mac80211: allow station add/remove to sleep
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
20
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "led.h"
24 #include "mesh.h"
25 #include "wep.h"
26 #include "wpa.h"
27 #include "tkip.h"
28 #include "wme.h"
29
30 /*
31 * monitor mode reception
32 *
33 * This function cleans up the SKB, i.e. it removes all the stuff
34 * only useful for monitoring.
35 */
36 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
37 struct sk_buff *skb)
38 {
39 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
40 if (likely(skb->len > FCS_LEN))
41 skb_trim(skb, skb->len - FCS_LEN);
42 else {
43 /* driver bug */
44 WARN_ON(1);
45 dev_kfree_skb(skb);
46 skb = NULL;
47 }
48 }
49
50 return skb;
51 }
52
53 static inline int should_drop_frame(struct sk_buff *skb,
54 int present_fcs_len)
55 {
56 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
57 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
58
59 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
60 return 1;
61 if (unlikely(skb->len < 16 + present_fcs_len))
62 return 1;
63 if (ieee80211_is_ctl(hdr->frame_control) &&
64 !ieee80211_is_pspoll(hdr->frame_control) &&
65 !ieee80211_is_back_req(hdr->frame_control))
66 return 1;
67 return 0;
68 }
69
70 static int
71 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
72 struct ieee80211_rx_status *status)
73 {
74 int len;
75
76 /* always present fields */
77 len = sizeof(struct ieee80211_radiotap_header) + 9;
78
79 if (status->flag & RX_FLAG_TSFT)
80 len += 8;
81 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
82 len += 1;
83 if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
84 len += 1;
85
86 if (len & 1) /* padding for RX_FLAGS if necessary */
87 len++;
88
89 return len;
90 }
91
92 /*
93 * ieee80211_add_rx_radiotap_header - add radiotap header
94 *
95 * add a radiotap header containing all the fields which the hardware provided.
96 */
97 static void
98 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
99 struct sk_buff *skb,
100 struct ieee80211_rate *rate,
101 int rtap_len)
102 {
103 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
104 struct ieee80211_radiotap_header *rthdr;
105 unsigned char *pos;
106 u16 rx_flags = 0;
107
108 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
109 memset(rthdr, 0, rtap_len);
110
111 /* radiotap header, set always present flags */
112 rthdr->it_present =
113 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
114 (1 << IEEE80211_RADIOTAP_CHANNEL) |
115 (1 << IEEE80211_RADIOTAP_ANTENNA) |
116 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
117 rthdr->it_len = cpu_to_le16(rtap_len);
118
119 pos = (unsigned char *)(rthdr+1);
120
121 /* the order of the following fields is important */
122
123 /* IEEE80211_RADIOTAP_TSFT */
124 if (status->flag & RX_FLAG_TSFT) {
125 put_unaligned_le64(status->mactime, pos);
126 rthdr->it_present |=
127 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
128 pos += 8;
129 }
130
131 /* IEEE80211_RADIOTAP_FLAGS */
132 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
133 *pos |= IEEE80211_RADIOTAP_F_FCS;
134 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
135 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
136 if (status->flag & RX_FLAG_SHORTPRE)
137 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
138 pos++;
139
140 /* IEEE80211_RADIOTAP_RATE */
141 if (status->flag & RX_FLAG_HT) {
142 /*
143 * TODO: add following information into radiotap header once
144 * suitable fields are defined for it:
145 * - MCS index (status->rate_idx)
146 * - HT40 (status->flag & RX_FLAG_40MHZ)
147 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
148 */
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
153 }
154 pos++;
155
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
172
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
179 }
180
181 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
182 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) {
183 *pos = status->noise;
184 rthdr->it_present |=
185 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE);
186 pos++;
187 }
188
189 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
190
191 /* IEEE80211_RADIOTAP_ANTENNA */
192 *pos = status->antenna;
193 pos++;
194
195 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
196
197 /* IEEE80211_RADIOTAP_RX_FLAGS */
198 /* ensure 2 byte alignment for the 2 byte field as required */
199 if ((pos - (u8 *)rthdr) & 1)
200 pos++;
201 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
202 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
203 put_unaligned_le16(rx_flags, pos);
204 pos += 2;
205 }
206
207 /*
208 * This function copies a received frame to all monitor interfaces and
209 * returns a cleaned-up SKB that no longer includes the FCS nor the
210 * radiotap header the driver might have added.
211 */
212 static struct sk_buff *
213 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
214 struct ieee80211_rate *rate)
215 {
216 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
217 struct ieee80211_sub_if_data *sdata;
218 int needed_headroom = 0;
219 struct sk_buff *skb, *skb2;
220 struct net_device *prev_dev = NULL;
221 int present_fcs_len = 0;
222
223 /*
224 * First, we may need to make a copy of the skb because
225 * (1) we need to modify it for radiotap (if not present), and
226 * (2) the other RX handlers will modify the skb we got.
227 *
228 * We don't need to, of course, if we aren't going to return
229 * the SKB because it has a bad FCS/PLCP checksum.
230 */
231
232 /* room for the radiotap header based on driver features */
233 needed_headroom = ieee80211_rx_radiotap_len(local, status);
234
235 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
236 present_fcs_len = FCS_LEN;
237
238 if (!local->monitors) {
239 if (should_drop_frame(origskb, present_fcs_len)) {
240 dev_kfree_skb(origskb);
241 return NULL;
242 }
243
244 return remove_monitor_info(local, origskb);
245 }
246
247 if (should_drop_frame(origskb, present_fcs_len)) {
248 /* only need to expand headroom if necessary */
249 skb = origskb;
250 origskb = NULL;
251
252 /*
253 * This shouldn't trigger often because most devices have an
254 * RX header they pull before we get here, and that should
255 * be big enough for our radiotap information. We should
256 * probably export the length to drivers so that we can have
257 * them allocate enough headroom to start with.
258 */
259 if (skb_headroom(skb) < needed_headroom &&
260 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
261 dev_kfree_skb(skb);
262 return NULL;
263 }
264 } else {
265 /*
266 * Need to make a copy and possibly remove radiotap header
267 * and FCS from the original.
268 */
269 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
270
271 origskb = remove_monitor_info(local, origskb);
272
273 if (!skb)
274 return origskb;
275 }
276
277 /* prepend radiotap information */
278 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
279
280 skb_reset_mac_header(skb);
281 skb->ip_summed = CHECKSUM_UNNECESSARY;
282 skb->pkt_type = PACKET_OTHERHOST;
283 skb->protocol = htons(ETH_P_802_2);
284
285 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
286 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
287 continue;
288
289 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
290 continue;
291
292 if (!ieee80211_sdata_running(sdata))
293 continue;
294
295 if (prev_dev) {
296 skb2 = skb_clone(skb, GFP_ATOMIC);
297 if (skb2) {
298 skb2->dev = prev_dev;
299 netif_rx(skb2);
300 }
301 }
302
303 prev_dev = sdata->dev;
304 sdata->dev->stats.rx_packets++;
305 sdata->dev->stats.rx_bytes += skb->len;
306 }
307
308 if (prev_dev) {
309 skb->dev = prev_dev;
310 netif_rx(skb);
311 } else
312 dev_kfree_skb(skb);
313
314 return origskb;
315 }
316
317
318 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
319 {
320 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
321 int tid;
322
323 /* does the frame have a qos control field? */
324 if (ieee80211_is_data_qos(hdr->frame_control)) {
325 u8 *qc = ieee80211_get_qos_ctl(hdr);
326 /* frame has qos control */
327 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
328 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
329 rx->flags |= IEEE80211_RX_AMSDU;
330 else
331 rx->flags &= ~IEEE80211_RX_AMSDU;
332 } else {
333 /*
334 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
335 *
336 * Sequence numbers for management frames, QoS data
337 * frames with a broadcast/multicast address in the
338 * Address 1 field, and all non-QoS data frames sent
339 * by QoS STAs are assigned using an additional single
340 * modulo-4096 counter, [...]
341 *
342 * We also use that counter for non-QoS STAs.
343 */
344 tid = NUM_RX_DATA_QUEUES - 1;
345 }
346
347 rx->queue = tid;
348 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
349 * For now, set skb->priority to 0 for other cases. */
350 rx->skb->priority = (tid > 7) ? 0 : tid;
351 }
352
353 /**
354 * DOC: Packet alignment
355 *
356 * Drivers always need to pass packets that are aligned to two-byte boundaries
357 * to the stack.
358 *
359 * Additionally, should, if possible, align the payload data in a way that
360 * guarantees that the contained IP header is aligned to a four-byte
361 * boundary. In the case of regular frames, this simply means aligning the
362 * payload to a four-byte boundary (because either the IP header is directly
363 * contained, or IV/RFC1042 headers that have a length divisible by four are
364 * in front of it). If the payload data is not properly aligned and the
365 * architecture doesn't support efficient unaligned operations, mac80211
366 * will align the data.
367 *
368 * With A-MSDU frames, however, the payload data address must yield two modulo
369 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
370 * push the IP header further back to a multiple of four again. Thankfully, the
371 * specs were sane enough this time around to require padding each A-MSDU
372 * subframe to a length that is a multiple of four.
373 *
374 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
375 * the payload is not supported, the driver is required to move the 802.11
376 * header to be directly in front of the payload in that case.
377 */
378 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
379 {
380 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
381 WARN_ONCE((unsigned long)rx->skb->data & 1,
382 "unaligned packet at 0x%p\n", rx->skb->data);
383 #endif
384 }
385
386
387 /* rx handlers */
388
389 static ieee80211_rx_result debug_noinline
390 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
391 {
392 struct ieee80211_local *local = rx->local;
393 struct sk_buff *skb = rx->skb;
394
395 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning)))
396 return ieee80211_scan_rx(rx->sdata, skb);
397
398 if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning) &&
399 (rx->flags & IEEE80211_RX_IN_SCAN))) {
400 /* drop all the other packets during a software scan anyway */
401 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
402 dev_kfree_skb(skb);
403 return RX_QUEUED;
404 }
405
406 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
407 /* scanning finished during invoking of handlers */
408 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
409 return RX_DROP_UNUSABLE;
410 }
411
412 return RX_CONTINUE;
413 }
414
415
416 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
417 {
418 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
419
420 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
421 return 0;
422
423 return ieee80211_is_robust_mgmt_frame(hdr);
424 }
425
426
427 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
428 {
429 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
430
431 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
432 return 0;
433
434 return ieee80211_is_robust_mgmt_frame(hdr);
435 }
436
437
438 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
439 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
440 {
441 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
442 struct ieee80211_mmie *mmie;
443
444 if (skb->len < 24 + sizeof(*mmie) ||
445 !is_multicast_ether_addr(hdr->da))
446 return -1;
447
448 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
449 return -1; /* not a robust management frame */
450
451 mmie = (struct ieee80211_mmie *)
452 (skb->data + skb->len - sizeof(*mmie));
453 if (mmie->element_id != WLAN_EID_MMIE ||
454 mmie->length != sizeof(*mmie) - 2)
455 return -1;
456
457 return le16_to_cpu(mmie->key_id);
458 }
459
460
461 static ieee80211_rx_result
462 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
463 {
464 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
465 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
466 char *dev_addr = rx->sdata->vif.addr;
467
468 if (ieee80211_is_data(hdr->frame_control)) {
469 if (is_multicast_ether_addr(hdr->addr1)) {
470 if (ieee80211_has_tods(hdr->frame_control) ||
471 !ieee80211_has_fromds(hdr->frame_control))
472 return RX_DROP_MONITOR;
473 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
474 return RX_DROP_MONITOR;
475 } else {
476 if (!ieee80211_has_a4(hdr->frame_control))
477 return RX_DROP_MONITOR;
478 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
479 return RX_DROP_MONITOR;
480 }
481 }
482
483 /* If there is not an established peer link and this is not a peer link
484 * establisment frame, beacon or probe, drop the frame.
485 */
486
487 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
488 struct ieee80211_mgmt *mgmt;
489
490 if (!ieee80211_is_mgmt(hdr->frame_control))
491 return RX_DROP_MONITOR;
492
493 if (ieee80211_is_action(hdr->frame_control)) {
494 mgmt = (struct ieee80211_mgmt *)hdr;
495 if (mgmt->u.action.category != MESH_PLINK_CATEGORY)
496 return RX_DROP_MONITOR;
497 return RX_CONTINUE;
498 }
499
500 if (ieee80211_is_probe_req(hdr->frame_control) ||
501 ieee80211_is_probe_resp(hdr->frame_control) ||
502 ieee80211_is_beacon(hdr->frame_control))
503 return RX_CONTINUE;
504
505 return RX_DROP_MONITOR;
506
507 }
508
509 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
510
511 if (ieee80211_is_data(hdr->frame_control) &&
512 is_multicast_ether_addr(hdr->addr1) &&
513 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
514 return RX_DROP_MONITOR;
515 #undef msh_h_get
516
517 return RX_CONTINUE;
518 }
519
520 #define SEQ_MODULO 0x1000
521 #define SEQ_MASK 0xfff
522
523 static inline int seq_less(u16 sq1, u16 sq2)
524 {
525 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
526 }
527
528 static inline u16 seq_inc(u16 sq)
529 {
530 return (sq + 1) & SEQ_MASK;
531 }
532
533 static inline u16 seq_sub(u16 sq1, u16 sq2)
534 {
535 return (sq1 - sq2) & SEQ_MASK;
536 }
537
538
539 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
540 struct tid_ampdu_rx *tid_agg_rx,
541 int index,
542 struct sk_buff_head *frames)
543 {
544 struct ieee80211_supported_band *sband;
545 struct ieee80211_rate *rate = NULL;
546 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
547 struct ieee80211_rx_status *status;
548
549 if (!skb)
550 goto no_frame;
551
552 status = IEEE80211_SKB_RXCB(skb);
553
554 /* release the reordered frames to stack */
555 sband = hw->wiphy->bands[status->band];
556 if (!(status->flag & RX_FLAG_HT))
557 rate = &sband->bitrates[status->rate_idx];
558 tid_agg_rx->stored_mpdu_num--;
559 tid_agg_rx->reorder_buf[index] = NULL;
560 __skb_queue_tail(frames, skb);
561
562 no_frame:
563 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
564 }
565
566 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
567 struct tid_ampdu_rx *tid_agg_rx,
568 u16 head_seq_num,
569 struct sk_buff_head *frames)
570 {
571 int index;
572
573 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
574 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
575 tid_agg_rx->buf_size;
576 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
577 }
578 }
579
580 /*
581 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
582 * the skb was added to the buffer longer than this time ago, the earlier
583 * frames that have not yet been received are assumed to be lost and the skb
584 * can be released for processing. This may also release other skb's from the
585 * reorder buffer if there are no additional gaps between the frames.
586 */
587 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
588
589 /*
590 * As this function belongs to the RX path it must be under
591 * rcu_read_lock protection. It returns false if the frame
592 * can be processed immediately, true if it was consumed.
593 */
594 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
595 struct tid_ampdu_rx *tid_agg_rx,
596 struct sk_buff *skb,
597 struct sk_buff_head *frames)
598 {
599 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
600 u16 sc = le16_to_cpu(hdr->seq_ctrl);
601 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
602 u16 head_seq_num, buf_size;
603 int index;
604
605 buf_size = tid_agg_rx->buf_size;
606 head_seq_num = tid_agg_rx->head_seq_num;
607
608 /* frame with out of date sequence number */
609 if (seq_less(mpdu_seq_num, head_seq_num)) {
610 dev_kfree_skb(skb);
611 return true;
612 }
613
614 /*
615 * If frame the sequence number exceeds our buffering window
616 * size release some previous frames to make room for this one.
617 */
618 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
619 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
620 /* release stored frames up to new head to stack */
621 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
622 frames);
623 }
624
625 /* Now the new frame is always in the range of the reordering buffer */
626
627 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
628
629 /* check if we already stored this frame */
630 if (tid_agg_rx->reorder_buf[index]) {
631 dev_kfree_skb(skb);
632 return true;
633 }
634
635 /*
636 * If the current MPDU is in the right order and nothing else
637 * is stored we can process it directly, no need to buffer it.
638 */
639 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
640 tid_agg_rx->stored_mpdu_num == 0) {
641 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
642 return false;
643 }
644
645 /* put the frame in the reordering buffer */
646 tid_agg_rx->reorder_buf[index] = skb;
647 tid_agg_rx->reorder_time[index] = jiffies;
648 tid_agg_rx->stored_mpdu_num++;
649 /* release the buffer until next missing frame */
650 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
651 tid_agg_rx->buf_size;
652 if (!tid_agg_rx->reorder_buf[index] &&
653 tid_agg_rx->stored_mpdu_num > 1) {
654 /*
655 * No buffers ready to be released, but check whether any
656 * frames in the reorder buffer have timed out.
657 */
658 int j;
659 int skipped = 1;
660 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
661 j = (j + 1) % tid_agg_rx->buf_size) {
662 if (!tid_agg_rx->reorder_buf[j]) {
663 skipped++;
664 continue;
665 }
666 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
667 HT_RX_REORDER_BUF_TIMEOUT))
668 break;
669
670 #ifdef CONFIG_MAC80211_HT_DEBUG
671 if (net_ratelimit())
672 printk(KERN_DEBUG "%s: release an RX reorder "
673 "frame due to timeout on earlier "
674 "frames\n",
675 wiphy_name(hw->wiphy));
676 #endif
677 ieee80211_release_reorder_frame(hw, tid_agg_rx,
678 j, frames);
679
680 /*
681 * Increment the head seq# also for the skipped slots.
682 */
683 tid_agg_rx->head_seq_num =
684 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
685 skipped = 0;
686 }
687 } else while (tid_agg_rx->reorder_buf[index]) {
688 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
689 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
690 tid_agg_rx->buf_size;
691 }
692
693 return true;
694 }
695
696 /*
697 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
698 * true if the MPDU was buffered, false if it should be processed.
699 */
700 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
701 struct sk_buff_head *frames)
702 {
703 struct sk_buff *skb = rx->skb;
704 struct ieee80211_local *local = rx->local;
705 struct ieee80211_hw *hw = &local->hw;
706 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
707 struct sta_info *sta = rx->sta;
708 struct tid_ampdu_rx *tid_agg_rx;
709 u16 sc;
710 int tid;
711
712 if (!ieee80211_is_data_qos(hdr->frame_control))
713 goto dont_reorder;
714
715 /*
716 * filter the QoS data rx stream according to
717 * STA/TID and check if this STA/TID is on aggregation
718 */
719
720 if (!sta)
721 goto dont_reorder;
722
723 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
724
725 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
726 goto dont_reorder;
727
728 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
729
730 /* qos null data frames are excluded */
731 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
732 goto dont_reorder;
733
734 /* new, potentially un-ordered, ampdu frame - process it */
735
736 /* reset session timer */
737 if (tid_agg_rx->timeout)
738 mod_timer(&tid_agg_rx->session_timer,
739 TU_TO_EXP_TIME(tid_agg_rx->timeout));
740
741 /* if this mpdu is fragmented - terminate rx aggregation session */
742 sc = le16_to_cpu(hdr->seq_ctrl);
743 if (sc & IEEE80211_SCTL_FRAG) {
744 ieee80211_sta_stop_rx_ba_session(sta->sdata, sta->sta.addr,
745 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
746 dev_kfree_skb(skb);
747 return;
748 }
749
750 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames))
751 return;
752
753 dont_reorder:
754 __skb_queue_tail(frames, skb);
755 }
756
757 static ieee80211_rx_result debug_noinline
758 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
759 {
760 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
761
762 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
763 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
764 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
765 rx->sta->last_seq_ctrl[rx->queue] ==
766 hdr->seq_ctrl)) {
767 if (rx->flags & IEEE80211_RX_RA_MATCH) {
768 rx->local->dot11FrameDuplicateCount++;
769 rx->sta->num_duplicates++;
770 }
771 return RX_DROP_MONITOR;
772 } else
773 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
774 }
775
776 if (unlikely(rx->skb->len < 16)) {
777 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
778 return RX_DROP_MONITOR;
779 }
780
781 /* Drop disallowed frame classes based on STA auth/assoc state;
782 * IEEE 802.11, Chap 5.5.
783 *
784 * mac80211 filters only based on association state, i.e. it drops
785 * Class 3 frames from not associated stations. hostapd sends
786 * deauth/disassoc frames when needed. In addition, hostapd is
787 * responsible for filtering on both auth and assoc states.
788 */
789
790 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
791 return ieee80211_rx_mesh_check(rx);
792
793 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
794 ieee80211_is_pspoll(hdr->frame_control)) &&
795 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
796 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
797 if ((!ieee80211_has_fromds(hdr->frame_control) &&
798 !ieee80211_has_tods(hdr->frame_control) &&
799 ieee80211_is_data(hdr->frame_control)) ||
800 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
801 /* Drop IBSS frames and frames for other hosts
802 * silently. */
803 return RX_DROP_MONITOR;
804 }
805
806 return RX_DROP_MONITOR;
807 }
808
809 return RX_CONTINUE;
810 }
811
812
813 static ieee80211_rx_result debug_noinline
814 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
815 {
816 struct sk_buff *skb = rx->skb;
817 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
818 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
819 int keyidx;
820 int hdrlen;
821 ieee80211_rx_result result = RX_DROP_UNUSABLE;
822 struct ieee80211_key *stakey = NULL;
823 int mmie_keyidx = -1;
824
825 /*
826 * Key selection 101
827 *
828 * There are four types of keys:
829 * - GTK (group keys)
830 * - IGTK (group keys for management frames)
831 * - PTK (pairwise keys)
832 * - STK (station-to-station pairwise keys)
833 *
834 * When selecting a key, we have to distinguish between multicast
835 * (including broadcast) and unicast frames, the latter can only
836 * use PTKs and STKs while the former always use GTKs and IGTKs.
837 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
838 * unicast frames can also use key indices like GTKs. Hence, if we
839 * don't have a PTK/STK we check the key index for a WEP key.
840 *
841 * Note that in a regular BSS, multicast frames are sent by the
842 * AP only, associated stations unicast the frame to the AP first
843 * which then multicasts it on their behalf.
844 *
845 * There is also a slight problem in IBSS mode: GTKs are negotiated
846 * with each station, that is something we don't currently handle.
847 * The spec seems to expect that one negotiates the same key with
848 * every station but there's no such requirement; VLANs could be
849 * possible.
850 */
851
852 /*
853 * No point in finding a key and decrypting if the frame is neither
854 * addressed to us nor a multicast frame.
855 */
856 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
857 return RX_CONTINUE;
858
859 /* start without a key */
860 rx->key = NULL;
861
862 if (rx->sta)
863 stakey = rcu_dereference(rx->sta->key);
864
865 if (!ieee80211_has_protected(hdr->frame_control))
866 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
867
868 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
869 rx->key = stakey;
870 /* Skip decryption if the frame is not protected. */
871 if (!ieee80211_has_protected(hdr->frame_control))
872 return RX_CONTINUE;
873 } else if (mmie_keyidx >= 0) {
874 /* Broadcast/multicast robust management frame / BIP */
875 if ((status->flag & RX_FLAG_DECRYPTED) &&
876 (status->flag & RX_FLAG_IV_STRIPPED))
877 return RX_CONTINUE;
878
879 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
880 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
881 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
882 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
883 } else if (!ieee80211_has_protected(hdr->frame_control)) {
884 /*
885 * The frame was not protected, so skip decryption. However, we
886 * need to set rx->key if there is a key that could have been
887 * used so that the frame may be dropped if encryption would
888 * have been expected.
889 */
890 struct ieee80211_key *key = NULL;
891 if (ieee80211_is_mgmt(hdr->frame_control) &&
892 is_multicast_ether_addr(hdr->addr1) &&
893 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
894 rx->key = key;
895 else if ((key = rcu_dereference(rx->sdata->default_key)))
896 rx->key = key;
897 return RX_CONTINUE;
898 } else {
899 /*
900 * The device doesn't give us the IV so we won't be
901 * able to look up the key. That's ok though, we
902 * don't need to decrypt the frame, we just won't
903 * be able to keep statistics accurate.
904 * Except for key threshold notifications, should
905 * we somehow allow the driver to tell us which key
906 * the hardware used if this flag is set?
907 */
908 if ((status->flag & RX_FLAG_DECRYPTED) &&
909 (status->flag & RX_FLAG_IV_STRIPPED))
910 return RX_CONTINUE;
911
912 hdrlen = ieee80211_hdrlen(hdr->frame_control);
913
914 if (rx->skb->len < 8 + hdrlen)
915 return RX_DROP_UNUSABLE; /* TODO: count this? */
916
917 /*
918 * no need to call ieee80211_wep_get_keyidx,
919 * it verifies a bunch of things we've done already
920 */
921 keyidx = rx->skb->data[hdrlen + 3] >> 6;
922
923 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
924
925 /*
926 * RSNA-protected unicast frames should always be sent with
927 * pairwise or station-to-station keys, but for WEP we allow
928 * using a key index as well.
929 */
930 if (rx->key && rx->key->conf.alg != ALG_WEP &&
931 !is_multicast_ether_addr(hdr->addr1))
932 rx->key = NULL;
933 }
934
935 if (rx->key) {
936 rx->key->tx_rx_count++;
937 /* TODO: add threshold stuff again */
938 } else {
939 return RX_DROP_MONITOR;
940 }
941
942 /* Check for weak IVs if possible */
943 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
944 ieee80211_is_data(hdr->frame_control) &&
945 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
946 !(status->flag & RX_FLAG_DECRYPTED)) &&
947 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
948 rx->sta->wep_weak_iv_count++;
949
950 switch (rx->key->conf.alg) {
951 case ALG_WEP:
952 result = ieee80211_crypto_wep_decrypt(rx);
953 break;
954 case ALG_TKIP:
955 result = ieee80211_crypto_tkip_decrypt(rx);
956 break;
957 case ALG_CCMP:
958 result = ieee80211_crypto_ccmp_decrypt(rx);
959 break;
960 case ALG_AES_CMAC:
961 result = ieee80211_crypto_aes_cmac_decrypt(rx);
962 break;
963 }
964
965 /* either the frame has been decrypted or will be dropped */
966 status->flag |= RX_FLAG_DECRYPTED;
967
968 return result;
969 }
970
971 static ieee80211_rx_result debug_noinline
972 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
973 {
974 struct ieee80211_local *local;
975 struct ieee80211_hdr *hdr;
976 struct sk_buff *skb;
977
978 local = rx->local;
979 skb = rx->skb;
980 hdr = (struct ieee80211_hdr *) skb->data;
981
982 if (!local->pspolling)
983 return RX_CONTINUE;
984
985 if (!ieee80211_has_fromds(hdr->frame_control))
986 /* this is not from AP */
987 return RX_CONTINUE;
988
989 if (!ieee80211_is_data(hdr->frame_control))
990 return RX_CONTINUE;
991
992 if (!ieee80211_has_moredata(hdr->frame_control)) {
993 /* AP has no more frames buffered for us */
994 local->pspolling = false;
995 return RX_CONTINUE;
996 }
997
998 /* more data bit is set, let's request a new frame from the AP */
999 ieee80211_send_pspoll(local, rx->sdata);
1000
1001 return RX_CONTINUE;
1002 }
1003
1004 static void ap_sta_ps_start(struct sta_info *sta)
1005 {
1006 struct ieee80211_sub_if_data *sdata = sta->sdata;
1007 struct ieee80211_local *local = sdata->local;
1008
1009 atomic_inc(&sdata->bss->num_sta_ps);
1010 set_sta_flags(sta, WLAN_STA_PS_STA);
1011 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1012 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1013 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1014 sdata->name, sta->sta.addr, sta->sta.aid);
1015 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1016 }
1017
1018 static void ap_sta_ps_end(struct sta_info *sta)
1019 {
1020 struct ieee80211_sub_if_data *sdata = sta->sdata;
1021
1022 atomic_dec(&sdata->bss->num_sta_ps);
1023
1024 clear_sta_flags(sta, WLAN_STA_PS_STA);
1025
1026 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1027 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1028 sdata->name, sta->sta.addr, sta->sta.aid);
1029 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1030
1031 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1032 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1033 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1034 sdata->name, sta->sta.addr, sta->sta.aid);
1035 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1036 return;
1037 }
1038
1039 ieee80211_sta_ps_deliver_wakeup(sta);
1040 }
1041
1042 static ieee80211_rx_result debug_noinline
1043 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1044 {
1045 struct sta_info *sta = rx->sta;
1046 struct sk_buff *skb = rx->skb;
1047 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1048 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1049
1050 if (!sta)
1051 return RX_CONTINUE;
1052
1053 /*
1054 * Update last_rx only for IBSS packets which are for the current
1055 * BSSID to avoid keeping the current IBSS network alive in cases
1056 * where other STAs start using different BSSID.
1057 */
1058 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1059 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1060 NL80211_IFTYPE_ADHOC);
1061 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1062 sta->last_rx = jiffies;
1063 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1064 /*
1065 * Mesh beacons will update last_rx when if they are found to
1066 * match the current local configuration when processed.
1067 */
1068 sta->last_rx = jiffies;
1069 }
1070
1071 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1072 return RX_CONTINUE;
1073
1074 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1075 ieee80211_sta_rx_notify(rx->sdata, hdr);
1076
1077 sta->rx_fragments++;
1078 sta->rx_bytes += rx->skb->len;
1079 sta->last_signal = status->signal;
1080 sta->last_noise = status->noise;
1081
1082 /*
1083 * Change STA power saving mode only at the end of a frame
1084 * exchange sequence.
1085 */
1086 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1087 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1088 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1089 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1090 /*
1091 * Ignore doze->wake transitions that are
1092 * indicated by non-data frames, the standard
1093 * is unclear here, but for example going to
1094 * PS mode and then scanning would cause a
1095 * doze->wake transition for the probe request,
1096 * and that is clearly undesirable.
1097 */
1098 if (ieee80211_is_data(hdr->frame_control) &&
1099 !ieee80211_has_pm(hdr->frame_control))
1100 ap_sta_ps_end(sta);
1101 } else {
1102 if (ieee80211_has_pm(hdr->frame_control))
1103 ap_sta_ps_start(sta);
1104 }
1105 }
1106
1107 /*
1108 * Drop (qos-)data::nullfunc frames silently, since they
1109 * are used only to control station power saving mode.
1110 */
1111 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1112 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1113 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1114
1115 /*
1116 * If we receive a 4-addr nullfunc frame from a STA
1117 * that was not moved to a 4-addr STA vlan yet, drop
1118 * the frame to the monitor interface, to make sure
1119 * that hostapd sees it
1120 */
1121 if (ieee80211_has_a4(hdr->frame_control) &&
1122 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1123 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1124 !rx->sdata->u.vlan.sta)))
1125 return RX_DROP_MONITOR;
1126 /*
1127 * Update counter and free packet here to avoid
1128 * counting this as a dropped packed.
1129 */
1130 sta->rx_packets++;
1131 dev_kfree_skb(rx->skb);
1132 return RX_QUEUED;
1133 }
1134
1135 return RX_CONTINUE;
1136 } /* ieee80211_rx_h_sta_process */
1137
1138 static inline struct ieee80211_fragment_entry *
1139 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1140 unsigned int frag, unsigned int seq, int rx_queue,
1141 struct sk_buff **skb)
1142 {
1143 struct ieee80211_fragment_entry *entry;
1144 int idx;
1145
1146 idx = sdata->fragment_next;
1147 entry = &sdata->fragments[sdata->fragment_next++];
1148 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1149 sdata->fragment_next = 0;
1150
1151 if (!skb_queue_empty(&entry->skb_list)) {
1152 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1153 struct ieee80211_hdr *hdr =
1154 (struct ieee80211_hdr *) entry->skb_list.next->data;
1155 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1156 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1157 "addr1=%pM addr2=%pM\n",
1158 sdata->name, idx,
1159 jiffies - entry->first_frag_time, entry->seq,
1160 entry->last_frag, hdr->addr1, hdr->addr2);
1161 #endif
1162 __skb_queue_purge(&entry->skb_list);
1163 }
1164
1165 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1166 *skb = NULL;
1167 entry->first_frag_time = jiffies;
1168 entry->seq = seq;
1169 entry->rx_queue = rx_queue;
1170 entry->last_frag = frag;
1171 entry->ccmp = 0;
1172 entry->extra_len = 0;
1173
1174 return entry;
1175 }
1176
1177 static inline struct ieee80211_fragment_entry *
1178 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1179 unsigned int frag, unsigned int seq,
1180 int rx_queue, struct ieee80211_hdr *hdr)
1181 {
1182 struct ieee80211_fragment_entry *entry;
1183 int i, idx;
1184
1185 idx = sdata->fragment_next;
1186 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1187 struct ieee80211_hdr *f_hdr;
1188
1189 idx--;
1190 if (idx < 0)
1191 idx = IEEE80211_FRAGMENT_MAX - 1;
1192
1193 entry = &sdata->fragments[idx];
1194 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1195 entry->rx_queue != rx_queue ||
1196 entry->last_frag + 1 != frag)
1197 continue;
1198
1199 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1200
1201 /*
1202 * Check ftype and addresses are equal, else check next fragment
1203 */
1204 if (((hdr->frame_control ^ f_hdr->frame_control) &
1205 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1206 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1207 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1208 continue;
1209
1210 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1211 __skb_queue_purge(&entry->skb_list);
1212 continue;
1213 }
1214 return entry;
1215 }
1216
1217 return NULL;
1218 }
1219
1220 static ieee80211_rx_result debug_noinline
1221 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1222 {
1223 struct ieee80211_hdr *hdr;
1224 u16 sc;
1225 __le16 fc;
1226 unsigned int frag, seq;
1227 struct ieee80211_fragment_entry *entry;
1228 struct sk_buff *skb;
1229
1230 hdr = (struct ieee80211_hdr *)rx->skb->data;
1231 fc = hdr->frame_control;
1232 sc = le16_to_cpu(hdr->seq_ctrl);
1233 frag = sc & IEEE80211_SCTL_FRAG;
1234
1235 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1236 (rx->skb)->len < 24 ||
1237 is_multicast_ether_addr(hdr->addr1))) {
1238 /* not fragmented */
1239 goto out;
1240 }
1241 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1242
1243 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1244
1245 if (frag == 0) {
1246 /* This is the first fragment of a new frame. */
1247 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1248 rx->queue, &(rx->skb));
1249 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
1250 ieee80211_has_protected(fc)) {
1251 /* Store CCMP PN so that we can verify that the next
1252 * fragment has a sequential PN value. */
1253 entry->ccmp = 1;
1254 memcpy(entry->last_pn,
1255 rx->key->u.ccmp.rx_pn[rx->queue],
1256 CCMP_PN_LEN);
1257 }
1258 return RX_QUEUED;
1259 }
1260
1261 /* This is a fragment for a frame that should already be pending in
1262 * fragment cache. Add this fragment to the end of the pending entry.
1263 */
1264 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1265 if (!entry) {
1266 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1267 return RX_DROP_MONITOR;
1268 }
1269
1270 /* Verify that MPDUs within one MSDU have sequential PN values.
1271 * (IEEE 802.11i, 8.3.3.4.5) */
1272 if (entry->ccmp) {
1273 int i;
1274 u8 pn[CCMP_PN_LEN], *rpn;
1275 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
1276 return RX_DROP_UNUSABLE;
1277 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1278 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1279 pn[i]++;
1280 if (pn[i])
1281 break;
1282 }
1283 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
1284 if (memcmp(pn, rpn, CCMP_PN_LEN))
1285 return RX_DROP_UNUSABLE;
1286 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1287 }
1288
1289 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1290 __skb_queue_tail(&entry->skb_list, rx->skb);
1291 entry->last_frag = frag;
1292 entry->extra_len += rx->skb->len;
1293 if (ieee80211_has_morefrags(fc)) {
1294 rx->skb = NULL;
1295 return RX_QUEUED;
1296 }
1297
1298 rx->skb = __skb_dequeue(&entry->skb_list);
1299 if (skb_tailroom(rx->skb) < entry->extra_len) {
1300 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1301 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1302 GFP_ATOMIC))) {
1303 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1304 __skb_queue_purge(&entry->skb_list);
1305 return RX_DROP_UNUSABLE;
1306 }
1307 }
1308 while ((skb = __skb_dequeue(&entry->skb_list))) {
1309 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1310 dev_kfree_skb(skb);
1311 }
1312
1313 /* Complete frame has been reassembled - process it now */
1314 rx->flags |= IEEE80211_RX_FRAGMENTED;
1315
1316 out:
1317 if (rx->sta)
1318 rx->sta->rx_packets++;
1319 if (is_multicast_ether_addr(hdr->addr1))
1320 rx->local->dot11MulticastReceivedFrameCount++;
1321 else
1322 ieee80211_led_rx(rx->local);
1323 return RX_CONTINUE;
1324 }
1325
1326 static ieee80211_rx_result debug_noinline
1327 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1328 {
1329 struct ieee80211_sub_if_data *sdata = rx->sdata;
1330 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1331
1332 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1333 !(rx->flags & IEEE80211_RX_RA_MATCH)))
1334 return RX_CONTINUE;
1335
1336 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1337 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1338 return RX_DROP_UNUSABLE;
1339
1340 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1341 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1342 else
1343 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1344
1345 /* Free PS Poll skb here instead of returning RX_DROP that would
1346 * count as an dropped frame. */
1347 dev_kfree_skb(rx->skb);
1348
1349 return RX_QUEUED;
1350 }
1351
1352 static ieee80211_rx_result debug_noinline
1353 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1354 {
1355 u8 *data = rx->skb->data;
1356 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1357
1358 if (!ieee80211_is_data_qos(hdr->frame_control))
1359 return RX_CONTINUE;
1360
1361 /* remove the qos control field, update frame type and meta-data */
1362 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1363 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1364 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1365 /* change frame type to non QOS */
1366 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1367
1368 return RX_CONTINUE;
1369 }
1370
1371 static int
1372 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1373 {
1374 if (unlikely(!rx->sta ||
1375 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1376 return -EACCES;
1377
1378 return 0;
1379 }
1380
1381 static int
1382 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1383 {
1384 struct sk_buff *skb = rx->skb;
1385 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1386
1387 /*
1388 * Pass through unencrypted frames if the hardware has
1389 * decrypted them already.
1390 */
1391 if (status->flag & RX_FLAG_DECRYPTED)
1392 return 0;
1393
1394 /* Drop unencrypted frames if key is set. */
1395 if (unlikely(!ieee80211_has_protected(fc) &&
1396 !ieee80211_is_nullfunc(fc) &&
1397 ieee80211_is_data(fc) &&
1398 (rx->key || rx->sdata->drop_unencrypted)))
1399 return -EACCES;
1400 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1401 if (unlikely(ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1402 rx->key))
1403 return -EACCES;
1404 /* BIP does not use Protected field, so need to check MMIE */
1405 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1406 ieee80211_get_mmie_keyidx(rx->skb) < 0 &&
1407 rx->key))
1408 return -EACCES;
1409 /*
1410 * When using MFP, Action frames are not allowed prior to
1411 * having configured keys.
1412 */
1413 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1414 ieee80211_is_robust_mgmt_frame(
1415 (struct ieee80211_hdr *) rx->skb->data)))
1416 return -EACCES;
1417 }
1418
1419 return 0;
1420 }
1421
1422 static int
1423 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1424 {
1425 struct ieee80211_sub_if_data *sdata = rx->sdata;
1426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1427
1428 if (ieee80211_has_a4(hdr->frame_control) &&
1429 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1430 return -1;
1431
1432 if (is_multicast_ether_addr(hdr->addr1) &&
1433 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1434 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1435 return -1;
1436
1437 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1438 }
1439
1440 /*
1441 * requires that rx->skb is a frame with ethernet header
1442 */
1443 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1444 {
1445 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1446 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1447 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1448
1449 /*
1450 * Allow EAPOL frames to us/the PAE group address regardless
1451 * of whether the frame was encrypted or not.
1452 */
1453 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1454 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1455 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1456 return true;
1457
1458 if (ieee80211_802_1x_port_control(rx) ||
1459 ieee80211_drop_unencrypted(rx, fc))
1460 return false;
1461
1462 return true;
1463 }
1464
1465 /*
1466 * requires that rx->skb is a frame with ethernet header
1467 */
1468 static void
1469 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1470 {
1471 struct ieee80211_sub_if_data *sdata = rx->sdata;
1472 struct net_device *dev = sdata->dev;
1473 struct sk_buff *skb, *xmit_skb;
1474 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1475 struct sta_info *dsta;
1476
1477 skb = rx->skb;
1478 xmit_skb = NULL;
1479
1480 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1481 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1482 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1483 (rx->flags & IEEE80211_RX_RA_MATCH) &&
1484 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1485 if (is_multicast_ether_addr(ehdr->h_dest)) {
1486 /*
1487 * send multicast frames both to higher layers in
1488 * local net stack and back to the wireless medium
1489 */
1490 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1491 if (!xmit_skb && net_ratelimit())
1492 printk(KERN_DEBUG "%s: failed to clone "
1493 "multicast frame\n", dev->name);
1494 } else {
1495 dsta = sta_info_get(sdata, skb->data);
1496 if (dsta) {
1497 /*
1498 * The destination station is associated to
1499 * this AP (in this VLAN), so send the frame
1500 * directly to it and do not pass it to local
1501 * net stack.
1502 */
1503 xmit_skb = skb;
1504 skb = NULL;
1505 }
1506 }
1507 }
1508
1509 if (skb) {
1510 int align __maybe_unused;
1511
1512 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1513 /*
1514 * 'align' will only take the values 0 or 2 here
1515 * since all frames are required to be aligned
1516 * to 2-byte boundaries when being passed to
1517 * mac80211. That also explains the __skb_push()
1518 * below.
1519 */
1520 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1521 if (align) {
1522 if (WARN_ON(skb_headroom(skb) < 3)) {
1523 dev_kfree_skb(skb);
1524 skb = NULL;
1525 } else {
1526 u8 *data = skb->data;
1527 size_t len = skb_headlen(skb);
1528 skb->data -= align;
1529 memmove(skb->data, data, len);
1530 skb_set_tail_pointer(skb, len);
1531 }
1532 }
1533 #endif
1534
1535 if (skb) {
1536 /* deliver to local stack */
1537 skb->protocol = eth_type_trans(skb, dev);
1538 memset(skb->cb, 0, sizeof(skb->cb));
1539 netif_rx(skb);
1540 }
1541 }
1542
1543 if (xmit_skb) {
1544 /* send to wireless media */
1545 xmit_skb->protocol = htons(ETH_P_802_3);
1546 skb_reset_network_header(xmit_skb);
1547 skb_reset_mac_header(xmit_skb);
1548 dev_queue_xmit(xmit_skb);
1549 }
1550 }
1551
1552 static ieee80211_rx_result debug_noinline
1553 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1554 {
1555 struct net_device *dev = rx->sdata->dev;
1556 struct sk_buff *skb = rx->skb;
1557 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1558 __le16 fc = hdr->frame_control;
1559 struct sk_buff_head frame_list;
1560
1561 if (unlikely(!ieee80211_is_data(fc)))
1562 return RX_CONTINUE;
1563
1564 if (unlikely(!ieee80211_is_data_present(fc)))
1565 return RX_DROP_MONITOR;
1566
1567 if (!(rx->flags & IEEE80211_RX_AMSDU))
1568 return RX_CONTINUE;
1569
1570 if (ieee80211_has_a4(hdr->frame_control) &&
1571 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1572 !rx->sdata->u.vlan.sta)
1573 return RX_DROP_UNUSABLE;
1574
1575 if (is_multicast_ether_addr(hdr->addr1) &&
1576 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1577 rx->sdata->u.vlan.sta) ||
1578 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1579 rx->sdata->u.mgd.use_4addr)))
1580 return RX_DROP_UNUSABLE;
1581
1582 skb->dev = dev;
1583 __skb_queue_head_init(&frame_list);
1584
1585 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1586 rx->sdata->vif.type,
1587 rx->local->hw.extra_tx_headroom);
1588
1589 while (!skb_queue_empty(&frame_list)) {
1590 rx->skb = __skb_dequeue(&frame_list);
1591
1592 if (!ieee80211_frame_allowed(rx, fc)) {
1593 dev_kfree_skb(rx->skb);
1594 continue;
1595 }
1596 dev->stats.rx_packets++;
1597 dev->stats.rx_bytes += rx->skb->len;
1598
1599 ieee80211_deliver_skb(rx);
1600 }
1601
1602 return RX_QUEUED;
1603 }
1604
1605 #ifdef CONFIG_MAC80211_MESH
1606 static ieee80211_rx_result
1607 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1608 {
1609 struct ieee80211_hdr *hdr;
1610 struct ieee80211s_hdr *mesh_hdr;
1611 unsigned int hdrlen;
1612 struct sk_buff *skb = rx->skb, *fwd_skb;
1613 struct ieee80211_local *local = rx->local;
1614 struct ieee80211_sub_if_data *sdata = rx->sdata;
1615
1616 hdr = (struct ieee80211_hdr *) skb->data;
1617 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1618 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1619
1620 if (!ieee80211_is_data(hdr->frame_control))
1621 return RX_CONTINUE;
1622
1623 if (!mesh_hdr->ttl)
1624 /* illegal frame */
1625 return RX_DROP_MONITOR;
1626
1627 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1628 struct mesh_path *mppath;
1629 char *proxied_addr;
1630 char *mpp_addr;
1631
1632 if (is_multicast_ether_addr(hdr->addr1)) {
1633 mpp_addr = hdr->addr3;
1634 proxied_addr = mesh_hdr->eaddr1;
1635 } else {
1636 mpp_addr = hdr->addr4;
1637 proxied_addr = mesh_hdr->eaddr2;
1638 }
1639
1640 rcu_read_lock();
1641 mppath = mpp_path_lookup(proxied_addr, sdata);
1642 if (!mppath) {
1643 mpp_path_add(proxied_addr, mpp_addr, sdata);
1644 } else {
1645 spin_lock_bh(&mppath->state_lock);
1646 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1647 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1648 spin_unlock_bh(&mppath->state_lock);
1649 }
1650 rcu_read_unlock();
1651 }
1652
1653 /* Frame has reached destination. Don't forward */
1654 if (!is_multicast_ether_addr(hdr->addr1) &&
1655 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1656 return RX_CONTINUE;
1657
1658 mesh_hdr->ttl--;
1659
1660 if (rx->flags & IEEE80211_RX_RA_MATCH) {
1661 if (!mesh_hdr->ttl)
1662 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1663 dropped_frames_ttl);
1664 else {
1665 struct ieee80211_hdr *fwd_hdr;
1666 struct ieee80211_tx_info *info;
1667
1668 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1669
1670 if (!fwd_skb && net_ratelimit())
1671 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1672 sdata->name);
1673
1674 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1675 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1676 info = IEEE80211_SKB_CB(fwd_skb);
1677 memset(info, 0, sizeof(*info));
1678 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1679 info->control.vif = &rx->sdata->vif;
1680 skb_set_queue_mapping(skb,
1681 ieee80211_select_queue(rx->sdata, fwd_skb));
1682 ieee80211_set_qos_hdr(local, skb);
1683 if (is_multicast_ether_addr(fwd_hdr->addr1))
1684 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1685 fwded_mcast);
1686 else {
1687 int err;
1688 /*
1689 * Save TA to addr1 to send TA a path error if a
1690 * suitable next hop is not found
1691 */
1692 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1693 ETH_ALEN);
1694 err = mesh_nexthop_lookup(fwd_skb, sdata);
1695 /* Failed to immediately resolve next hop:
1696 * fwded frame was dropped or will be added
1697 * later to the pending skb queue. */
1698 if (err)
1699 return RX_DROP_MONITOR;
1700
1701 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1702 fwded_unicast);
1703 }
1704 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1705 fwded_frames);
1706 ieee80211_add_pending_skb(local, fwd_skb);
1707 }
1708 }
1709
1710 if (is_multicast_ether_addr(hdr->addr1) ||
1711 sdata->dev->flags & IFF_PROMISC)
1712 return RX_CONTINUE;
1713 else
1714 return RX_DROP_MONITOR;
1715 }
1716 #endif
1717
1718 static ieee80211_rx_result debug_noinline
1719 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1720 {
1721 struct ieee80211_sub_if_data *sdata = rx->sdata;
1722 struct net_device *dev = sdata->dev;
1723 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1724 __le16 fc = hdr->frame_control;
1725 int err;
1726
1727 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1728 return RX_CONTINUE;
1729
1730 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1731 return RX_DROP_MONITOR;
1732
1733 /*
1734 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1735 * that a 4-addr station can be detected and moved into a separate VLAN
1736 */
1737 if (ieee80211_has_a4(hdr->frame_control) &&
1738 sdata->vif.type == NL80211_IFTYPE_AP)
1739 return RX_DROP_MONITOR;
1740
1741 err = __ieee80211_data_to_8023(rx);
1742 if (unlikely(err))
1743 return RX_DROP_UNUSABLE;
1744
1745 if (!ieee80211_frame_allowed(rx, fc))
1746 return RX_DROP_MONITOR;
1747
1748 rx->skb->dev = dev;
1749
1750 dev->stats.rx_packets++;
1751 dev->stats.rx_bytes += rx->skb->len;
1752
1753 ieee80211_deliver_skb(rx);
1754
1755 return RX_QUEUED;
1756 }
1757
1758 static ieee80211_rx_result debug_noinline
1759 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1760 {
1761 struct ieee80211_local *local = rx->local;
1762 struct ieee80211_hw *hw = &local->hw;
1763 struct sk_buff *skb = rx->skb;
1764 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1765 struct tid_ampdu_rx *tid_agg_rx;
1766 u16 start_seq_num;
1767 u16 tid;
1768
1769 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1770 return RX_CONTINUE;
1771
1772 if (ieee80211_is_back_req(bar->frame_control)) {
1773 if (!rx->sta)
1774 return RX_DROP_MONITOR;
1775 tid = le16_to_cpu(bar->control) >> 12;
1776 if (rx->sta->ampdu_mlme.tid_state_rx[tid]
1777 != HT_AGG_STATE_OPERATIONAL)
1778 return RX_DROP_MONITOR;
1779 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1780
1781 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1782
1783 /* reset session timer */
1784 if (tid_agg_rx->timeout)
1785 mod_timer(&tid_agg_rx->session_timer,
1786 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1787
1788 /* release stored frames up to start of BAR */
1789 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1790 frames);
1791 kfree_skb(skb);
1792 return RX_QUEUED;
1793 }
1794
1795 return RX_CONTINUE;
1796 }
1797
1798 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1799 struct ieee80211_mgmt *mgmt,
1800 size_t len)
1801 {
1802 struct ieee80211_local *local = sdata->local;
1803 struct sk_buff *skb;
1804 struct ieee80211_mgmt *resp;
1805
1806 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1807 /* Not to own unicast address */
1808 return;
1809 }
1810
1811 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1812 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1813 /* Not from the current AP or not associated yet. */
1814 return;
1815 }
1816
1817 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1818 /* Too short SA Query request frame */
1819 return;
1820 }
1821
1822 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1823 if (skb == NULL)
1824 return;
1825
1826 skb_reserve(skb, local->hw.extra_tx_headroom);
1827 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1828 memset(resp, 0, 24);
1829 memcpy(resp->da, mgmt->sa, ETH_ALEN);
1830 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1831 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1832 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1833 IEEE80211_STYPE_ACTION);
1834 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1835 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1836 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1837 memcpy(resp->u.action.u.sa_query.trans_id,
1838 mgmt->u.action.u.sa_query.trans_id,
1839 WLAN_SA_QUERY_TR_ID_LEN);
1840
1841 ieee80211_tx_skb(sdata, skb);
1842 }
1843
1844 static ieee80211_rx_result debug_noinline
1845 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
1846 {
1847 struct ieee80211_local *local = rx->local;
1848 struct ieee80211_sub_if_data *sdata = rx->sdata;
1849 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1850 int len = rx->skb->len;
1851
1852 if (!ieee80211_is_action(mgmt->frame_control))
1853 return RX_CONTINUE;
1854
1855 if (!rx->sta)
1856 return RX_DROP_MONITOR;
1857
1858 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1859 return RX_DROP_MONITOR;
1860
1861 if (ieee80211_drop_unencrypted(rx, mgmt->frame_control))
1862 return RX_DROP_MONITOR;
1863
1864 /* all categories we currently handle have action_code */
1865 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1866 return RX_DROP_MONITOR;
1867
1868 switch (mgmt->u.action.category) {
1869 case WLAN_CATEGORY_BACK:
1870 /*
1871 * The aggregation code is not prepared to handle
1872 * anything but STA/AP due to the BSSID handling;
1873 * IBSS could work in the code but isn't supported
1874 * by drivers or the standard.
1875 */
1876 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
1877 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1878 sdata->vif.type != NL80211_IFTYPE_AP)
1879 return RX_DROP_MONITOR;
1880
1881 switch (mgmt->u.action.u.addba_req.action_code) {
1882 case WLAN_ACTION_ADDBA_REQ:
1883 if (len < (IEEE80211_MIN_ACTION_SIZE +
1884 sizeof(mgmt->u.action.u.addba_req)))
1885 return RX_DROP_MONITOR;
1886 ieee80211_process_addba_request(local, rx->sta, mgmt, len);
1887 break;
1888 case WLAN_ACTION_ADDBA_RESP:
1889 if (len < (IEEE80211_MIN_ACTION_SIZE +
1890 sizeof(mgmt->u.action.u.addba_resp)))
1891 return RX_DROP_MONITOR;
1892 ieee80211_process_addba_resp(local, rx->sta, mgmt, len);
1893 break;
1894 case WLAN_ACTION_DELBA:
1895 if (len < (IEEE80211_MIN_ACTION_SIZE +
1896 sizeof(mgmt->u.action.u.delba)))
1897 return RX_DROP_MONITOR;
1898 ieee80211_process_delba(sdata, rx->sta, mgmt, len);
1899 break;
1900 }
1901 break;
1902 case WLAN_CATEGORY_SPECTRUM_MGMT:
1903 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
1904 return RX_DROP_MONITOR;
1905
1906 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1907 return RX_DROP_MONITOR;
1908
1909 switch (mgmt->u.action.u.measurement.action_code) {
1910 case WLAN_ACTION_SPCT_MSR_REQ:
1911 if (len < (IEEE80211_MIN_ACTION_SIZE +
1912 sizeof(mgmt->u.action.u.measurement)))
1913 return RX_DROP_MONITOR;
1914 ieee80211_process_measurement_req(sdata, mgmt, len);
1915 break;
1916 case WLAN_ACTION_SPCT_CHL_SWITCH:
1917 if (len < (IEEE80211_MIN_ACTION_SIZE +
1918 sizeof(mgmt->u.action.u.chan_switch)))
1919 return RX_DROP_MONITOR;
1920
1921 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1922 return RX_DROP_MONITOR;
1923
1924 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
1925 return RX_DROP_MONITOR;
1926
1927 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
1928 }
1929 break;
1930 case WLAN_CATEGORY_SA_QUERY:
1931 if (len < (IEEE80211_MIN_ACTION_SIZE +
1932 sizeof(mgmt->u.action.u.sa_query)))
1933 return RX_DROP_MONITOR;
1934 switch (mgmt->u.action.u.sa_query.action) {
1935 case WLAN_ACTION_SA_QUERY_REQUEST:
1936 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1937 return RX_DROP_MONITOR;
1938 ieee80211_process_sa_query_req(sdata, mgmt, len);
1939 break;
1940 case WLAN_ACTION_SA_QUERY_RESPONSE:
1941 /*
1942 * SA Query response is currently only used in AP mode
1943 * and it is processed in user space.
1944 */
1945 return RX_CONTINUE;
1946 }
1947 break;
1948 default:
1949 /* do not process rejected action frames */
1950 if (mgmt->u.action.category & 0x80)
1951 return RX_DROP_MONITOR;
1952
1953 return RX_CONTINUE;
1954 }
1955
1956 rx->sta->rx_packets++;
1957 dev_kfree_skb(rx->skb);
1958 return RX_QUEUED;
1959 }
1960
1961 static ieee80211_rx_result debug_noinline
1962 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
1963 {
1964 struct ieee80211_sub_if_data *sdata = rx->sdata;
1965 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1966 ieee80211_rx_result rxs;
1967
1968 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1969 return RX_DROP_MONITOR;
1970
1971 if (ieee80211_drop_unencrypted(rx, mgmt->frame_control))
1972 return RX_DROP_MONITOR;
1973
1974 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
1975 if (rxs != RX_CONTINUE)
1976 return rxs;
1977
1978 if (ieee80211_vif_is_mesh(&sdata->vif))
1979 return ieee80211_mesh_rx_mgmt(sdata, rx->skb);
1980
1981 if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
1982 return ieee80211_ibss_rx_mgmt(sdata, rx->skb);
1983
1984 if (sdata->vif.type == NL80211_IFTYPE_STATION)
1985 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
1986
1987 return RX_DROP_MONITOR;
1988 }
1989
1990 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
1991 struct ieee80211_rx_data *rx)
1992 {
1993 int keyidx;
1994 unsigned int hdrlen;
1995
1996 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1997 if (rx->skb->len >= hdrlen + 4)
1998 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1999 else
2000 keyidx = -1;
2001
2002 if (!rx->sta) {
2003 /*
2004 * Some hardware seem to generate incorrect Michael MIC
2005 * reports; ignore them to avoid triggering countermeasures.
2006 */
2007 return;
2008 }
2009
2010 if (!ieee80211_has_protected(hdr->frame_control))
2011 return;
2012
2013 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2014 /*
2015 * APs with pairwise keys should never receive Michael MIC
2016 * errors for non-zero keyidx because these are reserved for
2017 * group keys and only the AP is sending real multicast
2018 * frames in the BSS.
2019 */
2020 return;
2021 }
2022
2023 if (!ieee80211_is_data(hdr->frame_control) &&
2024 !ieee80211_is_auth(hdr->frame_control))
2025 return;
2026
2027 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2028 GFP_ATOMIC);
2029 }
2030
2031 /* TODO: use IEEE80211_RX_FRAGMENTED */
2032 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2033 struct ieee80211_rate *rate)
2034 {
2035 struct ieee80211_sub_if_data *sdata;
2036 struct ieee80211_local *local = rx->local;
2037 struct ieee80211_rtap_hdr {
2038 struct ieee80211_radiotap_header hdr;
2039 u8 flags;
2040 u8 rate_or_pad;
2041 __le16 chan_freq;
2042 __le16 chan_flags;
2043 } __attribute__ ((packed)) *rthdr;
2044 struct sk_buff *skb = rx->skb, *skb2;
2045 struct net_device *prev_dev = NULL;
2046 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2047
2048 if (status->flag & RX_FLAG_INTERNAL_CMTR)
2049 goto out_free_skb;
2050
2051 if (skb_headroom(skb) < sizeof(*rthdr) &&
2052 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2053 goto out_free_skb;
2054
2055 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2056 memset(rthdr, 0, sizeof(*rthdr));
2057 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2058 rthdr->hdr.it_present =
2059 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2060 (1 << IEEE80211_RADIOTAP_CHANNEL));
2061
2062 if (rate) {
2063 rthdr->rate_or_pad = rate->bitrate / 5;
2064 rthdr->hdr.it_present |=
2065 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2066 }
2067 rthdr->chan_freq = cpu_to_le16(status->freq);
2068
2069 if (status->band == IEEE80211_BAND_5GHZ)
2070 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2071 IEEE80211_CHAN_5GHZ);
2072 else
2073 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2074 IEEE80211_CHAN_2GHZ);
2075
2076 skb_set_mac_header(skb, 0);
2077 skb->ip_summed = CHECKSUM_UNNECESSARY;
2078 skb->pkt_type = PACKET_OTHERHOST;
2079 skb->protocol = htons(ETH_P_802_2);
2080
2081 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2082 if (!ieee80211_sdata_running(sdata))
2083 continue;
2084
2085 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2086 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2087 continue;
2088
2089 if (prev_dev) {
2090 skb2 = skb_clone(skb, GFP_ATOMIC);
2091 if (skb2) {
2092 skb2->dev = prev_dev;
2093 netif_rx(skb2);
2094 }
2095 }
2096
2097 prev_dev = sdata->dev;
2098 sdata->dev->stats.rx_packets++;
2099 sdata->dev->stats.rx_bytes += skb->len;
2100 }
2101
2102 if (prev_dev) {
2103 skb->dev = prev_dev;
2104 netif_rx(skb);
2105 skb = NULL;
2106 } else
2107 goto out_free_skb;
2108
2109 status->flag |= RX_FLAG_INTERNAL_CMTR;
2110 return;
2111
2112 out_free_skb:
2113 dev_kfree_skb(skb);
2114 }
2115
2116
2117 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
2118 struct ieee80211_rx_data *rx,
2119 struct sk_buff *skb,
2120 struct ieee80211_rate *rate)
2121 {
2122 struct sk_buff_head reorder_release;
2123 ieee80211_rx_result res = RX_DROP_MONITOR;
2124
2125 __skb_queue_head_init(&reorder_release);
2126
2127 rx->skb = skb;
2128 rx->sdata = sdata;
2129
2130 #define CALL_RXH(rxh) \
2131 do { \
2132 res = rxh(rx); \
2133 if (res != RX_CONTINUE) \
2134 goto rxh_next; \
2135 } while (0);
2136
2137 /*
2138 * NB: the rxh_next label works even if we jump
2139 * to it from here because then the list will
2140 * be empty, which is a trivial check
2141 */
2142 CALL_RXH(ieee80211_rx_h_passive_scan)
2143 CALL_RXH(ieee80211_rx_h_check)
2144
2145 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2146
2147 while ((skb = __skb_dequeue(&reorder_release))) {
2148 /*
2149 * all the other fields are valid across frames
2150 * that belong to an aMPDU since they are on the
2151 * same TID from the same station
2152 */
2153 rx->skb = skb;
2154
2155 CALL_RXH(ieee80211_rx_h_decrypt)
2156 CALL_RXH(ieee80211_rx_h_check_more_data)
2157 CALL_RXH(ieee80211_rx_h_sta_process)
2158 CALL_RXH(ieee80211_rx_h_defragment)
2159 CALL_RXH(ieee80211_rx_h_ps_poll)
2160 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2161 /* must be after MMIC verify so header is counted in MPDU mic */
2162 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2163 CALL_RXH(ieee80211_rx_h_amsdu)
2164 #ifdef CONFIG_MAC80211_MESH
2165 if (ieee80211_vif_is_mesh(&sdata->vif))
2166 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2167 #endif
2168 CALL_RXH(ieee80211_rx_h_data)
2169
2170 /* special treatment -- needs the queue */
2171 res = ieee80211_rx_h_ctrl(rx, &reorder_release);
2172 if (res != RX_CONTINUE)
2173 goto rxh_next;
2174
2175 CALL_RXH(ieee80211_rx_h_action)
2176 CALL_RXH(ieee80211_rx_h_mgmt)
2177
2178 #undef CALL_RXH
2179
2180 rxh_next:
2181 switch (res) {
2182 case RX_DROP_MONITOR:
2183 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2184 if (rx->sta)
2185 rx->sta->rx_dropped++;
2186 /* fall through */
2187 case RX_CONTINUE:
2188 ieee80211_rx_cooked_monitor(rx, rate);
2189 break;
2190 case RX_DROP_UNUSABLE:
2191 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2192 if (rx->sta)
2193 rx->sta->rx_dropped++;
2194 dev_kfree_skb(rx->skb);
2195 break;
2196 case RX_QUEUED:
2197 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
2198 break;
2199 }
2200 }
2201 }
2202
2203 /* main receive path */
2204
2205 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
2206 struct ieee80211_rx_data *rx,
2207 struct ieee80211_hdr *hdr)
2208 {
2209 struct sk_buff *skb = rx->skb;
2210 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2211 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2212 int multicast = is_multicast_ether_addr(hdr->addr1);
2213
2214 switch (sdata->vif.type) {
2215 case NL80211_IFTYPE_STATION:
2216 if (!bssid && !sdata->u.mgd.use_4addr)
2217 return 0;
2218 if (!multicast &&
2219 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2220 if (!(sdata->dev->flags & IFF_PROMISC))
2221 return 0;
2222 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2223 }
2224 break;
2225 case NL80211_IFTYPE_ADHOC:
2226 if (!bssid)
2227 return 0;
2228 if (ieee80211_is_beacon(hdr->frame_control)) {
2229 return 1;
2230 }
2231 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2232 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2233 return 0;
2234 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2235 } else if (!multicast &&
2236 compare_ether_addr(sdata->vif.addr,
2237 hdr->addr1) != 0) {
2238 if (!(sdata->dev->flags & IFF_PROMISC))
2239 return 0;
2240 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2241 } else if (!rx->sta) {
2242 int rate_idx;
2243 if (status->flag & RX_FLAG_HT)
2244 rate_idx = 0; /* TODO: HT rates */
2245 else
2246 rate_idx = status->rate_idx;
2247 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2248 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2249 }
2250 break;
2251 case NL80211_IFTYPE_MESH_POINT:
2252 if (!multicast &&
2253 compare_ether_addr(sdata->vif.addr,
2254 hdr->addr1) != 0) {
2255 if (!(sdata->dev->flags & IFF_PROMISC))
2256 return 0;
2257
2258 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2259 }
2260 break;
2261 case NL80211_IFTYPE_AP_VLAN:
2262 case NL80211_IFTYPE_AP:
2263 if (!bssid) {
2264 if (compare_ether_addr(sdata->vif.addr,
2265 hdr->addr1))
2266 return 0;
2267 } else if (!ieee80211_bssid_match(bssid,
2268 sdata->vif.addr)) {
2269 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2270 return 0;
2271 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2272 }
2273 break;
2274 case NL80211_IFTYPE_WDS:
2275 if (bssid || !ieee80211_is_data(hdr->frame_control))
2276 return 0;
2277 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2278 return 0;
2279 break;
2280 case NL80211_IFTYPE_MONITOR:
2281 case NL80211_IFTYPE_UNSPECIFIED:
2282 case __NL80211_IFTYPE_AFTER_LAST:
2283 /* should never get here */
2284 WARN_ON(1);
2285 break;
2286 }
2287
2288 return 1;
2289 }
2290
2291 /*
2292 * This is the actual Rx frames handler. as it blongs to Rx path it must
2293 * be called with rcu_read_lock protection.
2294 */
2295 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2296 struct sk_buff *skb,
2297 struct ieee80211_rate *rate)
2298 {
2299 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2300 struct ieee80211_local *local = hw_to_local(hw);
2301 struct ieee80211_sub_if_data *sdata;
2302 struct ieee80211_hdr *hdr;
2303 struct ieee80211_rx_data rx;
2304 int prepares;
2305 struct ieee80211_sub_if_data *prev = NULL;
2306 struct sk_buff *skb_new;
2307 struct sta_info *sta, *tmp;
2308 bool found_sta = false;
2309
2310 hdr = (struct ieee80211_hdr *)skb->data;
2311 memset(&rx, 0, sizeof(rx));
2312 rx.skb = skb;
2313 rx.local = local;
2314
2315 if (ieee80211_is_data(hdr->frame_control) || ieee80211_is_mgmt(hdr->frame_control))
2316 local->dot11ReceivedFragmentCount++;
2317
2318 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2319 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2320 rx.flags |= IEEE80211_RX_IN_SCAN;
2321
2322 ieee80211_parse_qos(&rx);
2323 ieee80211_verify_alignment(&rx);
2324
2325 if (ieee80211_is_data(hdr->frame_control)) {
2326 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2327 rx.sta = sta;
2328 found_sta = true;
2329 rx.sdata = sta->sdata;
2330
2331 rx.flags |= IEEE80211_RX_RA_MATCH;
2332 prepares = prepare_for_handlers(rx.sdata, &rx, hdr);
2333 if (prepares) {
2334 if (status->flag & RX_FLAG_MMIC_ERROR) {
2335 if (rx.flags & IEEE80211_RX_RA_MATCH)
2336 ieee80211_rx_michael_mic_report(hdr, &rx);
2337 } else
2338 prev = rx.sdata;
2339 }
2340 }
2341 }
2342 if (!found_sta) {
2343 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2344 if (!ieee80211_sdata_running(sdata))
2345 continue;
2346
2347 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2348 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2349 continue;
2350
2351 /*
2352 * frame is destined for this interface, but if it's
2353 * not also for the previous one we handle that after
2354 * the loop to avoid copying the SKB once too much
2355 */
2356
2357 if (!prev) {
2358 prev = sdata;
2359 continue;
2360 }
2361
2362 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2363
2364 rx.flags |= IEEE80211_RX_RA_MATCH;
2365 prepares = prepare_for_handlers(prev, &rx, hdr);
2366
2367 if (!prepares)
2368 goto next;
2369
2370 if (status->flag & RX_FLAG_MMIC_ERROR) {
2371 rx.sdata = prev;
2372 if (rx.flags & IEEE80211_RX_RA_MATCH)
2373 ieee80211_rx_michael_mic_report(hdr,
2374 &rx);
2375 goto next;
2376 }
2377
2378 /*
2379 * frame was destined for the previous interface
2380 * so invoke RX handlers for it
2381 */
2382
2383 skb_new = skb_copy(skb, GFP_ATOMIC);
2384 if (!skb_new) {
2385 if (net_ratelimit())
2386 printk(KERN_DEBUG "%s: failed to copy "
2387 "multicast frame for %s\n",
2388 wiphy_name(local->hw.wiphy),
2389 prev->name);
2390 goto next;
2391 }
2392 ieee80211_invoke_rx_handlers(prev, &rx, skb_new, rate);
2393 next:
2394 prev = sdata;
2395 }
2396
2397 if (prev) {
2398 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2399
2400 rx.flags |= IEEE80211_RX_RA_MATCH;
2401 prepares = prepare_for_handlers(prev, &rx, hdr);
2402
2403 if (!prepares)
2404 prev = NULL;
2405 }
2406 }
2407 if (prev)
2408 ieee80211_invoke_rx_handlers(prev, &rx, skb, rate);
2409 else
2410 dev_kfree_skb(skb);
2411 }
2412
2413 /*
2414 * This is the receive path handler. It is called by a low level driver when an
2415 * 802.11 MPDU is received from the hardware.
2416 */
2417 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2418 {
2419 struct ieee80211_local *local = hw_to_local(hw);
2420 struct ieee80211_rate *rate = NULL;
2421 struct ieee80211_supported_band *sband;
2422 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2423
2424 WARN_ON_ONCE(softirq_count() == 0);
2425
2426 if (WARN_ON(status->band < 0 ||
2427 status->band >= IEEE80211_NUM_BANDS))
2428 goto drop;
2429
2430 sband = local->hw.wiphy->bands[status->band];
2431 if (WARN_ON(!sband))
2432 goto drop;
2433
2434 /*
2435 * If we're suspending, it is possible although not too likely
2436 * that we'd be receiving frames after having already partially
2437 * quiesced the stack. We can't process such frames then since
2438 * that might, for example, cause stations to be added or other
2439 * driver callbacks be invoked.
2440 */
2441 if (unlikely(local->quiescing || local->suspended))
2442 goto drop;
2443
2444 /*
2445 * The same happens when we're not even started,
2446 * but that's worth a warning.
2447 */
2448 if (WARN_ON(!local->started))
2449 goto drop;
2450
2451 if (status->flag & RX_FLAG_HT) {
2452 /*
2453 * rate_idx is MCS index, which can be [0-76] as documented on:
2454 *
2455 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2456 *
2457 * Anything else would be some sort of driver or hardware error.
2458 * The driver should catch hardware errors.
2459 */
2460 if (WARN((status->rate_idx < 0 ||
2461 status->rate_idx > 76),
2462 "Rate marked as an HT rate but passed "
2463 "status->rate_idx is not "
2464 "an MCS index [0-76]: %d (0x%02x)\n",
2465 status->rate_idx,
2466 status->rate_idx))
2467 goto drop;
2468 } else {
2469 if (WARN_ON(status->rate_idx < 0 ||
2470 status->rate_idx >= sband->n_bitrates))
2471 goto drop;
2472 rate = &sband->bitrates[status->rate_idx];
2473 }
2474
2475 /*
2476 * key references and virtual interfaces are protected using RCU
2477 * and this requires that we are in a read-side RCU section during
2478 * receive processing
2479 */
2480 rcu_read_lock();
2481
2482 /*
2483 * Frames with failed FCS/PLCP checksum are not returned,
2484 * all other frames are returned without radiotap header
2485 * if it was previously present.
2486 * Also, frames with less than 16 bytes are dropped.
2487 */
2488 skb = ieee80211_rx_monitor(local, skb, rate);
2489 if (!skb) {
2490 rcu_read_unlock();
2491 return;
2492 }
2493
2494 __ieee80211_rx_handle_packet(hw, skb, rate);
2495
2496 rcu_read_unlock();
2497
2498 return;
2499 drop:
2500 kfree_skb(skb);
2501 }
2502 EXPORT_SYMBOL(ieee80211_rx);
2503
2504 /* This is a version of the rx handler that can be called from hard irq
2505 * context. Post the skb on the queue and schedule the tasklet */
2506 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2507 {
2508 struct ieee80211_local *local = hw_to_local(hw);
2509
2510 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2511
2512 skb->pkt_type = IEEE80211_RX_MSG;
2513 skb_queue_tail(&local->skb_queue, skb);
2514 tasklet_schedule(&local->tasklet);
2515 }
2516 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.095227 seconds and 5 git commands to generate.