_len[] = {
315 [SADB_EXT_RESERVED] = (u8) 0,
316 [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
317 [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
318 [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
319 [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
320 [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
321 [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
322 [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
323 [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
324 [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
325 [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
326 [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
327 [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
328 [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
329 [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
330 [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
331 [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
332 [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
333 [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
334 [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
335 [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
336 [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
337 [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
338 [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
339 [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
340 };
341
342 /* Verify sadb_address_{len,prefixlen} against sa_family. */
343 static int verify_address_len(void *p)
344 {
345 struct sadb_address *sp = p;
346 struct sockaddr *addr = (struct sockaddr *)(sp + 1);
347 struct sockaddr_in *sin;
348 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
349 struct sockaddr_in6 *sin6;
350 #endif
351 int len;
352
353 switch (addr->sa_family) {
354 case AF_INET:
355 len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1);
356 len /= sizeof(uint64_t);
357 if (sp->sadb_address_len != len ||
358 sp->sadb_address_prefixlen > 32)
359 return -EINVAL;
360 break;
361 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
362 case AF_INET6:
363 len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1);
364 len /= sizeof(uint64_t);
365 if (sp->sadb_address_len != len ||
366 sp->sadb_address_prefixlen > 128)
367 return -EINVAL;
368 break;
369 #endif
370 default:
371 /* It is user using kernel to keep track of security
372 * associations for another protocol, such as
373 * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
374 * lengths.
375 *
376 * XXX Actually, association/policy database is not yet
377 * XXX able to cope with arbitrary sockaddr families.
378 * XXX When it can, remove this -EINVAL. -DaveM
379 */
380 return -EINVAL;
381 break;
382 };
383
384 return 0;
385 }
386
387 static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
388 {
389 int len = 0;
390
391 len += sizeof(struct sadb_x_sec_ctx);
392 len += sec_ctx->sadb_x_ctx_len;
393 len += sizeof(uint64_t) - 1;
394 len /= sizeof(uint64_t);
395
396 return len;
397 }
398
399 static inline int verify_sec_ctx_len(void *p)
400 {
401 struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
402 int len;
403
404 if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE)
405 return -EINVAL;
406
407 len = pfkey_sec_ctx_len(sec_ctx);
408
409 if (sec_ctx->sadb_x_sec_len != len)
410 return -EINVAL;
411
412 return 0;
413 }
414
415 static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
416 {
417 struct xfrm_user_sec_ctx *uctx = NULL;
418 int ctx_size = sec_ctx->sadb_x_ctx_len;
419
420 uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
421
422 if (!uctx)
423 return NULL;
424
425 uctx->len = pfkey_sec_ctx_len(sec_ctx);
426 uctx->exttype = sec_ctx->sadb_x_sec_exttype;
427 uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
428 uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
429 uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
430 memcpy(uctx + 1, sec_ctx + 1,
431 uctx->ctx_len);
432
433 return uctx;
434 }
435
436 static int present_and_same_family(struct sadb_address *src,
437 struct sadb_address *dst)
438 {
439 struct sockaddr *s_addr, *d_addr;
440
441 if (!src || !dst)
442 return 0;
443
444 s_addr = (struct sockaddr *)(src + 1);
445 d_addr = (struct sockaddr *)(dst + 1);
446 if (s_addr->sa_family != d_addr->sa_family)
447 return 0;
448 if (s_addr->sa_family != AF_INET
449 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
450 && s_addr->sa_family != AF_INET6
451 #endif
452 )
453 return 0;
454
455 return 1;
456 }
457
458 static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
459 {
460 char *p = (char *) hdr;
461 int len = skb->len;
462
463 len -= sizeof(*hdr);
464 p += sizeof(*hdr);
465 while (len > 0) {
466 struct sadb_ext *ehdr = (struct sadb_ext *) p;
467 uint16_t ext_type;
468 int ext_len;
469
470 ext_len = ehdr->sadb_ext_len;
471 ext_len *= sizeof(uint64_t);
472 ext_type = ehdr->sadb_ext_type;
473 if (ext_len < sizeof(uint64_t) ||
474 ext_len > len ||
475 ext_type == SADB_EXT_RESERVED)
476 return -EINVAL;
477
478 if (ext_type <= SADB_EXT_MAX) {
479 int min = (int) sadb_ext_min_len[ext_type];
480 if (ext_len < min)
481 return -EINVAL;
482 if (ext_hdrs[ext_type-1] != NULL)
483 return -EINVAL;
484 if (ext_type == SADB_EXT_ADDRESS_SRC ||
485 ext_type == SADB_EXT_ADDRESS_DST ||
486 ext_type == SADB_EXT_ADDRESS_PROXY ||
487 ext_type == SADB_X_EXT_NAT_T_OA) {
488 if (verify_address_len(p))
489 return -EINVAL;
490 }
491 if (ext_type == SADB_X_EXT_SEC_CTX) {
492 if (verify_sec_ctx_len(p))
493 return -EINVAL;
494 }
495 ext_hdrs[ext_type-1] = p;
496 }
497 p += ext_len;
498 len -= ext_len;
499 }
500
501 return 0;
502 }
503
504 static uint16_t
505 pfkey_satype2proto(uint8_t satype)
506 {
507 switch (satype) {
508 case SADB_SATYPE_UNSPEC:
509 return IPSEC_PROTO_ANY;
510 case SADB_SATYPE_AH:
511 return IPPROTO_AH;
512 case SADB_SATYPE_ESP:
513 return IPPROTO_ESP;
514 case SADB_X_SATYPE_IPCOMP:
515 return IPPROTO_COMP;
516 break;
517 default:
518 return 0;
519 }
520 /* NOTREACHED */
521 }
522
523 static uint8_t
524 pfkey_proto2satype(uint16_t proto)
525 {
526 switch (proto) {
527 case IPPROTO_AH:
528 return SADB_SATYPE_AH;
529 case IPPROTO_ESP:
530 return SADB_SATYPE_ESP;
531 case IPPROTO_COMP:
532 return SADB_X_SATYPE_IPCOMP;
533 break;
534 default:
535 return 0;
536 }
537 /* NOTREACHED */
538 }
539
540 /* BTW, this scheme means that there is no way with PFKEY2 sockets to
541 * say specifically 'just raw sockets' as we encode them as 255.
542 */
543
544 static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
545 {
546 return (proto == IPSEC_PROTO_ANY ? 0 : proto);
547 }
548
549 static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
550 {
551 return (proto ? proto : IPSEC_PROTO_ANY);
552 }
553
554 static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
555 xfrm_address_t *xaddr)
556 {
557 switch (((struct sockaddr*)(addr + 1))->sa_family) {
558 case AF_INET:
559 xaddr->a4 =
560 ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
561 return AF_INET;
562 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
563 case AF_INET6:
564 memcpy(xaddr->a6,
565 &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
566 sizeof(struct in6_addr));
567 return AF_INET6;
568 #endif
569 default:
570 return 0;
571 }
572 /* NOTREACHED */
573 }
574
575 static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
576 {
577 struct sadb_sa *sa;
578 struct sadb_address *addr;
579 uint16_t proto;
580 unsigned short family;
581 xfrm_address_t *xaddr;
582
583 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
584 if (sa == NULL)
585 return NULL;
586
587 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
588 if (proto == 0)
589 return NULL;
590
591 /* sadb_address_len should be checked by caller */
592 addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
593 if (addr == NULL)
594 return NULL;
595
596 family = ((struct sockaddr *)(addr + 1))->sa_family;
597 switch (family) {
598 case AF_INET:
599 xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
600 break;
601 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
602 case AF_INET6:
603 xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
604 break;
605 #endif
606 default:
607 xaddr = NULL;
608 }
609
610 if (!xaddr)
611 return NULL;
612
613 return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
614 }
615
616 #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
617 static int
618 pfkey_sockaddr_size(sa_family_t family)
619 {
620 switch (family) {
621 case AF_INET:
622 return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
623 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
624 case AF_INET6:
625 return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
626 #endif
627 default:
628 return 0;
629 }
630 /* NOTREACHED */
631 }
632
633 static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
634 {
635 struct sk_buff *skb;
636 struct sadb_msg *hdr;
637 struct sadb_sa *sa;
638 struct sadb_lifetime *lifetime;
639 struct sadb_address *addr;
640 struct sadb_key *key;
641 struct sadb_x_sa2 *sa2;
642 struct sockaddr_in *sin;
643 struct sadb_x_sec_ctx *sec_ctx;
644 struct xfrm_sec_ctx *xfrm_ctx;
645 int ctx_size = 0;
646 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
647 struct sockaddr_in6 *sin6;
648 #endif
649 int size;
650 int auth_key_size = 0;
651 int encrypt_key_size = 0;
652 int sockaddr_size;
653 struct xfrm_encap_tmpl *natt = NULL;
654
655 /* address family check */
656 sockaddr_size = pfkey_sockaddr_size(x->props.family);
657 if (!sockaddr_size)
658 return ERR_PTR(-EINVAL);
659
660 /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
661 key(AE), (identity(SD),) (sensitivity)> */
662 size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
663 sizeof(struct sadb_lifetime) +
664 ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
665 ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
666 sizeof(struct sadb_address)*2 +
667 sockaddr_size*2 +
668 sizeof(struct sadb_x_sa2);
669
670 if ((xfrm_ctx = x->security)) {
671 ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
672 size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
673 }
674
675 /* identity & sensitivity */
676
677 if ((x->props.family == AF_INET &&
678 x->sel.saddr.a4 != x->props.saddr.a4)
679 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
680 || (x->props.family == AF_INET6 &&
681 memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
682 #endif
683 )
684 size += sizeof(struct sadb_address) + sockaddr_size;
685
686 if (add_keys) {
687 if (x->aalg && x->aalg->alg_key_len) {
688 auth_key_size =
689 PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
690 size += sizeof(struct sadb_key) + auth_key_size;
691 }
692 if (x->ealg && x->ealg->alg_key_len) {
693 encrypt_key_size =
694 PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
695 size += sizeof(struct sadb_key) + encrypt_key_size;
696 }
697 }
698 if (x->encap)
699 natt = x->encap;
700
701 if (natt && natt->encap_type) {
702 size += sizeof(struct sadb_x_nat_t_type);
703 size += sizeof(struct sadb_x_nat_t_port);
704 size += sizeof(struct sadb_x_nat_t_port);
705 }
706
707 skb = alloc_skb(size + 16, GFP_ATOMIC);
708 if (skb == NULL)
709 return ERR_PTR(-ENOBUFS);
710
711 /* call should fill header later */
712 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
713 memset(hdr, 0, size); /* XXX do we need this ? */
714 hdr->sadb_msg_len = size / sizeof(uint64_t);
715
716 /* sa */
717 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
718 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
719 sa->sadb_sa_exttype = SADB_EXT_SA;
720 sa->sadb_sa_spi = x->id.spi;
721 sa->sadb_sa_replay = x->props.replay_window;
722 switch (x->km.state) {
723 case XFRM_STATE_VALID:
724 sa->sadb_sa_state = x->km.dying ?
725 SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
726 break;
727 case XFRM_STATE_ACQ:
728 sa->sadb_sa_state = SADB_SASTATE_LARVAL;
729 break;
730 default:
731 sa->sadb_sa_state = SADB_SASTATE_DEAD;
732 break;
733 }
734 sa->sadb_sa_auth = 0;
735 if (x->aalg) {
736 struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
737 sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
738 }
739 sa->sadb_sa_encrypt = 0;
740 BUG_ON(x->ealg && x->calg);
741 if (x->ealg) {
742 struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
743 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
744 }
745 /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
746 if (x->calg) {
747 struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
748 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
749 }
750
751 sa->sadb_sa_flags = 0;
752 if (x->props.flags & XFRM_STATE_NOECN)
753 sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
754 if (x->props.flags & XFRM_STATE_DECAP_DSCP)
755 sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
756 if (x->props.flags & XFRM_STATE_NOPMTUDISC)
757 sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
758
759 /* hard time */
760 if (hsc & 2) {
761 lifetime = (struct sadb_lifetime *) skb_put(skb,
762 sizeof(struct sadb_lifetime));
763 lifetime->sadb_lifetime_len =
764 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
765 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
766 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
767 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
768 lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
769 lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
770 }
771 /* soft time */
772 if (hsc & 1) {
773 lifetime = (struct sadb_lifetime *) skb_put(skb,
774 sizeof(struct sadb_lifetime));
775 lifetime->sadb_lifetime_len =
776 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
777 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
778 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
779 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
780 lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
781 lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
782 }
783 /* current time */
784 lifetime = (struct sadb_lifetime *) skb_put(skb,
785 sizeof(struct sadb_lifetime));
786 lifetime->sadb_lifetime_len =
787 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
788 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
789 lifetime->sadb_lifetime_allocations = x->curlft.packets;
790 lifetime->sadb_lifetime_bytes = x->curlft.bytes;
791 lifetime->sadb_lifetime_addtime = x->curlft.add_time;
792 lifetime->sadb_lifetime_usetime = x->curlft.use_time;
793 /* src address */
794 addr = (struct sadb_address*) skb_put(skb,
795 sizeof(struct sadb_address)+sockaddr_size);
796 addr->sadb_address_len =
797 (sizeof(struct sadb_address)+sockaddr_size)/
798 sizeof(uint64_t);
799 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
800 /* "if the ports are non-zero, then the sadb_address_proto field,
801 normally zero, MUST be filled in with the transport
802 protocol's number." - RFC2367 */
803 addr->sadb_address_proto = 0;
804 addr->sadb_address_reserved = 0;
805 if (x->props.family == AF_INET) {
806 addr->sadb_address_prefixlen = 32;
807
808 sin = (struct sockaddr_in *) (addr + 1);
809 sin->sin_family = AF_INET;
810 sin->sin_addr.s_addr = x->props.saddr.a4;
811 sin->sin_port = 0;
812 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
813 }
814 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
815 else if (x->props.family == AF_INET6) {
816 addr->sadb_address_prefixlen = 128;
817
818 sin6 = (struct sockaddr_in6 *) (addr + 1);
819 sin6->sin6_family = AF_INET6;
820 sin6->sin6_port = 0;
821 sin6->sin6_flowinfo = 0;
822 memcpy(&sin6->sin6_addr, x->props.saddr.a6,
823 sizeof(struct in6_addr));
824 sin6->sin6_scope_id = 0;
825 }
826 #endif
827 else
828 BUG();
829
830 /* dst address */
831 addr = (struct sadb_address*) skb_put(skb,
832 sizeof(struct sadb_address)+sockaddr_size);
833 addr->sadb_address_len =
834 (sizeof(struct sadb_address)+sockaddr_size)/
835 sizeof(uint64_t);
836 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
837 addr->sadb_address_proto = 0;
838 addr->sadb_address_prefixlen = 32; /* XXX */
839 addr->sadb_address_reserved = 0;
840 if (x->props.family == AF_INET) {
841 sin = (struct sockaddr_in *) (addr + 1);
842 sin->sin_family = AF_INET;
843 sin->sin_addr.s_addr = x->id.daddr.a4;
844 sin->sin_port = 0;
845 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
846
847 if (x->sel.saddr.a4 != x->props.saddr.a4) {
848 addr = (struct sadb_address*) skb_put(skb,
849 sizeof(struct sadb_address)+sockaddr_size);
850 addr->sadb_address_len =
851 (sizeof(struct sadb_address)+sockaddr_size)/
852 sizeof(uint64_t);
853 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
854 addr->sadb_address_proto =
855 pfkey_proto_from_xfrm(x->sel.proto);
856 addr->sadb_address_prefixlen = x->sel.prefixlen_s;
857 addr->sadb_address_reserved = 0;
858
859 sin = (struct sockaddr_in *) (addr + 1);
860 sin->sin_family = AF_INET;
861 sin->sin_addr.s_addr = x->sel.saddr.a4;
862 sin->sin_port = x->sel.sport;
863 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
864 }
865 }
866 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
867 else if (x->props.family == AF_INET6) {
868 addr->sadb_address_prefixlen = 128;
869
870 sin6 = (struct sockaddr_in6 *) (addr + 1);
871 sin6->sin6_family = AF_INET6;
872 sin6->sin6_port = 0;
873 sin6->sin6_flowinfo = 0;
874 memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
875 sin6->sin6_scope_id = 0;
876
877 if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
878 sizeof(struct in6_addr))) {
879 addr = (struct sadb_address *) skb_put(skb,
880 sizeof(struct sadb_address)+sockaddr_size);
881 addr->sadb_address_len =
882 (sizeof(struct sadb_address)+sockaddr_size)/
883 sizeof(uint64_t);
884 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
885 addr->sadb_address_proto =
886 pfkey_proto_from_xfrm(x->sel.proto);
887 addr->sadb_address_prefixlen = x->sel.prefixlen_s;
888 addr->sadb_address_reserved = 0;
889
890 sin6 = (struct sockaddr_in6 *) (addr + 1);
891 sin6->sin6_family = AF_INET6;
892 sin6->sin6_port = x->sel.sport;
893 sin6->sin6_flowinfo = 0;
894 memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
895 sizeof(struct in6_addr));
896 sin6->sin6_scope_id = 0;
897 }
898 }
899 #endif
900 else
901 BUG();
902
903 /* auth key */
904 if (add_keys && auth_key_size) {
905 key = (struct sadb_key *) skb_put(skb,
906 sizeof(struct sadb_key)+auth_key_size);
907 key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
908 sizeof(uint64_t);
909 key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
910 key->sadb_key_bits = x->aalg->alg_key_len;
911 key->sadb_key_reserved = 0;
912 memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
913 }
914 /* encrypt key */
915 if (add_keys && encrypt_key_size) {
916 key = (struct sadb_key *) skb_put(skb,
917 sizeof(struct sadb_key)+encrypt_key_size);
918 key->sadb_key_len = (sizeof(struct sadb_key) +
919 encrypt_key_size) / sizeof(uint64_t);
920 key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
921 key->sadb_key_bits = x->ealg->alg_key_len;
922 key->sadb_key_reserved = 0;
923 memcpy(key + 1, x->ealg->alg_key,
924 (x->ealg->alg_key_len+7)/8);
925 }
926
927 /* sa */
928 sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
929 sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
930 sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
931 sa2->sadb_x_sa2_mode = x->props.mode + 1;
932 sa2->sadb_x_sa2_reserved1 = 0;
933 sa2->sadb_x_sa2_reserved2 = 0;
934 sa2->sadb_x_sa2_sequence = 0;
935 sa2->sadb_x_sa2_reqid = x->props.reqid;
936
937 if (natt && natt->encap_type) {
938 struct sadb_x_nat_t_type *n_type;
939 struct sadb_x_nat_t_port *n_port;
940
941 /* type */
942 n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
943 n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
944 n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
945 n_type->sadb_x_nat_t_type_type = natt->encap_type;
946 n_type->sadb_x_nat_t_type_reserved[0] = 0;
947 n_type->sadb_x_nat_t_type_reserved[1] = 0;
948 n_type->sadb_x_nat_t_type_reserved[2] = 0;
949
950 /* source port */
951 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
952 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
953 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
954 n_port->sadb_x_nat_t_port_port = natt->encap_sport;
955 n_port->sadb_x_nat_t_port_reserved = 0;
956
957 /* dest port */
958 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
959 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
960 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
961 n_port->sadb_x_nat_t_port_port = natt->encap_dport;
962 n_port->sadb_x_nat_t_port_reserved = 0;
963 }
964
965 /* security context */
966 if (xfrm_ctx) {
967 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
968 sizeof(struct sadb_x_sec_ctx) + ctx_size);
969 sec_ctx->sadb_x_sec_len =
970 (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
971 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
972 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
973 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
974 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
975 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
976 xfrm_ctx->ctx_len);
977 }
978
979 return skb;
980 }
981
982 static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
983 void **ext_hdrs)
984 {
985 struct xfrm_state *x;
986 struct sadb_lifetime *lifetime;
987 struct sadb_sa *sa;
988 struct sadb_key *key;
989 struct sadb_x_sec_ctx *sec_ctx;
990 uint16_t proto;
991 int err;
992
993
994 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
995 if (!sa ||
996 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
997 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
998 return ERR_PTR(-EINVAL);
999 if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
1000 !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
1001 return ERR_PTR(-EINVAL);
1002 if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
1003 !ext_hdrs[SADB_EXT_KEY_AUTH-1])
1004 return ERR_PTR(-EINVAL);
1005 if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
1006 !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
1007 return ERR_PTR(-EINVAL);
1008
1009 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1010 if (proto == 0)
1011 return ERR_PTR(-EINVAL);
1012
1013 /* default error is no buffer space */
1014 err = -ENOBUFS;
1015
1016 /* RFC2367:
1017
1018 Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
1019 SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
1020 sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
1021 Therefore, the sadb_sa_state field of all submitted SAs MUST be
1022 SADB_SASTATE_MATURE and the kernel MUST return an error if this is
1023 not true.
1024
1025 However, KAME setkey always uses SADB_SASTATE_LARVAL.
1026 Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
1027 */
1028 if (sa->sadb_sa_auth > SADB_AALG_MAX ||
1029 (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
1030 sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
1031 sa->sadb_sa_encrypt > SADB_EALG_MAX)
1032 return ERR_PTR(-EINVAL);
1033 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
1034 if (key != NULL &&
1035 sa->sadb_sa_auth != SADB_X_AALG_NULL &&
1036 ((key->sadb_key_bits+7) / 8 == 0 ||
1037 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
1038 return ERR_PTR(-EINVAL);
1039 key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
1040 if (key != NULL &&
1041 sa->sadb_sa_encrypt != SADB_EALG_NULL &&
1042 ((key->sadb_key_bits+7) / 8 == 0 ||
1043 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
1044 return ERR_PTR(-EINVAL);
1045
1046 x = xfrm_state_alloc();
1047 if (x == NULL)
1048 return ERR_PTR(-ENOBUFS);
1049
1050 x->id.proto = proto;
1051 x->id.spi = sa->sadb_sa_spi;
1052 x->props.replay_window = sa->sadb_sa_replay;
1053 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
1054 x->props.flags |= XFRM_STATE_NOECN;
1055 if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
1056 x->props.flags |= XFRM_STATE_DECAP_DSCP;
1057 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
1058 x->props.flags |= XFRM_STATE_NOPMTUDISC;
1059
1060 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
1061 if (lifetime != NULL) {
1062 x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
1063 x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
1064 x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
1065 x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
1066 }
1067 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
1068 if (lifetime != NULL) {
1069 x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
1070 x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
1071 x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
1072 x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
1073 }
1074
1075 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
1076 if (sec_ctx != NULL) {
1077 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
1078
1079 if (!uctx)
1080 goto out;
1081
1082 err = security_xfrm_state_alloc(x, uctx);
1083 kfree(uctx);
1084
1085 if (err)
1086 goto out;
1087 }
1088
1089 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
1090 if (sa->sadb_sa_auth) {
1091 int keysize = 0;
1092 struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
1093 if (!a) {
1094 err = -ENOSYS;
1095 goto out;
1096 }
1097 if (key)
1098 keysize = (key->sadb_key_bits + 7) / 8;
1099 x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
1100 if (!x->aalg)
1101 goto out;
1102 strcpy(x->aalg->alg_name, a->name);
1103 x->aalg->alg_key_len = 0;
1104 if (key) {
1105 x->aalg->alg_key_len = key->sadb_key_bits;
1106 memcpy(x->aalg->alg_key, key+1, keysize);
1107 }
1108 x->props.aalgo = sa->sadb_sa_auth;
1109 /* x->algo.flags = sa->sadb_sa_flags; */
1110 }
1111 if (sa->sadb_sa_encrypt) {
1112 if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
1113 struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
1114 if (!a) {
1115 err = -ENOSYS;
1116 goto out;
1117 }
1118 x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
1119 if (!x->calg)
1120 goto out;
1121 strcpy(x->calg->alg_name, a->name);
1122 x->props.calgo = sa->sadb_sa_encrypt;
1123 } else {
1124 int keysize = 0;
1125 struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
1126 if (!a) {
1127 err = -ENOSYS;
1128 goto out;
1129 }
1130 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
1131 if (key)
1132 keysize = (key->sadb_key_bits + 7) / 8;
1133 x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
1134 if (!x->ealg)
1135 goto out;
1136 strcpy(x->ealg->alg_name, a->name);
1137 x->ealg->alg_key_len = 0;
1138 if (key) {
1139 x->ealg->alg_key_len = key->sadb_key_bits;
1140 memcpy(x->ealg->alg_key, key+1, keysize);
1141 }
1142 x->props.ealgo = sa->sadb_sa_encrypt;
1143 }
1144 }
1145 /* x->algo.flags = sa->sadb_sa_flags; */
1146
1147 x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1148 &x->props.saddr);
1149 if (!x->props.family) {
1150 err = -EAFNOSUPPORT;
1151 goto out;
1152 }
1153 pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
1154 &x->id.daddr);
1155
1156 if (ext_hdrs[SADB_X_EXT_SA2-1]) {
1157 struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
1158 x->props.mode = sa2->sadb_x_sa2_mode;
1159 if (x->props.mode)
1160 x->props.mode--;
1161 x->props.reqid = sa2->sadb_x_sa2_reqid;
1162 }
1163
1164 if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
1165 struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
1166
1167 /* Nobody uses this, but we try. */
1168 x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
1169 x->sel.prefixlen_s = addr->sadb_address_prefixlen;
1170 }
1171
1172 if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
1173 struct sadb_x_nat_t_type* n_type;
1174 struct xfrm_encap_tmpl *natt;
1175
1176 x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
1177 if (!x->encap)
1178 goto out;
1179
1180 natt = x->encap;
1181 n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
1182 natt->encap_type = n_type->sadb_x_nat_t_type_type;
1183
1184 if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
1185 struct sadb_x_nat_t_port* n_port =
1186 ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
1187 natt->encap_sport = n_port->sadb_x_nat_t_port_port;
1188 }
1189 if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
1190 struct sadb_x_nat_t_port* n_port =
1191 ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
1192 natt->encap_dport = n_port->sadb_x_nat_t_port_port;
1193 }
1194 }
1195
1196 err = xfrm_init_state(x);
1197 if (err)
1198 goto out;
1199
1200 x->km.seq = hdr->sadb_msg_seq;
1201 return x;
1202
1203 out:
1204 x->km.state = XFRM_STATE_DEAD;
1205 xfrm_state_put(x);
1206 return ERR_PTR(err);
1207 }
1208
1209 static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1210 {
1211 return -EOPNOTSUPP;
1212 }
1213
1214 static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1215 {
1216 struct sk_buff *resp_skb;
1217 struct sadb_x_sa2 *sa2;
1218 struct sadb_address *saddr, *daddr;
1219 struct sadb_msg *out_hdr;
1220 struct xfrm_state *x = NULL;
1221 u8 mode;
1222 u32 reqid;
1223 u8 proto;
1224 unsigned short family;
1225 xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
1226
1227 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1228 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1229 return -EINVAL;
1230
1231 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1232 if (proto == 0)
1233 return -EINVAL;
1234
1235 if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
1236 mode = sa2->sadb_x_sa2_mode - 1;
1237 reqid = sa2->sadb_x_sa2_reqid;
1238 } else {
1239 mode = 0;
1240 reqid = 0;
1241 }
1242
1243 saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
1244 daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
1245
1246 family = ((struct sockaddr *)(saddr + 1))->sa_family;
1247 switch (family) {
1248 case AF_INET:
1249 xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
1250 xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
1251 break;
1252 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1253 case AF_INET6:
1254 xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
1255 xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
1256 break;
1257 #endif
1258 }
1259
1260 if (hdr->sadb_msg_seq) {
1261 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
1262 if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
1263 xfrm_state_put(x);
1264 x = NULL;
1265 }
1266 }
1267
1268 if (!x)
1269 x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
1270
1271 if (x == NULL)
1272 return -ENOENT;
1273
1274 resp_skb = ERR_PTR(-ENOENT);
1275
1276 spin_lock_bh(&x->lock);
1277 if (x->km.state != XFRM_STATE_DEAD) {
1278 struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
1279 u32 min_spi, max_spi;
1280
1281 if (range != NULL) {
1282 min_spi = range->sadb_spirange_min;
1283 max_spi = range->sadb_spirange_max;
1284 } else {
1285 min_spi = 0x100;
1286 max_spi = 0x0fffffff;
1287 }
1288 xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
1289 if (x->id.spi)
1290 resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
1291 }
1292 spin_unlock_bh(&x->lock);
1293
1294 if (IS_ERR(resp_skb)) {
1295 xfrm_state_put(x);
1296 return PTR_ERR(resp_skb);
1297 }
1298
1299 out_hdr = (struct sadb_msg *) resp_skb->data;
1300 out_hdr->sadb_msg_version = hdr->sadb_msg_version;
1301 out_hdr->sadb_msg_type = SADB_GETSPI;
1302 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
1303 out_hdr->sadb_msg_errno = 0;
1304 out_hdr->sadb_msg_reserved = 0;
1305 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
1306 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
1307
1308 xfrm_state_put(x);
1309
1310 pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
1311
1312 return 0;
1313 }
1314
1315 static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1316 {
1317 struct xfrm_state *x;
1318
1319 if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
1320 return -EOPNOTSUPP;
1321
1322 if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
1323 return 0;
1324
1325 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
1326 if (x == NULL)
1327 return 0;
1328
1329 spin_lock_bh(&x->lock);
1330 if (x->km.state == XFRM_STATE_ACQ) {
1331 x->km.state = XFRM_STATE_ERROR;
1332 wake_up(&km_waitq);
1333 }
1334 spin_unlock_bh(&x->lock);
1335 xfrm_state_put(x);
1336 return 0;
1337 }
1338
1339 static inline int event2poltype(int event)
1340 {
1341 switch (event) {
1342 case XFRM_MSG_DELPOLICY:
1343 return SADB_X_SPDDELETE;
1344 case XFRM_MSG_NEWPOLICY:
1345 return SADB_X_SPDADD;
1346 case XFRM_MSG_UPDPOLICY:
1347 return SADB_X_SPDUPDATE;
1348 case XFRM_MSG_POLEXPIRE:
1349 // return SADB_X_SPDEXPIRE;
1350 default:
1351 printk("pfkey: Unknown policy event %d\n", event);
1352 break;
1353 }
1354
1355 return 0;
1356 }
1357
1358 static inline int event2keytype(int event)
1359 {
1360 switch (event) {
1361 case XFRM_MSG_DELSA:
1362 return SADB_DELETE;
1363 case XFRM_MSG_NEWSA:
1364 return SADB_ADD;
1365 case XFRM_MSG_UPDSA:
1366 return SADB_UPDATE;
1367 case XFRM_MSG_EXPIRE:
1368 return SADB_EXPIRE;
1369 default:
1370 printk("pfkey: Unknown SA event %d\n", event);
1371 break;
1372 }
1373
1374 return 0;
1375 }
1376
1377 /* ADD/UPD/DEL */
1378 static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
1379 {
1380 struct sk_buff *skb;
1381 struct sadb_msg *hdr;
1382 int hsc = 3;
1383
1384 if (c->event == XFRM_MSG_DELSA)
1385 hsc = 0;
1386
1387 skb = pfkey_xfrm_state2msg(x, 0, hsc);
1388
1389 if (IS_ERR(skb))
1390 return PTR_ERR(skb);
1391
1392 hdr = (struct sadb_msg *) skb->data;
1393 hdr->sadb_msg_version = PF_KEY_V2;
1394 hdr->sadb_msg_type = event2keytype(c->event);
1395 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
1396 hdr->sadb_msg_errno = 0;
1397 hdr->sadb_msg_reserved = 0;
1398 hdr->sadb_msg_seq = c->seq;
1399 hdr->sadb_msg_pid = c->pid;
1400
1401 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
1402
1403 return 0;
1404 }
1405
1406 static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1407 {
1408 struct xfrm_state *x;
1409 int err;
1410 struct km_event c;
1411
1412 xfrm_probe_algs();
1413
1414 x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
1415 if (IS_ERR(x))
1416 return PTR_ERR(x);
1417
1418 xfrm_state_hold(x);
1419 if (hdr->sadb_msg_type == SADB_ADD)
1420 err = xfrm_state_add(x);
1421 else
1422 err = xfrm_state_update(x);
1423
1424 if (err < 0) {
1425 x->km.state = XFRM_STATE_DEAD;
1426 __xfrm_state_put(x);
1427 goto out;
1428 }
1429
1430 if (hdr->sadb_msg_type == SADB_ADD)
1431 c.event = XFRM_MSG_NEWSA;
1432 else
1433 c.event = XFRM_MSG_UPDSA;
1434 c.seq = hdr->sadb_msg_seq;
1435 c.pid = hdr->sadb_msg_pid;
1436 km_state_notify(x, &c);
1437 out:
1438 xfrm_state_put(x);
1439 return err;
1440 }
1441
1442 static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1443 {
1444 struct xfrm_state *x;
1445 struct km_event c;
1446 int err;
1447
1448 if (!ext_hdrs[SADB_EXT_SA-1] ||
1449 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1450 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1451 return -EINVAL;
1452
1453 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
1454 if (x == NULL)
1455 return -ESRCH;
1456
1457 if ((err = security_xfrm_state_delete(x)))
1458 goto out;
1459
1460 if (xfrm_state_kern(x)) {
1461 err = -EPERM;
1462 goto out;
1463 }
1464
1465 err = xfrm_state_delete(x);
1466 if (err < 0)
1467 goto out;
1468
1469 c.seq = hdr->sadb_msg_seq;
1470 c.pid = hdr->sadb_msg_pid;
1471 c.event = XFRM_MSG_DELSA;
1472 km_state_notify(x, &c);
1473 out:
1474 xfrm_state_put(x);
1475
1476 return err;
1477 }
1478
1479 static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1480 {
1481 __u8 proto;
1482 struct sk_buff *out_skb;
1483 struct sadb_msg *out_hdr;
1484 struct xfrm_state *x;
1485
1486 if (!ext_hdrs[SADB_EXT_SA-1] ||
1487 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1488 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1489 return -EINVAL;
1490
1491 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
1492 if (x == NULL)
1493 return -ESRCH;
1494
1495 out_skb = pfkey_xfrm_state2msg(x, 1, 3);
1496 proto = x->id.proto;
1497 xfrm_state_put(x);
1498 if (IS_ERR(out_skb))
1499 return PTR_ERR(out_skb);
1500
1501 out_hdr = (struct sadb_msg *) out_skb->data;
1502 out_hdr->sadb_msg_version = hdr->sadb_msg_version;
1503 out_hdr->sadb_msg_type = SADB_DUMP;
1504 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
1505 out_hdr->sadb_msg_errno = 0;
1506 out_hdr->sadb_msg_reserved = 0;
1507 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
1508 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
1509 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
1510
1511 return 0;
1512 }
1513
1514 static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
1515 gfp_t allocation)
1516 {
1517 struct sk_buff *skb;
1518 struct sadb_msg *hdr;
1519 int len, auth_len, enc_len, i;
1520
1521 auth_len = xfrm_count_auth_supported();
1522 if (auth_len) {
1523 auth_len *= sizeof(struct sadb_alg);
1524 auth_len += sizeof(struct sadb_supported);
1525 }
1526
1527 enc_len = xfrm_count_enc_supported();
1528 if (enc_len) {
1529 enc_len *= sizeof(struct sadb_alg);
1530 enc_len += sizeof(struct sadb_supported);
1531 }
1532
1533 len = enc_len + auth_len + sizeof(struct sadb_msg);
1534
1535 skb = alloc_skb(len + 16, allocation);
1536 if (!skb)
1537 goto out_put_algs;
1538
1539 hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
1540 pfkey_hdr_dup(hdr, orig);
1541 hdr->sadb_msg_errno = 0;
1542 hdr->sadb_msg_len = len / sizeof(uint64_t);
1543
1544 if (auth_len) {
1545 struct sadb_supported *sp;
1546 struct sadb_alg *ap;
1547
1548 sp = (struct sadb_supported *) skb_put(skb, auth_len);
1549 ap = (struct sadb_alg *) (sp + 1);
1550
1551 sp->sadb_supported_len = auth_len / sizeof(uint64_t);
1552 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
1553
1554 for (i = 0; ; i++) {
1555 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
1556 if (!aalg)
1557 break;
1558 if (aalg->available)
1559 *ap++ = aalg->desc;
1560 }
1561 }
1562
1563 if (enc_len) {
1564 struct sadb_supported *sp;
1565 struct sadb_alg *ap;
1566
1567 sp = (struct sadb_supported *) skb_put(skb, enc_len);
1568 ap = (struct sadb_alg *) (sp + 1);
1569
1570 sp->sadb_supported_len = enc_len / sizeof(uint64_t);
1571 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
1572
1573 for (i = 0; ; i++) {
1574 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
1575 if (!ealg)
1576 break;
1577 if (ealg->available)
1578 *ap++ = ealg->desc;
1579 }
1580 }
1581
1582 out_put_algs:
1583 return skb;
1584 }
1585
1586 static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1587 {
1588 struct pfkey_sock *pfk = pfkey_sk(sk);
1589 struct sk_buff *supp_skb;
1590
1591 if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
1592 return -EINVAL;
1593
1594 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
1595 if (pfk->registered&(1<<hdr->sadb_msg_satype))
1596 return -EEXIST;
1597 pfk->registered |= (1<<hdr->sadb_msg_satype);
1598 }
1599
1600 xfrm_probe_algs();
1601
1602 supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
1603 if (!supp_skb) {
1604 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
1605 pfk->registered &= ~(1<<hdr->sadb_msg_satype);
1606
1607 return -ENOBUFS;
1608 }
1609
1610 pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
1611
1612 return 0;
1613 }
1614
1615 static int key_notify_sa_flush(struct km_event *c)
1616 {
1617 struct sk_buff *skb;
1618 struct sadb_msg *hdr;
1619
1620 skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
1621 if (!skb)
1622 return -ENOBUFS;
1623 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
1624 hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
1625 hdr->sadb_msg_type = SADB_FLUSH;
1626 hdr->sadb_msg_seq = c->seq;
1627 hdr->sadb_msg_pid = c->pid;
1628 hdr->sadb_msg_version = PF_KEY_V2;
1629 hdr->sadb_msg_errno = (uint8_t) 0;
1630 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
1631
1632 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
1633
1634 return 0;
1635 }
1636
1637 static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1638 {
1639 unsigned proto;
1640 struct km_event c;
1641
1642 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1643 if (proto == 0)
1644 return -EINVAL;
1645
1646 xfrm_state_flush(proto);
1647 c.data.proto = proto;
1648 c.seq = hdr->sadb_msg_seq;
1649 c.pid = hdr->sadb_msg_pid;
1650 c.event = XFRM_MSG_FLUSHSA;
1651 km_state_notify(NULL, &c);
1652
1653 return 0;
1654 }
1655
1656 struct pfkey_dump_data
1657 {
1658 struct sk_buff *skb;
1659 struct sadb_msg *hdr;
1660 struct sock *sk;
1661 };
1662
1663 static int dump_sa(struct xfrm_state *x, int count, void *ptr)
1664 {
1665 struct pfkey_dump_data *data = ptr;
1666 struct sk_buff *out_skb;
1667 struct sadb_msg *out_hdr;
1668
1669 out_skb = pfkey_xfrm_state2msg(x, 1, 3);
1670 if (IS_ERR(out_skb))
1671 return PTR_ERR(out_skb);
1672
1673 out_hdr = (struct sadb_msg *) out_skb->data;
1674 out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
1675 out_hdr->sadb_msg_type = SADB_DUMP;
1676 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
1677 out_hdr->sadb_msg_errno = 0;
1678 out_hdr->sadb_msg_reserved = 0;
1679 out_hdr->sadb_msg_seq = count;
1680 out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
1681 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
1682 return 0;
1683 }
1684
1685 static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1686 {
1687 u8 proto;
1688 struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
1689
1690 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1691 if (proto == 0)
1692 return -EINVAL;
1693
1694 return xfrm_state_walk(proto, dump_sa, &data);
1695 }
1696
1697 static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1698 {
1699 struct pfkey_sock *pfk = pfkey_sk(sk);
1700 int satype = hdr->sadb_msg_satype;
1701
1702 if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
1703 /* XXX we mangle packet... */
1704 hdr->sadb_msg_errno = 0;
1705 if (satype != 0 && satype != 1)
1706 return -EINVAL;
1707 pfk->promisc = satype;
1708 }
1709 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
1710 return 0;
1711 }
1712
1713 static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
1714 {
1715 int i;
1716 u32 reqid = *(u32*)ptr;
1717
1718 for (i=0; i<xp->xfrm_nr; i++) {
1719 if (xp->xfrm_vec[i].reqid == reqid)
1720 return -EEXIST;
1721 }
1722 return 0;
1723 }
1724
1725 static u32 gen_reqid(void)
1726 {
1727 u32 start;
1728 static u32 reqid = IPSEC_MANUAL_REQID_MAX;
1729
1730 start = reqid;
1731 do {
1732 ++reqid;
1733 if (reqid == 0)
1734 reqid = IPSEC_MANUAL_REQID_MAX+1;
1735 if (xfrm_policy_walk(check_reqid, (void*)&reqid) != -EEXIST)
1736 return reqid;
1737 } while (reqid != start);
1738 return 0;
1739 }
1740
1741 static int
1742 parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
1743 {
1744 struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
1745 struct sockaddr_in *sin;
1746 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1747 struct sockaddr_in6 *sin6;
1748 #endif
1749
1750 if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
1751 return -ELOOP;
1752
1753 if (rq->sadb_x_ipsecrequest_mode == 0)
1754 return -EINVAL;
1755
1756 t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
1757 t->mode = rq->sadb_x_ipsecrequest_mode-1;
1758 if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
1759 t->optional = 1;
1760 else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
1761 t->reqid = rq->sadb_x_ipsecrequest_reqid;
1762 if (t->reqid > IPSEC_MANUAL_REQID_MAX)
1763 t->reqid = 0;
1764 if (!t->reqid && !(t->reqid = gen_reqid()))
1765 return -ENOBUFS;
1766 }
1767
1768 /* addresses present only in tunnel mode */
1769 if (t->mode) {
1770 switch (xp->family) {
1771 case AF_INET:
1772 sin = (void*)(rq+1);
1773 if (sin->sin_family != AF_INET)
1774 return -EINVAL;
1775 t->saddr.a4 = sin->sin_addr.s_addr;
1776 sin++;
1777 if (sin->sin_family != AF_INET)
1778 return -EINVAL;
1779 t->id.daddr.a4 = sin->sin_addr.s_addr;
1780 break;
1781 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1782 case AF_INET6:
1783 sin6 = (void *)(rq+1);
1784 if (sin6->sin6_family != AF_INET6)
1785 return -EINVAL;
1786 memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
1787 sin6++;
1788 if (sin6->sin6_family != AF_INET6)
1789 return -EINVAL;
1790 memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
1791 break;
1792 #endif
1793 default:
1794 return -EINVAL;
1795 }
1796 }
1797 /* No way to set this via kame pfkey */
1798 t->aalgos = t->ealgos = t->calgos = ~0;
1799 xp->xfrm_nr++;
1800 return 0;
1801 }
1802
1803 static int
1804 parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
1805 {
1806 int err;
1807 int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
1808 struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
1809
1810 while (len >= sizeof(struct sadb_x_ipsecrequest)) {
1811 if ((err = parse_ipsecrequest(xp, rq)) < 0)
1812 return err;
1813 len -= rq->sadb_x_ipsecrequest_len;
1814 rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
1815 }
1816 return 0;
1817 }
1818
1819 static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
1820 {
1821 struct xfrm_sec_ctx *xfrm_ctx = xp->security;
1822
1823 if (xfrm_ctx) {
1824 int len = sizeof(struct sadb_x_sec_ctx);
1825 len += xfrm_ctx->ctx_len;
1826 return PFKEY_ALIGN8(len);
1827 }
1828 return 0;
1829 }
1830
1831 static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
1832 {
1833 int sockaddr_size = pfkey_sockaddr_size(xp->family);
1834 int socklen = (xp->family == AF_INET ?
1835 sizeof(struct sockaddr_in) :
1836 sizeof(struct sockaddr_in6));
1837
1838 return sizeof(struct sadb_msg) +
1839 (sizeof(struct sadb_lifetime) * 3) +
1840 (sizeof(struct sadb_address) * 2) +
1841 (sockaddr_size * 2) +
1842 sizeof(struct sadb_x_policy) +
1843 (xp->xfrm_nr * (sizeof(struct sadb_x_ipsecrequest) +
1844 (socklen * 2))) +
1845 pfkey_xfrm_policy2sec_ctx_size(xp);
1846 }
1847
1848 static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
1849 {
1850 struct sk_buff *skb;
1851 int size;
1852
1853 size = pfkey_xfrm_policy2msg_size(xp);
1854
1855 skb = alloc_skb(size + 16, GFP_ATOMIC);
1856 if (skb == NULL)
1857 return ERR_PTR(-ENOBUFS);
1858
1859 return skb;
1860 }
1861
1862 static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
1863 {
1864 struct sadb_msg *hdr;
1865 struct sadb_address *addr;
1866 struct sadb_lifetime *lifetime;
1867 struct sadb_x_policy *pol;
1868 struct sockaddr_in *sin;
1869 struct sadb_x_sec_ctx *sec_ctx;
1870 struct xfrm_sec_ctx *xfrm_ctx;
1871 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1872 struct sockaddr_in6 *sin6;
1873 #endif
1874 int i;
1875 int size;
1876 int sockaddr_size = pfkey_sockaddr_size(xp->family);
1877 int socklen = (xp->family == AF_INET ?
1878 sizeof(struct sockaddr_in) :
1879 sizeof(struct sockaddr_in6));
1880
1881 size = pfkey_xfrm_policy2msg_size(xp);
1882
1883 /* call should fill header later */
1884 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
1885 memset(hdr, 0, size); /* XXX do we need this ? */
1886
1887 /* src address */
1888 addr = (struct sadb_address*) skb_put(skb,
1889 sizeof(struct sadb_address)+sockaddr_size);
1890 addr->sadb_address_len =
1891 (sizeof(struct sadb_address)+sockaddr_size)/
1892 sizeof(uint64_t);
1893 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
1894 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
1895 addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
1896 addr->sadb_address_reserved = 0;
1897 /* src address */
1898 if (xp->family == AF_INET) {
1899 sin = (struct sockaddr_in *) (addr + 1);
1900 sin->sin_family = AF_INET;
1901 sin->sin_addr.s_addr = xp->selector.saddr.a4;
1902 sin->sin_port = xp->selector.sport;
1903 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1904 }
1905 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1906 else if (xp->family == AF_INET6) {
1907 sin6 = (struct sockaddr_in6 *) (addr + 1);
1908 sin6->sin6_family = AF_INET6;
1909 sin6->sin6_port = xp->selector.sport;
1910 sin6->sin6_flowinfo = 0;
1911 memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
1912 sizeof(struct in6_addr));
1913 sin6->sin6_scope_id = 0;
1914 }
1915 #endif
1916 else
1917 BUG();
1918
1919 /* dst address */
1920 addr = (struct sadb_address*) skb_put(skb,
1921 sizeof(struct sadb_address)+sockaddr_size);
1922 addr->sadb_address_len =
1923 (sizeof(struct sadb_address)+sockaddr_size)/
1924 sizeof(uint64_t);
1925 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
1926 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
1927 addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
1928 addr->sadb_address_reserved = 0;
1929 if (xp->family == AF_INET) {
1930 sin = (struct sockaddr_in *) (addr + 1);
1931 sin->sin_family = AF_INET;
1932 sin->sin_addr.s_addr = xp->selector.daddr.a4;
1933 sin->sin_port = xp->selector.dport;
1934 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1935 }
1936 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1937 else if (xp->family == AF_INET6) {
1938 sin6 = (struct sockaddr_in6 *) (addr + 1);
1939 sin6->sin6_family = AF_INET6;
1940 sin6->sin6_port = xp->selector.dport;
1941 sin6->sin6_flowinfo = 0;
1942 memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
1943 sizeof(struct in6_addr));
1944 sin6->sin6_scope_id = 0;
1945 }
1946 #endif
1947 else
1948 BUG();
1949
1950 /* hard time */
1951 lifetime = (struct sadb_lifetime *) skb_put(skb,
1952 sizeof(struct sadb_lifetime));
1953 lifetime->sadb_lifetime_len =
1954 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
1955 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
1956 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
1957 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
1958 lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
1959 lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
1960 /* soft time */
1961 lifetime = (struct sadb_lifetime *) skb_put(skb,
1962 sizeof(struct sadb_lifetime));
1963 lifetime->sadb_lifetime_len =
1964 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
1965 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
1966 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
1967 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
1968 lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
1969 lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
1970 /* current time */
1971 lifetime = (struct sadb_lifetime *) skb_put(skb,
1972 sizeof(struct sadb_lifetime));
1973 lifetime->sadb_lifetime_len =
1974 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
1975 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
1976 lifetime->sadb_lifetime_allocations = xp->curlft.packets;
1977 lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
1978 lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
1979 lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
1980
1981 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
1982 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
1983 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1984 pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
1985 if (xp->action == XFRM_POLICY_ALLOW) {
1986 if (xp->xfrm_nr)
1987 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
1988 else
1989 pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
1990 }
1991 pol->sadb_x_policy_dir = dir+1;
1992 pol->sadb_x_policy_id = xp->index;
1993 pol->sadb_x_policy_priority = xp->priority;
1994
1995 for (i=0; i<xp->xfrm_nr; i++) {
1996 struct sadb_x_ipsecrequest *rq;
1997 struct xfrm_tmpl *t = xp->xfrm_vec + i;
1998 int req_size;
1999
2000 req_size = sizeof(struct sadb_x_ipsecrequest);
2001 if (t->mode)
2002 req_size += 2*socklen;
2003 else
2004 size -= 2*socklen;
2005 rq = (void*)skb_put(skb, req_size);
2006 pol->sadb_x_policy_len += req_size/8;
2007 memset(rq, 0, sizeof(*rq));
2008 rq->sadb_x_ipsecrequest_len = req_size;
2009 rq->sadb_x_ipsecrequest_proto = t->id.proto;
2010 rq->sadb_x_ipsecrequest_mode = t->mode+1;
2011 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
2012 if (t->reqid)
2013 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
2014 if (t->optional)
2015 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
2016 rq->sadb_x_ipsecrequest_reqid = t->reqid;
2017 if (t->mode) {
2018 switch (xp->family) {
2019 case AF_INET:
2020 sin = (void*)(rq+1);
2021 sin->sin_family = AF_INET;
2022 sin->sin_addr.s_addr = t->saddr.a4;
2023 sin->sin_port = 0;
2024 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2025 sin++;
2026 sin->sin_family = AF_INET;
2027 sin->sin_addr.s_addr = t->id.daddr.a4;
2028 sin->sin_port = 0;
2029 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2030 break;
2031 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2032 case AF_INET6:
2033 sin6 = (void*)(rq+1);
2034 sin6->sin6_family = AF_INET6;
2035 sin6->sin6_port = 0;
2036 sin6->sin6_flowinfo = 0;
2037 memcpy(&sin6->sin6_addr, t->saddr.a6,
2038 sizeof(struct in6_addr));
2039 sin6->sin6_scope_id = 0;
2040
2041 sin6++;
2042 sin6->sin6_family = AF_INET6;
2043 sin6->sin6_port = 0;
2044 sin6->sin6_flowinfo = 0;
2045 memcpy(&sin6->sin6_addr, t->id.daddr.a6,
2046 sizeof(struct in6_addr));
2047 sin6->sin6_scope_id = 0;
2048 break;
2049 #endif
2050 default:
2051 break;
2052 }
2053 }
2054 }
2055
2056 /* security context */
2057 if ((xfrm_ctx = xp->security)) {
2058 int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
2059
2060 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
2061 sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
2062 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
2063 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
2064 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
2065 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
2066 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
2067 xfrm_ctx->ctx_len);
2068 }
2069
2070 hdr->sadb_msg_len = size / sizeof(uint64_t);
2071 hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
2072 }
2073
2074 static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
2075 {
2076 struct sk_buff *out_skb;
2077 struct sadb_msg *out_hdr;
2078 int err;
2079
2080 out_skb = pfkey_xfrm_policy2msg_prep(xp);
2081 if (IS_ERR(out_skb)) {
2082 err = PTR_ERR(out_skb);
2083 goto out;
2084 }
2085 pfkey_xfrm_policy2msg(out_skb, xp, dir);
2086
2087 out_hdr = (struct sadb_msg *) out_skb->data;
2088 out_hdr->sadb_msg_version = PF_KEY_V2;
2089
2090 if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
2091 out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
2092 else
2093 out_hdr->sadb_msg_type = event2poltype(c->event);
2094 out_hdr->sadb_msg_errno = 0;
2095 out_hdr->sadb_msg_seq = c->seq;
2096 out_hdr->sadb_msg_pid = c->pid;
2097 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
2098 out:
2099 return 0;
2100
2101 }
2102
2103 static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2104 {
2105 int err = 0;
2106 struct sadb_lifetime *lifetime;
2107 struct sadb_address *sa;
2108 struct sadb_x_policy *pol;
2109 struct xfrm_policy *xp;
2110 struct km_event c;
2111 struct sadb_x_sec_ctx *sec_ctx;
2112
2113 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2114 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
2115 !ext_hdrs[SADB_X_EXT_POLICY-1])
2116 return -EINVAL;
2117
2118 pol = ext_hdrs[SADB_X_EXT_POLICY-1];
2119 if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
2120 return -EINVAL;
2121 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
2122 return -EINVAL;
2123
2124 xp = xfrm_policy_alloc(GFP_KERNEL);
2125 if (xp == NULL)
2126 return -ENOBUFS;
2127
2128 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
2129 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
2130 xp->priority = pol->sadb_x_policy_priority;
2131
2132 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2133 xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
2134 if (!xp->family) {
2135 err = -EINVAL;
2136 goto out;
2137 }
2138 xp->selector.family = xp->family;
2139 xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
2140 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2141 xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
2142 if (xp->selector.sport)
2143 xp->selector.sport_mask = ~0;
2144
2145 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
2146 pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
2147 xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
2148
2149 /* Amusing, we set this twice. KAME apps appear to set same value
2150 * in both addresses.
2151 */
2152 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2153
2154 xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
2155 if (xp->selector.dport)
2156 xp->selector.dport_mask = ~0;
2157
2158 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
2159 if (sec_ctx != NULL) {
2160 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
2161
2162 if (!uctx) {
2163 err = -ENOBUFS;
2164 goto out;
2165 }
2166
2167 err = security_xfrm_policy_alloc(xp, uctx);
2168 kfree(uctx);
2169
2170 if (err)
2171 goto out;
2172 }
2173
2174 xp->lft.soft_byte_limit = XFRM_INF;
2175 xp->lft.hard_byte_limit = XFRM_INF;
2176 xp->lft.soft_packet_limit = XFRM_INF;
2177 xp->lft.hard_packet_limit = XFRM_INF;
2178 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
2179 xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
2180 xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
2181 xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
2182 xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
2183 }
2184 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
2185 xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
2186 xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
2187 xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
2188 xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
2189 }
2190 xp->xfrm_nr = 0;
2191 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2192 (err = parse_ipsecrequests(xp, pol)) < 0)
2193 goto out;
2194
2195 err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
2196 hdr->sadb_msg_type != SADB_X_SPDUPDATE);
2197
2198 if (err)
2199 goto out;
2200
2201 if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
2202 c.event = XFRM_MSG_UPDPOLICY;
2203 else
2204 c.event = XFRM_MSG_NEWPOLICY;
2205
2206 c.seq = hdr->sadb_msg_seq;
2207 c.pid = hdr->sadb_msg_pid;
2208
2209 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
2210 xfrm_pol_put(xp);
2211 return 0;
2212
2213 out:
2214 security_xfrm_policy_free(xp);
2215 kfree(xp);
2216 return err;
2217 }
2218
2219 static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2220 {
2221 int err;
2222 struct sadb_address *sa;
2223 struct sadb_x_policy *pol;
2224 struct xfrm_policy *xp, tmp;
2225 struct xfrm_selector sel;
2226 struct km_event c;
2227 struct sadb_x_sec_ctx *sec_ctx;
2228
2229 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2230 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
2231 !ext_hdrs[SADB_X_EXT_POLICY-1])
2232 return -EINVAL;
2233
2234 pol = ext_hdrs[SADB_X_EXT_POLICY-1];
2235 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
2236 return -EINVAL;
2237
2238 memset(&sel, 0, sizeof(sel));
2239
2240 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2241 sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
2242 sel.prefixlen_s = sa->sadb_address_prefixlen;
2243 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2244 sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
2245 if (sel.sport)
2246 sel.sport_mask = ~0;
2247
2248 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
2249 pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
2250 sel.prefixlen_d = sa->sadb_address_prefixlen;
2251 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2252 sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
2253 if (sel.dport)
2254 sel.dport_mask = ~0;
2255
2256 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
2257 memset(&tmp, 0, sizeof(struct xfrm_policy));
2258
2259 if (sec_ctx != NULL) {
2260 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
2261
2262 if (!uctx)
2263 return -ENOMEM;
2264
2265 err = security_xfrm_policy_alloc(&tmp, uctx);
2266 kfree(uctx);
2267
2268 if (err)
2269 return err;
2270 }
2271
2272 xp = xfrm_policy_bysel_ctx(pol->sadb_x_policy_dir-1, &sel, tmp.security, 1);
2273 security_xfrm_policy_free(&tmp);
2274 if (xp == NULL)
2275 return -ENOENT;
2276
2277 err = 0;
2278
2279 if ((err = security_xfrm_policy_delete(xp)))
2280 goto out;
2281 c.seq = hdr->sadb_msg_seq;
2282 c.pid = hdr->sadb_msg_pid;
2283 c.event = XFRM_MSG_DELPOLICY;
2284 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
2285
2286 out:
2287 xfrm_pol_put(xp);
2288 return err;
2289 }
2290
2291 static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
2292 {
2293 int err;
2294 struct sk_buff *out_skb;
2295 struct sadb_msg *out_hdr;
2296 err = 0;
2297
2298 out_skb = pfkey_xfrm_policy2msg_prep(xp);
2299 if (IS_ERR(out_skb)) {
2300 err = PTR_ERR(out_skb);
2301 goto out;
2302 }
2303 pfkey_xfrm_policy2msg(out_skb, xp, dir);
2304
2305 out_hdr = (struct sadb_msg *) out_skb->data;
2306 out_hdr->sadb_msg_version = hdr->sadb_msg_version;
2307 out_hdr->sadb_msg_type = hdr->sadb_msg_type;
2308 out_hdr->sadb_msg_satype = 0;
2309 out_hdr->sadb_msg_errno = 0;
2310 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
2311 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
2312 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
2313 err = 0;
2314
2315 out:
2316 return err;
2317 }
2318
2319 static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2320 {
2321 unsigned int dir;
2322 int err;
2323 struct sadb_x_policy *pol;
2324 struct xfrm_policy *xp;
2325 struct km_event c;
2326
2327 if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
2328 return -EINVAL;
2329
2330 dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
2331 if (dir >= XFRM_POLICY_MAX)
2332 return -EINVAL;
2333
2334 xp = xfrm_policy_byid(dir, pol->sadb_x_policy_id,
2335 hdr->sadb_msg_type == SADB_X_SPDDELETE2);
2336 if (xp == NULL)
2337 return -ENOENT;
2338
2339 err = 0;
2340
2341 c.seq = hdr->sadb_msg_seq;
2342 c.pid = hdr->sadb_msg_pid;
2343 if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) {
2344 c.data.byid = 1;
2345 c.event = XFRM_MSG_DELPOLICY;
2346 km_policy_notify(xp, dir, &c);
2347 } else {
2348 err = key_pol_get_resp(sk, xp, hdr, dir);
2349 }
2350
2351 xfrm_pol_put(xp);
2352 return err;
2353 }
2354
2355 static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
2356 {
2357 struct pfkey_dump_data *data = ptr;
2358 struct sk_buff *out_skb;
2359 struct sadb_msg *out_hdr;
2360
2361 out_skb = pfkey_xfrm_policy2msg_prep(xp);
2362 if (IS_ERR(out_skb))
2363 return PTR_ERR(out_skb);
2364
2365 pfkey_xfrm_policy2msg(out_skb, xp, dir);
2366
2367 out_hdr = (struct sadb_msg *) out_skb->data;
2368 out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
2369 out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
2370 out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
2371 out_hdr->sadb_msg_errno = 0;
2372 out_hdr->sadb_msg_seq = count;
2373 out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
2374 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
2375 return 0;
2376 }
2377
2378 static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2379 {
2380 struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
2381
2382 return xfrm_policy_walk(dump_sp, &data);
2383 }
2384
2385 static int key_notify_policy_flush(struct km_event *c)
2386 {
2387 struct sk_buff *skb_out;
2388 struct sadb_msg *hdr;
2389
2390 skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
2391 if (!skb_out)
2392 return -ENOBUFS;
2393 hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
2394 hdr->sadb_msg_type = SADB_X_SPDFLUSH;
2395 hdr->sadb_msg_seq = c->seq;
2396 hdr->sadb_msg_pid = c->pid;
2397 hdr->sadb_msg_version = PF_KEY_V2;
2398 hdr->sadb_msg_errno = (uint8_t) 0;
2399 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
2400 pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
2401 return 0;
2402
2403 }
2404
2405 static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2406 {
2407 struct km_event c;
2408
2409 xfrm_policy_flush();
2410 c.event = XFRM_MSG_FLUSHPOLICY;
2411 c.pid = hdr->sadb_msg_pid;
2412 c.seq = hdr->sadb_msg_seq;
2413 km_policy_notify(NULL, 0, &c);
2414
2415 return 0;
2416 }
2417
2418 typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
2419 struct sadb_msg *hdr, void **ext_hdrs);
2420 static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
2421 [SADB_RESERVED] = pfkey_reserved,
2422 [SADB_GETSPI] = pfkey_getspi,
2423 [SADB_UPDATE] = pfkey_add,
2424 [SADB_ADD] = pfkey_add,
2425 [SADB_DELETE] = pfkey_delete,
2426 [SADB_GET] = pfkey_get,
2427 [SADB_ACQUIRE] = pfkey_acquire,
2428 [SADB_REGISTER] = pfkey_register,
2429 [SADB_EXPIRE] = NULL,
2430 [SADB_FLUSH] = pfkey_flush,
2431 [SADB_DUMP] = pfkey_dump,
2432 [SADB_X_PROMISC] = pfkey_promisc,
2433 [SADB_X_PCHANGE] = NULL,
2434 [SADB_X_SPDUPDATE] = pfkey_spdadd,
2435 [SADB_X_SPDADD] = pfkey_spdadd,
2436 [SADB_X_SPDDELETE] = pfkey_spddelete,
2437 [SADB_X_SPDGET] = pfkey_spdget,
2438 [SADB_X_SPDACQUIRE] = NULL,
2439 [SADB_X_SPDDUMP] = pfkey_spddump,
2440 [SADB_X_SPDFLUSH] = pfkey_spdflush,
2441 [SADB_X_SPDSETIDX] = pfkey_spdadd,
2442 [SADB_X_SPDDELETE2] = pfkey_spdget,
2443 };
2444
2445 static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
2446 {
2447 void *ext_hdrs[SADB_EXT_MAX];
2448 int err;
2449
2450 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
2451 BROADCAST_PROMISC_ONLY, NULL);
2452
2453 memset(ext_hdrs, 0, sizeof(ext_hdrs));
2454 err = parse_exthdrs(skb, hdr, ext_hdrs);
2455 if (!err) {
2456 err = -EOPNOTSUPP;
2457 if (pfkey_funcs[hdr->sadb_msg_type])
2458 err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
2459 }
2460 return err;
2461 }
2462
2463 static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
2464 {
2465 struct sadb_msg *hdr = NULL;
2466
2467 if (skb->len < sizeof(*hdr)) {
2468 *errp = -EMSGSIZE;
2469 } else {
2470 hdr = (struct sadb_msg *) skb->data;
2471 if (hdr->sadb_msg_version != PF_KEY_V2 ||
2472 hdr->sadb_msg_reserved != 0 ||
2473 (hdr->sadb_msg_type <= SADB_RESERVED ||
2474 hdr->sadb_msg_type > SADB_MAX)) {
2475 hdr = NULL;
2476 *errp = -EINVAL;
2477 } else if (hdr->sadb_msg_len != (skb->len /
2478 sizeof(uint64_t)) ||
2479 hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
2480 sizeof(uint64_t))) {
2481 hdr = NULL;
2482 *errp = -EMSGSIZE;
2483 } else {
2484 *errp = 0;
2485 }
2486 }
2487 return hdr;
2488 }
2489
2490 static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
2491 {
2492 return t->aalgos & (1 << d->desc.sadb_alg_id);
2493 }
2494
2495 static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
2496 {
2497 return t->ealgos & (1 << d->desc.sadb_alg_id);
2498 }
2499
2500 static int count_ah_combs(struct xfrm_tmpl *t)
2501 {
2502 int i, sz = 0;
2503
2504 for (i = 0; ; i++) {
2505 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
2506 if (!aalg)
2507 break;
2508 if (aalg_tmpl_set(t, aalg) && aalg->available)
2509 sz += sizeof(struct sadb_comb);
2510 }
2511 return sz + sizeof(struct sadb_prop);
2512 }
2513
2514 static int count_esp_combs(struct xfrm_tmpl *t)
2515 {
2516 int i, k, sz = 0;
2517
2518 for (i = 0; ; i++) {
2519 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
2520 if (!ealg)
2521 break;
2522
2523 if (!(ealg_tmpl_set(t, ealg) && ealg->available))
2524 continue;
2525
2526 for (k = 1; ; k++) {
2527 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
2528 if (!aalg)
2529 break;
2530
2531 if (aalg_tmpl_set(t, aalg) && aalg->available)
2532 sz += sizeof(struct sadb_comb);
2533 }
2534 }
2535 return sz + sizeof(struct sadb_prop);
2536 }
2537
2538 static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
2539 {
2540 struct sadb_prop *p;
2541 int i;
2542
2543 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
2544 p->sadb_prop_len = sizeof(struct sadb_prop)/8;
2545 p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
2546 p->sadb_prop_replay = 32;
2547 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
2548
2549 for (i = 0; ; i++) {
2550 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
2551 if (!aalg)
2552 break;
2553
2554 if (aalg_tmpl_set(t, aalg) && aalg->available) {
2555 struct sadb_comb *c;
2556 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
2557 memset(c, 0, sizeof(*c));
2558 p->sadb_prop_len += sizeof(struct sadb_comb)/8;
2559 c->sadb_comb_auth = aalg->desc.sadb_alg_id;
2560 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
2561 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
2562 c->sadb_comb_hard_addtime = 24*60*60;
2563 c->sadb_comb_soft_addtime = 20*60*60;
2564 c->sadb_comb_hard_usetime = 8*60*60;
2565 c->sadb_comb_soft_usetime = 7*60*60;
2566 }
2567 }
2568 }
2569
2570 static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
2571 {
2572 struct sadb_prop *p;
2573 int i, k;
2574
2575 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
2576 p->sadb_prop_len = sizeof(struct sadb_prop)/8;
2577 p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
2578 p->sadb_prop_replay = 32;
2579 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
2580
2581 for (i=0; ; i++) {
2582 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
2583 if (!ealg)
2584 break;
2585
2586 if (!(ealg_tmpl_set(t, ealg) && ealg->available))
2587 continue;
2588
2589 for (k = 1; ; k++) {
2590 struct sadb_comb *c;
2591 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
2592 if (!aalg)
2593 break;
2594 if (!(aalg_tmpl_set(t, aalg) && aalg->available))
2595 continue;
2596 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
2597 memset(c, 0, sizeof(*c));
2598 p->sadb_prop_len += sizeof(struct sadb_comb)/8;
2599 c->sadb_comb_auth = aalg->desc.sadb_alg_id;
2600 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
2601 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
2602 c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
2603 c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
2604 c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
2605 c->sadb_comb_hard_addtime = 24*60*60;
2606 c->sadb_comb_soft_addtime = 20*60*60;
2607 c->sadb_comb_hard_usetime = 8*60*60;
2608 c->sadb_comb_soft_usetime = 7*60*60;
2609 }
2610 }
2611 }
2612
2613 static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
2614 {
2615 return 0;
2616 }
2617
2618 static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
2619 {
2620 struct sk_buff *out_skb;
2621 struct sadb_msg *out_hdr;
2622 int hard;
2623 int hsc;
2624
2625 hard = c->data.hard;
2626 if (hard)
2627 hsc = 2;
2628 else
2629 hsc = 1;
2630
2631 out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
2632 if (IS_ERR(out_skb))
2633 return PTR_ERR(out_skb);
2634
2635 out_hdr = (struct sadb_msg *) out_skb->data;
2636 out_hdr->sadb_msg_version = PF_KEY_V2;
2637 out_hdr->sadb_msg_type = SADB_EXPIRE;
2638 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
2639 out_hdr->sadb_msg_errno = 0;
2640 out_hdr->sadb_msg_reserved = 0;
2641 out_hdr->sadb_msg_seq = 0;
2642 out_hdr->sadb_msg_pid = 0;
2643
2644 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
2645 return 0;
2646 }
2647
2648 static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
2649 {
2650 switch (c->event) {
2651 case XFRM_MSG_EXPIRE:
2652 return key_notify_sa_expire(x, c);
2653 case XFRM_MSG_DELSA:
2654 case XFRM_MSG_NEWSA:
2655 case XFRM_MSG_UPDSA:
2656 return key_notify_sa(x, c);
2657 case XFRM_MSG_FLUSHSA:
2658 return key_notify_sa_flush(c);
2659 case XFRM_MSG_NEWAE: /* not yet supported */
2660 break;
2661 default:
2662 printk("pfkey: Unknown SA event %d\n", c->event);
2663 break;
2664 }
2665
2666 return 0;
2667 }
2668
2669 static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
2670 {
2671 switch (c->event) {
2672 case XFRM_MSG_POLEXPIRE:
2673 return key_notify_policy_expire(xp, c);
2674 case XFRM_MSG_DELPOLICY:
2675 case XFRM_MSG_NEWPOLICY:
2676 case XFRM_MSG_UPDPOLICY:
2677 return key_notify_policy(xp, dir, c);
2678 case XFRM_MSG_FLUSHPOLICY:
2679 return key_notify_policy_flush(c);
2680 default:
2681 printk("pfkey: Unknown policy event %d\n", c->event);
2682 break;
2683 }
2684
2685 return 0;
2686 }
2687
2688 static u32 get_acqseq(void)
2689 {
2690 u32 res;
2691 static u32 acqseq;
2692 static DEFINE_SPINLOCK(acqseq_lock);
2693
2694 spin_lock_bh(&acqseq_lock);
2695 res = (++acqseq ? : ++acqseq);
2696 spin_unlock_bh(&acqseq_lock);
2697 return res;
2698 }
2699
2700 static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
2701 {
2702 struct sk_buff *skb;
2703 struct sadb_msg *hdr;
2704 struct sadb_address *addr;
2705 struct sadb_x_policy *pol;
2706 struct sockaddr_in *sin;
2707 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2708 struct sockaddr_in6 *sin6;
2709 #endif
2710 int sockaddr_size;
2711 int size;
2712
2713 sockaddr_size = pfkey_sockaddr_size(x->props.family);
2714 if (!sockaddr_size)
2715 return -EINVAL;
2716
2717 size = sizeof(struct sadb_msg) +
2718 (sizeof(struct sadb_address) * 2) +
2719 (sockaddr_size * 2) +
2720 sizeof(struct sadb_x_policy);
2721
2722 if (x->id.proto == IPPROTO_AH)
2723 size += count_ah_combs(t);
2724 else if (x->id.proto == IPPROTO_ESP)
2725 size += count_esp_combs(t);
2726
2727 skb = alloc_skb(size + 16, GFP_ATOMIC);
2728 if (skb == NULL)
2729 return -ENOMEM;
2730
2731 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
2732 hdr->sadb_msg_version = PF_KEY_V2;
2733 hdr->sadb_msg_type = SADB_ACQUIRE;
2734 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
2735 hdr->sadb_msg_len = size / sizeof(uint64_t);
2736 hdr->sadb_msg_errno = 0;
2737 hdr->sadb_msg_reserved = 0;
2738 hdr->sadb_msg_seq = x->km.seq = get_acqseq();
2739 hdr->sadb_msg_pid = 0;
2740
2741 /* src address */
2742 addr = (struct sadb_address*) skb_put(skb,
2743 sizeof(struct sadb_address)+sockaddr_size);
2744 addr->sadb_address_len =
2745 (sizeof(struct sadb_address)+sockaddr_size)/
2746 sizeof(uint64_t);
2747 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
2748 addr->sadb_address_proto = 0;
2749 addr->sadb_address_reserved = 0;
2750 if (x->props.family == AF_INET) {
2751 addr->sadb_address_prefixlen = 32;
2752
2753 sin = (struct sockaddr_in *) (addr + 1);
2754 sin->sin_family = AF_INET;
2755 sin->sin_addr.s_addr = x->props.saddr.a4;
2756 sin->sin_port = 0;
2757 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2758 }
2759 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2760 else if (x->props.family == AF_INET6) {
2761 addr->sadb_address_prefixlen = 128;
2762
2763 sin6 = (struct sockaddr_in6 *) (addr + 1);
2764 sin6->sin6_family = AF_INET6;
2765 sin6->sin6_port = 0;
2766 sin6->sin6_flowinfo = 0;
2767 memcpy(&sin6->sin6_addr,
2768 x->props.saddr.a6, sizeof(struct in6_addr));
2769 sin6->sin6_scope_id = 0;
2770 }
2771 #endif
2772 else
2773 BUG();
2774
2775 /* dst address */
2776 addr = (struct sadb_address*) skb_put(skb,
2777 sizeof(struct sadb_address)+sockaddr_size);
2778 addr->sadb_address_len =
2779 (sizeof(struct sadb_address)+sockaddr_size)/
2780 sizeof(uint64_t);
2781 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
2782 addr->sadb_address_proto = 0;
2783 addr->sadb_address_reserved = 0;
2784 if (x->props.family == AF_INET) {
2785 addr->sadb_address_prefixlen = 32;
2786
2787 sin = (struct sockaddr_in *) (addr + 1);
2788 sin->sin_family = AF_INET;
2789 sin->sin_addr.s_addr = x->id.daddr.a4;
2790 sin->sin_port = 0;
2791 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2792 }
2793 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2794 else if (x->props.family == AF_INET6) {
2795 addr->sadb_address_prefixlen = 128;
2796
2797 sin6 = (struct sockaddr_in6 *) (addr + 1);
2798 sin6->sin6_family = AF_INET6;
2799 sin6->sin6_port = 0;
2800 sin6->sin6_flowinfo = 0;
2801 memcpy(&sin6->sin6_addr,
2802 x->id.daddr.a6, sizeof(struct in6_addr));
2803 sin6->sin6_scope_id = 0;
2804 }
2805 #endif
2806 else
2807 BUG();
2808
2809 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
2810 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
2811 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
2812 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
2813 pol->sadb_x_policy_dir = dir+1;
2814 pol->sadb_x_policy_id = xp->index;
2815
2816 /* Set sadb_comb's. */
2817 if (x->id.proto == IPPROTO_AH)
2818 dump_ah_combs(skb, t);
2819 else if (x->id.proto == IPPROTO_ESP)
2820 dump_esp_combs(skb, t);
2821
2822 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
2823 }
2824
2825 static struct xfrm_policy *pfkey_compile_policy(u16 family, int opt,
2826 u8 *data, int len, int *dir)
2827 {
2828 struct xfrm_policy *xp;
2829 struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
2830 struct sadb_x_sec_ctx *sec_ctx;
2831
2832 switch (family) {
2833 case AF_INET:
2834 if (opt != IP_IPSEC_POLICY) {
2835 *dir = -EOPNOTSUPP;
2836 return NULL;
2837 }
2838 break;
2839 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2840 case AF_INET6:
2841 if (opt != IPV6_IPSEC_POLICY) {
2842 *dir = -EOPNOTSUPP;
2843 return NULL;
2844 }
2845 break;
2846 #endif
2847 default:
2848 *dir = -EINVAL;
2849 return NULL;
2850 }
2851
2852 *dir = -EINVAL;
2853
2854 if (len < sizeof(struct sadb_x_policy) ||
2855 pol->sadb_x_policy_len*8 > len ||
2856 pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
2857 (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
2858 return NULL;
2859
2860 xp = xfrm_policy_alloc(GFP_ATOMIC);
2861 if (xp == NULL) {
2862 *dir = -ENOBUFS;
2863 return NULL;
2864 }
2865
2866 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
2867 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
2868
2869 xp->lft.soft_byte_limit = XFRM_INF;
2870 xp->lft.hard_byte_limit = XFRM_INF;
2871 xp->lft.soft_packet_limit = XFRM_INF;
2872 xp->lft.hard_packet_limit = XFRM_INF;
2873 xp->family = family;
2874
2875 xp->xfrm_nr = 0;
2876 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2877 (*dir = parse_ipsecrequests(xp, pol)) < 0)
2878 goto out;
2879
2880 /* security context too */
2881 if (len >= (pol->sadb_x_policy_len*8 +
2882 sizeof(struct sadb_x_sec_ctx))) {
2883 char *p = (char *)pol;
2884 struct xfrm_user_sec_ctx *uctx;
2885
2886 p += pol->sadb_x_policy_len*8;
2887 sec_ctx = (struct sadb_x_sec_ctx *)p;
2888 if (len < pol->sadb_x_policy_len*8 +
2889 sec_ctx->sadb_x_sec_len)
2890 goto out;
2891 if ((*dir = verify_sec_ctx_len(p)))
2892 goto out;
2893 uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
2894 *dir = security_xfrm_policy_alloc(xp, uctx);
2895 kfree(uctx);
2896
2897 if (*dir)
2898 goto out;
2899 }
2900
2901 *dir = pol->sadb_x_policy_dir-1;
2902 return xp;
2903
2904 out:
2905 security_xfrm_policy_free(xp);
2906 kfree(xp);
2907 return NULL;
2908 }
2909
2910 static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport)
2911 {
2912 struct sk_buff *skb;
2913 struct sadb_msg *hdr;
2914 struct sadb_sa *sa;
2915 struct sadb_address *addr;
2916 struct sadb_x_nat_t_port *n_port;
2917 struct sockaddr_in *sin;
2918 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2919 struct sockaddr_in6 *sin6;
2920 #endif
2921 int sockaddr_size;
2922 int size;
2923 __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
2924 struct xfrm_encap_tmpl *natt = NULL;
2925
2926 sockaddr_size = pfkey_sockaddr_size(x->props.family);
2927 if (!sockaddr_size)
2928 return -EINVAL;
2929
2930 if (!satype)
2931 return -EINVAL;
2932
2933 if (!x->encap)
2934 return -EINVAL;
2935
2936 natt = x->encap;
2937
2938 /* Build an SADB_X_NAT_T_NEW_MAPPING message:
2939 *
2940 * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
2941 * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
2942 */
2943
2944 size = sizeof(struct sadb_msg) +
2945 sizeof(struct sadb_sa) +
2946 (sizeof(struct sadb_address) * 2) +
2947 (sockaddr_size * 2) +
2948 (sizeof(struct sadb_x_nat_t_port) * 2);
2949
2950 skb = alloc_skb(size + 16, GFP_ATOMIC);
2951 if (skb == NULL)
2952 return -ENOMEM;
2953
2954 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
2955 hdr->sadb_msg_version = PF_KEY_V2;
2956 hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
2957 hdr->sadb_msg_satype = satype;
2958 hdr->sadb_msg_len = size / sizeof(uint64_t);
2959 hdr->sadb_msg_errno = 0;
2960 hdr->sadb_msg_reserved = 0;
2961 hdr->sadb_msg_seq = x->km.seq = get_acqseq();
2962 hdr->sadb_msg_pid = 0;
2963
2964 /* SA */
2965 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
2966 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
2967 sa->sadb_sa_exttype = SADB_EXT_SA;
2968 sa->sadb_sa_spi = x->id.spi;
2969 sa->sadb_sa_replay = 0;
2970 sa->sadb_sa_state = 0;
2971 sa->sadb_sa_auth = 0;
2972 sa->sadb_sa_encrypt = 0;
2973 sa->sadb_sa_flags = 0;
2974
2975 /* ADDRESS_SRC (old addr) */
2976 addr = (struct sadb_address*)
2977 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
2978 addr->sadb_address_len =
2979 (sizeof(struct sadb_address)+sockaddr_size)/
2980 sizeof(uint64_t);
2981 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
2982 addr->sadb_address_proto = 0;
2983 addr->sadb_address_reserved = 0;
2984 if (x->props.family == AF_INET) {
2985 addr->sadb_address_prefixlen = 32;
2986
2987 sin = (struct sockaddr_in *) (addr + 1);
2988 sin->sin_family = AF_INET;
2989 sin->sin_addr.s_addr = x->props.saddr.a4;
2990 sin->sin_port = 0;
2991 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2992 }
2993 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2994 else if (x->props.family == AF_INET6) {
2995 addr->sadb_address_prefixlen = 128;
2996
2997 sin6 = (struct sockaddr_in6 *) (addr + 1);
2998 sin6->sin6_family = AF_INET6;
2999 sin6->sin6_port = 0;
3000 sin6->sin6_flowinfo = 0;
3001 memcpy(&sin6->sin6_addr,
3002 x->props.saddr.a6, sizeof(struct in6_addr));
3003 sin6->sin6_scope_id = 0;
3004 }
3005 #endif
3006 else
3007 BUG();
3008
3009 /* NAT_T_SPORT (old port) */
3010 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
3011 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
3012 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
3013 n_port->sadb_x_nat_t_port_port = natt->encap_sport;
3014 n_port->sadb_x_nat_t_port_reserved = 0;
3015
3016 /* ADDRESS_DST (new addr) */
3017 addr = (struct sadb_address*)
3018 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
3019 addr->sadb_address_len =
3020 (sizeof(struct sadb_address)+sockaddr_size)/
3021 sizeof(uint64_t);
3022 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
3023 addr->sadb_address_proto = 0;
3024 addr->sadb_address_reserved = 0;
3025 if (x->props.family == AF_INET) {
3026 addr->sadb_address_prefixlen = 32;
3027
3028 sin = (struct sockaddr_in *) (addr + 1);
3029 sin->sin_family = AF_INET;
3030 sin->sin_addr.s_addr = ipaddr->a4;
3031 sin->sin_port = 0;
3032 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3033 }
3034 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3035 else if (x->props.family == AF_INET6) {
3036 addr->sadb_address_prefixlen = 128;
3037
3038 sin6 = (struct sockaddr_in6 *) (addr + 1);
3039 sin6->sin6_family = AF_INET6;
3040 sin6->sin6_port = 0;
3041 sin6->sin6_flowinfo = 0;
3042 memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
3043 sin6->sin6_scope_id = 0;
3044 }
3045 #endif
3046 else
3047 BUG();
3048
3049 /* NAT_T_DPORT (new port) */
3050 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
3051 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
3052 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
3053 n_port->sadb_x_nat_t_port_port = sport;
3054 n_port->sadb_x_nat_t_port_reserved = 0;
3055
3056 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
3057 }
3058
3059 static int pfkey_sendmsg(struct kiocb *kiocb,
3060 struct socket *sock, struct msghdr *msg, size_t len)
3061 {
3062 struct sock *sk = sock->sk;
3063 struct sk_buff *skb = NULL;
3064 struct sadb_msg *hdr = NULL;
3065 int err;
3066
3067 err = -EOPNOTSUPP;
3068 if (msg->msg_flags & MSG_OOB)
3069 goto out;
3070
3071 err = -EMSGSIZE;
3072 if ((unsigned)len > sk->sk_sndbuf - 32)
3073 goto out;
3074
3075 err = -ENOBUFS;
3076 skb = alloc_skb(len, GFP_KERNEL);
3077 if (skb == NULL)
3078 goto out;
3079
3080 err = -EFAULT;
3081 if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
3082 goto out;
3083
3084 hdr = pfkey_get_base_msg(skb, &err);
3085 if (!hdr)
3086 goto out;
3087
3088 mutex_lock(&xfrm_cfg_mutex);
3089 err = pfkey_process(sk, skb, hdr);
3090 mutex_unlock(&xfrm_cfg_mutex);
3091
3092 out:
3093 if (err && hdr && pfkey_error(hdr, err, sk) == 0)
3094 err = 0;
3095 if (skb)
3096 kfree_skb(skb);
3097
3098 return err ? : len;
3099 }
3100
3101 static int pfkey_recvmsg(struct kiocb *kiocb,
3102 struct socket *sock, struct msghdr *msg, size_t len,
3103 int flags)
3104 {
3105 struct sock *sk = sock->sk;
3106 struct sk_buff *skb;
3107 int copied, err;
3108
3109 err = -EINVAL;
3110 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
3111 goto out;
3112
3113 msg->msg_namelen = 0;
3114 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3115 if (skb == NULL)
3116 goto out;
3117
3118 copied = skb->len;
3119 if (copied > len) {
3120 msg->msg_flags |= MSG_TRUNC;
3121 copied = len;
3122 }
3123
3124 skb->h.raw = skb->data;
3125 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
3126 if (err)
3127 goto out_free;
3128
3129 sock_recv_timestamp(msg, sk, skb);
3130
3131 err = (flags & MSG_TRUNC) ? skb->len : copied;
3132
3133 out_free:
3134 skb_free_datagram(sk, skb);
3135 out:
3136 return err;
3137 }
3138
3139 static const struct proto_ops pfkey_ops = {
3140 .family = PF_KEY,
3141 .owner = THIS_MODULE,
3142 /* Operations that make no sense on pfkey sockets. */
3143 .bind = sock_no_bind,
3144 .connect = sock_no_connect,
3145 .socketpair = sock_no_socketpair,
3146 .accept = sock_no_accept,
3147 .getname = sock_no_getname,
3148 .ioctl = sock_no_ioctl,
3149 .listen = sock_no_listen,
3150 .shutdown = sock_no_shutdown,
3151 .setsockopt = sock_no_setsockopt,
3152 .getsockopt = sock_no_getsockopt,
3153 .mmap = sock_no_mmap,
3154 .sendpage = sock_no_sendpage,
3155
3156 /* Now the operations that really occur. */
3157 .release = pfkey_release,
3158 .poll = datagram_poll,
3159 .sendmsg = pfkey_sendmsg,
3160 .recvmsg = pfkey_recvmsg,
3161 };
3162
3163 static struct net_proto_family pfkey_family_ops = {
3164 .family = PF_KEY,
3165 .create = pfkey_create,
3166 .owner = THIS_MODULE,
3167 };
3168
3169 #ifdef CONFIG_PROC_FS
3170 static int pfkey_read_proc(char *buffer, char **start, off_t offset,
3171 int length, int *eof, void *data)
3172 {
3173 off_t pos = 0;
3174 off_t begin = 0;
3175 int len = 0;
3176 struct sock *s;
3177 struct hlist_node *node;
3178
3179 len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
3180
3181 read_lock(&pfkey_table_lock);
3182
3183 sk_for_each(s, node, &pfkey_table) {
3184 len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
3185 s,
3186 atomic_read(&s->sk_refcnt),
3187 atomic_read(&s->sk_rmem_alloc),
3188 atomic_read(&s->sk_wmem_alloc),
3189 sock_i_uid(s),
3190 sock_i_ino(s)
3191 );
3192
3193 buffer[len++] = '\n';
3194
3195 pos = begin + len;
3196 if (pos < offset) {
3197 len = 0;
3198 begin = pos;
3199 }
3200 if(pos > offset + length)
3201 goto done;
3202 }
3203 *eof = 1;
3204
3205 done:
3206 read_unlock(&pfkey_table_lock);
3207
3208 *start = buffer + (offset - begin);
3209 len -= (offset - begin);
3210
3211 if (len > length)
3212 len = length;
3213 if (len < 0)
3214 len = 0;
3215
3216 return len;
3217 }
3218 #endif
3219
3220 static struct xfrm_mgr pfkeyv2_mgr =
3221 {
3222 .id = "pfkeyv2",
3223 .notify = pfkey_send_notify,
3224 .acquire = pfkey_send_acquire,
3225 .compile_policy = pfkey_compile_policy,
3226 .new_mapping = pfkey_send_new_mapping,
3227 .notify_policy = pfkey_send_policy_notify,
3228 };
3229
3230 static void __exit ipsec_pfkey_exit(void)
3231 {
3232 xfrm_unregister_km(&pfkeyv2_mgr);
3233 remove_proc_entry("net/pfkey", NULL);
3234 sock_unregister(PF_KEY);
3235 proto_unregister(&key_proto);
3236 }
3237
3238 static int __init ipsec_pfkey_init(void)
3239 {
3240 int err = proto_register(&key_proto, 0);
3241
3242 if (err != 0)
3243 goto out;
3244
3245 err = sock_register(&pfkey_family_ops);
3246 if (err != 0)
3247 goto out_unregister_key_proto;
3248 #ifdef CONFIG_PROC_FS
3249 err = -ENOMEM;
3250 if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
3251 goto out_sock_unregister;
3252 #endif
3253 err = xfrm_register_km(&pfkeyv2_mgr);
3254 if (err != 0)
3255 goto out_remove_proc_entry;
3256 out:
3257 return err;
3258 out_remove_proc_entry:
3259 #ifdef CONFIG_PROC_FS
3260 remove_proc_entry("net/pfkey", NULL);
3261 out_sock_unregister:
3262 #endif
3263 sock_unregister(PF_KEY);
3264 out_unregister_key_proto:
3265 proto_unregister(&key_proto);
3266 goto out;
3267 }
3268
3269 module_init(ipsec_pfkey_init);
3270 module_exit(ipsec_pfkey_exit);
3271 MODULE_LICENSE("GPL");
3272 MODULE_ALIAS_NETPROTO(PF_KEY);
This page took 0.226802 seconds and 5 git commands to generate.