[MAC80211]: remove some unnecessary includes
[deliverable/linux.git] / net / mac80211 / ieee80211.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <net/mac80211.h>
12 #include <net/ieee80211_radiotap.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/etherdevice.h>
20 #include <linux/if_arp.h>
21 #include <linux/wireless.h>
22 #include <linux/rtnetlink.h>
23 #include <linux/bitmap.h>
24 #include <net/cfg80211.h>
25
26 #include "ieee80211_common.h"
27 #include "ieee80211_i.h"
28 #include "ieee80211_rate.h"
29 #include "wep.h"
30 #include "wme.h"
31 #include "aes_ccm.h"
32 #include "ieee80211_led.h"
33 #include "ieee80211_cfg.h"
34 #include "debugfs.h"
35 #include "debugfs_netdev.h"
36 #include "debugfs_key.h"
37
38 /* privid for wiphys to determine whether they belong to us or not */
39 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
40
41 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
42 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
43 const unsigned char rfc1042_header[] =
44 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
45
46 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
47 const unsigned char bridge_tunnel_header[] =
48 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
49
50 /* No encapsulation header if EtherType < 0x600 (=length) */
51 static const unsigned char eapol_header[] =
52 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e };
53
54
55 /*
56 * For seeing transmitted packets on monitor interfaces
57 * we have a radiotap header too.
58 */
59 struct ieee80211_tx_status_rtap_hdr {
60 struct ieee80211_radiotap_header hdr;
61 __le16 tx_flags;
62 u8 data_retries;
63 } __attribute__ ((packed));
64
65
66 struct ieee80211_key_conf *
67 ieee80211_key_data2conf(struct ieee80211_local *local,
68 const struct ieee80211_key *data)
69 {
70 struct ieee80211_key_conf *conf;
71
72 conf = kmalloc(sizeof(*conf) + data->keylen, GFP_ATOMIC);
73 if (!conf)
74 return NULL;
75
76 conf->hw_key_idx = data->hw_key_idx;
77 conf->alg = data->alg;
78 conf->keylen = data->keylen;
79 conf->flags = 0;
80 if (data->force_sw_encrypt)
81 conf->flags |= IEEE80211_KEY_FORCE_SW_ENCRYPT;
82 conf->keyidx = data->keyidx;
83 if (data->default_tx_key)
84 conf->flags |= IEEE80211_KEY_DEFAULT_TX_KEY;
85 if (local->default_wep_only)
86 conf->flags |= IEEE80211_KEY_DEFAULT_WEP_ONLY;
87 memcpy(conf->key, data->key, data->keylen);
88
89 return conf;
90 }
91
92 struct ieee80211_key *ieee80211_key_alloc(struct ieee80211_sub_if_data *sdata,
93 int idx, size_t key_len, gfp_t flags)
94 {
95 struct ieee80211_key *key;
96
97 key = kzalloc(sizeof(struct ieee80211_key) + key_len, flags);
98 if (!key)
99 return NULL;
100 kref_init(&key->kref);
101 return key;
102 }
103
104 static void ieee80211_key_release(struct kref *kref)
105 {
106 struct ieee80211_key *key;
107
108 key = container_of(kref, struct ieee80211_key, kref);
109 if (key->alg == ALG_CCMP)
110 ieee80211_aes_key_free(key->u.ccmp.tfm);
111 ieee80211_debugfs_key_remove(key);
112 kfree(key);
113 }
114
115 void ieee80211_key_free(struct ieee80211_key *key)
116 {
117 if (key)
118 kref_put(&key->kref, ieee80211_key_release);
119 }
120
121 static int rate_list_match(const int *rate_list, int rate)
122 {
123 int i;
124
125 if (!rate_list)
126 return 0;
127
128 for (i = 0; rate_list[i] >= 0; i++)
129 if (rate_list[i] == rate)
130 return 1;
131
132 return 0;
133 }
134
135
136 void ieee80211_prepare_rates(struct ieee80211_local *local,
137 struct ieee80211_hw_mode *mode)
138 {
139 int i;
140
141 for (i = 0; i < mode->num_rates; i++) {
142 struct ieee80211_rate *rate = &mode->rates[i];
143
144 rate->flags &= ~(IEEE80211_RATE_SUPPORTED |
145 IEEE80211_RATE_BASIC);
146
147 if (local->supp_rates[mode->mode]) {
148 if (!rate_list_match(local->supp_rates[mode->mode],
149 rate->rate))
150 continue;
151 }
152
153 rate->flags |= IEEE80211_RATE_SUPPORTED;
154
155 /* Use configured basic rate set if it is available. If not,
156 * use defaults that are sane for most cases. */
157 if (local->basic_rates[mode->mode]) {
158 if (rate_list_match(local->basic_rates[mode->mode],
159 rate->rate))
160 rate->flags |= IEEE80211_RATE_BASIC;
161 } else switch (mode->mode) {
162 case MODE_IEEE80211A:
163 if (rate->rate == 60 || rate->rate == 120 ||
164 rate->rate == 240)
165 rate->flags |= IEEE80211_RATE_BASIC;
166 break;
167 case MODE_IEEE80211B:
168 if (rate->rate == 10 || rate->rate == 20)
169 rate->flags |= IEEE80211_RATE_BASIC;
170 break;
171 case MODE_ATHEROS_TURBO:
172 if (rate->rate == 120 || rate->rate == 240 ||
173 rate->rate == 480)
174 rate->flags |= IEEE80211_RATE_BASIC;
175 break;
176 case MODE_IEEE80211G:
177 if (rate->rate == 10 || rate->rate == 20 ||
178 rate->rate == 55 || rate->rate == 110)
179 rate->flags |= IEEE80211_RATE_BASIC;
180 break;
181 }
182
183 /* Set ERP and MANDATORY flags based on phymode */
184 switch (mode->mode) {
185 case MODE_IEEE80211A:
186 if (rate->rate == 60 || rate->rate == 120 ||
187 rate->rate == 240)
188 rate->flags |= IEEE80211_RATE_MANDATORY;
189 break;
190 case MODE_IEEE80211B:
191 if (rate->rate == 10)
192 rate->flags |= IEEE80211_RATE_MANDATORY;
193 break;
194 case MODE_ATHEROS_TURBO:
195 break;
196 case MODE_IEEE80211G:
197 if (rate->rate == 10 || rate->rate == 20 ||
198 rate->rate == 55 || rate->rate == 110 ||
199 rate->rate == 60 || rate->rate == 120 ||
200 rate->rate == 240)
201 rate->flags |= IEEE80211_RATE_MANDATORY;
202 break;
203 }
204 if (ieee80211_is_erp_rate(mode->mode, rate->rate))
205 rate->flags |= IEEE80211_RATE_ERP;
206 }
207 }
208
209
210 void ieee80211_key_threshold_notify(struct net_device *dev,
211 struct ieee80211_key *key,
212 struct sta_info *sta)
213 {
214 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
215 struct sk_buff *skb;
216 struct ieee80211_msg_key_notification *msg;
217
218 /* if no one will get it anyway, don't even allocate it.
219 * unlikely because this is only relevant for APs
220 * where the device must be open... */
221 if (unlikely(!local->apdev))
222 return;
223
224 skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
225 sizeof(struct ieee80211_msg_key_notification));
226 if (!skb)
227 return;
228
229 skb_reserve(skb, sizeof(struct ieee80211_frame_info));
230 msg = (struct ieee80211_msg_key_notification *)
231 skb_put(skb, sizeof(struct ieee80211_msg_key_notification));
232 msg->tx_rx_count = key->tx_rx_count;
233 memcpy(msg->ifname, dev->name, IFNAMSIZ);
234 if (sta)
235 memcpy(msg->addr, sta->addr, ETH_ALEN);
236 else
237 memset(msg->addr, 0xff, ETH_ALEN);
238
239 key->tx_rx_count = 0;
240
241 ieee80211_rx_mgmt(local, skb, NULL,
242 ieee80211_msg_key_threshold_notification);
243 }
244
245
246 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len)
247 {
248 u16 fc;
249
250 if (len < 24)
251 return NULL;
252
253 fc = le16_to_cpu(hdr->frame_control);
254
255 switch (fc & IEEE80211_FCTL_FTYPE) {
256 case IEEE80211_FTYPE_DATA:
257 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
258 case IEEE80211_FCTL_TODS:
259 return hdr->addr1;
260 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
261 return NULL;
262 case IEEE80211_FCTL_FROMDS:
263 return hdr->addr2;
264 case 0:
265 return hdr->addr3;
266 }
267 break;
268 case IEEE80211_FTYPE_MGMT:
269 return hdr->addr3;
270 case IEEE80211_FTYPE_CTL:
271 if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)
272 return hdr->addr1;
273 else
274 return NULL;
275 }
276
277 return NULL;
278 }
279
280 int ieee80211_get_hdrlen(u16 fc)
281 {
282 int hdrlen = 24;
283
284 switch (fc & IEEE80211_FCTL_FTYPE) {
285 case IEEE80211_FTYPE_DATA:
286 if ((fc & IEEE80211_FCTL_FROMDS) && (fc & IEEE80211_FCTL_TODS))
287 hdrlen = 30; /* Addr4 */
288 /*
289 * The QoS Control field is two bytes and its presence is
290 * indicated by the IEEE80211_STYPE_QOS_DATA bit. Add 2 to
291 * hdrlen if that bit is set.
292 * This works by masking out the bit and shifting it to
293 * bit position 1 so the result has the value 0 or 2.
294 */
295 hdrlen += (fc & IEEE80211_STYPE_QOS_DATA)
296 >> (ilog2(IEEE80211_STYPE_QOS_DATA)-1);
297 break;
298 case IEEE80211_FTYPE_CTL:
299 /*
300 * ACK and CTS are 10 bytes, all others 16. To see how
301 * to get this condition consider
302 * subtype mask: 0b0000000011110000 (0x00F0)
303 * ACK subtype: 0b0000000011010000 (0x00D0)
304 * CTS subtype: 0b0000000011000000 (0x00C0)
305 * bits that matter: ^^^ (0x00E0)
306 * value of those: 0b0000000011000000 (0x00C0)
307 */
308 if ((fc & 0xE0) == 0xC0)
309 hdrlen = 10;
310 else
311 hdrlen = 16;
312 break;
313 }
314
315 return hdrlen;
316 }
317 EXPORT_SYMBOL(ieee80211_get_hdrlen);
318
319 int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
320 {
321 const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *) skb->data;
322 int hdrlen;
323
324 if (unlikely(skb->len < 10))
325 return 0;
326 hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
327 if (unlikely(hdrlen > skb->len))
328 return 0;
329 return hdrlen;
330 }
331 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
332
333
334 int ieee80211_is_eapol(const struct sk_buff *skb)
335 {
336 const struct ieee80211_hdr *hdr;
337 u16 fc;
338 int hdrlen;
339
340 if (unlikely(skb->len < 10))
341 return 0;
342
343 hdr = (const struct ieee80211_hdr *) skb->data;
344 fc = le16_to_cpu(hdr->frame_control);
345
346 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
347 return 0;
348
349 hdrlen = ieee80211_get_hdrlen(fc);
350
351 if (unlikely(skb->len >= hdrlen + sizeof(eapol_header) &&
352 memcmp(skb->data + hdrlen, eapol_header,
353 sizeof(eapol_header)) == 0))
354 return 1;
355
356 return 0;
357 }
358
359
360 void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx)
361 {
362 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
363
364 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
365 if (tx->u.tx.extra_frag) {
366 struct ieee80211_hdr *fhdr;
367 int i;
368 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
369 fhdr = (struct ieee80211_hdr *)
370 tx->u.tx.extra_frag[i]->data;
371 fhdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
372 }
373 }
374 }
375
376
377 static int ieee80211_frame_duration(struct ieee80211_local *local, size_t len,
378 int rate, int erp, int short_preamble)
379 {
380 int dur;
381
382 /* calculate duration (in microseconds, rounded up to next higher
383 * integer if it includes a fractional microsecond) to send frame of
384 * len bytes (does not include FCS) at the given rate. Duration will
385 * also include SIFS.
386 *
387 * rate is in 100 kbps, so divident is multiplied by 10 in the
388 * DIV_ROUND_UP() operations.
389 */
390
391 if (local->hw.conf.phymode == MODE_IEEE80211A || erp ||
392 local->hw.conf.phymode == MODE_ATHEROS_TURBO) {
393 /*
394 * OFDM:
395 *
396 * N_DBPS = DATARATE x 4
397 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
398 * (16 = SIGNAL time, 6 = tail bits)
399 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
400 *
401 * T_SYM = 4 usec
402 * 802.11a - 17.5.2: aSIFSTime = 16 usec
403 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
404 * signal ext = 6 usec
405 */
406 /* FIX: Atheros Turbo may have different (shorter) duration? */
407 dur = 16; /* SIFS + signal ext */
408 dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
409 dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
410 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
411 4 * rate); /* T_SYM x N_SYM */
412 } else {
413 /*
414 * 802.11b or 802.11g with 802.11b compatibility:
415 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
416 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
417 *
418 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
419 * aSIFSTime = 10 usec
420 * aPreambleLength = 144 usec or 72 usec with short preamble
421 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
422 */
423 dur = 10; /* aSIFSTime = 10 usec */
424 dur += short_preamble ? (72 + 24) : (144 + 48);
425
426 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
427 }
428
429 return dur;
430 }
431
432
433 /* Exported duration function for driver use */
434 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
435 size_t frame_len, int rate)
436 {
437 struct ieee80211_local *local = hw_to_local(hw);
438 u16 dur;
439 int erp;
440
441 erp = ieee80211_is_erp_rate(hw->conf.phymode, rate);
442 dur = ieee80211_frame_duration(local, frame_len, rate,
443 erp, local->short_preamble);
444
445 return cpu_to_le16(dur);
446 }
447 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
448
449
450 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
451 size_t frame_len,
452 const struct ieee80211_tx_control *frame_txctl)
453 {
454 struct ieee80211_local *local = hw_to_local(hw);
455 struct ieee80211_rate *rate;
456 int short_preamble = local->short_preamble;
457 int erp;
458 u16 dur;
459
460 rate = frame_txctl->rts_rate;
461 erp = !!(rate->flags & IEEE80211_RATE_ERP);
462
463 /* CTS duration */
464 dur = ieee80211_frame_duration(local, 10, rate->rate,
465 erp, short_preamble);
466 /* Data frame duration */
467 dur += ieee80211_frame_duration(local, frame_len, rate->rate,
468 erp, short_preamble);
469 /* ACK duration */
470 dur += ieee80211_frame_duration(local, 10, rate->rate,
471 erp, short_preamble);
472
473 return cpu_to_le16(dur);
474 }
475 EXPORT_SYMBOL(ieee80211_rts_duration);
476
477
478 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
479 size_t frame_len,
480 const struct ieee80211_tx_control *frame_txctl)
481 {
482 struct ieee80211_local *local = hw_to_local(hw);
483 struct ieee80211_rate *rate;
484 int short_preamble = local->short_preamble;
485 int erp;
486 u16 dur;
487
488 rate = frame_txctl->rts_rate;
489 erp = !!(rate->flags & IEEE80211_RATE_ERP);
490
491 /* Data frame duration */
492 dur = ieee80211_frame_duration(local, frame_len, rate->rate,
493 erp, short_preamble);
494 if (!(frame_txctl->flags & IEEE80211_TXCTL_NO_ACK)) {
495 /* ACK duration */
496 dur += ieee80211_frame_duration(local, 10, rate->rate,
497 erp, short_preamble);
498 }
499
500 return cpu_to_le16(dur);
501 }
502 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
503
504 static int __ieee80211_if_config(struct net_device *dev,
505 struct sk_buff *beacon,
506 struct ieee80211_tx_control *control)
507 {
508 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
509 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
510 struct ieee80211_if_conf conf;
511 static u8 scan_bssid[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
512
513 if (!local->ops->config_interface || !netif_running(dev))
514 return 0;
515
516 memset(&conf, 0, sizeof(conf));
517 conf.type = sdata->type;
518 if (sdata->type == IEEE80211_IF_TYPE_STA ||
519 sdata->type == IEEE80211_IF_TYPE_IBSS) {
520 if (local->sta_scanning &&
521 local->scan_dev == dev)
522 conf.bssid = scan_bssid;
523 else
524 conf.bssid = sdata->u.sta.bssid;
525 conf.ssid = sdata->u.sta.ssid;
526 conf.ssid_len = sdata->u.sta.ssid_len;
527 conf.generic_elem = sdata->u.sta.extra_ie;
528 conf.generic_elem_len = sdata->u.sta.extra_ie_len;
529 } else if (sdata->type == IEEE80211_IF_TYPE_AP) {
530 conf.ssid = sdata->u.ap.ssid;
531 conf.ssid_len = sdata->u.ap.ssid_len;
532 conf.generic_elem = sdata->u.ap.generic_elem;
533 conf.generic_elem_len = sdata->u.ap.generic_elem_len;
534 conf.beacon = beacon;
535 conf.beacon_control = control;
536 }
537 return local->ops->config_interface(local_to_hw(local),
538 dev->ifindex, &conf);
539 }
540
541 int ieee80211_if_config(struct net_device *dev)
542 {
543 return __ieee80211_if_config(dev, NULL, NULL);
544 }
545
546 int ieee80211_if_config_beacon(struct net_device *dev)
547 {
548 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
549 struct ieee80211_tx_control control;
550 struct sk_buff *skb;
551
552 if (!(local->hw.flags & IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE))
553 return 0;
554 skb = ieee80211_beacon_get(local_to_hw(local), dev->ifindex, &control);
555 if (!skb)
556 return -ENOMEM;
557 return __ieee80211_if_config(dev, skb, &control);
558 }
559
560 int ieee80211_hw_config(struct ieee80211_local *local)
561 {
562 struct ieee80211_hw_mode *mode;
563 struct ieee80211_channel *chan;
564 int ret = 0;
565
566 if (local->sta_scanning) {
567 chan = local->scan_channel;
568 mode = local->scan_hw_mode;
569 } else {
570 chan = local->oper_channel;
571 mode = local->oper_hw_mode;
572 }
573
574 local->hw.conf.channel = chan->chan;
575 local->hw.conf.channel_val = chan->val;
576 local->hw.conf.power_level = chan->power_level;
577 local->hw.conf.freq = chan->freq;
578 local->hw.conf.phymode = mode->mode;
579 local->hw.conf.antenna_max = chan->antenna_max;
580 local->hw.conf.chan = chan;
581 local->hw.conf.mode = mode;
582
583 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
584 printk(KERN_DEBUG "HW CONFIG: channel=%d freq=%d "
585 "phymode=%d\n", local->hw.conf.channel, local->hw.conf.freq,
586 local->hw.conf.phymode);
587 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
588
589 if (local->ops->config)
590 ret = local->ops->config(local_to_hw(local), &local->hw.conf);
591
592 return ret;
593 }
594
595
596 static int ieee80211_change_mtu(struct net_device *dev, int new_mtu)
597 {
598 /* FIX: what would be proper limits for MTU?
599 * This interface uses 802.3 frames. */
600 if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN - 24 - 6) {
601 printk(KERN_WARNING "%s: invalid MTU %d\n",
602 dev->name, new_mtu);
603 return -EINVAL;
604 }
605
606 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
607 printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
608 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
609 dev->mtu = new_mtu;
610 return 0;
611 }
612
613
614 static int ieee80211_change_mtu_apdev(struct net_device *dev, int new_mtu)
615 {
616 /* FIX: what would be proper limits for MTU?
617 * This interface uses 802.11 frames. */
618 if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN) {
619 printk(KERN_WARNING "%s: invalid MTU %d\n",
620 dev->name, new_mtu);
621 return -EINVAL;
622 }
623
624 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
625 printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
626 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
627 dev->mtu = new_mtu;
628 return 0;
629 }
630
631 enum netif_tx_lock_class {
632 TX_LOCK_NORMAL,
633 TX_LOCK_MASTER,
634 };
635
636 static inline void netif_tx_lock_nested(struct net_device *dev, int subclass)
637 {
638 spin_lock_nested(&dev->_xmit_lock, subclass);
639 dev->xmit_lock_owner = smp_processor_id();
640 }
641
642 static void ieee80211_set_multicast_list(struct net_device *dev)
643 {
644 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
645 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
646 unsigned short flags;
647
648 netif_tx_lock_nested(local->mdev, TX_LOCK_MASTER);
649 if (((dev->flags & IFF_ALLMULTI) != 0) ^ (sdata->allmulti != 0)) {
650 if (sdata->allmulti) {
651 sdata->allmulti = 0;
652 local->iff_allmultis--;
653 } else {
654 sdata->allmulti = 1;
655 local->iff_allmultis++;
656 }
657 }
658 if (((dev->flags & IFF_PROMISC) != 0) ^ (sdata->promisc != 0)) {
659 if (sdata->promisc) {
660 sdata->promisc = 0;
661 local->iff_promiscs--;
662 } else {
663 sdata->promisc = 1;
664 local->iff_promiscs++;
665 }
666 }
667 if (dev->mc_count != sdata->mc_count) {
668 local->mc_count = local->mc_count - sdata->mc_count +
669 dev->mc_count;
670 sdata->mc_count = dev->mc_count;
671 }
672 if (local->ops->set_multicast_list) {
673 flags = local->mdev->flags;
674 if (local->iff_allmultis)
675 flags |= IFF_ALLMULTI;
676 if (local->iff_promiscs)
677 flags |= IFF_PROMISC;
678 read_lock(&local->sub_if_lock);
679 local->ops->set_multicast_list(local_to_hw(local), flags,
680 local->mc_count);
681 read_unlock(&local->sub_if_lock);
682 }
683 netif_tx_unlock(local->mdev);
684 }
685
686 struct dev_mc_list *ieee80211_get_mc_list_item(struct ieee80211_hw *hw,
687 struct dev_mc_list *prev,
688 void **ptr)
689 {
690 struct ieee80211_local *local = hw_to_local(hw);
691 struct ieee80211_sub_if_data *sdata = *ptr;
692 struct dev_mc_list *mc;
693
694 if (!prev) {
695 WARN_ON(sdata);
696 sdata = NULL;
697 }
698 if (!prev || !prev->next) {
699 if (sdata)
700 sdata = list_entry(sdata->list.next,
701 struct ieee80211_sub_if_data, list);
702 else
703 sdata = list_entry(local->sub_if_list.next,
704 struct ieee80211_sub_if_data, list);
705 if (&sdata->list != &local->sub_if_list)
706 mc = sdata->dev->mc_list;
707 else
708 mc = NULL;
709 } else
710 mc = prev->next;
711
712 *ptr = sdata;
713 return mc;
714 }
715 EXPORT_SYMBOL(ieee80211_get_mc_list_item);
716
717 static struct net_device_stats *ieee80211_get_stats(struct net_device *dev)
718 {
719 struct ieee80211_sub_if_data *sdata;
720 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
721 return &(sdata->stats);
722 }
723
724 static void ieee80211_if_shutdown(struct net_device *dev)
725 {
726 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
727 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
728
729 ASSERT_RTNL();
730 switch (sdata->type) {
731 case IEEE80211_IF_TYPE_STA:
732 case IEEE80211_IF_TYPE_IBSS:
733 sdata->u.sta.state = IEEE80211_DISABLED;
734 del_timer_sync(&sdata->u.sta.timer);
735 skb_queue_purge(&sdata->u.sta.skb_queue);
736 if (!local->ops->hw_scan &&
737 local->scan_dev == sdata->dev) {
738 local->sta_scanning = 0;
739 cancel_delayed_work(&local->scan_work);
740 }
741 flush_workqueue(local->hw.workqueue);
742 break;
743 }
744 }
745
746 static inline int identical_mac_addr_allowed(int type1, int type2)
747 {
748 return (type1 == IEEE80211_IF_TYPE_MNTR ||
749 type2 == IEEE80211_IF_TYPE_MNTR ||
750 (type1 == IEEE80211_IF_TYPE_AP &&
751 type2 == IEEE80211_IF_TYPE_WDS) ||
752 (type1 == IEEE80211_IF_TYPE_WDS &&
753 (type2 == IEEE80211_IF_TYPE_WDS ||
754 type2 == IEEE80211_IF_TYPE_AP)) ||
755 (type1 == IEEE80211_IF_TYPE_AP &&
756 type2 == IEEE80211_IF_TYPE_VLAN) ||
757 (type1 == IEEE80211_IF_TYPE_VLAN &&
758 (type2 == IEEE80211_IF_TYPE_AP ||
759 type2 == IEEE80211_IF_TYPE_VLAN)));
760 }
761
762 static int ieee80211_master_open(struct net_device *dev)
763 {
764 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
765 struct ieee80211_sub_if_data *sdata;
766 int res = -EOPNOTSUPP;
767
768 read_lock(&local->sub_if_lock);
769 list_for_each_entry(sdata, &local->sub_if_list, list) {
770 if (sdata->dev != dev && netif_running(sdata->dev)) {
771 res = 0;
772 break;
773 }
774 }
775 read_unlock(&local->sub_if_lock);
776 return res;
777 }
778
779 static int ieee80211_master_stop(struct net_device *dev)
780 {
781 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
782 struct ieee80211_sub_if_data *sdata;
783
784 read_lock(&local->sub_if_lock);
785 list_for_each_entry(sdata, &local->sub_if_list, list)
786 if (sdata->dev != dev && netif_running(sdata->dev))
787 dev_close(sdata->dev);
788 read_unlock(&local->sub_if_lock);
789
790 return 0;
791 }
792
793 static int ieee80211_mgmt_open(struct net_device *dev)
794 {
795 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
796
797 if (!netif_running(local->mdev))
798 return -EOPNOTSUPP;
799 return 0;
800 }
801
802 static int ieee80211_mgmt_stop(struct net_device *dev)
803 {
804 return 0;
805 }
806
807 /* Check if running monitor interfaces should go to a "soft monitor" mode
808 * and switch them if necessary. */
809 static inline void ieee80211_start_soft_monitor(struct ieee80211_local *local)
810 {
811 struct ieee80211_if_init_conf conf;
812
813 if (local->open_count && local->open_count == local->monitors &&
814 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER) &&
815 local->ops->remove_interface) {
816 conf.if_id = -1;
817 conf.type = IEEE80211_IF_TYPE_MNTR;
818 conf.mac_addr = NULL;
819 local->ops->remove_interface(local_to_hw(local), &conf);
820 }
821 }
822
823 /* Check if running monitor interfaces should go to a "hard monitor" mode
824 * and switch them if necessary. */
825 static void ieee80211_start_hard_monitor(struct ieee80211_local *local)
826 {
827 struct ieee80211_if_init_conf conf;
828
829 if (local->open_count && local->open_count == local->monitors &&
830 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
831 conf.if_id = -1;
832 conf.type = IEEE80211_IF_TYPE_MNTR;
833 conf.mac_addr = NULL;
834 local->ops->add_interface(local_to_hw(local), &conf);
835 }
836 }
837
838 static int ieee80211_open(struct net_device *dev)
839 {
840 struct ieee80211_sub_if_data *sdata, *nsdata;
841 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
842 struct ieee80211_if_init_conf conf;
843 int res;
844
845 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
846 read_lock(&local->sub_if_lock);
847 list_for_each_entry(nsdata, &local->sub_if_list, list) {
848 struct net_device *ndev = nsdata->dev;
849
850 if (ndev != dev && ndev != local->mdev && netif_running(ndev) &&
851 compare_ether_addr(dev->dev_addr, ndev->dev_addr) == 0 &&
852 !identical_mac_addr_allowed(sdata->type, nsdata->type)) {
853 read_unlock(&local->sub_if_lock);
854 return -ENOTUNIQ;
855 }
856 }
857 read_unlock(&local->sub_if_lock);
858
859 if (sdata->type == IEEE80211_IF_TYPE_WDS &&
860 is_zero_ether_addr(sdata->u.wds.remote_addr))
861 return -ENOLINK;
862
863 if (sdata->type == IEEE80211_IF_TYPE_MNTR && local->open_count &&
864 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
865 /* run the interface in a "soft monitor" mode */
866 local->monitors++;
867 local->open_count++;
868 local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP;
869 return 0;
870 }
871 ieee80211_start_soft_monitor(local);
872
873 conf.if_id = dev->ifindex;
874 conf.type = sdata->type;
875 conf.mac_addr = dev->dev_addr;
876 res = local->ops->add_interface(local_to_hw(local), &conf);
877 if (res) {
878 if (sdata->type == IEEE80211_IF_TYPE_MNTR)
879 ieee80211_start_hard_monitor(local);
880 return res;
881 }
882
883 if (local->open_count == 0) {
884 res = 0;
885 tasklet_enable(&local->tx_pending_tasklet);
886 tasklet_enable(&local->tasklet);
887 if (local->ops->open)
888 res = local->ops->open(local_to_hw(local));
889 if (res == 0) {
890 res = dev_open(local->mdev);
891 if (res) {
892 if (local->ops->stop)
893 local->ops->stop(local_to_hw(local));
894 } else {
895 res = ieee80211_hw_config(local);
896 if (res && local->ops->stop)
897 local->ops->stop(local_to_hw(local));
898 else if (!res && local->apdev)
899 dev_open(local->apdev);
900 }
901 }
902 if (res) {
903 if (local->ops->remove_interface)
904 local->ops->remove_interface(local_to_hw(local),
905 &conf);
906 return res;
907 }
908 }
909 local->open_count++;
910
911 if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
912 local->monitors++;
913 local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP;
914 } else
915 ieee80211_if_config(dev);
916
917 if (sdata->type == IEEE80211_IF_TYPE_STA &&
918 !local->user_space_mlme)
919 netif_carrier_off(dev);
920 else
921 netif_carrier_on(dev);
922
923 netif_start_queue(dev);
924 return 0;
925 }
926
927
928 static int ieee80211_stop(struct net_device *dev)
929 {
930 struct ieee80211_sub_if_data *sdata;
931 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
932
933 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
934
935 if (sdata->type == IEEE80211_IF_TYPE_MNTR &&
936 local->open_count > 1 &&
937 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
938 /* remove "soft monitor" interface */
939 local->open_count--;
940 local->monitors--;
941 if (!local->monitors)
942 local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP;
943 return 0;
944 }
945
946 netif_stop_queue(dev);
947 ieee80211_if_shutdown(dev);
948
949 if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
950 local->monitors--;
951 if (!local->monitors)
952 local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP;
953 }
954
955 local->open_count--;
956 if (local->open_count == 0) {
957 if (netif_running(local->mdev))
958 dev_close(local->mdev);
959 if (local->apdev)
960 dev_close(local->apdev);
961 if (local->ops->stop)
962 local->ops->stop(local_to_hw(local));
963 tasklet_disable(&local->tx_pending_tasklet);
964 tasklet_disable(&local->tasklet);
965 }
966 if (local->ops->remove_interface) {
967 struct ieee80211_if_init_conf conf;
968
969 conf.if_id = dev->ifindex;
970 conf.type = sdata->type;
971 conf.mac_addr = dev->dev_addr;
972 local->ops->remove_interface(local_to_hw(local), &conf);
973 }
974
975 ieee80211_start_hard_monitor(local);
976
977 return 0;
978 }
979
980
981 static int header_parse_80211(struct sk_buff *skb, unsigned char *haddr)
982 {
983 memcpy(haddr, skb_mac_header(skb) + 10, ETH_ALEN); /* addr2 */
984 return ETH_ALEN;
985 }
986
987 struct ieee80211_rate *
988 ieee80211_get_rate(struct ieee80211_local *local, int phymode, int hw_rate)
989 {
990 struct ieee80211_hw_mode *mode;
991 int r;
992
993 list_for_each_entry(mode, &local->modes_list, list) {
994 if (mode->mode != phymode)
995 continue;
996 for (r = 0; r < mode->num_rates; r++) {
997 struct ieee80211_rate *rate = &mode->rates[r];
998 if (rate->val == hw_rate ||
999 (rate->flags & IEEE80211_RATE_PREAMBLE2 &&
1000 rate->val2 == hw_rate))
1001 return rate;
1002 }
1003 }
1004
1005 return NULL;
1006 }
1007
1008 static void
1009 ieee80211_fill_frame_info(struct ieee80211_local *local,
1010 struct ieee80211_frame_info *fi,
1011 struct ieee80211_rx_status *status)
1012 {
1013 if (status) {
1014 struct timespec ts;
1015 struct ieee80211_rate *rate;
1016
1017 jiffies_to_timespec(jiffies, &ts);
1018 fi->hosttime = cpu_to_be64((u64) ts.tv_sec * 1000000 +
1019 ts.tv_nsec / 1000);
1020 fi->mactime = cpu_to_be64(status->mactime);
1021 switch (status->phymode) {
1022 case MODE_IEEE80211A:
1023 fi->phytype = htonl(ieee80211_phytype_ofdm_dot11_a);
1024 break;
1025 case MODE_IEEE80211B:
1026 fi->phytype = htonl(ieee80211_phytype_dsss_dot11_b);
1027 break;
1028 case MODE_IEEE80211G:
1029 fi->phytype = htonl(ieee80211_phytype_pbcc_dot11_g);
1030 break;
1031 case MODE_ATHEROS_TURBO:
1032 fi->phytype =
1033 htonl(ieee80211_phytype_dsss_dot11_turbo);
1034 break;
1035 default:
1036 fi->phytype = htonl(0xAAAAAAAA);
1037 break;
1038 }
1039 fi->channel = htonl(status->channel);
1040 rate = ieee80211_get_rate(local, status->phymode,
1041 status->rate);
1042 if (rate) {
1043 fi->datarate = htonl(rate->rate);
1044 if (rate->flags & IEEE80211_RATE_PREAMBLE2) {
1045 if (status->rate == rate->val)
1046 fi->preamble = htonl(2); /* long */
1047 else if (status->rate == rate->val2)
1048 fi->preamble = htonl(1); /* short */
1049 } else
1050 fi->preamble = htonl(0);
1051 } else {
1052 fi->datarate = htonl(0);
1053 fi->preamble = htonl(0);
1054 }
1055
1056 fi->antenna = htonl(status->antenna);
1057 fi->priority = htonl(0xffffffff); /* no clue */
1058 fi->ssi_type = htonl(ieee80211_ssi_raw);
1059 fi->ssi_signal = htonl(status->ssi);
1060 fi->ssi_noise = 0x00000000;
1061 fi->encoding = 0;
1062 } else {
1063 /* clear everything because we really don't know.
1064 * the msg_type field isn't present on monitor frames
1065 * so we don't know whether it will be present or not,
1066 * but it's ok to not clear it since it'll be assigned
1067 * anyway */
1068 memset(fi, 0, sizeof(*fi) - sizeof(fi->msg_type));
1069
1070 fi->ssi_type = htonl(ieee80211_ssi_none);
1071 }
1072 fi->version = htonl(IEEE80211_FI_VERSION);
1073 fi->length = cpu_to_be32(sizeof(*fi) - sizeof(fi->msg_type));
1074 }
1075
1076 /* this routine is actually not just for this, but also
1077 * for pushing fake 'management' frames into userspace.
1078 * it shall be replaced by a netlink-based system. */
1079 void
1080 ieee80211_rx_mgmt(struct ieee80211_local *local, struct sk_buff *skb,
1081 struct ieee80211_rx_status *status, u32 msg_type)
1082 {
1083 struct ieee80211_frame_info *fi;
1084 const size_t hlen = sizeof(struct ieee80211_frame_info);
1085 struct ieee80211_sub_if_data *sdata;
1086
1087 skb->dev = local->apdev;
1088
1089 sdata = IEEE80211_DEV_TO_SUB_IF(local->apdev);
1090
1091 if (skb_headroom(skb) < hlen) {
1092 I802_DEBUG_INC(local->rx_expand_skb_head);
1093 if (pskb_expand_head(skb, hlen, 0, GFP_ATOMIC)) {
1094 dev_kfree_skb(skb);
1095 return;
1096 }
1097 }
1098
1099 fi = (struct ieee80211_frame_info *) skb_push(skb, hlen);
1100
1101 ieee80211_fill_frame_info(local, fi, status);
1102 fi->msg_type = htonl(msg_type);
1103
1104 sdata->stats.rx_packets++;
1105 sdata->stats.rx_bytes += skb->len;
1106
1107 skb_set_mac_header(skb, 0);
1108 skb->ip_summed = CHECKSUM_UNNECESSARY;
1109 skb->pkt_type = PACKET_OTHERHOST;
1110 skb->protocol = htons(ETH_P_802_2);
1111 memset(skb->cb, 0, sizeof(skb->cb));
1112 netif_rx(skb);
1113 }
1114
1115 int ieee80211_radar_status(struct ieee80211_hw *hw, int channel,
1116 int radar, int radar_type)
1117 {
1118 struct sk_buff *skb;
1119 struct ieee80211_radar_info *msg;
1120 struct ieee80211_local *local = hw_to_local(hw);
1121
1122 if (!local->apdev)
1123 return 0;
1124
1125 skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
1126 sizeof(struct ieee80211_radar_info));
1127
1128 if (!skb)
1129 return -ENOMEM;
1130 skb_reserve(skb, sizeof(struct ieee80211_frame_info));
1131
1132 msg = (struct ieee80211_radar_info *)
1133 skb_put(skb, sizeof(struct ieee80211_radar_info));
1134 msg->channel = channel;
1135 msg->radar = radar;
1136 msg->radar_type = radar_type;
1137
1138 ieee80211_rx_mgmt(local, skb, NULL, ieee80211_msg_radar);
1139 return 0;
1140 }
1141 EXPORT_SYMBOL(ieee80211_radar_status);
1142
1143
1144 static void ieee80211_stat_refresh(unsigned long data)
1145 {
1146 struct ieee80211_local *local = (struct ieee80211_local *) data;
1147 struct sta_info *sta;
1148 struct ieee80211_sub_if_data *sdata;
1149
1150 if (!local->stat_time)
1151 return;
1152
1153 /* go through all stations */
1154 spin_lock_bh(&local->sta_lock);
1155 list_for_each_entry(sta, &local->sta_list, list) {
1156 sta->channel_use = (sta->channel_use_raw / local->stat_time) /
1157 CHAN_UTIL_PER_10MS;
1158 sta->channel_use_raw = 0;
1159 }
1160 spin_unlock_bh(&local->sta_lock);
1161
1162 /* go through all subinterfaces */
1163 read_lock(&local->sub_if_lock);
1164 list_for_each_entry(sdata, &local->sub_if_list, list) {
1165 sdata->channel_use = (sdata->channel_use_raw /
1166 local->stat_time) / CHAN_UTIL_PER_10MS;
1167 sdata->channel_use_raw = 0;
1168 }
1169 read_unlock(&local->sub_if_lock);
1170
1171 /* hardware interface */
1172 local->channel_use = (local->channel_use_raw /
1173 local->stat_time) / CHAN_UTIL_PER_10MS;
1174 local->channel_use_raw = 0;
1175
1176 local->stat_timer.expires = jiffies + HZ * local->stat_time / 100;
1177 add_timer(&local->stat_timer);
1178 }
1179
1180
1181 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1182 struct sk_buff *skb,
1183 struct ieee80211_tx_status *status)
1184 {
1185 struct ieee80211_local *local = hw_to_local(hw);
1186 struct ieee80211_tx_status *saved;
1187 int tmp;
1188
1189 skb->dev = local->mdev;
1190 saved = kmalloc(sizeof(struct ieee80211_tx_status), GFP_ATOMIC);
1191 if (unlikely(!saved)) {
1192 if (net_ratelimit())
1193 printk(KERN_WARNING "%s: Not enough memory, "
1194 "dropping tx status", skb->dev->name);
1195 /* should be dev_kfree_skb_irq, but due to this function being
1196 * named _irqsafe instead of just _irq we can't be sure that
1197 * people won't call it from non-irq contexts */
1198 dev_kfree_skb_any(skb);
1199 return;
1200 }
1201 memcpy(saved, status, sizeof(struct ieee80211_tx_status));
1202 /* copy pointer to saved status into skb->cb for use by tasklet */
1203 memcpy(skb->cb, &saved, sizeof(saved));
1204
1205 skb->pkt_type = IEEE80211_TX_STATUS_MSG;
1206 skb_queue_tail(status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS ?
1207 &local->skb_queue : &local->skb_queue_unreliable, skb);
1208 tmp = skb_queue_len(&local->skb_queue) +
1209 skb_queue_len(&local->skb_queue_unreliable);
1210 while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT &&
1211 (skb = skb_dequeue(&local->skb_queue_unreliable))) {
1212 memcpy(&saved, skb->cb, sizeof(saved));
1213 kfree(saved);
1214 dev_kfree_skb_irq(skb);
1215 tmp--;
1216 I802_DEBUG_INC(local->tx_status_drop);
1217 }
1218 tasklet_schedule(&local->tasklet);
1219 }
1220 EXPORT_SYMBOL(ieee80211_tx_status_irqsafe);
1221
1222 static void ieee80211_tasklet_handler(unsigned long data)
1223 {
1224 struct ieee80211_local *local = (struct ieee80211_local *) data;
1225 struct sk_buff *skb;
1226 struct ieee80211_rx_status rx_status;
1227 struct ieee80211_tx_status *tx_status;
1228
1229 while ((skb = skb_dequeue(&local->skb_queue)) ||
1230 (skb = skb_dequeue(&local->skb_queue_unreliable))) {
1231 switch (skb->pkt_type) {
1232 case IEEE80211_RX_MSG:
1233 /* status is in skb->cb */
1234 memcpy(&rx_status, skb->cb, sizeof(rx_status));
1235 /* Clear skb->type in order to not confuse kernel
1236 * netstack. */
1237 skb->pkt_type = 0;
1238 __ieee80211_rx(local_to_hw(local), skb, &rx_status);
1239 break;
1240 case IEEE80211_TX_STATUS_MSG:
1241 /* get pointer to saved status out of skb->cb */
1242 memcpy(&tx_status, skb->cb, sizeof(tx_status));
1243 skb->pkt_type = 0;
1244 ieee80211_tx_status(local_to_hw(local),
1245 skb, tx_status);
1246 kfree(tx_status);
1247 break;
1248 default: /* should never get here! */
1249 printk(KERN_ERR "%s: Unknown message type (%d)\n",
1250 local->mdev->name, skb->pkt_type);
1251 dev_kfree_skb(skb);
1252 break;
1253 }
1254 }
1255 }
1256
1257
1258 /* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to
1259 * make a prepared TX frame (one that has been given to hw) to look like brand
1260 * new IEEE 802.11 frame that is ready to go through TX processing again.
1261 * Also, tx_packet_data in cb is restored from tx_control. */
1262 static void ieee80211_remove_tx_extra(struct ieee80211_local *local,
1263 struct ieee80211_key *key,
1264 struct sk_buff *skb,
1265 struct ieee80211_tx_control *control)
1266 {
1267 int hdrlen, iv_len, mic_len;
1268 struct ieee80211_tx_packet_data *pkt_data;
1269
1270 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1271 pkt_data->ifindex = control->ifindex;
1272 pkt_data->mgmt_iface = (control->type == IEEE80211_IF_TYPE_MGMT);
1273 pkt_data->req_tx_status = !!(control->flags & IEEE80211_TXCTL_REQ_TX_STATUS);
1274 pkt_data->do_not_encrypt = !!(control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT);
1275 pkt_data->requeue = !!(control->flags & IEEE80211_TXCTL_REQUEUE);
1276 pkt_data->queue = control->queue;
1277
1278 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1279
1280 if (!key)
1281 goto no_key;
1282
1283 switch (key->alg) {
1284 case ALG_WEP:
1285 iv_len = WEP_IV_LEN;
1286 mic_len = WEP_ICV_LEN;
1287 break;
1288 case ALG_TKIP:
1289 iv_len = TKIP_IV_LEN;
1290 mic_len = TKIP_ICV_LEN;
1291 break;
1292 case ALG_CCMP:
1293 iv_len = CCMP_HDR_LEN;
1294 mic_len = CCMP_MIC_LEN;
1295 break;
1296 default:
1297 goto no_key;
1298 }
1299
1300 if (skb->len >= mic_len && key->force_sw_encrypt)
1301 skb_trim(skb, skb->len - mic_len);
1302 if (skb->len >= iv_len && skb->len > hdrlen) {
1303 memmove(skb->data + iv_len, skb->data, hdrlen);
1304 skb_pull(skb, iv_len);
1305 }
1306
1307 no_key:
1308 {
1309 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1310 u16 fc = le16_to_cpu(hdr->frame_control);
1311 if ((fc & 0x8C) == 0x88) /* QoS Control Field */ {
1312 fc &= ~IEEE80211_STYPE_QOS_DATA;
1313 hdr->frame_control = cpu_to_le16(fc);
1314 memmove(skb->data + 2, skb->data, hdrlen - 2);
1315 skb_pull(skb, 2);
1316 }
1317 }
1318 }
1319
1320
1321 void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
1322 struct ieee80211_tx_status *status)
1323 {
1324 struct sk_buff *skb2;
1325 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1326 struct ieee80211_local *local = hw_to_local(hw);
1327 u16 frag, type;
1328 u32 msg_type;
1329 struct ieee80211_tx_status_rtap_hdr *rthdr;
1330 struct ieee80211_sub_if_data *sdata;
1331 int monitors;
1332
1333 if (!status) {
1334 printk(KERN_ERR
1335 "%s: ieee80211_tx_status called with NULL status\n",
1336 local->mdev->name);
1337 dev_kfree_skb(skb);
1338 return;
1339 }
1340
1341 if (status->excessive_retries) {
1342 struct sta_info *sta;
1343 sta = sta_info_get(local, hdr->addr1);
1344 if (sta) {
1345 if (sta->flags & WLAN_STA_PS) {
1346 /* The STA is in power save mode, so assume
1347 * that this TX packet failed because of that.
1348 */
1349 status->excessive_retries = 0;
1350 status->flags |= IEEE80211_TX_STATUS_TX_FILTERED;
1351 }
1352 sta_info_put(sta);
1353 }
1354 }
1355
1356 if (status->flags & IEEE80211_TX_STATUS_TX_FILTERED) {
1357 struct sta_info *sta;
1358 sta = sta_info_get(local, hdr->addr1);
1359 if (sta) {
1360 sta->tx_filtered_count++;
1361
1362 /* Clear the TX filter mask for this STA when sending
1363 * the next packet. If the STA went to power save mode,
1364 * this will happen when it is waking up for the next
1365 * time. */
1366 sta->clear_dst_mask = 1;
1367
1368 /* TODO: Is the WLAN_STA_PS flag always set here or is
1369 * the race between RX and TX status causing some
1370 * packets to be filtered out before 80211.o gets an
1371 * update for PS status? This seems to be the case, so
1372 * no changes are likely to be needed. */
1373 if (sta->flags & WLAN_STA_PS &&
1374 skb_queue_len(&sta->tx_filtered) <
1375 STA_MAX_TX_BUFFER) {
1376 ieee80211_remove_tx_extra(local, sta->key,
1377 skb,
1378 &status->control);
1379 skb_queue_tail(&sta->tx_filtered, skb);
1380 } else if (!(sta->flags & WLAN_STA_PS) &&
1381 !(status->control.flags & IEEE80211_TXCTL_REQUEUE)) {
1382 /* Software retry the packet once */
1383 status->control.flags |= IEEE80211_TXCTL_REQUEUE;
1384 ieee80211_remove_tx_extra(local, sta->key,
1385 skb,
1386 &status->control);
1387 dev_queue_xmit(skb);
1388 } else {
1389 if (net_ratelimit()) {
1390 printk(KERN_DEBUG "%s: dropped TX "
1391 "filtered frame queue_len=%d "
1392 "PS=%d @%lu\n",
1393 local->mdev->name,
1394 skb_queue_len(
1395 &sta->tx_filtered),
1396 !!(sta->flags & WLAN_STA_PS),
1397 jiffies);
1398 }
1399 dev_kfree_skb(skb);
1400 }
1401 sta_info_put(sta);
1402 return;
1403 }
1404 } else {
1405 /* FIXME: STUPID to call this with both local and local->mdev */
1406 rate_control_tx_status(local, local->mdev, skb, status);
1407 }
1408
1409 ieee80211_led_tx(local, 0);
1410
1411 /* SNMP counters
1412 * Fragments are passed to low-level drivers as separate skbs, so these
1413 * are actually fragments, not frames. Update frame counters only for
1414 * the first fragment of the frame. */
1415
1416 frag = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1417 type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
1418
1419 if (status->flags & IEEE80211_TX_STATUS_ACK) {
1420 if (frag == 0) {
1421 local->dot11TransmittedFrameCount++;
1422 if (is_multicast_ether_addr(hdr->addr1))
1423 local->dot11MulticastTransmittedFrameCount++;
1424 if (status->retry_count > 0)
1425 local->dot11RetryCount++;
1426 if (status->retry_count > 1)
1427 local->dot11MultipleRetryCount++;
1428 }
1429
1430 /* This counter shall be incremented for an acknowledged MPDU
1431 * with an individual address in the address 1 field or an MPDU
1432 * with a multicast address in the address 1 field of type Data
1433 * or Management. */
1434 if (!is_multicast_ether_addr(hdr->addr1) ||
1435 type == IEEE80211_FTYPE_DATA ||
1436 type == IEEE80211_FTYPE_MGMT)
1437 local->dot11TransmittedFragmentCount++;
1438 } else {
1439 if (frag == 0)
1440 local->dot11FailedCount++;
1441 }
1442
1443 msg_type = (status->flags & IEEE80211_TX_STATUS_ACK) ?
1444 ieee80211_msg_tx_callback_ack : ieee80211_msg_tx_callback_fail;
1445
1446 /* this was a transmitted frame, but now we want to reuse it */
1447 skb_orphan(skb);
1448
1449 if ((status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS) &&
1450 local->apdev) {
1451 if (local->monitors) {
1452 skb2 = skb_clone(skb, GFP_ATOMIC);
1453 } else {
1454 skb2 = skb;
1455 skb = NULL;
1456 }
1457
1458 if (skb2)
1459 /* Send frame to hostapd */
1460 ieee80211_rx_mgmt(local, skb2, NULL, msg_type);
1461
1462 if (!skb)
1463 return;
1464 }
1465
1466 if (!local->monitors) {
1467 dev_kfree_skb(skb);
1468 return;
1469 }
1470
1471 /* send frame to monitor interfaces now */
1472
1473 if (skb_headroom(skb) < sizeof(*rthdr)) {
1474 printk(KERN_ERR "ieee80211_tx_status: headroom too small\n");
1475 dev_kfree_skb(skb);
1476 return;
1477 }
1478
1479 rthdr = (struct ieee80211_tx_status_rtap_hdr*)
1480 skb_push(skb, sizeof(*rthdr));
1481
1482 memset(rthdr, 0, sizeof(*rthdr));
1483 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
1484 rthdr->hdr.it_present =
1485 cpu_to_le32((1 << IEEE80211_RADIOTAP_TX_FLAGS) |
1486 (1 << IEEE80211_RADIOTAP_DATA_RETRIES));
1487
1488 if (!(status->flags & IEEE80211_TX_STATUS_ACK) &&
1489 !is_multicast_ether_addr(hdr->addr1))
1490 rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_FAIL);
1491
1492 if ((status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) &&
1493 (status->control.flags & IEEE80211_TXCTL_USE_CTS_PROTECT))
1494 rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_CTS);
1495 else if (status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS)
1496 rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_RTS);
1497
1498 rthdr->data_retries = status->retry_count;
1499
1500 read_lock(&local->sub_if_lock);
1501 monitors = local->monitors;
1502 list_for_each_entry(sdata, &local->sub_if_list, list) {
1503 /*
1504 * Using the monitors counter is possibly racy, but
1505 * if the value is wrong we simply either clone the skb
1506 * once too much or forget sending it to one monitor iface
1507 * The latter case isn't nice but fixing the race is much
1508 * more complicated.
1509 */
1510 if (!monitors || !skb)
1511 goto out;
1512
1513 if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
1514 if (!netif_running(sdata->dev))
1515 continue;
1516 monitors--;
1517 if (monitors)
1518 skb2 = skb_clone(skb, GFP_KERNEL);
1519 else
1520 skb2 = NULL;
1521 skb->dev = sdata->dev;
1522 /* XXX: is this sufficient for BPF? */
1523 skb_set_mac_header(skb, 0);
1524 skb->ip_summed = CHECKSUM_UNNECESSARY;
1525 skb->pkt_type = PACKET_OTHERHOST;
1526 skb->protocol = htons(ETH_P_802_2);
1527 memset(skb->cb, 0, sizeof(skb->cb));
1528 netif_rx(skb);
1529 skb = skb2;
1530 }
1531 }
1532 out:
1533 read_unlock(&local->sub_if_lock);
1534 if (skb)
1535 dev_kfree_skb(skb);
1536 }
1537 EXPORT_SYMBOL(ieee80211_tx_status);
1538
1539
1540 int ieee80211_if_update_wds(struct net_device *dev, u8 *remote_addr)
1541 {
1542 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1543 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1544 struct sta_info *sta;
1545
1546 if (compare_ether_addr(remote_addr, sdata->u.wds.remote_addr) == 0)
1547 return 0;
1548
1549 /* Create STA entry for the new peer */
1550 sta = sta_info_add(local, dev, remote_addr, GFP_KERNEL);
1551 if (!sta)
1552 return -ENOMEM;
1553 sta_info_put(sta);
1554
1555 /* Remove STA entry for the old peer */
1556 sta = sta_info_get(local, sdata->u.wds.remote_addr);
1557 if (sta) {
1558 sta_info_put(sta);
1559 sta_info_free(sta, 0);
1560 } else {
1561 printk(KERN_DEBUG "%s: could not find STA entry for WDS link "
1562 "peer " MAC_FMT "\n",
1563 dev->name, MAC_ARG(sdata->u.wds.remote_addr));
1564 }
1565
1566 /* Update WDS link data */
1567 memcpy(&sdata->u.wds.remote_addr, remote_addr, ETH_ALEN);
1568
1569 return 0;
1570 }
1571
1572 /* Must not be called for mdev and apdev */
1573 void ieee80211_if_setup(struct net_device *dev)
1574 {
1575 ether_setup(dev);
1576 dev->hard_start_xmit = ieee80211_subif_start_xmit;
1577 dev->wireless_handlers = &ieee80211_iw_handler_def;
1578 dev->set_multicast_list = ieee80211_set_multicast_list;
1579 dev->change_mtu = ieee80211_change_mtu;
1580 dev->get_stats = ieee80211_get_stats;
1581 dev->open = ieee80211_open;
1582 dev->stop = ieee80211_stop;
1583 dev->uninit = ieee80211_if_reinit;
1584 dev->destructor = ieee80211_if_free;
1585 }
1586
1587 void ieee80211_if_mgmt_setup(struct net_device *dev)
1588 {
1589 ether_setup(dev);
1590 dev->hard_start_xmit = ieee80211_mgmt_start_xmit;
1591 dev->change_mtu = ieee80211_change_mtu_apdev;
1592 dev->get_stats = ieee80211_get_stats;
1593 dev->open = ieee80211_mgmt_open;
1594 dev->stop = ieee80211_mgmt_stop;
1595 dev->type = ARPHRD_IEEE80211_PRISM;
1596 dev->hard_header_parse = header_parse_80211;
1597 dev->uninit = ieee80211_if_reinit;
1598 dev->destructor = ieee80211_if_free;
1599 }
1600
1601 int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local,
1602 const char *name)
1603 {
1604 struct rate_control_ref *ref, *old;
1605
1606 ASSERT_RTNL();
1607 if (local->open_count || netif_running(local->mdev) ||
1608 (local->apdev && netif_running(local->apdev)))
1609 return -EBUSY;
1610
1611 ref = rate_control_alloc(name, local);
1612 if (!ref) {
1613 printk(KERN_WARNING "%s: Failed to select rate control "
1614 "algorithm\n", local->mdev->name);
1615 return -ENOENT;
1616 }
1617
1618 old = local->rate_ctrl;
1619 local->rate_ctrl = ref;
1620 if (old) {
1621 rate_control_put(old);
1622 sta_info_flush(local, NULL);
1623 }
1624
1625 printk(KERN_DEBUG "%s: Selected rate control "
1626 "algorithm '%s'\n", local->mdev->name,
1627 ref->ops->name);
1628
1629
1630 return 0;
1631 }
1632
1633 static void rate_control_deinitialize(struct ieee80211_local *local)
1634 {
1635 struct rate_control_ref *ref;
1636
1637 ref = local->rate_ctrl;
1638 local->rate_ctrl = NULL;
1639 rate_control_put(ref);
1640 }
1641
1642 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1643 const struct ieee80211_ops *ops)
1644 {
1645 struct net_device *mdev;
1646 struct ieee80211_local *local;
1647 struct ieee80211_sub_if_data *sdata;
1648 int priv_size;
1649 struct wiphy *wiphy;
1650
1651 /* Ensure 32-byte alignment of our private data and hw private data.
1652 * We use the wiphy priv data for both our ieee80211_local and for
1653 * the driver's private data
1654 *
1655 * In memory it'll be like this:
1656 *
1657 * +-------------------------+
1658 * | struct wiphy |
1659 * +-------------------------+
1660 * | struct ieee80211_local |
1661 * +-------------------------+
1662 * | driver's private data |
1663 * +-------------------------+
1664 *
1665 */
1666 priv_size = ((sizeof(struct ieee80211_local) +
1667 NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST) +
1668 priv_data_len;
1669
1670 wiphy = wiphy_new(&mac80211_config_ops, priv_size);
1671
1672 if (!wiphy)
1673 return NULL;
1674
1675 wiphy->privid = mac80211_wiphy_privid;
1676
1677 local = wiphy_priv(wiphy);
1678 local->hw.wiphy = wiphy;
1679
1680 local->hw.priv = (char *)local +
1681 ((sizeof(struct ieee80211_local) +
1682 NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
1683
1684 BUG_ON(!ops->tx);
1685 BUG_ON(!ops->config);
1686 BUG_ON(!ops->add_interface);
1687 local->ops = ops;
1688
1689 /* for now, mdev needs sub_if_data :/ */
1690 mdev = alloc_netdev(sizeof(struct ieee80211_sub_if_data),
1691 "wmaster%d", ether_setup);
1692 if (!mdev) {
1693 wiphy_free(wiphy);
1694 return NULL;
1695 }
1696
1697 sdata = IEEE80211_DEV_TO_SUB_IF(mdev);
1698 mdev->ieee80211_ptr = &sdata->wdev;
1699 sdata->wdev.wiphy = wiphy;
1700
1701 local->hw.queues = 1; /* default */
1702
1703 local->mdev = mdev;
1704 local->rx_pre_handlers = ieee80211_rx_pre_handlers;
1705 local->rx_handlers = ieee80211_rx_handlers;
1706 local->tx_handlers = ieee80211_tx_handlers;
1707
1708 local->bridge_packets = 1;
1709
1710 local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
1711 local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD;
1712 local->short_retry_limit = 7;
1713 local->long_retry_limit = 4;
1714 local->hw.conf.radio_enabled = 1;
1715
1716 local->enabled_modes = (unsigned int) -1;
1717
1718 INIT_LIST_HEAD(&local->modes_list);
1719
1720 rwlock_init(&local->sub_if_lock);
1721 INIT_LIST_HEAD(&local->sub_if_list);
1722
1723 INIT_DELAYED_WORK(&local->scan_work, ieee80211_sta_scan_work);
1724 init_timer(&local->stat_timer);
1725 local->stat_timer.function = ieee80211_stat_refresh;
1726 local->stat_timer.data = (unsigned long) local;
1727 ieee80211_rx_bss_list_init(mdev);
1728
1729 sta_info_init(local);
1730
1731 mdev->hard_start_xmit = ieee80211_master_start_xmit;
1732 mdev->open = ieee80211_master_open;
1733 mdev->stop = ieee80211_master_stop;
1734 mdev->type = ARPHRD_IEEE80211;
1735 mdev->hard_header_parse = header_parse_80211;
1736
1737 sdata->type = IEEE80211_IF_TYPE_AP;
1738 sdata->dev = mdev;
1739 sdata->local = local;
1740 sdata->u.ap.force_unicast_rateidx = -1;
1741 sdata->u.ap.max_ratectrl_rateidx = -1;
1742 ieee80211_if_sdata_init(sdata);
1743 list_add_tail(&sdata->list, &local->sub_if_list);
1744
1745 tasklet_init(&local->tx_pending_tasklet, ieee80211_tx_pending,
1746 (unsigned long)local);
1747 tasklet_disable(&local->tx_pending_tasklet);
1748
1749 tasklet_init(&local->tasklet,
1750 ieee80211_tasklet_handler,
1751 (unsigned long) local);
1752 tasklet_disable(&local->tasklet);
1753
1754 skb_queue_head_init(&local->skb_queue);
1755 skb_queue_head_init(&local->skb_queue_unreliable);
1756
1757 return local_to_hw(local);
1758 }
1759 EXPORT_SYMBOL(ieee80211_alloc_hw);
1760
1761 int ieee80211_register_hw(struct ieee80211_hw *hw)
1762 {
1763 struct ieee80211_local *local = hw_to_local(hw);
1764 const char *name;
1765 int result;
1766
1767 result = wiphy_register(local->hw.wiphy);
1768 if (result < 0)
1769 return result;
1770
1771 name = wiphy_dev(local->hw.wiphy)->driver->name;
1772 local->hw.workqueue = create_singlethread_workqueue(name);
1773 if (!local->hw.workqueue) {
1774 result = -ENOMEM;
1775 goto fail_workqueue;
1776 }
1777
1778 /*
1779 * The hardware needs headroom for sending the frame,
1780 * and we need some headroom for passing the frame to monitor
1781 * interfaces, but never both at the same time.
1782 */
1783 local->tx_headroom = max_t(unsigned int , local->hw.extra_tx_headroom,
1784 sizeof(struct ieee80211_tx_status_rtap_hdr));
1785
1786 debugfs_hw_add(local);
1787
1788 local->hw.conf.beacon_int = 1000;
1789
1790 local->wstats_flags |= local->hw.max_rssi ?
1791 IW_QUAL_LEVEL_UPDATED : IW_QUAL_LEVEL_INVALID;
1792 local->wstats_flags |= local->hw.max_signal ?
1793 IW_QUAL_QUAL_UPDATED : IW_QUAL_QUAL_INVALID;
1794 local->wstats_flags |= local->hw.max_noise ?
1795 IW_QUAL_NOISE_UPDATED : IW_QUAL_NOISE_INVALID;
1796 if (local->hw.max_rssi < 0 || local->hw.max_noise < 0)
1797 local->wstats_flags |= IW_QUAL_DBM;
1798
1799 result = sta_info_start(local);
1800 if (result < 0)
1801 goto fail_sta_info;
1802
1803 rtnl_lock();
1804 result = dev_alloc_name(local->mdev, local->mdev->name);
1805 if (result < 0)
1806 goto fail_dev;
1807
1808 memcpy(local->mdev->dev_addr, local->hw.wiphy->perm_addr, ETH_ALEN);
1809 SET_NETDEV_DEV(local->mdev, wiphy_dev(local->hw.wiphy));
1810
1811 result = register_netdevice(local->mdev);
1812 if (result < 0)
1813 goto fail_dev;
1814
1815 ieee80211_debugfs_add_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev));
1816
1817 result = ieee80211_init_rate_ctrl_alg(local, NULL);
1818 if (result < 0) {
1819 printk(KERN_DEBUG "%s: Failed to initialize rate control "
1820 "algorithm\n", local->mdev->name);
1821 goto fail_rate;
1822 }
1823
1824 result = ieee80211_wep_init(local);
1825
1826 if (result < 0) {
1827 printk(KERN_DEBUG "%s: Failed to initialize wep\n",
1828 local->mdev->name);
1829 goto fail_wep;
1830 }
1831
1832 ieee80211_install_qdisc(local->mdev);
1833
1834 /* add one default STA interface */
1835 result = ieee80211_if_add(local->mdev, "wlan%d", NULL,
1836 IEEE80211_IF_TYPE_STA);
1837 if (result)
1838 printk(KERN_WARNING "%s: Failed to add default virtual iface\n",
1839 local->mdev->name);
1840
1841 local->reg_state = IEEE80211_DEV_REGISTERED;
1842 rtnl_unlock();
1843
1844 ieee80211_led_init(local);
1845
1846 return 0;
1847
1848 fail_wep:
1849 rate_control_deinitialize(local);
1850 fail_rate:
1851 ieee80211_debugfs_remove_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev));
1852 unregister_netdevice(local->mdev);
1853 fail_dev:
1854 rtnl_unlock();
1855 sta_info_stop(local);
1856 fail_sta_info:
1857 debugfs_hw_del(local);
1858 destroy_workqueue(local->hw.workqueue);
1859 fail_workqueue:
1860 wiphy_unregister(local->hw.wiphy);
1861 return result;
1862 }
1863 EXPORT_SYMBOL(ieee80211_register_hw);
1864
1865 int ieee80211_register_hwmode(struct ieee80211_hw *hw,
1866 struct ieee80211_hw_mode *mode)
1867 {
1868 struct ieee80211_local *local = hw_to_local(hw);
1869 struct ieee80211_rate *rate;
1870 int i;
1871
1872 INIT_LIST_HEAD(&mode->list);
1873 list_add_tail(&mode->list, &local->modes_list);
1874
1875 local->hw_modes |= (1 << mode->mode);
1876 for (i = 0; i < mode->num_rates; i++) {
1877 rate = &(mode->rates[i]);
1878 rate->rate_inv = CHAN_UTIL_RATE_LCM / rate->rate;
1879 }
1880 ieee80211_prepare_rates(local, mode);
1881
1882 if (!local->oper_hw_mode) {
1883 /* Default to this mode */
1884 local->hw.conf.phymode = mode->mode;
1885 local->oper_hw_mode = local->scan_hw_mode = mode;
1886 local->oper_channel = local->scan_channel = &mode->channels[0];
1887 local->hw.conf.mode = local->oper_hw_mode;
1888 local->hw.conf.chan = local->oper_channel;
1889 }
1890
1891 if (!(hw->flags & IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED))
1892 ieee80211_set_default_regdomain(mode);
1893
1894 return 0;
1895 }
1896 EXPORT_SYMBOL(ieee80211_register_hwmode);
1897
1898 void ieee80211_unregister_hw(struct ieee80211_hw *hw)
1899 {
1900 struct ieee80211_local *local = hw_to_local(hw);
1901 struct ieee80211_sub_if_data *sdata, *tmp;
1902 struct list_head tmp_list;
1903 int i;
1904
1905 tasklet_kill(&local->tx_pending_tasklet);
1906 tasklet_kill(&local->tasklet);
1907
1908 rtnl_lock();
1909
1910 BUG_ON(local->reg_state != IEEE80211_DEV_REGISTERED);
1911
1912 local->reg_state = IEEE80211_DEV_UNREGISTERED;
1913 if (local->apdev)
1914 ieee80211_if_del_mgmt(local);
1915
1916 write_lock_bh(&local->sub_if_lock);
1917 list_replace_init(&local->sub_if_list, &tmp_list);
1918 write_unlock_bh(&local->sub_if_lock);
1919
1920 list_for_each_entry_safe(sdata, tmp, &tmp_list, list)
1921 __ieee80211_if_del(local, sdata);
1922
1923 rtnl_unlock();
1924
1925 if (local->stat_time)
1926 del_timer_sync(&local->stat_timer);
1927
1928 ieee80211_rx_bss_list_deinit(local->mdev);
1929 ieee80211_clear_tx_pending(local);
1930 sta_info_stop(local);
1931 rate_control_deinitialize(local);
1932 debugfs_hw_del(local);
1933
1934 for (i = 0; i < NUM_IEEE80211_MODES; i++) {
1935 kfree(local->supp_rates[i]);
1936 kfree(local->basic_rates[i]);
1937 }
1938
1939 if (skb_queue_len(&local->skb_queue)
1940 || skb_queue_len(&local->skb_queue_unreliable))
1941 printk(KERN_WARNING "%s: skb_queue not empty\n",
1942 local->mdev->name);
1943 skb_queue_purge(&local->skb_queue);
1944 skb_queue_purge(&local->skb_queue_unreliable);
1945
1946 destroy_workqueue(local->hw.workqueue);
1947 wiphy_unregister(local->hw.wiphy);
1948 ieee80211_wep_free(local);
1949 ieee80211_led_exit(local);
1950 }
1951 EXPORT_SYMBOL(ieee80211_unregister_hw);
1952
1953 void ieee80211_free_hw(struct ieee80211_hw *hw)
1954 {
1955 struct ieee80211_local *local = hw_to_local(hw);
1956
1957 ieee80211_if_free(local->mdev);
1958 wiphy_free(local->hw.wiphy);
1959 }
1960 EXPORT_SYMBOL(ieee80211_free_hw);
1961
1962 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
1963 {
1964 struct ieee80211_local *local = hw_to_local(hw);
1965
1966 if (test_and_clear_bit(IEEE80211_LINK_STATE_XOFF,
1967 &local->state[queue])) {
1968 if (test_bit(IEEE80211_LINK_STATE_PENDING,
1969 &local->state[queue]))
1970 tasklet_schedule(&local->tx_pending_tasklet);
1971 else
1972 if (!ieee80211_qdisc_installed(local->mdev)) {
1973 if (queue == 0)
1974 netif_wake_queue(local->mdev);
1975 } else
1976 __netif_schedule(local->mdev);
1977 }
1978 }
1979 EXPORT_SYMBOL(ieee80211_wake_queue);
1980
1981 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
1982 {
1983 struct ieee80211_local *local = hw_to_local(hw);
1984
1985 if (!ieee80211_qdisc_installed(local->mdev) && queue == 0)
1986 netif_stop_queue(local->mdev);
1987 set_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]);
1988 }
1989 EXPORT_SYMBOL(ieee80211_stop_queue);
1990
1991 void ieee80211_start_queues(struct ieee80211_hw *hw)
1992 {
1993 struct ieee80211_local *local = hw_to_local(hw);
1994 int i;
1995
1996 for (i = 0; i < local->hw.queues; i++)
1997 clear_bit(IEEE80211_LINK_STATE_XOFF, &local->state[i]);
1998 if (!ieee80211_qdisc_installed(local->mdev))
1999 netif_start_queue(local->mdev);
2000 }
2001 EXPORT_SYMBOL(ieee80211_start_queues);
2002
2003 void ieee80211_stop_queues(struct ieee80211_hw *hw)
2004 {
2005 int i;
2006
2007 for (i = 0; i < hw->queues; i++)
2008 ieee80211_stop_queue(hw, i);
2009 }
2010 EXPORT_SYMBOL(ieee80211_stop_queues);
2011
2012 void ieee80211_wake_queues(struct ieee80211_hw *hw)
2013 {
2014 int i;
2015
2016 for (i = 0; i < hw->queues; i++)
2017 ieee80211_wake_queue(hw, i);
2018 }
2019 EXPORT_SYMBOL(ieee80211_wake_queues);
2020
2021 struct net_device_stats *ieee80211_dev_stats(struct net_device *dev)
2022 {
2023 struct ieee80211_sub_if_data *sdata;
2024 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2025 return &sdata->stats;
2026 }
2027
2028 static int __init ieee80211_init(void)
2029 {
2030 struct sk_buff *skb;
2031 int ret;
2032
2033 BUILD_BUG_ON(sizeof(struct ieee80211_tx_packet_data) > sizeof(skb->cb));
2034
2035 ret = ieee80211_wme_register();
2036 if (ret) {
2037 printk(KERN_DEBUG "ieee80211_init: failed to "
2038 "initialize WME (err=%d)\n", ret);
2039 return ret;
2040 }
2041
2042 ieee80211_debugfs_netdev_init();
2043 ieee80211_regdomain_init();
2044
2045 return 0;
2046 }
2047
2048
2049 static void __exit ieee80211_exit(void)
2050 {
2051 ieee80211_wme_unregister();
2052 ieee80211_debugfs_netdev_exit();
2053 }
2054
2055
2056 subsys_initcall(ieee80211_init);
2057 module_exit(ieee80211_exit);
2058
2059 MODULE_DESCRIPTION("IEEE 802.11 subsystem");
2060 MODULE_LICENSE("GPL");
This page took 0.072817 seconds and 6 git commands to generate.