04c1b05ba339354f62e63ee534fe2acb12ef4a72
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
90
91 return len;
92 }
93
94 /*
95 * ieee80211_add_rx_radiotap_header - add radiotap header
96 *
97 * add a radiotap header containing all the fields which the hardware provided.
98 */
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
104 {
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
109
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
112
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
120
121 pos = (unsigned char *)(rthdr+1);
122
123 /* the order of the following fields is important */
124
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
131 }
132
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
141
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status->flag & RX_FLAG_HT) {
144 /*
145 * MCS information is a separate field in radiotap,
146 * added below. The byte here is needed as padding
147 * for the channel though, so initialise it to 0.
148 */
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
153 }
154 pos++;
155
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
172
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
179 }
180
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos = status->antenna;
185 pos++;
186
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos - (u8 *)rthdr) & 1)
192 pos++;
193 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195 put_unaligned_le16(rx_flags, pos);
196 pos += 2;
197
198 if (status->flag & RX_FLAG_HT) {
199 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
200 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
201 IEEE80211_RADIOTAP_MCS_HAVE_GI |
202 IEEE80211_RADIOTAP_MCS_HAVE_BW;
203 *pos = 0;
204 if (status->flag & RX_FLAG_SHORT_GI)
205 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
206 if (status->flag & RX_FLAG_40MHZ)
207 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
208 pos++;
209 *pos++ = status->rate_idx;
210 }
211 }
212
213 /*
214 * This function copies a received frame to all monitor interfaces and
215 * returns a cleaned-up SKB that no longer includes the FCS nor the
216 * radiotap header the driver might have added.
217 */
218 static struct sk_buff *
219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
220 struct ieee80211_rate *rate)
221 {
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
223 struct ieee80211_sub_if_data *sdata;
224 int needed_headroom = 0;
225 struct sk_buff *skb, *skb2;
226 struct net_device *prev_dev = NULL;
227 int present_fcs_len = 0;
228
229 /*
230 * First, we may need to make a copy of the skb because
231 * (1) we need to modify it for radiotap (if not present), and
232 * (2) the other RX handlers will modify the skb we got.
233 *
234 * We don't need to, of course, if we aren't going to return
235 * the SKB because it has a bad FCS/PLCP checksum.
236 */
237
238 /* room for the radiotap header based on driver features */
239 needed_headroom = ieee80211_rx_radiotap_len(local, status);
240
241 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242 present_fcs_len = FCS_LEN;
243
244 /* make sure hdr->frame_control is on the linear part */
245 if (!pskb_may_pull(origskb, 2)) {
246 dev_kfree_skb(origskb);
247 return NULL;
248 }
249
250 if (!local->monitors) {
251 if (should_drop_frame(origskb, present_fcs_len)) {
252 dev_kfree_skb(origskb);
253 return NULL;
254 }
255
256 return remove_monitor_info(local, origskb);
257 }
258
259 if (should_drop_frame(origskb, present_fcs_len)) {
260 /* only need to expand headroom if necessary */
261 skb = origskb;
262 origskb = NULL;
263
264 /*
265 * This shouldn't trigger often because most devices have an
266 * RX header they pull before we get here, and that should
267 * be big enough for our radiotap information. We should
268 * probably export the length to drivers so that we can have
269 * them allocate enough headroom to start with.
270 */
271 if (skb_headroom(skb) < needed_headroom &&
272 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
273 dev_kfree_skb(skb);
274 return NULL;
275 }
276 } else {
277 /*
278 * Need to make a copy and possibly remove radiotap header
279 * and FCS from the original.
280 */
281 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
282
283 origskb = remove_monitor_info(local, origskb);
284
285 if (!skb)
286 return origskb;
287 }
288
289 /* prepend radiotap information */
290 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
291
292 skb_reset_mac_header(skb);
293 skb->ip_summed = CHECKSUM_UNNECESSARY;
294 skb->pkt_type = PACKET_OTHERHOST;
295 skb->protocol = htons(ETH_P_802_2);
296
297 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
298 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299 continue;
300
301 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302 continue;
303
304 if (!ieee80211_sdata_running(sdata))
305 continue;
306
307 if (prev_dev) {
308 skb2 = skb_clone(skb, GFP_ATOMIC);
309 if (skb2) {
310 skb2->dev = prev_dev;
311 netif_receive_skb(skb2);
312 }
313 }
314
315 prev_dev = sdata->dev;
316 sdata->dev->stats.rx_packets++;
317 sdata->dev->stats.rx_bytes += skb->len;
318 }
319
320 if (prev_dev) {
321 skb->dev = prev_dev;
322 netif_receive_skb(skb);
323 } else
324 dev_kfree_skb(skb);
325
326 return origskb;
327 }
328
329
330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
331 {
332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
333 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
334 int tid, seqno_idx, security_idx;
335
336 /* does the frame have a qos control field? */
337 if (ieee80211_is_data_qos(hdr->frame_control)) {
338 u8 *qc = ieee80211_get_qos_ctl(hdr);
339 /* frame has qos control */
340 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
341 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
342 status->rx_flags |= IEEE80211_RX_AMSDU;
343
344 seqno_idx = tid;
345 security_idx = tid;
346 } else {
347 /*
348 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
349 *
350 * Sequence numbers for management frames, QoS data
351 * frames with a broadcast/multicast address in the
352 * Address 1 field, and all non-QoS data frames sent
353 * by QoS STAs are assigned using an additional single
354 * modulo-4096 counter, [...]
355 *
356 * We also use that counter for non-QoS STAs.
357 */
358 seqno_idx = NUM_RX_DATA_QUEUES;
359 security_idx = 0;
360 if (ieee80211_is_mgmt(hdr->frame_control))
361 security_idx = NUM_RX_DATA_QUEUES;
362 tid = 0;
363 }
364
365 rx->seqno_idx = seqno_idx;
366 rx->security_idx = security_idx;
367 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
368 * For now, set skb->priority to 0 for other cases. */
369 rx->skb->priority = (tid > 7) ? 0 : tid;
370 }
371
372 /**
373 * DOC: Packet alignment
374 *
375 * Drivers always need to pass packets that are aligned to two-byte boundaries
376 * to the stack.
377 *
378 * Additionally, should, if possible, align the payload data in a way that
379 * guarantees that the contained IP header is aligned to a four-byte
380 * boundary. In the case of regular frames, this simply means aligning the
381 * payload to a four-byte boundary (because either the IP header is directly
382 * contained, or IV/RFC1042 headers that have a length divisible by four are
383 * in front of it). If the payload data is not properly aligned and the
384 * architecture doesn't support efficient unaligned operations, mac80211
385 * will align the data.
386 *
387 * With A-MSDU frames, however, the payload data address must yield two modulo
388 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
389 * push the IP header further back to a multiple of four again. Thankfully, the
390 * specs were sane enough this time around to require padding each A-MSDU
391 * subframe to a length that is a multiple of four.
392 *
393 * Padding like Atheros hardware adds which is between the 802.11 header and
394 * the payload is not supported, the driver is required to move the 802.11
395 * header to be directly in front of the payload in that case.
396 */
397 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
398 {
399 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
400 WARN_ONCE((unsigned long)rx->skb->data & 1,
401 "unaligned packet at 0x%p\n", rx->skb->data);
402 #endif
403 }
404
405
406 /* rx handlers */
407
408 static ieee80211_rx_result debug_noinline
409 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
410 {
411 struct ieee80211_local *local = rx->local;
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
413 struct sk_buff *skb = rx->skb;
414
415 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
416 !local->sched_scanning))
417 return RX_CONTINUE;
418
419 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
420 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
421 local->sched_scanning)
422 return ieee80211_scan_rx(rx->sdata, skb);
423
424 /* scanning finished during invoking of handlers */
425 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
426 return RX_DROP_UNUSABLE;
427 }
428
429
430 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
431 {
432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
433
434 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
435 return 0;
436
437 return ieee80211_is_robust_mgmt_frame(hdr);
438 }
439
440
441 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
442 {
443 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
444
445 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
446 return 0;
447
448 return ieee80211_is_robust_mgmt_frame(hdr);
449 }
450
451
452 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
453 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
454 {
455 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
456 struct ieee80211_mmie *mmie;
457
458 if (skb->len < 24 + sizeof(*mmie) ||
459 !is_multicast_ether_addr(hdr->da))
460 return -1;
461
462 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
463 return -1; /* not a robust management frame */
464
465 mmie = (struct ieee80211_mmie *)
466 (skb->data + skb->len - sizeof(*mmie));
467 if (mmie->element_id != WLAN_EID_MMIE ||
468 mmie->length != sizeof(*mmie) - 2)
469 return -1;
470
471 return le16_to_cpu(mmie->key_id);
472 }
473
474
475 static ieee80211_rx_result
476 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
477 {
478 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
479 char *dev_addr = rx->sdata->vif.addr;
480
481 if (ieee80211_is_data(hdr->frame_control)) {
482 if (is_multicast_ether_addr(hdr->addr1)) {
483 if (ieee80211_has_tods(hdr->frame_control) ||
484 !ieee80211_has_fromds(hdr->frame_control))
485 return RX_DROP_MONITOR;
486 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
487 return RX_DROP_MONITOR;
488 } else {
489 if (!ieee80211_has_a4(hdr->frame_control))
490 return RX_DROP_MONITOR;
491 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
492 return RX_DROP_MONITOR;
493 }
494 }
495
496 /* If there is not an established peer link and this is not a peer link
497 * establisment frame, beacon or probe, drop the frame.
498 */
499
500 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
501 struct ieee80211_mgmt *mgmt;
502
503 if (!ieee80211_is_mgmt(hdr->frame_control))
504 return RX_DROP_MONITOR;
505
506 if (ieee80211_is_action(hdr->frame_control)) {
507 u8 category;
508 mgmt = (struct ieee80211_mgmt *)hdr;
509 category = mgmt->u.action.category;
510 if (category != WLAN_CATEGORY_MESH_ACTION &&
511 category != WLAN_CATEGORY_SELF_PROTECTED)
512 return RX_DROP_MONITOR;
513 return RX_CONTINUE;
514 }
515
516 if (ieee80211_is_probe_req(hdr->frame_control) ||
517 ieee80211_is_probe_resp(hdr->frame_control) ||
518 ieee80211_is_beacon(hdr->frame_control) ||
519 ieee80211_is_auth(hdr->frame_control))
520 return RX_CONTINUE;
521
522 return RX_DROP_MONITOR;
523
524 }
525
526 return RX_CONTINUE;
527 }
528
529 #define SEQ_MODULO 0x1000
530 #define SEQ_MASK 0xfff
531
532 static inline int seq_less(u16 sq1, u16 sq2)
533 {
534 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
535 }
536
537 static inline u16 seq_inc(u16 sq)
538 {
539 return (sq + 1) & SEQ_MASK;
540 }
541
542 static inline u16 seq_sub(u16 sq1, u16 sq2)
543 {
544 return (sq1 - sq2) & SEQ_MASK;
545 }
546
547
548 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
549 struct tid_ampdu_rx *tid_agg_rx,
550 int index)
551 {
552 struct ieee80211_local *local = hw_to_local(hw);
553 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
554 struct ieee80211_rx_status *status;
555
556 lockdep_assert_held(&tid_agg_rx->reorder_lock);
557
558 if (!skb)
559 goto no_frame;
560
561 /* release the frame from the reorder ring buffer */
562 tid_agg_rx->stored_mpdu_num--;
563 tid_agg_rx->reorder_buf[index] = NULL;
564 status = IEEE80211_SKB_RXCB(skb);
565 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
566 skb_queue_tail(&local->rx_skb_queue, skb);
567
568 no_frame:
569 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
570 }
571
572 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
573 struct tid_ampdu_rx *tid_agg_rx,
574 u16 head_seq_num)
575 {
576 int index;
577
578 lockdep_assert_held(&tid_agg_rx->reorder_lock);
579
580 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
581 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
582 tid_agg_rx->buf_size;
583 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
584 }
585 }
586
587 /*
588 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
589 * the skb was added to the buffer longer than this time ago, the earlier
590 * frames that have not yet been received are assumed to be lost and the skb
591 * can be released for processing. This may also release other skb's from the
592 * reorder buffer if there are no additional gaps between the frames.
593 *
594 * Callers must hold tid_agg_rx->reorder_lock.
595 */
596 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
597
598 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
599 struct tid_ampdu_rx *tid_agg_rx)
600 {
601 int index, j;
602
603 lockdep_assert_held(&tid_agg_rx->reorder_lock);
604
605 /* release the buffer until next missing frame */
606 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
607 tid_agg_rx->buf_size;
608 if (!tid_agg_rx->reorder_buf[index] &&
609 tid_agg_rx->stored_mpdu_num > 1) {
610 /*
611 * No buffers ready to be released, but check whether any
612 * frames in the reorder buffer have timed out.
613 */
614 int skipped = 1;
615 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
616 j = (j + 1) % tid_agg_rx->buf_size) {
617 if (!tid_agg_rx->reorder_buf[j]) {
618 skipped++;
619 continue;
620 }
621 if (skipped &&
622 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
623 HT_RX_REORDER_BUF_TIMEOUT))
624 goto set_release_timer;
625
626 #ifdef CONFIG_MAC80211_HT_DEBUG
627 if (net_ratelimit())
628 wiphy_debug(hw->wiphy,
629 "release an RX reorder frame due to timeout on earlier frames\n");
630 #endif
631 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
632
633 /*
634 * Increment the head seq# also for the skipped slots.
635 */
636 tid_agg_rx->head_seq_num =
637 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
638 skipped = 0;
639 }
640 } else while (tid_agg_rx->reorder_buf[index]) {
641 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
642 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
643 tid_agg_rx->buf_size;
644 }
645
646 if (tid_agg_rx->stored_mpdu_num) {
647 j = index = seq_sub(tid_agg_rx->head_seq_num,
648 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
649
650 for (; j != (index - 1) % tid_agg_rx->buf_size;
651 j = (j + 1) % tid_agg_rx->buf_size) {
652 if (tid_agg_rx->reorder_buf[j])
653 break;
654 }
655
656 set_release_timer:
657
658 mod_timer(&tid_agg_rx->reorder_timer,
659 tid_agg_rx->reorder_time[j] + 1 +
660 HT_RX_REORDER_BUF_TIMEOUT);
661 } else {
662 del_timer(&tid_agg_rx->reorder_timer);
663 }
664 }
665
666 /*
667 * As this function belongs to the RX path it must be under
668 * rcu_read_lock protection. It returns false if the frame
669 * can be processed immediately, true if it was consumed.
670 */
671 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
672 struct tid_ampdu_rx *tid_agg_rx,
673 struct sk_buff *skb)
674 {
675 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
676 u16 sc = le16_to_cpu(hdr->seq_ctrl);
677 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
678 u16 head_seq_num, buf_size;
679 int index;
680 bool ret = true;
681
682 spin_lock(&tid_agg_rx->reorder_lock);
683
684 buf_size = tid_agg_rx->buf_size;
685 head_seq_num = tid_agg_rx->head_seq_num;
686
687 /* frame with out of date sequence number */
688 if (seq_less(mpdu_seq_num, head_seq_num)) {
689 dev_kfree_skb(skb);
690 goto out;
691 }
692
693 /*
694 * If frame the sequence number exceeds our buffering window
695 * size release some previous frames to make room for this one.
696 */
697 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
698 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
699 /* release stored frames up to new head to stack */
700 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
701 }
702
703 /* Now the new frame is always in the range of the reordering buffer */
704
705 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
706
707 /* check if we already stored this frame */
708 if (tid_agg_rx->reorder_buf[index]) {
709 dev_kfree_skb(skb);
710 goto out;
711 }
712
713 /*
714 * If the current MPDU is in the right order and nothing else
715 * is stored we can process it directly, no need to buffer it.
716 * If it is first but there's something stored, we may be able
717 * to release frames after this one.
718 */
719 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
720 tid_agg_rx->stored_mpdu_num == 0) {
721 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
722 ret = false;
723 goto out;
724 }
725
726 /* put the frame in the reordering buffer */
727 tid_agg_rx->reorder_buf[index] = skb;
728 tid_agg_rx->reorder_time[index] = jiffies;
729 tid_agg_rx->stored_mpdu_num++;
730 ieee80211_sta_reorder_release(hw, tid_agg_rx);
731
732 out:
733 spin_unlock(&tid_agg_rx->reorder_lock);
734 return ret;
735 }
736
737 /*
738 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
739 * true if the MPDU was buffered, false if it should be processed.
740 */
741 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
742 {
743 struct sk_buff *skb = rx->skb;
744 struct ieee80211_local *local = rx->local;
745 struct ieee80211_hw *hw = &local->hw;
746 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
747 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
748 struct sta_info *sta = rx->sta;
749 struct tid_ampdu_rx *tid_agg_rx;
750 u16 sc;
751 u8 tid, ack_policy;
752
753 if (!ieee80211_is_data_qos(hdr->frame_control))
754 goto dont_reorder;
755
756 /*
757 * filter the QoS data rx stream according to
758 * STA/TID and check if this STA/TID is on aggregation
759 */
760
761 if (!sta)
762 goto dont_reorder;
763
764 ack_policy = *ieee80211_get_qos_ctl(hdr) &
765 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
766 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
767
768 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
769 if (!tid_agg_rx)
770 goto dont_reorder;
771
772 /* qos null data frames are excluded */
773 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
774 goto dont_reorder;
775
776 /* not part of a BA session */
777 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
778 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
779 goto dont_reorder;
780
781 /* not actually part of this BA session */
782 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
783 goto dont_reorder;
784
785 /* new, potentially un-ordered, ampdu frame - process it */
786
787 /* reset session timer */
788 if (tid_agg_rx->timeout)
789 mod_timer(&tid_agg_rx->session_timer,
790 TU_TO_EXP_TIME(tid_agg_rx->timeout));
791
792 /* if this mpdu is fragmented - terminate rx aggregation session */
793 sc = le16_to_cpu(hdr->seq_ctrl);
794 if (sc & IEEE80211_SCTL_FRAG) {
795 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
796 skb_queue_tail(&rx->sdata->skb_queue, skb);
797 ieee80211_queue_work(&local->hw, &rx->sdata->work);
798 return;
799 }
800
801 /*
802 * No locking needed -- we will only ever process one
803 * RX packet at a time, and thus own tid_agg_rx. All
804 * other code manipulating it needs to (and does) make
805 * sure that we cannot get to it any more before doing
806 * anything with it.
807 */
808 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
809 return;
810
811 dont_reorder:
812 skb_queue_tail(&local->rx_skb_queue, skb);
813 }
814
815 static ieee80211_rx_result debug_noinline
816 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
817 {
818 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
819 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
820
821 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
822 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
823 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
824 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
825 hdr->seq_ctrl)) {
826 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
827 rx->local->dot11FrameDuplicateCount++;
828 rx->sta->num_duplicates++;
829 }
830 return RX_DROP_UNUSABLE;
831 } else
832 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
833 }
834
835 if (unlikely(rx->skb->len < 16)) {
836 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
837 return RX_DROP_MONITOR;
838 }
839
840 /* Drop disallowed frame classes based on STA auth/assoc state;
841 * IEEE 802.11, Chap 5.5.
842 *
843 * mac80211 filters only based on association state, i.e. it drops
844 * Class 3 frames from not associated stations. hostapd sends
845 * deauth/disassoc frames when needed. In addition, hostapd is
846 * responsible for filtering on both auth and assoc states.
847 */
848
849 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
850 return ieee80211_rx_mesh_check(rx);
851
852 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
853 ieee80211_is_pspoll(hdr->frame_control)) &&
854 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
855 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
856 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
857 if (rx->sta && rx->sta->dummy &&
858 ieee80211_is_data_present(hdr->frame_control)) {
859 u16 ethertype;
860 u8 *payload;
861
862 payload = rx->skb->data +
863 ieee80211_hdrlen(hdr->frame_control);
864 ethertype = (payload[6] << 8) | payload[7];
865 if (cpu_to_be16(ethertype) ==
866 rx->sdata->control_port_protocol)
867 return RX_CONTINUE;
868 }
869 return RX_DROP_MONITOR;
870 }
871
872 return RX_CONTINUE;
873 }
874
875
876 static ieee80211_rx_result debug_noinline
877 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
878 {
879 struct sk_buff *skb = rx->skb;
880 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
881 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
882 int keyidx;
883 int hdrlen;
884 ieee80211_rx_result result = RX_DROP_UNUSABLE;
885 struct ieee80211_key *sta_ptk = NULL;
886 int mmie_keyidx = -1;
887 __le16 fc;
888
889 /*
890 * Key selection 101
891 *
892 * There are four types of keys:
893 * - GTK (group keys)
894 * - IGTK (group keys for management frames)
895 * - PTK (pairwise keys)
896 * - STK (station-to-station pairwise keys)
897 *
898 * When selecting a key, we have to distinguish between multicast
899 * (including broadcast) and unicast frames, the latter can only
900 * use PTKs and STKs while the former always use GTKs and IGTKs.
901 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
902 * unicast frames can also use key indices like GTKs. Hence, if we
903 * don't have a PTK/STK we check the key index for a WEP key.
904 *
905 * Note that in a regular BSS, multicast frames are sent by the
906 * AP only, associated stations unicast the frame to the AP first
907 * which then multicasts it on their behalf.
908 *
909 * There is also a slight problem in IBSS mode: GTKs are negotiated
910 * with each station, that is something we don't currently handle.
911 * The spec seems to expect that one negotiates the same key with
912 * every station but there's no such requirement; VLANs could be
913 * possible.
914 */
915
916 /*
917 * No point in finding a key and decrypting if the frame is neither
918 * addressed to us nor a multicast frame.
919 */
920 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
921 return RX_CONTINUE;
922
923 /* start without a key */
924 rx->key = NULL;
925
926 if (rx->sta)
927 sta_ptk = rcu_dereference(rx->sta->ptk);
928
929 fc = hdr->frame_control;
930
931 if (!ieee80211_has_protected(fc))
932 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
933
934 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
935 rx->key = sta_ptk;
936 if ((status->flag & RX_FLAG_DECRYPTED) &&
937 (status->flag & RX_FLAG_IV_STRIPPED))
938 return RX_CONTINUE;
939 /* Skip decryption if the frame is not protected. */
940 if (!ieee80211_has_protected(fc))
941 return RX_CONTINUE;
942 } else if (mmie_keyidx >= 0) {
943 /* Broadcast/multicast robust management frame / BIP */
944 if ((status->flag & RX_FLAG_DECRYPTED) &&
945 (status->flag & RX_FLAG_IV_STRIPPED))
946 return RX_CONTINUE;
947
948 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
949 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
950 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
951 if (rx->sta)
952 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
953 if (!rx->key)
954 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
955 } else if (!ieee80211_has_protected(fc)) {
956 /*
957 * The frame was not protected, so skip decryption. However, we
958 * need to set rx->key if there is a key that could have been
959 * used so that the frame may be dropped if encryption would
960 * have been expected.
961 */
962 struct ieee80211_key *key = NULL;
963 struct ieee80211_sub_if_data *sdata = rx->sdata;
964 int i;
965
966 if (ieee80211_is_mgmt(fc) &&
967 is_multicast_ether_addr(hdr->addr1) &&
968 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
969 rx->key = key;
970 else {
971 if (rx->sta) {
972 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
973 key = rcu_dereference(rx->sta->gtk[i]);
974 if (key)
975 break;
976 }
977 }
978 if (!key) {
979 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
980 key = rcu_dereference(sdata->keys[i]);
981 if (key)
982 break;
983 }
984 }
985 if (key)
986 rx->key = key;
987 }
988 return RX_CONTINUE;
989 } else {
990 u8 keyid;
991 /*
992 * The device doesn't give us the IV so we won't be
993 * able to look up the key. That's ok though, we
994 * don't need to decrypt the frame, we just won't
995 * be able to keep statistics accurate.
996 * Except for key threshold notifications, should
997 * we somehow allow the driver to tell us which key
998 * the hardware used if this flag is set?
999 */
1000 if ((status->flag & RX_FLAG_DECRYPTED) &&
1001 (status->flag & RX_FLAG_IV_STRIPPED))
1002 return RX_CONTINUE;
1003
1004 hdrlen = ieee80211_hdrlen(fc);
1005
1006 if (rx->skb->len < 8 + hdrlen)
1007 return RX_DROP_UNUSABLE; /* TODO: count this? */
1008
1009 /*
1010 * no need to call ieee80211_wep_get_keyidx,
1011 * it verifies a bunch of things we've done already
1012 */
1013 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1014 keyidx = keyid >> 6;
1015
1016 /* check per-station GTK first, if multicast packet */
1017 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1018 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1019
1020 /* if not found, try default key */
1021 if (!rx->key) {
1022 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1023
1024 /*
1025 * RSNA-protected unicast frames should always be
1026 * sent with pairwise or station-to-station keys,
1027 * but for WEP we allow using a key index as well.
1028 */
1029 if (rx->key &&
1030 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1031 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1032 !is_multicast_ether_addr(hdr->addr1))
1033 rx->key = NULL;
1034 }
1035 }
1036
1037 if (rx->key) {
1038 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1039 return RX_DROP_MONITOR;
1040
1041 rx->key->tx_rx_count++;
1042 /* TODO: add threshold stuff again */
1043 } else {
1044 return RX_DROP_MONITOR;
1045 }
1046
1047 if (skb_linearize(rx->skb))
1048 return RX_DROP_UNUSABLE;
1049 /* the hdr variable is invalid now! */
1050
1051 switch (rx->key->conf.cipher) {
1052 case WLAN_CIPHER_SUITE_WEP40:
1053 case WLAN_CIPHER_SUITE_WEP104:
1054 /* Check for weak IVs if possible */
1055 if (rx->sta && ieee80211_is_data(fc) &&
1056 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1057 !(status->flag & RX_FLAG_DECRYPTED)) &&
1058 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1059 rx->sta->wep_weak_iv_count++;
1060
1061 result = ieee80211_crypto_wep_decrypt(rx);
1062 break;
1063 case WLAN_CIPHER_SUITE_TKIP:
1064 result = ieee80211_crypto_tkip_decrypt(rx);
1065 break;
1066 case WLAN_CIPHER_SUITE_CCMP:
1067 result = ieee80211_crypto_ccmp_decrypt(rx);
1068 break;
1069 case WLAN_CIPHER_SUITE_AES_CMAC:
1070 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1071 break;
1072 default:
1073 /*
1074 * We can reach here only with HW-only algorithms
1075 * but why didn't it decrypt the frame?!
1076 */
1077 return RX_DROP_UNUSABLE;
1078 }
1079
1080 /* either the frame has been decrypted or will be dropped */
1081 status->flag |= RX_FLAG_DECRYPTED;
1082
1083 return result;
1084 }
1085
1086 static ieee80211_rx_result debug_noinline
1087 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1088 {
1089 struct ieee80211_local *local;
1090 struct ieee80211_hdr *hdr;
1091 struct sk_buff *skb;
1092
1093 local = rx->local;
1094 skb = rx->skb;
1095 hdr = (struct ieee80211_hdr *) skb->data;
1096
1097 if (!local->pspolling)
1098 return RX_CONTINUE;
1099
1100 if (!ieee80211_has_fromds(hdr->frame_control))
1101 /* this is not from AP */
1102 return RX_CONTINUE;
1103
1104 if (!ieee80211_is_data(hdr->frame_control))
1105 return RX_CONTINUE;
1106
1107 if (!ieee80211_has_moredata(hdr->frame_control)) {
1108 /* AP has no more frames buffered for us */
1109 local->pspolling = false;
1110 return RX_CONTINUE;
1111 }
1112
1113 /* more data bit is set, let's request a new frame from the AP */
1114 ieee80211_send_pspoll(local, rx->sdata);
1115
1116 return RX_CONTINUE;
1117 }
1118
1119 static void ap_sta_ps_start(struct sta_info *sta)
1120 {
1121 struct ieee80211_sub_if_data *sdata = sta->sdata;
1122 struct ieee80211_local *local = sdata->local;
1123
1124 atomic_inc(&sdata->bss->num_sta_ps);
1125 set_sta_flag(sta, WLAN_STA_PS_STA);
1126 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1127 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1128 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1129 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1130 sdata->name, sta->sta.addr, sta->sta.aid);
1131 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1132 }
1133
1134 static void ap_sta_ps_end(struct sta_info *sta)
1135 {
1136 struct ieee80211_sub_if_data *sdata = sta->sdata;
1137
1138 atomic_dec(&sdata->bss->num_sta_ps);
1139
1140 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1141 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1142 sdata->name, sta->sta.addr, sta->sta.aid);
1143 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1144
1145 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1146 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1147 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1148 sdata->name, sta->sta.addr, sta->sta.aid);
1149 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1150 return;
1151 }
1152
1153 ieee80211_sta_ps_deliver_wakeup(sta);
1154 }
1155
1156 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1157 {
1158 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1159 bool in_ps;
1160
1161 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1162
1163 /* Don't let the same PS state be set twice */
1164 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1165 if ((start && in_ps) || (!start && !in_ps))
1166 return -EINVAL;
1167
1168 if (start)
1169 ap_sta_ps_start(sta_inf);
1170 else
1171 ap_sta_ps_end(sta_inf);
1172
1173 return 0;
1174 }
1175 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1176
1177 static ieee80211_rx_result debug_noinline
1178 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1179 {
1180 struct ieee80211_sub_if_data *sdata = rx->sdata;
1181 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1182 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1183 int tid, ac;
1184
1185 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1186 return RX_CONTINUE;
1187
1188 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1189 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1190 return RX_CONTINUE;
1191
1192 /*
1193 * The device handles station powersave, so don't do anything about
1194 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1195 * it to mac80211 since they're handled.)
1196 */
1197 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1198 return RX_CONTINUE;
1199
1200 /*
1201 * Don't do anything if the station isn't already asleep. In
1202 * the uAPSD case, the station will probably be marked asleep,
1203 * in the PS-Poll case the station must be confused ...
1204 */
1205 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1206 return RX_CONTINUE;
1207
1208 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1209 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1210 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1211 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1212 else
1213 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1214 }
1215
1216 /* Free PS Poll skb here instead of returning RX_DROP that would
1217 * count as an dropped frame. */
1218 dev_kfree_skb(rx->skb);
1219
1220 return RX_QUEUED;
1221 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1222 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1223 ieee80211_has_pm(hdr->frame_control) &&
1224 (ieee80211_is_data_qos(hdr->frame_control) ||
1225 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1226 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1227 ac = ieee802_1d_to_ac[tid & 7];
1228
1229 /*
1230 * If this AC is not trigger-enabled do nothing.
1231 *
1232 * NB: This could/should check a separate bitmap of trigger-
1233 * enabled queues, but for now we only implement uAPSD w/o
1234 * TSPEC changes to the ACs, so they're always the same.
1235 */
1236 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1237 return RX_CONTINUE;
1238
1239 /* if we are in a service period, do nothing */
1240 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1241 return RX_CONTINUE;
1242
1243 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1244 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1245 else
1246 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1247 }
1248
1249 return RX_CONTINUE;
1250 }
1251
1252 static ieee80211_rx_result debug_noinline
1253 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1254 {
1255 struct sta_info *sta = rx->sta;
1256 struct sk_buff *skb = rx->skb;
1257 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1258 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1259
1260 if (!sta)
1261 return RX_CONTINUE;
1262
1263 /*
1264 * Update last_rx only for IBSS packets which are for the current
1265 * BSSID to avoid keeping the current IBSS network alive in cases
1266 * where other STAs start using different BSSID.
1267 */
1268 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1269 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1270 NL80211_IFTYPE_ADHOC);
1271 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1272 sta->last_rx = jiffies;
1273 if (ieee80211_is_data(hdr->frame_control)) {
1274 sta->last_rx_rate_idx = status->rate_idx;
1275 sta->last_rx_rate_flag = status->flag;
1276 }
1277 }
1278 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1279 /*
1280 * Mesh beacons will update last_rx when if they are found to
1281 * match the current local configuration when processed.
1282 */
1283 sta->last_rx = jiffies;
1284 if (ieee80211_is_data(hdr->frame_control)) {
1285 sta->last_rx_rate_idx = status->rate_idx;
1286 sta->last_rx_rate_flag = status->flag;
1287 }
1288 }
1289
1290 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1291 return RX_CONTINUE;
1292
1293 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1294 ieee80211_sta_rx_notify(rx->sdata, hdr);
1295
1296 sta->rx_fragments++;
1297 sta->rx_bytes += rx->skb->len;
1298 sta->last_signal = status->signal;
1299 ewma_add(&sta->avg_signal, -status->signal);
1300
1301 /*
1302 * Change STA power saving mode only at the end of a frame
1303 * exchange sequence.
1304 */
1305 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1306 !ieee80211_has_morefrags(hdr->frame_control) &&
1307 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1308 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1309 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1310 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1311 /*
1312 * Ignore doze->wake transitions that are
1313 * indicated by non-data frames, the standard
1314 * is unclear here, but for example going to
1315 * PS mode and then scanning would cause a
1316 * doze->wake transition for the probe request,
1317 * and that is clearly undesirable.
1318 */
1319 if (ieee80211_is_data(hdr->frame_control) &&
1320 !ieee80211_has_pm(hdr->frame_control))
1321 ap_sta_ps_end(sta);
1322 } else {
1323 if (ieee80211_has_pm(hdr->frame_control))
1324 ap_sta_ps_start(sta);
1325 }
1326 }
1327
1328 /*
1329 * Drop (qos-)data::nullfunc frames silently, since they
1330 * are used only to control station power saving mode.
1331 */
1332 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1333 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1334 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1335
1336 /*
1337 * If we receive a 4-addr nullfunc frame from a STA
1338 * that was not moved to a 4-addr STA vlan yet, drop
1339 * the frame to the monitor interface, to make sure
1340 * that hostapd sees it
1341 */
1342 if (ieee80211_has_a4(hdr->frame_control) &&
1343 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1344 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1345 !rx->sdata->u.vlan.sta)))
1346 return RX_DROP_MONITOR;
1347 /*
1348 * Update counter and free packet here to avoid
1349 * counting this as a dropped packed.
1350 */
1351 sta->rx_packets++;
1352 dev_kfree_skb(rx->skb);
1353 return RX_QUEUED;
1354 }
1355
1356 return RX_CONTINUE;
1357 } /* ieee80211_rx_h_sta_process */
1358
1359 static inline struct ieee80211_fragment_entry *
1360 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1361 unsigned int frag, unsigned int seq, int rx_queue,
1362 struct sk_buff **skb)
1363 {
1364 struct ieee80211_fragment_entry *entry;
1365 int idx;
1366
1367 idx = sdata->fragment_next;
1368 entry = &sdata->fragments[sdata->fragment_next++];
1369 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1370 sdata->fragment_next = 0;
1371
1372 if (!skb_queue_empty(&entry->skb_list)) {
1373 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1374 struct ieee80211_hdr *hdr =
1375 (struct ieee80211_hdr *) entry->skb_list.next->data;
1376 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1377 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1378 "addr1=%pM addr2=%pM\n",
1379 sdata->name, idx,
1380 jiffies - entry->first_frag_time, entry->seq,
1381 entry->last_frag, hdr->addr1, hdr->addr2);
1382 #endif
1383 __skb_queue_purge(&entry->skb_list);
1384 }
1385
1386 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1387 *skb = NULL;
1388 entry->first_frag_time = jiffies;
1389 entry->seq = seq;
1390 entry->rx_queue = rx_queue;
1391 entry->last_frag = frag;
1392 entry->ccmp = 0;
1393 entry->extra_len = 0;
1394
1395 return entry;
1396 }
1397
1398 static inline struct ieee80211_fragment_entry *
1399 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1400 unsigned int frag, unsigned int seq,
1401 int rx_queue, struct ieee80211_hdr *hdr)
1402 {
1403 struct ieee80211_fragment_entry *entry;
1404 int i, idx;
1405
1406 idx = sdata->fragment_next;
1407 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1408 struct ieee80211_hdr *f_hdr;
1409
1410 idx--;
1411 if (idx < 0)
1412 idx = IEEE80211_FRAGMENT_MAX - 1;
1413
1414 entry = &sdata->fragments[idx];
1415 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1416 entry->rx_queue != rx_queue ||
1417 entry->last_frag + 1 != frag)
1418 continue;
1419
1420 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1421
1422 /*
1423 * Check ftype and addresses are equal, else check next fragment
1424 */
1425 if (((hdr->frame_control ^ f_hdr->frame_control) &
1426 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1427 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1428 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1429 continue;
1430
1431 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1432 __skb_queue_purge(&entry->skb_list);
1433 continue;
1434 }
1435 return entry;
1436 }
1437
1438 return NULL;
1439 }
1440
1441 static ieee80211_rx_result debug_noinline
1442 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1443 {
1444 struct ieee80211_hdr *hdr;
1445 u16 sc;
1446 __le16 fc;
1447 unsigned int frag, seq;
1448 struct ieee80211_fragment_entry *entry;
1449 struct sk_buff *skb;
1450 struct ieee80211_rx_status *status;
1451
1452 hdr = (struct ieee80211_hdr *)rx->skb->data;
1453 fc = hdr->frame_control;
1454 sc = le16_to_cpu(hdr->seq_ctrl);
1455 frag = sc & IEEE80211_SCTL_FRAG;
1456
1457 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1458 (rx->skb)->len < 24 ||
1459 is_multicast_ether_addr(hdr->addr1))) {
1460 /* not fragmented */
1461 goto out;
1462 }
1463 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1464
1465 if (skb_linearize(rx->skb))
1466 return RX_DROP_UNUSABLE;
1467
1468 /*
1469 * skb_linearize() might change the skb->data and
1470 * previously cached variables (in this case, hdr) need to
1471 * be refreshed with the new data.
1472 */
1473 hdr = (struct ieee80211_hdr *)rx->skb->data;
1474 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1475
1476 if (frag == 0) {
1477 /* This is the first fragment of a new frame. */
1478 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1479 rx->seqno_idx, &(rx->skb));
1480 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1481 ieee80211_has_protected(fc)) {
1482 int queue = rx->security_idx;
1483 /* Store CCMP PN so that we can verify that the next
1484 * fragment has a sequential PN value. */
1485 entry->ccmp = 1;
1486 memcpy(entry->last_pn,
1487 rx->key->u.ccmp.rx_pn[queue],
1488 CCMP_PN_LEN);
1489 }
1490 return RX_QUEUED;
1491 }
1492
1493 /* This is a fragment for a frame that should already be pending in
1494 * fragment cache. Add this fragment to the end of the pending entry.
1495 */
1496 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1497 rx->seqno_idx, hdr);
1498 if (!entry) {
1499 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1500 return RX_DROP_MONITOR;
1501 }
1502
1503 /* Verify that MPDUs within one MSDU have sequential PN values.
1504 * (IEEE 802.11i, 8.3.3.4.5) */
1505 if (entry->ccmp) {
1506 int i;
1507 u8 pn[CCMP_PN_LEN], *rpn;
1508 int queue;
1509 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1510 return RX_DROP_UNUSABLE;
1511 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1512 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1513 pn[i]++;
1514 if (pn[i])
1515 break;
1516 }
1517 queue = rx->security_idx;
1518 rpn = rx->key->u.ccmp.rx_pn[queue];
1519 if (memcmp(pn, rpn, CCMP_PN_LEN))
1520 return RX_DROP_UNUSABLE;
1521 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1522 }
1523
1524 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1525 __skb_queue_tail(&entry->skb_list, rx->skb);
1526 entry->last_frag = frag;
1527 entry->extra_len += rx->skb->len;
1528 if (ieee80211_has_morefrags(fc)) {
1529 rx->skb = NULL;
1530 return RX_QUEUED;
1531 }
1532
1533 rx->skb = __skb_dequeue(&entry->skb_list);
1534 if (skb_tailroom(rx->skb) < entry->extra_len) {
1535 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1536 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1537 GFP_ATOMIC))) {
1538 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1539 __skb_queue_purge(&entry->skb_list);
1540 return RX_DROP_UNUSABLE;
1541 }
1542 }
1543 while ((skb = __skb_dequeue(&entry->skb_list))) {
1544 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1545 dev_kfree_skb(skb);
1546 }
1547
1548 /* Complete frame has been reassembled - process it now */
1549 status = IEEE80211_SKB_RXCB(rx->skb);
1550 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1551
1552 out:
1553 if (rx->sta)
1554 rx->sta->rx_packets++;
1555 if (is_multicast_ether_addr(hdr->addr1))
1556 rx->local->dot11MulticastReceivedFrameCount++;
1557 else
1558 ieee80211_led_rx(rx->local);
1559 return RX_CONTINUE;
1560 }
1561
1562 static ieee80211_rx_result debug_noinline
1563 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1564 {
1565 u8 *data = rx->skb->data;
1566 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1567
1568 if (!ieee80211_is_data_qos(hdr->frame_control))
1569 return RX_CONTINUE;
1570
1571 /* remove the qos control field, update frame type and meta-data */
1572 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1573 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1574 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1575 /* change frame type to non QOS */
1576 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1577
1578 return RX_CONTINUE;
1579 }
1580
1581 static int
1582 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1583 {
1584 if (unlikely(!rx->sta ||
1585 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1586 return -EACCES;
1587
1588 return 0;
1589 }
1590
1591 static int
1592 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1593 {
1594 struct sk_buff *skb = rx->skb;
1595 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1596
1597 /*
1598 * Pass through unencrypted frames if the hardware has
1599 * decrypted them already.
1600 */
1601 if (status->flag & RX_FLAG_DECRYPTED)
1602 return 0;
1603
1604 /* Drop unencrypted frames if key is set. */
1605 if (unlikely(!ieee80211_has_protected(fc) &&
1606 !ieee80211_is_nullfunc(fc) &&
1607 ieee80211_is_data(fc) &&
1608 (rx->key || rx->sdata->drop_unencrypted)))
1609 return -EACCES;
1610
1611 return 0;
1612 }
1613
1614 static int
1615 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1616 {
1617 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1618 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1619 __le16 fc = hdr->frame_control;
1620
1621 /*
1622 * Pass through unencrypted frames if the hardware has
1623 * decrypted them already.
1624 */
1625 if (status->flag & RX_FLAG_DECRYPTED)
1626 return 0;
1627
1628 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1629 if (unlikely(!ieee80211_has_protected(fc) &&
1630 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1631 rx->key)) {
1632 if (ieee80211_is_deauth(fc))
1633 cfg80211_send_unprot_deauth(rx->sdata->dev,
1634 rx->skb->data,
1635 rx->skb->len);
1636 else if (ieee80211_is_disassoc(fc))
1637 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1638 rx->skb->data,
1639 rx->skb->len);
1640 return -EACCES;
1641 }
1642 /* BIP does not use Protected field, so need to check MMIE */
1643 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1644 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1645 if (ieee80211_is_deauth(fc))
1646 cfg80211_send_unprot_deauth(rx->sdata->dev,
1647 rx->skb->data,
1648 rx->skb->len);
1649 else if (ieee80211_is_disassoc(fc))
1650 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1651 rx->skb->data,
1652 rx->skb->len);
1653 return -EACCES;
1654 }
1655 /*
1656 * When using MFP, Action frames are not allowed prior to
1657 * having configured keys.
1658 */
1659 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1660 ieee80211_is_robust_mgmt_frame(
1661 (struct ieee80211_hdr *) rx->skb->data)))
1662 return -EACCES;
1663 }
1664
1665 return 0;
1666 }
1667
1668 static int
1669 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1670 {
1671 struct ieee80211_sub_if_data *sdata = rx->sdata;
1672 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1673 bool check_port_control = false;
1674 struct ethhdr *ehdr;
1675 int ret;
1676
1677 *port_control = false;
1678 if (ieee80211_has_a4(hdr->frame_control) &&
1679 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1680 return -1;
1681
1682 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1683 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1684
1685 if (!sdata->u.mgd.use_4addr)
1686 return -1;
1687 else
1688 check_port_control = true;
1689 }
1690
1691 if (is_multicast_ether_addr(hdr->addr1) &&
1692 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1693 return -1;
1694
1695 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1696 if (ret < 0)
1697 return ret;
1698
1699 ehdr = (struct ethhdr *) rx->skb->data;
1700 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1701 *port_control = true;
1702 else if (check_port_control)
1703 return -1;
1704
1705 return 0;
1706 }
1707
1708 /*
1709 * requires that rx->skb is a frame with ethernet header
1710 */
1711 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1712 {
1713 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1714 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1715 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1716
1717 /*
1718 * Allow EAPOL frames to us/the PAE group address regardless
1719 * of whether the frame was encrypted or not.
1720 */
1721 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1722 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1723 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1724 return true;
1725
1726 if (ieee80211_802_1x_port_control(rx) ||
1727 ieee80211_drop_unencrypted(rx, fc))
1728 return false;
1729
1730 return true;
1731 }
1732
1733 /*
1734 * requires that rx->skb is a frame with ethernet header
1735 */
1736 static void
1737 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1738 {
1739 struct ieee80211_sub_if_data *sdata = rx->sdata;
1740 struct net_device *dev = sdata->dev;
1741 struct sk_buff *skb, *xmit_skb;
1742 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1743 struct sta_info *dsta;
1744 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1745
1746 skb = rx->skb;
1747 xmit_skb = NULL;
1748
1749 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1750 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1751 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1752 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1753 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1754 if (is_multicast_ether_addr(ehdr->h_dest)) {
1755 /*
1756 * send multicast frames both to higher layers in
1757 * local net stack and back to the wireless medium
1758 */
1759 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1760 if (!xmit_skb && net_ratelimit())
1761 printk(KERN_DEBUG "%s: failed to clone "
1762 "multicast frame\n", dev->name);
1763 } else {
1764 dsta = sta_info_get(sdata, skb->data);
1765 if (dsta) {
1766 /*
1767 * The destination station is associated to
1768 * this AP (in this VLAN), so send the frame
1769 * directly to it and do not pass it to local
1770 * net stack.
1771 */
1772 xmit_skb = skb;
1773 skb = NULL;
1774 }
1775 }
1776 }
1777
1778 if (skb) {
1779 int align __maybe_unused;
1780
1781 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1782 /*
1783 * 'align' will only take the values 0 or 2 here
1784 * since all frames are required to be aligned
1785 * to 2-byte boundaries when being passed to
1786 * mac80211. That also explains the __skb_push()
1787 * below.
1788 */
1789 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1790 if (align) {
1791 if (WARN_ON(skb_headroom(skb) < 3)) {
1792 dev_kfree_skb(skb);
1793 skb = NULL;
1794 } else {
1795 u8 *data = skb->data;
1796 size_t len = skb_headlen(skb);
1797 skb->data -= align;
1798 memmove(skb->data, data, len);
1799 skb_set_tail_pointer(skb, len);
1800 }
1801 }
1802 #endif
1803
1804 if (skb) {
1805 /* deliver to local stack */
1806 skb->protocol = eth_type_trans(skb, dev);
1807 memset(skb->cb, 0, sizeof(skb->cb));
1808 netif_receive_skb(skb);
1809 }
1810 }
1811
1812 if (xmit_skb) {
1813 /* send to wireless media */
1814 xmit_skb->protocol = htons(ETH_P_802_3);
1815 skb_reset_network_header(xmit_skb);
1816 skb_reset_mac_header(xmit_skb);
1817 dev_queue_xmit(xmit_skb);
1818 }
1819 }
1820
1821 static ieee80211_rx_result debug_noinline
1822 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1823 {
1824 struct net_device *dev = rx->sdata->dev;
1825 struct sk_buff *skb = rx->skb;
1826 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1827 __le16 fc = hdr->frame_control;
1828 struct sk_buff_head frame_list;
1829 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1830
1831 if (unlikely(!ieee80211_is_data(fc)))
1832 return RX_CONTINUE;
1833
1834 if (unlikely(!ieee80211_is_data_present(fc)))
1835 return RX_DROP_MONITOR;
1836
1837 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1838 return RX_CONTINUE;
1839
1840 if (ieee80211_has_a4(hdr->frame_control) &&
1841 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1842 !rx->sdata->u.vlan.sta)
1843 return RX_DROP_UNUSABLE;
1844
1845 if (is_multicast_ether_addr(hdr->addr1) &&
1846 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1847 rx->sdata->u.vlan.sta) ||
1848 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1849 rx->sdata->u.mgd.use_4addr)))
1850 return RX_DROP_UNUSABLE;
1851
1852 skb->dev = dev;
1853 __skb_queue_head_init(&frame_list);
1854
1855 if (skb_linearize(skb))
1856 return RX_DROP_UNUSABLE;
1857
1858 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1859 rx->sdata->vif.type,
1860 rx->local->hw.extra_tx_headroom, true);
1861
1862 while (!skb_queue_empty(&frame_list)) {
1863 rx->skb = __skb_dequeue(&frame_list);
1864
1865 if (!ieee80211_frame_allowed(rx, fc)) {
1866 dev_kfree_skb(rx->skb);
1867 continue;
1868 }
1869 dev->stats.rx_packets++;
1870 dev->stats.rx_bytes += rx->skb->len;
1871
1872 ieee80211_deliver_skb(rx);
1873 }
1874
1875 return RX_QUEUED;
1876 }
1877
1878 #ifdef CONFIG_MAC80211_MESH
1879 static ieee80211_rx_result
1880 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1881 {
1882 struct ieee80211_hdr *hdr;
1883 struct ieee80211s_hdr *mesh_hdr;
1884 unsigned int hdrlen;
1885 struct sk_buff *skb = rx->skb, *fwd_skb;
1886 struct ieee80211_local *local = rx->local;
1887 struct ieee80211_sub_if_data *sdata = rx->sdata;
1888 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1889
1890 hdr = (struct ieee80211_hdr *) skb->data;
1891 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1892 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1893
1894 /* frame is in RMC, don't forward */
1895 if (ieee80211_is_data(hdr->frame_control) &&
1896 is_multicast_ether_addr(hdr->addr1) &&
1897 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1898 return RX_DROP_MONITOR;
1899
1900 if (!ieee80211_is_data(hdr->frame_control))
1901 return RX_CONTINUE;
1902
1903 if (!mesh_hdr->ttl)
1904 /* illegal frame */
1905 return RX_DROP_MONITOR;
1906
1907 if (ieee80211_queue_stopped(&local->hw, skb_get_queue_mapping(skb))) {
1908 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1909 dropped_frames_congestion);
1910 return RX_DROP_MONITOR;
1911 }
1912
1913 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1914 struct mesh_path *mppath;
1915 char *proxied_addr;
1916 char *mpp_addr;
1917
1918 if (is_multicast_ether_addr(hdr->addr1)) {
1919 mpp_addr = hdr->addr3;
1920 proxied_addr = mesh_hdr->eaddr1;
1921 } else {
1922 mpp_addr = hdr->addr4;
1923 proxied_addr = mesh_hdr->eaddr2;
1924 }
1925
1926 rcu_read_lock();
1927 mppath = mpp_path_lookup(proxied_addr, sdata);
1928 if (!mppath) {
1929 mpp_path_add(proxied_addr, mpp_addr, sdata);
1930 } else {
1931 spin_lock_bh(&mppath->state_lock);
1932 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1933 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1934 spin_unlock_bh(&mppath->state_lock);
1935 }
1936 rcu_read_unlock();
1937 }
1938
1939 /* Frame has reached destination. Don't forward */
1940 if (!is_multicast_ether_addr(hdr->addr1) &&
1941 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1942 return RX_CONTINUE;
1943
1944 mesh_hdr->ttl--;
1945
1946 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1947 if (!mesh_hdr->ttl)
1948 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1949 dropped_frames_ttl);
1950 else {
1951 struct ieee80211_hdr *fwd_hdr;
1952 struct ieee80211_tx_info *info;
1953
1954 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1955
1956 if (!fwd_skb && net_ratelimit())
1957 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1958 sdata->name);
1959 if (!fwd_skb)
1960 goto out;
1961
1962 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1963 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1964 info = IEEE80211_SKB_CB(fwd_skb);
1965 memset(info, 0, sizeof(*info));
1966 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1967 info->control.vif = &rx->sdata->vif;
1968 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
1969 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1970 fwded_mcast);
1971 skb_set_queue_mapping(fwd_skb,
1972 ieee80211_select_queue(sdata, fwd_skb));
1973 ieee80211_set_qos_hdr(sdata, fwd_skb);
1974 } else {
1975 int err;
1976 /*
1977 * Save TA to addr1 to send TA a path error if a
1978 * suitable next hop is not found
1979 */
1980 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1981 ETH_ALEN);
1982 err = mesh_nexthop_lookup(fwd_skb, sdata);
1983 /* Failed to immediately resolve next hop:
1984 * fwded frame was dropped or will be added
1985 * later to the pending skb queue. */
1986 if (err)
1987 return RX_DROP_MONITOR;
1988
1989 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1990 fwded_unicast);
1991 }
1992 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1993 fwded_frames);
1994 ieee80211_add_pending_skb(local, fwd_skb);
1995 }
1996 }
1997
1998 out:
1999 if (is_multicast_ether_addr(hdr->addr1) ||
2000 sdata->dev->flags & IFF_PROMISC)
2001 return RX_CONTINUE;
2002 else
2003 return RX_DROP_MONITOR;
2004 }
2005 #endif
2006
2007 static ieee80211_rx_result debug_noinline
2008 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2009 {
2010 struct ieee80211_sub_if_data *sdata = rx->sdata;
2011 struct ieee80211_local *local = rx->local;
2012 struct net_device *dev = sdata->dev;
2013 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2014 __le16 fc = hdr->frame_control;
2015 bool port_control;
2016 int err;
2017
2018 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2019 return RX_CONTINUE;
2020
2021 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2022 return RX_DROP_MONITOR;
2023
2024 /*
2025 * Allow the cooked monitor interface of an AP to see 4-addr frames so
2026 * that a 4-addr station can be detected and moved into a separate VLAN
2027 */
2028 if (ieee80211_has_a4(hdr->frame_control) &&
2029 sdata->vif.type == NL80211_IFTYPE_AP)
2030 return RX_DROP_MONITOR;
2031
2032 err = __ieee80211_data_to_8023(rx, &port_control);
2033 if (unlikely(err))
2034 return RX_DROP_UNUSABLE;
2035
2036 if (!ieee80211_frame_allowed(rx, fc))
2037 return RX_DROP_MONITOR;
2038
2039 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2040 unlikely(port_control) && sdata->bss) {
2041 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2042 u.ap);
2043 dev = sdata->dev;
2044 rx->sdata = sdata;
2045 }
2046
2047 rx->skb->dev = dev;
2048
2049 dev->stats.rx_packets++;
2050 dev->stats.rx_bytes += rx->skb->len;
2051
2052 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2053 !is_multicast_ether_addr(
2054 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2055 (!local->scanning &&
2056 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2057 mod_timer(&local->dynamic_ps_timer, jiffies +
2058 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2059 }
2060
2061 ieee80211_deliver_skb(rx);
2062
2063 return RX_QUEUED;
2064 }
2065
2066 static ieee80211_rx_result debug_noinline
2067 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2068 {
2069 struct ieee80211_local *local = rx->local;
2070 struct ieee80211_hw *hw = &local->hw;
2071 struct sk_buff *skb = rx->skb;
2072 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2073 struct tid_ampdu_rx *tid_agg_rx;
2074 u16 start_seq_num;
2075 u16 tid;
2076
2077 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2078 return RX_CONTINUE;
2079
2080 if (ieee80211_is_back_req(bar->frame_control)) {
2081 struct {
2082 __le16 control, start_seq_num;
2083 } __packed bar_data;
2084
2085 if (!rx->sta)
2086 return RX_DROP_MONITOR;
2087
2088 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2089 &bar_data, sizeof(bar_data)))
2090 return RX_DROP_MONITOR;
2091
2092 tid = le16_to_cpu(bar_data.control) >> 12;
2093
2094 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2095 if (!tid_agg_rx)
2096 return RX_DROP_MONITOR;
2097
2098 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2099
2100 /* reset session timer */
2101 if (tid_agg_rx->timeout)
2102 mod_timer(&tid_agg_rx->session_timer,
2103 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2104
2105 spin_lock(&tid_agg_rx->reorder_lock);
2106 /* release stored frames up to start of BAR */
2107 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2108 spin_unlock(&tid_agg_rx->reorder_lock);
2109
2110 kfree_skb(skb);
2111 return RX_QUEUED;
2112 }
2113
2114 /*
2115 * After this point, we only want management frames,
2116 * so we can drop all remaining control frames to
2117 * cooked monitor interfaces.
2118 */
2119 return RX_DROP_MONITOR;
2120 }
2121
2122 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2123 struct ieee80211_mgmt *mgmt,
2124 size_t len)
2125 {
2126 struct ieee80211_local *local = sdata->local;
2127 struct sk_buff *skb;
2128 struct ieee80211_mgmt *resp;
2129
2130 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2131 /* Not to own unicast address */
2132 return;
2133 }
2134
2135 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2136 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2137 /* Not from the current AP or not associated yet. */
2138 return;
2139 }
2140
2141 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2142 /* Too short SA Query request frame */
2143 return;
2144 }
2145
2146 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2147 if (skb == NULL)
2148 return;
2149
2150 skb_reserve(skb, local->hw.extra_tx_headroom);
2151 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2152 memset(resp, 0, 24);
2153 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2154 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2155 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2156 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2157 IEEE80211_STYPE_ACTION);
2158 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2159 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2160 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2161 memcpy(resp->u.action.u.sa_query.trans_id,
2162 mgmt->u.action.u.sa_query.trans_id,
2163 WLAN_SA_QUERY_TR_ID_LEN);
2164
2165 ieee80211_tx_skb(sdata, skb);
2166 }
2167
2168 static ieee80211_rx_result debug_noinline
2169 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2170 {
2171 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2172 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2173
2174 /*
2175 * From here on, look only at management frames.
2176 * Data and control frames are already handled,
2177 * and unknown (reserved) frames are useless.
2178 */
2179 if (rx->skb->len < 24)
2180 return RX_DROP_MONITOR;
2181
2182 if (!ieee80211_is_mgmt(mgmt->frame_control))
2183 return RX_DROP_MONITOR;
2184
2185 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2186 return RX_DROP_MONITOR;
2187
2188 if (ieee80211_drop_unencrypted_mgmt(rx))
2189 return RX_DROP_UNUSABLE;
2190
2191 return RX_CONTINUE;
2192 }
2193
2194 static ieee80211_rx_result debug_noinline
2195 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2196 {
2197 struct ieee80211_local *local = rx->local;
2198 struct ieee80211_sub_if_data *sdata = rx->sdata;
2199 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2200 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2201 int len = rx->skb->len;
2202
2203 if (!ieee80211_is_action(mgmt->frame_control))
2204 return RX_CONTINUE;
2205
2206 /* drop too small frames */
2207 if (len < IEEE80211_MIN_ACTION_SIZE)
2208 return RX_DROP_UNUSABLE;
2209
2210 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2211 return RX_DROP_UNUSABLE;
2212
2213 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2214 return RX_DROP_UNUSABLE;
2215
2216 switch (mgmt->u.action.category) {
2217 case WLAN_CATEGORY_BACK:
2218 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2219 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2220 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2221 sdata->vif.type != NL80211_IFTYPE_AP)
2222 break;
2223
2224 /* verify action_code is present */
2225 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2226 break;
2227
2228 switch (mgmt->u.action.u.addba_req.action_code) {
2229 case WLAN_ACTION_ADDBA_REQ:
2230 if (len < (IEEE80211_MIN_ACTION_SIZE +
2231 sizeof(mgmt->u.action.u.addba_req)))
2232 goto invalid;
2233 break;
2234 case WLAN_ACTION_ADDBA_RESP:
2235 if (len < (IEEE80211_MIN_ACTION_SIZE +
2236 sizeof(mgmt->u.action.u.addba_resp)))
2237 goto invalid;
2238 break;
2239 case WLAN_ACTION_DELBA:
2240 if (len < (IEEE80211_MIN_ACTION_SIZE +
2241 sizeof(mgmt->u.action.u.delba)))
2242 goto invalid;
2243 break;
2244 default:
2245 goto invalid;
2246 }
2247
2248 goto queue;
2249 case WLAN_CATEGORY_SPECTRUM_MGMT:
2250 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2251 break;
2252
2253 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2254 break;
2255
2256 /* verify action_code is present */
2257 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2258 break;
2259
2260 switch (mgmt->u.action.u.measurement.action_code) {
2261 case WLAN_ACTION_SPCT_MSR_REQ:
2262 if (len < (IEEE80211_MIN_ACTION_SIZE +
2263 sizeof(mgmt->u.action.u.measurement)))
2264 break;
2265 ieee80211_process_measurement_req(sdata, mgmt, len);
2266 goto handled;
2267 case WLAN_ACTION_SPCT_CHL_SWITCH:
2268 if (len < (IEEE80211_MIN_ACTION_SIZE +
2269 sizeof(mgmt->u.action.u.chan_switch)))
2270 break;
2271
2272 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2273 break;
2274
2275 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2276 break;
2277
2278 goto queue;
2279 }
2280 break;
2281 case WLAN_CATEGORY_SA_QUERY:
2282 if (len < (IEEE80211_MIN_ACTION_SIZE +
2283 sizeof(mgmt->u.action.u.sa_query)))
2284 break;
2285
2286 switch (mgmt->u.action.u.sa_query.action) {
2287 case WLAN_ACTION_SA_QUERY_REQUEST:
2288 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2289 break;
2290 ieee80211_process_sa_query_req(sdata, mgmt, len);
2291 goto handled;
2292 }
2293 break;
2294 case WLAN_CATEGORY_SELF_PROTECTED:
2295 switch (mgmt->u.action.u.self_prot.action_code) {
2296 case WLAN_SP_MESH_PEERING_OPEN:
2297 case WLAN_SP_MESH_PEERING_CLOSE:
2298 case WLAN_SP_MESH_PEERING_CONFIRM:
2299 if (!ieee80211_vif_is_mesh(&sdata->vif))
2300 goto invalid;
2301 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2302 /* userspace handles this frame */
2303 break;
2304 goto queue;
2305 case WLAN_SP_MGK_INFORM:
2306 case WLAN_SP_MGK_ACK:
2307 if (!ieee80211_vif_is_mesh(&sdata->vif))
2308 goto invalid;
2309 break;
2310 }
2311 break;
2312 case WLAN_CATEGORY_MESH_ACTION:
2313 if (!ieee80211_vif_is_mesh(&sdata->vif))
2314 break;
2315 if (mesh_action_is_path_sel(mgmt) &&
2316 (!mesh_path_sel_is_hwmp(sdata)))
2317 break;
2318 goto queue;
2319 }
2320
2321 return RX_CONTINUE;
2322
2323 invalid:
2324 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2325 /* will return in the next handlers */
2326 return RX_CONTINUE;
2327
2328 handled:
2329 if (rx->sta)
2330 rx->sta->rx_packets++;
2331 dev_kfree_skb(rx->skb);
2332 return RX_QUEUED;
2333
2334 queue:
2335 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2336 skb_queue_tail(&sdata->skb_queue, rx->skb);
2337 ieee80211_queue_work(&local->hw, &sdata->work);
2338 if (rx->sta)
2339 rx->sta->rx_packets++;
2340 return RX_QUEUED;
2341 }
2342
2343 static ieee80211_rx_result debug_noinline
2344 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2345 {
2346 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2347
2348 /* skip known-bad action frames and return them in the next handler */
2349 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2350 return RX_CONTINUE;
2351
2352 /*
2353 * Getting here means the kernel doesn't know how to handle
2354 * it, but maybe userspace does ... include returned frames
2355 * so userspace can register for those to know whether ones
2356 * it transmitted were processed or returned.
2357 */
2358
2359 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2360 rx->skb->data, rx->skb->len,
2361 GFP_ATOMIC)) {
2362 if (rx->sta)
2363 rx->sta->rx_packets++;
2364 dev_kfree_skb(rx->skb);
2365 return RX_QUEUED;
2366 }
2367
2368
2369 return RX_CONTINUE;
2370 }
2371
2372 static ieee80211_rx_result debug_noinline
2373 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2374 {
2375 struct ieee80211_local *local = rx->local;
2376 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2377 struct sk_buff *nskb;
2378 struct ieee80211_sub_if_data *sdata = rx->sdata;
2379 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2380
2381 if (!ieee80211_is_action(mgmt->frame_control))
2382 return RX_CONTINUE;
2383
2384 /*
2385 * For AP mode, hostapd is responsible for handling any action
2386 * frames that we didn't handle, including returning unknown
2387 * ones. For all other modes we will return them to the sender,
2388 * setting the 0x80 bit in the action category, as required by
2389 * 802.11-2007 7.3.1.11.
2390 * Newer versions of hostapd shall also use the management frame
2391 * registration mechanisms, but older ones still use cooked
2392 * monitor interfaces so push all frames there.
2393 */
2394 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2395 (sdata->vif.type == NL80211_IFTYPE_AP ||
2396 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2397 return RX_DROP_MONITOR;
2398
2399 /* do not return rejected action frames */
2400 if (mgmt->u.action.category & 0x80)
2401 return RX_DROP_UNUSABLE;
2402
2403 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2404 GFP_ATOMIC);
2405 if (nskb) {
2406 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2407
2408 nmgmt->u.action.category |= 0x80;
2409 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2410 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2411
2412 memset(nskb->cb, 0, sizeof(nskb->cb));
2413
2414 ieee80211_tx_skb(rx->sdata, nskb);
2415 }
2416 dev_kfree_skb(rx->skb);
2417 return RX_QUEUED;
2418 }
2419
2420 static ieee80211_rx_result debug_noinline
2421 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2422 {
2423 struct ieee80211_sub_if_data *sdata = rx->sdata;
2424 ieee80211_rx_result rxs;
2425 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2426 __le16 stype;
2427
2428 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2429 if (rxs != RX_CONTINUE)
2430 return rxs;
2431
2432 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2433
2434 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2435 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2436 sdata->vif.type != NL80211_IFTYPE_STATION)
2437 return RX_DROP_MONITOR;
2438
2439 switch (stype) {
2440 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2441 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2442 /* process for all: mesh, mlme, ibss */
2443 break;
2444 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2445 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2446 if (is_multicast_ether_addr(mgmt->da) &&
2447 !is_broadcast_ether_addr(mgmt->da))
2448 return RX_DROP_MONITOR;
2449
2450 /* process only for station */
2451 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2452 return RX_DROP_MONITOR;
2453 break;
2454 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2455 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2456 /* process only for ibss */
2457 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2458 return RX_DROP_MONITOR;
2459 break;
2460 default:
2461 return RX_DROP_MONITOR;
2462 }
2463
2464 /* queue up frame and kick off work to process it */
2465 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2466 skb_queue_tail(&sdata->skb_queue, rx->skb);
2467 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2468 if (rx->sta)
2469 rx->sta->rx_packets++;
2470
2471 return RX_QUEUED;
2472 }
2473
2474 /* TODO: use IEEE80211_RX_FRAGMENTED */
2475 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2476 struct ieee80211_rate *rate)
2477 {
2478 struct ieee80211_sub_if_data *sdata;
2479 struct ieee80211_local *local = rx->local;
2480 struct ieee80211_rtap_hdr {
2481 struct ieee80211_radiotap_header hdr;
2482 u8 flags;
2483 u8 rate_or_pad;
2484 __le16 chan_freq;
2485 __le16 chan_flags;
2486 } __packed *rthdr;
2487 struct sk_buff *skb = rx->skb, *skb2;
2488 struct net_device *prev_dev = NULL;
2489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2490
2491 /*
2492 * If cooked monitor has been processed already, then
2493 * don't do it again. If not, set the flag.
2494 */
2495 if (rx->flags & IEEE80211_RX_CMNTR)
2496 goto out_free_skb;
2497 rx->flags |= IEEE80211_RX_CMNTR;
2498
2499 /* If there are no cooked monitor interfaces, just free the SKB */
2500 if (!local->cooked_mntrs)
2501 goto out_free_skb;
2502
2503 if (skb_headroom(skb) < sizeof(*rthdr) &&
2504 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2505 goto out_free_skb;
2506
2507 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2508 memset(rthdr, 0, sizeof(*rthdr));
2509 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2510 rthdr->hdr.it_present =
2511 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2512 (1 << IEEE80211_RADIOTAP_CHANNEL));
2513
2514 if (rate) {
2515 rthdr->rate_or_pad = rate->bitrate / 5;
2516 rthdr->hdr.it_present |=
2517 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2518 }
2519 rthdr->chan_freq = cpu_to_le16(status->freq);
2520
2521 if (status->band == IEEE80211_BAND_5GHZ)
2522 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2523 IEEE80211_CHAN_5GHZ);
2524 else
2525 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2526 IEEE80211_CHAN_2GHZ);
2527
2528 skb_set_mac_header(skb, 0);
2529 skb->ip_summed = CHECKSUM_UNNECESSARY;
2530 skb->pkt_type = PACKET_OTHERHOST;
2531 skb->protocol = htons(ETH_P_802_2);
2532
2533 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2534 if (!ieee80211_sdata_running(sdata))
2535 continue;
2536
2537 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2538 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2539 continue;
2540
2541 if (prev_dev) {
2542 skb2 = skb_clone(skb, GFP_ATOMIC);
2543 if (skb2) {
2544 skb2->dev = prev_dev;
2545 netif_receive_skb(skb2);
2546 }
2547 }
2548
2549 prev_dev = sdata->dev;
2550 sdata->dev->stats.rx_packets++;
2551 sdata->dev->stats.rx_bytes += skb->len;
2552 }
2553
2554 if (prev_dev) {
2555 skb->dev = prev_dev;
2556 netif_receive_skb(skb);
2557 return;
2558 }
2559
2560 out_free_skb:
2561 dev_kfree_skb(skb);
2562 }
2563
2564 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2565 ieee80211_rx_result res)
2566 {
2567 switch (res) {
2568 case RX_DROP_MONITOR:
2569 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2570 if (rx->sta)
2571 rx->sta->rx_dropped++;
2572 /* fall through */
2573 case RX_CONTINUE: {
2574 struct ieee80211_rate *rate = NULL;
2575 struct ieee80211_supported_band *sband;
2576 struct ieee80211_rx_status *status;
2577
2578 status = IEEE80211_SKB_RXCB((rx->skb));
2579
2580 sband = rx->local->hw.wiphy->bands[status->band];
2581 if (!(status->flag & RX_FLAG_HT))
2582 rate = &sband->bitrates[status->rate_idx];
2583
2584 ieee80211_rx_cooked_monitor(rx, rate);
2585 break;
2586 }
2587 case RX_DROP_UNUSABLE:
2588 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2589 if (rx->sta)
2590 rx->sta->rx_dropped++;
2591 dev_kfree_skb(rx->skb);
2592 break;
2593 case RX_QUEUED:
2594 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2595 break;
2596 }
2597 }
2598
2599 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2600 {
2601 ieee80211_rx_result res = RX_DROP_MONITOR;
2602 struct sk_buff *skb;
2603
2604 #define CALL_RXH(rxh) \
2605 do { \
2606 res = rxh(rx); \
2607 if (res != RX_CONTINUE) \
2608 goto rxh_next; \
2609 } while (0);
2610
2611 spin_lock(&rx->local->rx_skb_queue.lock);
2612 if (rx->local->running_rx_handler)
2613 goto unlock;
2614
2615 rx->local->running_rx_handler = true;
2616
2617 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2618 spin_unlock(&rx->local->rx_skb_queue.lock);
2619
2620 /*
2621 * all the other fields are valid across frames
2622 * that belong to an aMPDU since they are on the
2623 * same TID from the same station
2624 */
2625 rx->skb = skb;
2626
2627 CALL_RXH(ieee80211_rx_h_decrypt)
2628 CALL_RXH(ieee80211_rx_h_check_more_data)
2629 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2630 CALL_RXH(ieee80211_rx_h_sta_process)
2631 CALL_RXH(ieee80211_rx_h_defragment)
2632 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2633 /* must be after MMIC verify so header is counted in MPDU mic */
2634 #ifdef CONFIG_MAC80211_MESH
2635 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2636 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2637 #endif
2638 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2639 CALL_RXH(ieee80211_rx_h_amsdu)
2640 CALL_RXH(ieee80211_rx_h_data)
2641 CALL_RXH(ieee80211_rx_h_ctrl);
2642 CALL_RXH(ieee80211_rx_h_mgmt_check)
2643 CALL_RXH(ieee80211_rx_h_action)
2644 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2645 CALL_RXH(ieee80211_rx_h_action_return)
2646 CALL_RXH(ieee80211_rx_h_mgmt)
2647
2648 rxh_next:
2649 ieee80211_rx_handlers_result(rx, res);
2650 spin_lock(&rx->local->rx_skb_queue.lock);
2651 #undef CALL_RXH
2652 }
2653
2654 rx->local->running_rx_handler = false;
2655
2656 unlock:
2657 spin_unlock(&rx->local->rx_skb_queue.lock);
2658 }
2659
2660 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2661 {
2662 ieee80211_rx_result res = RX_DROP_MONITOR;
2663
2664 #define CALL_RXH(rxh) \
2665 do { \
2666 res = rxh(rx); \
2667 if (res != RX_CONTINUE) \
2668 goto rxh_next; \
2669 } while (0);
2670
2671 CALL_RXH(ieee80211_rx_h_passive_scan)
2672 CALL_RXH(ieee80211_rx_h_check)
2673
2674 ieee80211_rx_reorder_ampdu(rx);
2675
2676 ieee80211_rx_handlers(rx);
2677 return;
2678
2679 rxh_next:
2680 ieee80211_rx_handlers_result(rx, res);
2681
2682 #undef CALL_RXH
2683 }
2684
2685 /*
2686 * This function makes calls into the RX path, therefore
2687 * it has to be invoked under RCU read lock.
2688 */
2689 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2690 {
2691 struct ieee80211_rx_data rx = {
2692 .sta = sta,
2693 .sdata = sta->sdata,
2694 .local = sta->local,
2695 /* This is OK -- must be QoS data frame */
2696 .security_idx = tid,
2697 .seqno_idx = tid,
2698 .flags = 0,
2699 };
2700 struct tid_ampdu_rx *tid_agg_rx;
2701
2702 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2703 if (!tid_agg_rx)
2704 return;
2705
2706 spin_lock(&tid_agg_rx->reorder_lock);
2707 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2708 spin_unlock(&tid_agg_rx->reorder_lock);
2709
2710 ieee80211_rx_handlers(&rx);
2711 }
2712
2713 /* main receive path */
2714
2715 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2716 struct ieee80211_hdr *hdr)
2717 {
2718 struct ieee80211_sub_if_data *sdata = rx->sdata;
2719 struct sk_buff *skb = rx->skb;
2720 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2721 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2722 int multicast = is_multicast_ether_addr(hdr->addr1);
2723
2724 switch (sdata->vif.type) {
2725 case NL80211_IFTYPE_STATION:
2726 if (!bssid && !sdata->u.mgd.use_4addr)
2727 return 0;
2728 if (!multicast &&
2729 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2730 if (!(sdata->dev->flags & IFF_PROMISC) ||
2731 sdata->u.mgd.use_4addr)
2732 return 0;
2733 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2734 }
2735 break;
2736 case NL80211_IFTYPE_ADHOC:
2737 if (!bssid)
2738 return 0;
2739 if (ieee80211_is_beacon(hdr->frame_control)) {
2740 return 1;
2741 }
2742 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2743 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2744 return 0;
2745 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2746 } else if (!multicast &&
2747 compare_ether_addr(sdata->vif.addr,
2748 hdr->addr1) != 0) {
2749 if (!(sdata->dev->flags & IFF_PROMISC))
2750 return 0;
2751 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2752 } else if (!rx->sta) {
2753 int rate_idx;
2754 if (status->flag & RX_FLAG_HT)
2755 rate_idx = 0; /* TODO: HT rates */
2756 else
2757 rate_idx = status->rate_idx;
2758 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2759 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2760 }
2761 break;
2762 case NL80211_IFTYPE_MESH_POINT:
2763 if (!multicast &&
2764 compare_ether_addr(sdata->vif.addr,
2765 hdr->addr1) != 0) {
2766 if (!(sdata->dev->flags & IFF_PROMISC))
2767 return 0;
2768
2769 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2770 }
2771 break;
2772 case NL80211_IFTYPE_AP_VLAN:
2773 case NL80211_IFTYPE_AP:
2774 if (!bssid) {
2775 if (compare_ether_addr(sdata->vif.addr,
2776 hdr->addr1))
2777 return 0;
2778 } else if (!ieee80211_bssid_match(bssid,
2779 sdata->vif.addr)) {
2780 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2781 !ieee80211_is_beacon(hdr->frame_control) &&
2782 !(ieee80211_is_action(hdr->frame_control) &&
2783 sdata->vif.p2p))
2784 return 0;
2785 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2786 }
2787 break;
2788 case NL80211_IFTYPE_WDS:
2789 if (bssid || !ieee80211_is_data(hdr->frame_control))
2790 return 0;
2791 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2792 return 0;
2793 break;
2794 default:
2795 /* should never get here */
2796 WARN_ON(1);
2797 break;
2798 }
2799
2800 return 1;
2801 }
2802
2803 /*
2804 * This function returns whether or not the SKB
2805 * was destined for RX processing or not, which,
2806 * if consume is true, is equivalent to whether
2807 * or not the skb was consumed.
2808 */
2809 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2810 struct sk_buff *skb, bool consume)
2811 {
2812 struct ieee80211_local *local = rx->local;
2813 struct ieee80211_sub_if_data *sdata = rx->sdata;
2814 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2815 struct ieee80211_hdr *hdr = (void *)skb->data;
2816 int prepares;
2817
2818 rx->skb = skb;
2819 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2820 prepares = prepare_for_handlers(rx, hdr);
2821
2822 if (!prepares)
2823 return false;
2824
2825 if (!consume) {
2826 skb = skb_copy(skb, GFP_ATOMIC);
2827 if (!skb) {
2828 if (net_ratelimit())
2829 wiphy_debug(local->hw.wiphy,
2830 "failed to copy skb for %s\n",
2831 sdata->name);
2832 return true;
2833 }
2834
2835 rx->skb = skb;
2836 }
2837
2838 ieee80211_invoke_rx_handlers(rx);
2839 return true;
2840 }
2841
2842 /*
2843 * This is the actual Rx frames handler. as it blongs to Rx path it must
2844 * be called with rcu_read_lock protection.
2845 */
2846 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2847 struct sk_buff *skb)
2848 {
2849 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2850 struct ieee80211_local *local = hw_to_local(hw);
2851 struct ieee80211_sub_if_data *sdata;
2852 struct ieee80211_hdr *hdr;
2853 __le16 fc;
2854 struct ieee80211_rx_data rx;
2855 struct ieee80211_sub_if_data *prev;
2856 struct sta_info *sta, *tmp, *prev_sta;
2857 int err = 0;
2858
2859 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2860 memset(&rx, 0, sizeof(rx));
2861 rx.skb = skb;
2862 rx.local = local;
2863
2864 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2865 local->dot11ReceivedFragmentCount++;
2866
2867 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2868 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2869 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2870
2871 if (ieee80211_is_mgmt(fc))
2872 err = skb_linearize(skb);
2873 else
2874 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2875
2876 if (err) {
2877 dev_kfree_skb(skb);
2878 return;
2879 }
2880
2881 hdr = (struct ieee80211_hdr *)skb->data;
2882 ieee80211_parse_qos(&rx);
2883 ieee80211_verify_alignment(&rx);
2884
2885 if (ieee80211_is_data(fc)) {
2886 prev_sta = NULL;
2887
2888 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) {
2889 if (!prev_sta) {
2890 prev_sta = sta;
2891 continue;
2892 }
2893
2894 rx.sta = prev_sta;
2895 rx.sdata = prev_sta->sdata;
2896 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2897
2898 prev_sta = sta;
2899 }
2900
2901 if (prev_sta) {
2902 rx.sta = prev_sta;
2903 rx.sdata = prev_sta->sdata;
2904
2905 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2906 return;
2907 goto out;
2908 }
2909 }
2910
2911 prev = NULL;
2912
2913 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2914 if (!ieee80211_sdata_running(sdata))
2915 continue;
2916
2917 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2918 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2919 continue;
2920
2921 /*
2922 * frame is destined for this interface, but if it's
2923 * not also for the previous one we handle that after
2924 * the loop to avoid copying the SKB once too much
2925 */
2926
2927 if (!prev) {
2928 prev = sdata;
2929 continue;
2930 }
2931
2932 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2933 rx.sdata = prev;
2934 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2935
2936 prev = sdata;
2937 }
2938
2939 if (prev) {
2940 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2941 rx.sdata = prev;
2942
2943 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2944 return;
2945 }
2946
2947 out:
2948 dev_kfree_skb(skb);
2949 }
2950
2951 /*
2952 * This is the receive path handler. It is called by a low level driver when an
2953 * 802.11 MPDU is received from the hardware.
2954 */
2955 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2956 {
2957 struct ieee80211_local *local = hw_to_local(hw);
2958 struct ieee80211_rate *rate = NULL;
2959 struct ieee80211_supported_band *sband;
2960 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2961
2962 WARN_ON_ONCE(softirq_count() == 0);
2963
2964 if (WARN_ON(status->band < 0 ||
2965 status->band >= IEEE80211_NUM_BANDS))
2966 goto drop;
2967
2968 sband = local->hw.wiphy->bands[status->band];
2969 if (WARN_ON(!sband))
2970 goto drop;
2971
2972 /*
2973 * If we're suspending, it is possible although not too likely
2974 * that we'd be receiving frames after having already partially
2975 * quiesced the stack. We can't process such frames then since
2976 * that might, for example, cause stations to be added or other
2977 * driver callbacks be invoked.
2978 */
2979 if (unlikely(local->quiescing || local->suspended))
2980 goto drop;
2981
2982 /*
2983 * The same happens when we're not even started,
2984 * but that's worth a warning.
2985 */
2986 if (WARN_ON(!local->started))
2987 goto drop;
2988
2989 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2990 /*
2991 * Validate the rate, unless a PLCP error means that
2992 * we probably can't have a valid rate here anyway.
2993 */
2994
2995 if (status->flag & RX_FLAG_HT) {
2996 /*
2997 * rate_idx is MCS index, which can be [0-76]
2998 * as documented on:
2999 *
3000 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3001 *
3002 * Anything else would be some sort of driver or
3003 * hardware error. The driver should catch hardware
3004 * errors.
3005 */
3006 if (WARN((status->rate_idx < 0 ||
3007 status->rate_idx > 76),
3008 "Rate marked as an HT rate but passed "
3009 "status->rate_idx is not "
3010 "an MCS index [0-76]: %d (0x%02x)\n",
3011 status->rate_idx,
3012 status->rate_idx))
3013 goto drop;
3014 } else {
3015 if (WARN_ON(status->rate_idx < 0 ||
3016 status->rate_idx >= sband->n_bitrates))
3017 goto drop;
3018 rate = &sband->bitrates[status->rate_idx];
3019 }
3020 }
3021
3022 status->rx_flags = 0;
3023
3024 /*
3025 * key references and virtual interfaces are protected using RCU
3026 * and this requires that we are in a read-side RCU section during
3027 * receive processing
3028 */
3029 rcu_read_lock();
3030
3031 /*
3032 * Frames with failed FCS/PLCP checksum are not returned,
3033 * all other frames are returned without radiotap header
3034 * if it was previously present.
3035 * Also, frames with less than 16 bytes are dropped.
3036 */
3037 skb = ieee80211_rx_monitor(local, skb, rate);
3038 if (!skb) {
3039 rcu_read_unlock();
3040 return;
3041 }
3042
3043 ieee80211_tpt_led_trig_rx(local,
3044 ((struct ieee80211_hdr *)skb->data)->frame_control,
3045 skb->len);
3046 __ieee80211_rx_handle_packet(hw, skb);
3047
3048 rcu_read_unlock();
3049
3050 return;
3051 drop:
3052 kfree_skb(skb);
3053 }
3054 EXPORT_SYMBOL(ieee80211_rx);
3055
3056 /* This is a version of the rx handler that can be called from hard irq
3057 * context. Post the skb on the queue and schedule the tasklet */
3058 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3059 {
3060 struct ieee80211_local *local = hw_to_local(hw);
3061
3062 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3063
3064 skb->pkt_type = IEEE80211_RX_MSG;
3065 skb_queue_tail(&local->skb_queue, skb);
3066 tasklet_schedule(&local->tasklet);
3067 }
3068 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.087893 seconds and 4 git commands to generate.