mac80211: implement a timer to send RANN action frames
[deliverable/linux.git] / net / mac80211 / mesh.c
1 /*
2 * Copyright (c) 2008 open80211s Ltd.
3 * Authors: Luis Carlos Cobo <luisca@cozybit.com>
4 * Javier Cardona <javier@cozybit.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <asm/unaligned.h>
12 #include "ieee80211_i.h"
13 #include "mesh.h"
14
15 #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
16 #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
17 #define IEEE80211_MESH_RANN_INTERVAL (1 * HZ)
18
19 #define MESHCONF_PP_OFFSET 0 /* Path Selection Protocol */
20 #define MESHCONF_PM_OFFSET 1 /* Path Selection Metric */
21 #define MESHCONF_CC_OFFSET 2 /* Congestion Control Mode */
22 #define MESHCONF_SP_OFFSET 3 /* Synchronization Protocol */
23 #define MESHCONF_AUTH_OFFSET 4 /* Authentication Protocol */
24 #define MESHCONF_CAPAB_OFFSET 6
25 #define MESHCONF_CAPAB_ACCEPT_PLINKS 0x01
26 #define MESHCONF_CAPAB_FORWARDING 0x08
27
28 #define TMR_RUNNING_HK 0
29 #define TMR_RUNNING_MP 1
30 #define TMR_RUNNING_MPR 2
31
32 int mesh_allocated;
33 static struct kmem_cache *rm_cache;
34
35 void ieee80211s_init(void)
36 {
37 mesh_pathtbl_init();
38 mesh_allocated = 1;
39 rm_cache = kmem_cache_create("mesh_rmc", sizeof(struct rmc_entry),
40 0, 0, NULL);
41 }
42
43 void ieee80211s_stop(void)
44 {
45 mesh_pathtbl_unregister();
46 kmem_cache_destroy(rm_cache);
47 }
48
49 static void ieee80211_mesh_housekeeping_timer(unsigned long data)
50 {
51 struct ieee80211_sub_if_data *sdata = (void *) data;
52 struct ieee80211_local *local = sdata->local;
53 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
54
55 set_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags);
56
57 if (local->quiescing) {
58 set_bit(TMR_RUNNING_HK, &ifmsh->timers_running);
59 return;
60 }
61
62 ieee80211_queue_work(&local->hw, &ifmsh->work);
63 }
64
65 /**
66 * mesh_matches_local - check if the config of a mesh point matches ours
67 *
68 * @ie: information elements of a management frame from the mesh peer
69 * @sdata: local mesh subif
70 *
71 * This function checks if the mesh configuration of a mesh point matches the
72 * local mesh configuration, i.e. if both nodes belong to the same mesh network.
73 */
74 bool mesh_matches_local(struct ieee802_11_elems *ie, struct ieee80211_sub_if_data *sdata)
75 {
76 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
77
78 /*
79 * As support for each feature is added, check for matching
80 * - On mesh config capabilities
81 * - Power Save Support En
82 * - Sync support enabled
83 * - Sync support active
84 * - Sync support required from peer
85 * - MDA enabled
86 * - Power management control on fc
87 */
88 if (ifmsh->mesh_id_len == ie->mesh_id_len &&
89 memcmp(ifmsh->mesh_id, ie->mesh_id, ie->mesh_id_len) == 0 &&
90 (ifmsh->mesh_pp_id == *(ie->mesh_config + MESHCONF_PP_OFFSET))&&
91 (ifmsh->mesh_pm_id == *(ie->mesh_config + MESHCONF_PM_OFFSET))&&
92 (ifmsh->mesh_cc_id == *(ie->mesh_config + MESHCONF_CC_OFFSET))&&
93 (ifmsh->mesh_sp_id == *(ie->mesh_config + MESHCONF_SP_OFFSET))&&
94 (ifmsh->mesh_auth_id == *(ie->mesh_config +
95 MESHCONF_AUTH_OFFSET)))
96 return true;
97
98 return false;
99 }
100
101 /**
102 * mesh_peer_accepts_plinks - check if an mp is willing to establish peer links
103 *
104 * @ie: information elements of a management frame from the mesh peer
105 */
106 bool mesh_peer_accepts_plinks(struct ieee802_11_elems *ie)
107 {
108 return (*(ie->mesh_config + MESHCONF_CAPAB_OFFSET) &
109 MESHCONF_CAPAB_ACCEPT_PLINKS) != 0;
110 }
111
112 /**
113 * mesh_accept_plinks_update: update accepting_plink in local mesh beacons
114 *
115 * @sdata: mesh interface in which mesh beacons are going to be updated
116 */
117 void mesh_accept_plinks_update(struct ieee80211_sub_if_data *sdata)
118 {
119 bool free_plinks;
120
121 /* In case mesh_plink_free_count > 0 and mesh_plinktbl_capacity == 0,
122 * the mesh interface might be able to establish plinks with peers that
123 * are already on the table but are not on PLINK_ESTAB state. However,
124 * in general the mesh interface is not accepting peer link requests
125 * from new peers, and that must be reflected in the beacon
126 */
127 free_plinks = mesh_plink_availables(sdata);
128
129 if (free_plinks != sdata->u.mesh.accepting_plinks)
130 ieee80211_mesh_housekeeping_timer((unsigned long) sdata);
131 }
132
133 void mesh_ids_set_default(struct ieee80211_if_mesh *sta)
134 {
135 sta->mesh_pp_id = 0; /* HWMP */
136 sta->mesh_pm_id = 0; /* Airtime */
137 sta->mesh_cc_id = 0; /* Disabled */
138 sta->mesh_sp_id = 0; /* Neighbor Offset */
139 sta->mesh_auth_id = 0; /* Disabled */
140 }
141
142 int mesh_rmc_init(struct ieee80211_sub_if_data *sdata)
143 {
144 int i;
145
146 sdata->u.mesh.rmc = kmalloc(sizeof(struct mesh_rmc), GFP_KERNEL);
147 if (!sdata->u.mesh.rmc)
148 return -ENOMEM;
149 sdata->u.mesh.rmc->idx_mask = RMC_BUCKETS - 1;
150 for (i = 0; i < RMC_BUCKETS; i++)
151 INIT_LIST_HEAD(&sdata->u.mesh.rmc->bucket[i].list);
152 return 0;
153 }
154
155 void mesh_rmc_free(struct ieee80211_sub_if_data *sdata)
156 {
157 struct mesh_rmc *rmc = sdata->u.mesh.rmc;
158 struct rmc_entry *p, *n;
159 int i;
160
161 if (!sdata->u.mesh.rmc)
162 return;
163
164 for (i = 0; i < RMC_BUCKETS; i++)
165 list_for_each_entry_safe(p, n, &rmc->bucket[i].list, list) {
166 list_del(&p->list);
167 kmem_cache_free(rm_cache, p);
168 }
169
170 kfree(rmc);
171 sdata->u.mesh.rmc = NULL;
172 }
173
174 /**
175 * mesh_rmc_check - Check frame in recent multicast cache and add if absent.
176 *
177 * @sa: source address
178 * @mesh_hdr: mesh_header
179 *
180 * Returns: 0 if the frame is not in the cache, nonzero otherwise.
181 *
182 * Checks using the source address and the mesh sequence number if we have
183 * received this frame lately. If the frame is not in the cache, it is added to
184 * it.
185 */
186 int mesh_rmc_check(u8 *sa, struct ieee80211s_hdr *mesh_hdr,
187 struct ieee80211_sub_if_data *sdata)
188 {
189 struct mesh_rmc *rmc = sdata->u.mesh.rmc;
190 u32 seqnum = 0;
191 int entries = 0;
192 u8 idx;
193 struct rmc_entry *p, *n;
194
195 /* Don't care about endianness since only match matters */
196 memcpy(&seqnum, &mesh_hdr->seqnum, sizeof(mesh_hdr->seqnum));
197 idx = le32_to_cpu(mesh_hdr->seqnum) & rmc->idx_mask;
198 list_for_each_entry_safe(p, n, &rmc->bucket[idx].list, list) {
199 ++entries;
200 if (time_after(jiffies, p->exp_time) ||
201 (entries == RMC_QUEUE_MAX_LEN)) {
202 list_del(&p->list);
203 kmem_cache_free(rm_cache, p);
204 --entries;
205 } else if ((seqnum == p->seqnum)
206 && (memcmp(sa, p->sa, ETH_ALEN) == 0))
207 return -1;
208 }
209
210 p = kmem_cache_alloc(rm_cache, GFP_ATOMIC);
211 if (!p) {
212 printk(KERN_DEBUG "o11s: could not allocate RMC entry\n");
213 return 0;
214 }
215 p->seqnum = seqnum;
216 p->exp_time = jiffies + RMC_TIMEOUT;
217 memcpy(p->sa, sa, ETH_ALEN);
218 list_add(&p->list, &rmc->bucket[idx].list);
219 return 0;
220 }
221
222 void mesh_mgmt_ies_add(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata)
223 {
224 struct ieee80211_local *local = sdata->local;
225 struct ieee80211_supported_band *sband;
226 u8 *pos;
227 int len, i, rate;
228 u8 neighbors;
229
230 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
231 len = sband->n_bitrates;
232 if (len > 8)
233 len = 8;
234 pos = skb_put(skb, len + 2);
235 *pos++ = WLAN_EID_SUPP_RATES;
236 *pos++ = len;
237 for (i = 0; i < len; i++) {
238 rate = sband->bitrates[i].bitrate;
239 *pos++ = (u8) (rate / 5);
240 }
241
242 if (sband->n_bitrates > len) {
243 pos = skb_put(skb, sband->n_bitrates - len + 2);
244 *pos++ = WLAN_EID_EXT_SUPP_RATES;
245 *pos++ = sband->n_bitrates - len;
246 for (i = len; i < sband->n_bitrates; i++) {
247 rate = sband->bitrates[i].bitrate;
248 *pos++ = (u8) (rate / 5);
249 }
250 }
251
252 if (sband->band == IEEE80211_BAND_2GHZ) {
253 pos = skb_put(skb, 2 + 1);
254 *pos++ = WLAN_EID_DS_PARAMS;
255 *pos++ = 1;
256 *pos++ = ieee80211_frequency_to_channel(local->hw.conf.channel->center_freq);
257 }
258
259 pos = skb_put(skb, 2 + sdata->u.mesh.mesh_id_len);
260 *pos++ = WLAN_EID_MESH_ID;
261 *pos++ = sdata->u.mesh.mesh_id_len;
262 if (sdata->u.mesh.mesh_id_len)
263 memcpy(pos, sdata->u.mesh.mesh_id, sdata->u.mesh.mesh_id_len);
264
265 pos = skb_put(skb, 2 + IEEE80211_MESH_CONFIG_LEN);
266 *pos++ = WLAN_EID_MESH_CONFIG;
267 *pos++ = IEEE80211_MESH_CONFIG_LEN;
268
269 /* Active path selection protocol ID */
270 *pos++ = sdata->u.mesh.mesh_pp_id;
271
272 /* Active path selection metric ID */
273 *pos++ = sdata->u.mesh.mesh_pm_id;
274
275 /* Congestion control mode identifier */
276 *pos++ = sdata->u.mesh.mesh_cc_id;
277
278 /* Synchronization protocol identifier */
279 *pos++ = sdata->u.mesh.mesh_sp_id;
280
281 /* Authentication Protocol identifier */
282 *pos++ = sdata->u.mesh.mesh_auth_id;
283
284 /* Mesh Formation Info - number of neighbors */
285 neighbors = atomic_read(&sdata->u.mesh.mshstats.estab_plinks);
286 /* Number of neighbor mesh STAs or 15 whichever is smaller */
287 neighbors = (neighbors > 15) ? 15 : neighbors;
288 *pos++ = neighbors << 1;
289
290 /* Mesh capability */
291 sdata->u.mesh.accepting_plinks = mesh_plink_availables(sdata);
292 *pos = MESHCONF_CAPAB_FORWARDING;
293 *pos++ |= sdata->u.mesh.accepting_plinks ?
294 MESHCONF_CAPAB_ACCEPT_PLINKS : 0x00;
295 *pos++ = 0x00;
296
297 return;
298 }
299
300 u32 mesh_table_hash(u8 *addr, struct ieee80211_sub_if_data *sdata, struct mesh_table *tbl)
301 {
302 /* Use last four bytes of hw addr and interface index as hash index */
303 return jhash_2words(*(u32 *)(addr+2), sdata->dev->ifindex, tbl->hash_rnd)
304 & tbl->hash_mask;
305 }
306
307 struct mesh_table *mesh_table_alloc(int size_order)
308 {
309 int i;
310 struct mesh_table *newtbl;
311
312 newtbl = kmalloc(sizeof(struct mesh_table), GFP_KERNEL);
313 if (!newtbl)
314 return NULL;
315
316 newtbl->hash_buckets = kzalloc(sizeof(struct hlist_head) *
317 (1 << size_order), GFP_KERNEL);
318
319 if (!newtbl->hash_buckets) {
320 kfree(newtbl);
321 return NULL;
322 }
323
324 newtbl->hashwlock = kmalloc(sizeof(spinlock_t) *
325 (1 << size_order), GFP_KERNEL);
326 if (!newtbl->hashwlock) {
327 kfree(newtbl->hash_buckets);
328 kfree(newtbl);
329 return NULL;
330 }
331
332 newtbl->size_order = size_order;
333 newtbl->hash_mask = (1 << size_order) - 1;
334 atomic_set(&newtbl->entries, 0);
335 get_random_bytes(&newtbl->hash_rnd,
336 sizeof(newtbl->hash_rnd));
337 for (i = 0; i <= newtbl->hash_mask; i++)
338 spin_lock_init(&newtbl->hashwlock[i]);
339
340 return newtbl;
341 }
342
343
344 static void ieee80211_mesh_path_timer(unsigned long data)
345 {
346 struct ieee80211_sub_if_data *sdata =
347 (struct ieee80211_sub_if_data *) data;
348 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
349 struct ieee80211_local *local = sdata->local;
350
351 if (local->quiescing) {
352 set_bit(TMR_RUNNING_MP, &ifmsh->timers_running);
353 return;
354 }
355
356 ieee80211_queue_work(&local->hw, &ifmsh->work);
357 }
358
359 static void ieee80211_mesh_path_root_timer(unsigned long data)
360 {
361 struct ieee80211_sub_if_data *sdata =
362 (struct ieee80211_sub_if_data *) data;
363 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
364 struct ieee80211_local *local = sdata->local;
365
366 set_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags);
367
368 if (local->quiescing) {
369 set_bit(TMR_RUNNING_MPR, &ifmsh->timers_running);
370 return;
371 }
372
373 ieee80211_queue_work(&local->hw, &ifmsh->work);
374 }
375
376 /**
377 * ieee80211_fill_mesh_addresses - fill addresses of a locally originated mesh frame
378 * @hdr: 802.11 frame header
379 * @fc: frame control field
380 * @meshda: destination address in the mesh
381 * @meshsa: source address address in the mesh. Same as TA, as frame is
382 * locally originated.
383 *
384 * Return the length of the 802.11 (does not include a mesh control header)
385 */
386 int ieee80211_fill_mesh_addresses(struct ieee80211_hdr *hdr, __le16 *fc, char
387 *meshda, char *meshsa) {
388 if (is_multicast_ether_addr(meshda)) {
389 *fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
390 /* DA TA SA */
391 memcpy(hdr->addr1, meshda, ETH_ALEN);
392 memcpy(hdr->addr2, meshsa, ETH_ALEN);
393 memcpy(hdr->addr3, meshsa, ETH_ALEN);
394 return 24;
395 } else {
396 *fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS |
397 IEEE80211_FCTL_TODS);
398 /* RA TA DA SA */
399 memset(hdr->addr1, 0, ETH_ALEN); /* RA is resolved later */
400 memcpy(hdr->addr2, meshsa, ETH_ALEN);
401 memcpy(hdr->addr3, meshda, ETH_ALEN);
402 memcpy(hdr->addr4, meshsa, ETH_ALEN);
403 return 30;
404 }
405 }
406
407 /**
408 * ieee80211_new_mesh_header - create a new mesh header
409 * @meshhdr: uninitialized mesh header
410 * @sdata: mesh interface to be used
411 * @addr4: addr4 of the mesh frame (1st in ae header)
412 * may be NULL
413 * @addr5: addr5 of the mesh frame (1st or 2nd in ae header)
414 * may be NULL unless addr6 is present
415 * @addr6: addr6 of the mesh frame (2nd or 3rd in ae header)
416 * may be NULL unless addr5 is present
417 *
418 * Return the header length.
419 */
420 int ieee80211_new_mesh_header(struct ieee80211s_hdr *meshhdr,
421 struct ieee80211_sub_if_data *sdata, char *addr4,
422 char *addr5, char *addr6)
423 {
424 int aelen = 0;
425 memset(meshhdr, 0, sizeof(meshhdr));
426 meshhdr->ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
427 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &meshhdr->seqnum);
428 sdata->u.mesh.mesh_seqnum++;
429 if (addr4) {
430 meshhdr->flags |= MESH_FLAGS_AE_A4;
431 aelen += ETH_ALEN;
432 memcpy(meshhdr->eaddr1, addr4, ETH_ALEN);
433 }
434 if (addr5 && addr6) {
435 meshhdr->flags |= MESH_FLAGS_AE_A5_A6;
436 aelen += 2 * ETH_ALEN;
437 if (!addr4) {
438 memcpy(meshhdr->eaddr1, addr5, ETH_ALEN);
439 memcpy(meshhdr->eaddr2, addr6, ETH_ALEN);
440 } else {
441 memcpy(meshhdr->eaddr2, addr5, ETH_ALEN);
442 memcpy(meshhdr->eaddr3, addr6, ETH_ALEN);
443 }
444 }
445 return 6 + aelen;
446 }
447
448 static void ieee80211_mesh_housekeeping(struct ieee80211_sub_if_data *sdata,
449 struct ieee80211_if_mesh *ifmsh)
450 {
451 bool free_plinks;
452
453 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
454 printk(KERN_DEBUG "%s: running mesh housekeeping\n",
455 sdata->dev->name);
456 #endif
457
458 ieee80211_sta_expire(sdata, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
459 mesh_path_expire(sdata);
460
461 free_plinks = mesh_plink_availables(sdata);
462 if (free_plinks != sdata->u.mesh.accepting_plinks)
463 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON);
464
465 mod_timer(&ifmsh->housekeeping_timer,
466 round_jiffies(jiffies + IEEE80211_MESH_HOUSEKEEPING_INTERVAL));
467 }
468
469 static void ieee80211_mesh_rootpath(struct ieee80211_sub_if_data *sdata)
470 {
471 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
472
473 mesh_path_tx_root_frame(sdata);
474 mod_timer(&ifmsh->mesh_path_root_timer,
475 round_jiffies(jiffies + IEEE80211_MESH_RANN_INTERVAL));
476 }
477
478 #ifdef CONFIG_PM
479 void ieee80211_mesh_quiesce(struct ieee80211_sub_if_data *sdata)
480 {
481 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
482
483 /* might restart the timer but that doesn't matter */
484 cancel_work_sync(&ifmsh->work);
485
486 /* use atomic bitops in case both timers fire at the same time */
487
488 if (del_timer_sync(&ifmsh->housekeeping_timer))
489 set_bit(TMR_RUNNING_HK, &ifmsh->timers_running);
490 if (del_timer_sync(&ifmsh->mesh_path_timer))
491 set_bit(TMR_RUNNING_MP, &ifmsh->timers_running);
492 if (del_timer_sync(&ifmsh->mesh_path_root_timer))
493 set_bit(TMR_RUNNING_MPR, &ifmsh->timers_running);
494 }
495
496 void ieee80211_mesh_restart(struct ieee80211_sub_if_data *sdata)
497 {
498 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
499
500 if (test_and_clear_bit(TMR_RUNNING_HK, &ifmsh->timers_running))
501 add_timer(&ifmsh->housekeeping_timer);
502 if (test_and_clear_bit(TMR_RUNNING_MP, &ifmsh->timers_running))
503 add_timer(&ifmsh->mesh_path_timer);
504 if (test_and_clear_bit(TMR_RUNNING_MPR, &ifmsh->timers_running))
505 add_timer(&ifmsh->mesh_path_root_timer);
506 }
507 #endif
508
509 void ieee80211_start_mesh(struct ieee80211_sub_if_data *sdata)
510 {
511 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
512 struct ieee80211_local *local = sdata->local;
513
514 set_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags);
515 ieee80211_queue_work(&local->hw, &ifmsh->work);
516 sdata->vif.bss_conf.beacon_int = MESH_DEFAULT_BEACON_INTERVAL;
517 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON |
518 BSS_CHANGED_BEACON_ENABLED |
519 BSS_CHANGED_BEACON_INT);
520 }
521
522 void ieee80211_stop_mesh(struct ieee80211_sub_if_data *sdata)
523 {
524 del_timer_sync(&sdata->u.mesh.housekeeping_timer);
525 del_timer_sync(&sdata->u.mesh.mesh_path_root_timer);
526 /*
527 * If the timer fired while we waited for it, it will have
528 * requeued the work. Now the work will be running again
529 * but will not rearm the timer again because it checks
530 * whether the interface is running, which, at this point,
531 * it no longer is.
532 */
533 cancel_work_sync(&sdata->u.mesh.work);
534
535 /*
536 * When we get here, the interface is marked down.
537 * Call synchronize_rcu() to wait for the RX path
538 * should it be using the interface and enqueuing
539 * frames at this very time on another CPU.
540 */
541 rcu_barrier(); /* Wait for RX path and call_rcu()'s */
542 skb_queue_purge(&sdata->u.mesh.skb_queue);
543 }
544
545 static void ieee80211_mesh_rx_bcn_presp(struct ieee80211_sub_if_data *sdata,
546 u16 stype,
547 struct ieee80211_mgmt *mgmt,
548 size_t len,
549 struct ieee80211_rx_status *rx_status)
550 {
551 struct ieee80211_local *local = sdata->local;
552 struct ieee802_11_elems elems;
553 struct ieee80211_channel *channel;
554 u32 supp_rates = 0;
555 size_t baselen;
556 int freq;
557 enum ieee80211_band band = rx_status->band;
558
559 /* ignore ProbeResp to foreign address */
560 if (stype == IEEE80211_STYPE_PROBE_RESP &&
561 compare_ether_addr(mgmt->da, sdata->dev->dev_addr))
562 return;
563
564 baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt;
565 if (baselen > len)
566 return;
567
568 ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen,
569 &elems);
570
571 if (elems.ds_params && elems.ds_params_len == 1)
572 freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
573 else
574 freq = rx_status->freq;
575
576 channel = ieee80211_get_channel(local->hw.wiphy, freq);
577
578 if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
579 return;
580
581 if (elems.mesh_id && elems.mesh_config &&
582 mesh_matches_local(&elems, sdata)) {
583 supp_rates = ieee80211_sta_get_rates(local, &elems, band);
584
585 mesh_neighbour_update(mgmt->sa, supp_rates, sdata,
586 mesh_peer_accepts_plinks(&elems));
587 }
588 }
589
590 static void ieee80211_mesh_rx_mgmt_action(struct ieee80211_sub_if_data *sdata,
591 struct ieee80211_mgmt *mgmt,
592 size_t len,
593 struct ieee80211_rx_status *rx_status)
594 {
595 switch (mgmt->u.action.category) {
596 case MESH_PLINK_CATEGORY:
597 mesh_rx_plink_frame(sdata, mgmt, len, rx_status);
598 break;
599 case MESH_PATH_SEL_CATEGORY:
600 mesh_rx_path_sel_frame(sdata, mgmt, len);
601 break;
602 }
603 }
604
605 static void ieee80211_mesh_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata,
606 struct sk_buff *skb)
607 {
608 struct ieee80211_rx_status *rx_status;
609 struct ieee80211_if_mesh *ifmsh;
610 struct ieee80211_mgmt *mgmt;
611 u16 stype;
612
613 ifmsh = &sdata->u.mesh;
614
615 rx_status = IEEE80211_SKB_RXCB(skb);
616 mgmt = (struct ieee80211_mgmt *) skb->data;
617 stype = le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE;
618
619 switch (stype) {
620 case IEEE80211_STYPE_PROBE_RESP:
621 case IEEE80211_STYPE_BEACON:
622 ieee80211_mesh_rx_bcn_presp(sdata, stype, mgmt, skb->len,
623 rx_status);
624 break;
625 case IEEE80211_STYPE_ACTION:
626 ieee80211_mesh_rx_mgmt_action(sdata, mgmt, skb->len, rx_status);
627 break;
628 }
629
630 kfree_skb(skb);
631 }
632
633 static void ieee80211_mesh_work(struct work_struct *work)
634 {
635 struct ieee80211_sub_if_data *sdata =
636 container_of(work, struct ieee80211_sub_if_data, u.mesh.work);
637 struct ieee80211_local *local = sdata->local;
638 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
639 struct sk_buff *skb;
640
641 if (!netif_running(sdata->dev))
642 return;
643
644 if (local->scanning)
645 return;
646
647 while ((skb = skb_dequeue(&ifmsh->skb_queue)))
648 ieee80211_mesh_rx_queued_mgmt(sdata, skb);
649
650 if (ifmsh->preq_queue_len &&
651 time_after(jiffies,
652 ifmsh->last_preq + msecs_to_jiffies(ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval)))
653 mesh_path_start_discovery(sdata);
654
655 if (test_and_clear_bit(MESH_WORK_GROW_MPATH_TABLE, &ifmsh->wrkq_flags))
656 mesh_mpath_table_grow();
657
658 if (test_and_clear_bit(MESH_WORK_GROW_MPATH_TABLE, &ifmsh->wrkq_flags))
659 mesh_mpp_table_grow();
660
661 if (test_and_clear_bit(MESH_WORK_HOUSEKEEPING, &ifmsh->wrkq_flags))
662 ieee80211_mesh_housekeeping(sdata, ifmsh);
663
664 if (test_and_clear_bit(MESH_WORK_ROOT, &ifmsh->wrkq_flags))
665 ieee80211_mesh_rootpath(sdata);
666 }
667
668 void ieee80211_mesh_notify_scan_completed(struct ieee80211_local *local)
669 {
670 struct ieee80211_sub_if_data *sdata;
671
672 rcu_read_lock();
673 list_for_each_entry_rcu(sdata, &local->interfaces, list)
674 if (ieee80211_vif_is_mesh(&sdata->vif))
675 ieee80211_queue_work(&local->hw, &sdata->u.mesh.work);
676 rcu_read_unlock();
677 }
678
679 void ieee80211_mesh_init_sdata(struct ieee80211_sub_if_data *sdata)
680 {
681 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
682
683 INIT_WORK(&ifmsh->work, ieee80211_mesh_work);
684 setup_timer(&ifmsh->housekeeping_timer,
685 ieee80211_mesh_housekeeping_timer,
686 (unsigned long) sdata);
687 skb_queue_head_init(&sdata->u.mesh.skb_queue);
688
689 ifmsh->mshcfg.dot11MeshRetryTimeout = MESH_RET_T;
690 ifmsh->mshcfg.dot11MeshConfirmTimeout = MESH_CONF_T;
691 ifmsh->mshcfg.dot11MeshHoldingTimeout = MESH_HOLD_T;
692 ifmsh->mshcfg.dot11MeshMaxRetries = MESH_MAX_RETR;
693 ifmsh->mshcfg.dot11MeshTTL = MESH_TTL;
694 ifmsh->mshcfg.auto_open_plinks = true;
695 ifmsh->mshcfg.dot11MeshMaxPeerLinks =
696 MESH_MAX_ESTAB_PLINKS;
697 ifmsh->mshcfg.dot11MeshHWMPactivePathTimeout =
698 MESH_PATH_TIMEOUT;
699 ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval =
700 MESH_PREQ_MIN_INT;
701 ifmsh->mshcfg.dot11MeshHWMPnetDiameterTraversalTime =
702 MESH_DIAM_TRAVERSAL_TIME;
703 ifmsh->mshcfg.dot11MeshHWMPmaxPREQretries =
704 MESH_MAX_PREQ_RETRIES;
705 ifmsh->mshcfg.path_refresh_time =
706 MESH_PATH_REFRESH_TIME;
707 ifmsh->mshcfg.min_discovery_timeout =
708 MESH_MIN_DISCOVERY_TIMEOUT;
709 ifmsh->accepting_plinks = true;
710 ifmsh->preq_id = 0;
711 ifmsh->sn = 0;
712 atomic_set(&ifmsh->mpaths, 0);
713 mesh_rmc_init(sdata);
714 ifmsh->last_preq = jiffies;
715 /* Allocate all mesh structures when creating the first mesh interface. */
716 if (!mesh_allocated)
717 ieee80211s_init();
718 mesh_ids_set_default(ifmsh);
719 setup_timer(&ifmsh->mesh_path_timer,
720 ieee80211_mesh_path_timer,
721 (unsigned long) sdata);
722 setup_timer(&ifmsh->mesh_path_root_timer,
723 ieee80211_mesh_path_root_timer,
724 (unsigned long) sdata);
725 INIT_LIST_HEAD(&ifmsh->preq_queue.list);
726 spin_lock_init(&ifmsh->mesh_preq_queue_lock);
727 }
728
729 ieee80211_rx_result
730 ieee80211_mesh_rx_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
731 {
732 struct ieee80211_local *local = sdata->local;
733 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
734 struct ieee80211_mgmt *mgmt;
735 u16 fc;
736
737 if (skb->len < 24)
738 return RX_DROP_MONITOR;
739
740 mgmt = (struct ieee80211_mgmt *) skb->data;
741 fc = le16_to_cpu(mgmt->frame_control);
742
743 switch (fc & IEEE80211_FCTL_STYPE) {
744 case IEEE80211_STYPE_ACTION:
745 if (skb->len < IEEE80211_MIN_ACTION_SIZE)
746 return RX_DROP_MONITOR;
747 /* fall through */
748 case IEEE80211_STYPE_PROBE_RESP:
749 case IEEE80211_STYPE_BEACON:
750 skb_queue_tail(&ifmsh->skb_queue, skb);
751 ieee80211_queue_work(&local->hw, &ifmsh->work);
752 return RX_QUEUED;
753 }
754
755 return RX_CONTINUE;
756 }
This page took 0.044693 seconds and 5 git commands to generate.