MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 /*
36 * monitor mode reception
37 *
38 * This function cleans up the SKB, i.e. it removes all the stuff
39 * only useful for monitoring.
40 */
41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
42 struct sk_buff *skb,
43 unsigned int rtap_vendor_space)
44 {
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
53 }
54 }
55
56 __pskb_pull(skb, rtap_vendor_space);
57
58 return skb;
59 }
60
61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
62 unsigned int rtap_vendor_space)
63 {
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
66
67 hdr = (void *)(skb->data + rtap_vendor_space);
68
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return true;
73
74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
75 return true;
76
77 if (ieee80211_is_ctl(hdr->frame_control) &&
78 !ieee80211_is_pspoll(hdr->frame_control) &&
79 !ieee80211_is_back_req(hdr->frame_control))
80 return true;
81
82 return false;
83 }
84
85 static int
86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
87 struct ieee80211_rx_status *status,
88 struct sk_buff *skb)
89 {
90 int len;
91
92 /* always present fields */
93 len = sizeof(struct ieee80211_radiotap_header) + 8;
94
95 /* allocate extra bitmaps */
96 if (status->chains)
97 len += 4 * hweight8(status->chains);
98
99 if (ieee80211_have_rx_timestamp(status)) {
100 len = ALIGN(len, 8);
101 len += 8;
102 }
103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
104 len += 1;
105
106 /* antenna field, if we don't have per-chain info */
107 if (!status->chains)
108 len += 1;
109
110 /* padding for RX_FLAGS if necessary */
111 len = ALIGN(len, 2);
112
113 if (status->flag & RX_FLAG_HT) /* HT info */
114 len += 3;
115
116 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
117 len = ALIGN(len, 4);
118 len += 8;
119 }
120
121 if (status->flag & RX_FLAG_VHT) {
122 len = ALIGN(len, 2);
123 len += 12;
124 }
125
126 if (status->chains) {
127 /* antenna and antenna signal fields */
128 len += 2 * hweight8(status->chains);
129 }
130
131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
133
134 /* vendor presence bitmap */
135 len += 4;
136 /* alignment for fixed 6-byte vendor data header */
137 len = ALIGN(len, 2);
138 /* vendor data header */
139 len += 6;
140 if (WARN_ON(rtap->align == 0))
141 rtap->align = 1;
142 len = ALIGN(len, rtap->align);
143 len += rtap->len + rtap->pad;
144 }
145
146 return len;
147 }
148
149 /*
150 * ieee80211_add_rx_radiotap_header - add radiotap header
151 *
152 * add a radiotap header containing all the fields which the hardware provided.
153 */
154 static void
155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
156 struct sk_buff *skb,
157 struct ieee80211_rate *rate,
158 int rtap_len, bool has_fcs)
159 {
160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
161 struct ieee80211_radiotap_header *rthdr;
162 unsigned char *pos;
163 __le32 *it_present;
164 u32 it_present_val;
165 u16 rx_flags = 0;
166 u16 channel_flags = 0;
167 int mpdulen, chain;
168 unsigned long chains = status->chains;
169 struct ieee80211_vendor_radiotap rtap = {};
170
171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
173 /* rtap.len and rtap.pad are undone immediately */
174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
175 }
176
177 mpdulen = skb->len;
178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
179 mpdulen += FCS_LEN;
180
181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
183 it_present = &rthdr->it_present;
184
185 /* radiotap header, set always present flags */
186 rthdr->it_len = cpu_to_le16(rtap_len);
187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
188 BIT(IEEE80211_RADIOTAP_CHANNEL) |
189 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
190
191 if (!status->chains)
192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
193
194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
195 it_present_val |=
196 BIT(IEEE80211_RADIOTAP_EXT) |
197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
198 put_unaligned_le32(it_present_val, it_present);
199 it_present++;
200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
202 }
203
204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
206 BIT(IEEE80211_RADIOTAP_EXT);
207 put_unaligned_le32(it_present_val, it_present);
208 it_present++;
209 it_present_val = rtap.present;
210 }
211
212 put_unaligned_le32(it_present_val, it_present);
213
214 pos = (void *)(it_present + 1);
215
216 /* the order of the following fields is important */
217
218 /* IEEE80211_RADIOTAP_TSFT */
219 if (ieee80211_have_rx_timestamp(status)) {
220 /* padding */
221 while ((pos - (u8 *)rthdr) & 7)
222 *pos++ = 0;
223 put_unaligned_le64(
224 ieee80211_calculate_rx_timestamp(local, status,
225 mpdulen, 0),
226 pos);
227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
228 pos += 8;
229 }
230
231 /* IEEE80211_RADIOTAP_FLAGS */
232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
233 *pos |= IEEE80211_RADIOTAP_F_FCS;
234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
235 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
236 if (status->flag & RX_FLAG_SHORTPRE)
237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
238 pos++;
239
240 /* IEEE80211_RADIOTAP_RATE */
241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
242 /*
243 * Without rate information don't add it. If we have,
244 * MCS information is a separate field in radiotap,
245 * added below. The byte here is needed as padding
246 * for the channel though, so initialise it to 0.
247 */
248 *pos = 0;
249 } else {
250 int shift = 0;
251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
252 if (status->flag & RX_FLAG_10MHZ)
253 shift = 1;
254 else if (status->flag & RX_FLAG_5MHZ)
255 shift = 2;
256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
257 }
258 pos++;
259
260 /* IEEE80211_RADIOTAP_CHANNEL */
261 put_unaligned_le16(status->freq, pos);
262 pos += 2;
263 if (status->flag & RX_FLAG_10MHZ)
264 channel_flags |= IEEE80211_CHAN_HALF;
265 else if (status->flag & RX_FLAG_5MHZ)
266 channel_flags |= IEEE80211_CHAN_QUARTER;
267
268 if (status->band == IEEE80211_BAND_5GHZ)
269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
274 else if (rate)
275 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
276 else
277 channel_flags |= IEEE80211_CHAN_2GHZ;
278 put_unaligned_le16(channel_flags, pos);
279 pos += 2;
280
281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
284 *pos = status->signal;
285 rthdr->it_present |=
286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
287 pos++;
288 }
289
290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
291
292 if (!status->chains) {
293 /* IEEE80211_RADIOTAP_ANTENNA */
294 *pos = status->antenna;
295 pos++;
296 }
297
298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
299
300 /* IEEE80211_RADIOTAP_RX_FLAGS */
301 /* ensure 2 byte alignment for the 2 byte field as required */
302 if ((pos - (u8 *)rthdr) & 1)
303 *pos++ = 0;
304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
306 put_unaligned_le16(rx_flags, pos);
307 pos += 2;
308
309 if (status->flag & RX_FLAG_HT) {
310 unsigned int stbc;
311
312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
313 *pos++ = local->hw.radiotap_mcs_details;
314 *pos = 0;
315 if (status->flag & RX_FLAG_SHORT_GI)
316 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
317 if (status->flag & RX_FLAG_40MHZ)
318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
319 if (status->flag & RX_FLAG_HT_GF)
320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
321 if (status->flag & RX_FLAG_LDPC)
322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
325 pos++;
326 *pos++ = status->rate_idx;
327 }
328
329 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
330 u16 flags = 0;
331
332 /* ensure 4 byte alignment */
333 while ((pos - (u8 *)rthdr) & 3)
334 pos++;
335 rthdr->it_present |=
336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
337 put_unaligned_le32(status->ampdu_reference, pos);
338 pos += 4;
339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
345 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
351 put_unaligned_le16(flags, pos);
352 pos += 2;
353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
354 *pos++ = status->ampdu_delimiter_crc;
355 else
356 *pos++ = 0;
357 *pos++ = 0;
358 }
359
360 if (status->flag & RX_FLAG_VHT) {
361 u16 known = local->hw.radiotap_vht_details;
362
363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
364 put_unaligned_le16(known, pos);
365 pos += 2;
366 /* flags */
367 if (status->flag & RX_FLAG_SHORT_GI)
368 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
369 /* in VHT, STBC is binary */
370 if (status->flag & RX_FLAG_STBC_MASK)
371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
372 if (status->vht_flag & RX_VHT_FLAG_BF)
373 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
374 pos++;
375 /* bandwidth */
376 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
377 *pos++ = 4;
378 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
379 *pos++ = 11;
380 else if (status->flag & RX_FLAG_40MHZ)
381 *pos++ = 1;
382 else /* 20 MHz */
383 *pos++ = 0;
384 /* MCS/NSS */
385 *pos = (status->rate_idx << 4) | status->vht_nss;
386 pos += 4;
387 /* coding field */
388 if (status->flag & RX_FLAG_LDPC)
389 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
390 pos++;
391 /* group ID */
392 pos++;
393 /* partial_aid */
394 pos += 2;
395 }
396
397 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
398 *pos++ = status->chain_signal[chain];
399 *pos++ = chain;
400 }
401
402 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
403 /* ensure 2 byte alignment for the vendor field as required */
404 if ((pos - (u8 *)rthdr) & 1)
405 *pos++ = 0;
406 *pos++ = rtap.oui[0];
407 *pos++ = rtap.oui[1];
408 *pos++ = rtap.oui[2];
409 *pos++ = rtap.subns;
410 put_unaligned_le16(rtap.len, pos);
411 pos += 2;
412 /* align the actual payload as requested */
413 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
414 *pos++ = 0;
415 /* data (and possible padding) already follows */
416 }
417 }
418
419 /*
420 * This function copies a received frame to all monitor interfaces and
421 * returns a cleaned-up SKB that no longer includes the FCS nor the
422 * radiotap header the driver might have added.
423 */
424 static struct sk_buff *
425 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
426 struct ieee80211_rate *rate)
427 {
428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
429 struct ieee80211_sub_if_data *sdata;
430 int rt_hdrlen, needed_headroom;
431 struct sk_buff *skb, *skb2;
432 struct net_device *prev_dev = NULL;
433 int present_fcs_len = 0;
434 unsigned int rtap_vendor_space = 0;
435
436 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
437 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
438
439 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
440 }
441
442 /*
443 * First, we may need to make a copy of the skb because
444 * (1) we need to modify it for radiotap (if not present), and
445 * (2) the other RX handlers will modify the skb we got.
446 *
447 * We don't need to, of course, if we aren't going to return
448 * the SKB because it has a bad FCS/PLCP checksum.
449 */
450
451 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
452 present_fcs_len = FCS_LEN;
453
454 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
455 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
456 dev_kfree_skb(origskb);
457 return NULL;
458 }
459
460 if (!local->monitors) {
461 if (should_drop_frame(origskb, present_fcs_len,
462 rtap_vendor_space)) {
463 dev_kfree_skb(origskb);
464 return NULL;
465 }
466
467 return remove_monitor_info(local, origskb, rtap_vendor_space);
468 }
469
470 /* room for the radiotap header based on driver features */
471 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
472 needed_headroom = rt_hdrlen - rtap_vendor_space;
473
474 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
475 /* only need to expand headroom if necessary */
476 skb = origskb;
477 origskb = NULL;
478
479 /*
480 * This shouldn't trigger often because most devices have an
481 * RX header they pull before we get here, and that should
482 * be big enough for our radiotap information. We should
483 * probably export the length to drivers so that we can have
484 * them allocate enough headroom to start with.
485 */
486 if (skb_headroom(skb) < needed_headroom &&
487 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
488 dev_kfree_skb(skb);
489 return NULL;
490 }
491 } else {
492 /*
493 * Need to make a copy and possibly remove radiotap header
494 * and FCS from the original.
495 */
496 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
497
498 origskb = remove_monitor_info(local, origskb,
499 rtap_vendor_space);
500
501 if (!skb)
502 return origskb;
503 }
504
505 /* prepend radiotap information */
506 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
507
508 skb_reset_mac_header(skb);
509 skb->ip_summed = CHECKSUM_UNNECESSARY;
510 skb->pkt_type = PACKET_OTHERHOST;
511 skb->protocol = htons(ETH_P_802_2);
512
513 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
514 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
515 continue;
516
517 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
518 continue;
519
520 if (!ieee80211_sdata_running(sdata))
521 continue;
522
523 if (prev_dev) {
524 skb2 = skb_clone(skb, GFP_ATOMIC);
525 if (skb2) {
526 skb2->dev = prev_dev;
527 netif_receive_skb(skb2);
528 }
529 }
530
531 prev_dev = sdata->dev;
532 sdata->dev->stats.rx_packets++;
533 sdata->dev->stats.rx_bytes += skb->len;
534 }
535
536 if (prev_dev) {
537 skb->dev = prev_dev;
538 netif_receive_skb(skb);
539 } else
540 dev_kfree_skb(skb);
541
542 return origskb;
543 }
544
545 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
546 {
547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
548 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
549 int tid, seqno_idx, security_idx;
550
551 /* does the frame have a qos control field? */
552 if (ieee80211_is_data_qos(hdr->frame_control)) {
553 u8 *qc = ieee80211_get_qos_ctl(hdr);
554 /* frame has qos control */
555 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
556 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
557 status->rx_flags |= IEEE80211_RX_AMSDU;
558
559 seqno_idx = tid;
560 security_idx = tid;
561 } else {
562 /*
563 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
564 *
565 * Sequence numbers for management frames, QoS data
566 * frames with a broadcast/multicast address in the
567 * Address 1 field, and all non-QoS data frames sent
568 * by QoS STAs are assigned using an additional single
569 * modulo-4096 counter, [...]
570 *
571 * We also use that counter for non-QoS STAs.
572 */
573 seqno_idx = IEEE80211_NUM_TIDS;
574 security_idx = 0;
575 if (ieee80211_is_mgmt(hdr->frame_control))
576 security_idx = IEEE80211_NUM_TIDS;
577 tid = 0;
578 }
579
580 rx->seqno_idx = seqno_idx;
581 rx->security_idx = security_idx;
582 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
583 * For now, set skb->priority to 0 for other cases. */
584 rx->skb->priority = (tid > 7) ? 0 : tid;
585 }
586
587 /**
588 * DOC: Packet alignment
589 *
590 * Drivers always need to pass packets that are aligned to two-byte boundaries
591 * to the stack.
592 *
593 * Additionally, should, if possible, align the payload data in a way that
594 * guarantees that the contained IP header is aligned to a four-byte
595 * boundary. In the case of regular frames, this simply means aligning the
596 * payload to a four-byte boundary (because either the IP header is directly
597 * contained, or IV/RFC1042 headers that have a length divisible by four are
598 * in front of it). If the payload data is not properly aligned and the
599 * architecture doesn't support efficient unaligned operations, mac80211
600 * will align the data.
601 *
602 * With A-MSDU frames, however, the payload data address must yield two modulo
603 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
604 * push the IP header further back to a multiple of four again. Thankfully, the
605 * specs were sane enough this time around to require padding each A-MSDU
606 * subframe to a length that is a multiple of four.
607 *
608 * Padding like Atheros hardware adds which is between the 802.11 header and
609 * the payload is not supported, the driver is required to move the 802.11
610 * header to be directly in front of the payload in that case.
611 */
612 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
613 {
614 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
615 WARN_ONCE((unsigned long)rx->skb->data & 1,
616 "unaligned packet at 0x%p\n", rx->skb->data);
617 #endif
618 }
619
620
621 /* rx handlers */
622
623 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
624 {
625 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
626
627 if (is_multicast_ether_addr(hdr->addr1))
628 return 0;
629
630 return ieee80211_is_robust_mgmt_frame(skb);
631 }
632
633
634 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
635 {
636 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
637
638 if (!is_multicast_ether_addr(hdr->addr1))
639 return 0;
640
641 return ieee80211_is_robust_mgmt_frame(skb);
642 }
643
644
645 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
646 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
647 {
648 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
649 struct ieee80211_mmie *mmie;
650 struct ieee80211_mmie_16 *mmie16;
651
652 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
653 return -1;
654
655 if (!ieee80211_is_robust_mgmt_frame(skb))
656 return -1; /* not a robust management frame */
657
658 mmie = (struct ieee80211_mmie *)
659 (skb->data + skb->len - sizeof(*mmie));
660 if (mmie->element_id == WLAN_EID_MMIE &&
661 mmie->length == sizeof(*mmie) - 2)
662 return le16_to_cpu(mmie->key_id);
663
664 mmie16 = (struct ieee80211_mmie_16 *)
665 (skb->data + skb->len - sizeof(*mmie16));
666 if (skb->len >= 24 + sizeof(*mmie16) &&
667 mmie16->element_id == WLAN_EID_MMIE &&
668 mmie16->length == sizeof(*mmie16) - 2)
669 return le16_to_cpu(mmie16->key_id);
670
671 return -1;
672 }
673
674 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
675 struct sk_buff *skb)
676 {
677 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
678 __le16 fc;
679 int hdrlen;
680 u8 keyid;
681
682 fc = hdr->frame_control;
683 hdrlen = ieee80211_hdrlen(fc);
684
685 if (skb->len < hdrlen + cs->hdr_len)
686 return -EINVAL;
687
688 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
689 keyid &= cs->key_idx_mask;
690 keyid >>= cs->key_idx_shift;
691
692 return keyid;
693 }
694
695 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
696 {
697 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
698 char *dev_addr = rx->sdata->vif.addr;
699
700 if (ieee80211_is_data(hdr->frame_control)) {
701 if (is_multicast_ether_addr(hdr->addr1)) {
702 if (ieee80211_has_tods(hdr->frame_control) ||
703 !ieee80211_has_fromds(hdr->frame_control))
704 return RX_DROP_MONITOR;
705 if (ether_addr_equal(hdr->addr3, dev_addr))
706 return RX_DROP_MONITOR;
707 } else {
708 if (!ieee80211_has_a4(hdr->frame_control))
709 return RX_DROP_MONITOR;
710 if (ether_addr_equal(hdr->addr4, dev_addr))
711 return RX_DROP_MONITOR;
712 }
713 }
714
715 /* If there is not an established peer link and this is not a peer link
716 * establisment frame, beacon or probe, drop the frame.
717 */
718
719 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
720 struct ieee80211_mgmt *mgmt;
721
722 if (!ieee80211_is_mgmt(hdr->frame_control))
723 return RX_DROP_MONITOR;
724
725 if (ieee80211_is_action(hdr->frame_control)) {
726 u8 category;
727
728 /* make sure category field is present */
729 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
730 return RX_DROP_MONITOR;
731
732 mgmt = (struct ieee80211_mgmt *)hdr;
733 category = mgmt->u.action.category;
734 if (category != WLAN_CATEGORY_MESH_ACTION &&
735 category != WLAN_CATEGORY_SELF_PROTECTED)
736 return RX_DROP_MONITOR;
737 return RX_CONTINUE;
738 }
739
740 if (ieee80211_is_probe_req(hdr->frame_control) ||
741 ieee80211_is_probe_resp(hdr->frame_control) ||
742 ieee80211_is_beacon(hdr->frame_control) ||
743 ieee80211_is_auth(hdr->frame_control))
744 return RX_CONTINUE;
745
746 return RX_DROP_MONITOR;
747 }
748
749 return RX_CONTINUE;
750 }
751
752 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
753 struct tid_ampdu_rx *tid_agg_rx,
754 int index,
755 struct sk_buff_head *frames)
756 {
757 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
758 struct sk_buff *skb;
759 struct ieee80211_rx_status *status;
760
761 lockdep_assert_held(&tid_agg_rx->reorder_lock);
762
763 if (skb_queue_empty(skb_list))
764 goto no_frame;
765
766 if (!ieee80211_rx_reorder_ready(skb_list)) {
767 __skb_queue_purge(skb_list);
768 goto no_frame;
769 }
770
771 /* release frames from the reorder ring buffer */
772 tid_agg_rx->stored_mpdu_num--;
773 while ((skb = __skb_dequeue(skb_list))) {
774 status = IEEE80211_SKB_RXCB(skb);
775 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
776 __skb_queue_tail(frames, skb);
777 }
778
779 no_frame:
780 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
781 }
782
783 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
784 struct tid_ampdu_rx *tid_agg_rx,
785 u16 head_seq_num,
786 struct sk_buff_head *frames)
787 {
788 int index;
789
790 lockdep_assert_held(&tid_agg_rx->reorder_lock);
791
792 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
793 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 frames);
796 }
797 }
798
799 /*
800 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
801 * the skb was added to the buffer longer than this time ago, the earlier
802 * frames that have not yet been received are assumed to be lost and the skb
803 * can be released for processing. This may also release other skb's from the
804 * reorder buffer if there are no additional gaps between the frames.
805 *
806 * Callers must hold tid_agg_rx->reorder_lock.
807 */
808 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
809
810 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
811 struct tid_ampdu_rx *tid_agg_rx,
812 struct sk_buff_head *frames)
813 {
814 int index, i, j;
815
816 lockdep_assert_held(&tid_agg_rx->reorder_lock);
817
818 /* release the buffer until next missing frame */
819 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
820 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
821 tid_agg_rx->stored_mpdu_num) {
822 /*
823 * No buffers ready to be released, but check whether any
824 * frames in the reorder buffer have timed out.
825 */
826 int skipped = 1;
827 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
828 j = (j + 1) % tid_agg_rx->buf_size) {
829 if (!ieee80211_rx_reorder_ready(
830 &tid_agg_rx->reorder_buf[j])) {
831 skipped++;
832 continue;
833 }
834 if (skipped &&
835 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
836 HT_RX_REORDER_BUF_TIMEOUT))
837 goto set_release_timer;
838
839 /* don't leave incomplete A-MSDUs around */
840 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
841 i = (i + 1) % tid_agg_rx->buf_size)
842 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
843
844 ht_dbg_ratelimited(sdata,
845 "release an RX reorder frame due to timeout on earlier frames\n");
846 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
847 frames);
848
849 /*
850 * Increment the head seq# also for the skipped slots.
851 */
852 tid_agg_rx->head_seq_num =
853 (tid_agg_rx->head_seq_num +
854 skipped) & IEEE80211_SN_MASK;
855 skipped = 0;
856 }
857 } else while (ieee80211_rx_reorder_ready(
858 &tid_agg_rx->reorder_buf[index])) {
859 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
860 frames);
861 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
862 }
863
864 if (tid_agg_rx->stored_mpdu_num) {
865 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
866
867 for (; j != (index - 1) % tid_agg_rx->buf_size;
868 j = (j + 1) % tid_agg_rx->buf_size) {
869 if (ieee80211_rx_reorder_ready(
870 &tid_agg_rx->reorder_buf[j]))
871 break;
872 }
873
874 set_release_timer:
875
876 mod_timer(&tid_agg_rx->reorder_timer,
877 tid_agg_rx->reorder_time[j] + 1 +
878 HT_RX_REORDER_BUF_TIMEOUT);
879 } else {
880 del_timer(&tid_agg_rx->reorder_timer);
881 }
882 }
883
884 /*
885 * As this function belongs to the RX path it must be under
886 * rcu_read_lock protection. It returns false if the frame
887 * can be processed immediately, true if it was consumed.
888 */
889 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
890 struct tid_ampdu_rx *tid_agg_rx,
891 struct sk_buff *skb,
892 struct sk_buff_head *frames)
893 {
894 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
895 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
896 u16 sc = le16_to_cpu(hdr->seq_ctrl);
897 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
898 u16 head_seq_num, buf_size;
899 int index;
900 bool ret = true;
901
902 spin_lock(&tid_agg_rx->reorder_lock);
903
904 /*
905 * Offloaded BA sessions have no known starting sequence number so pick
906 * one from first Rxed frame for this tid after BA was started.
907 */
908 if (unlikely(tid_agg_rx->auto_seq)) {
909 tid_agg_rx->auto_seq = false;
910 tid_agg_rx->ssn = mpdu_seq_num;
911 tid_agg_rx->head_seq_num = mpdu_seq_num;
912 }
913
914 buf_size = tid_agg_rx->buf_size;
915 head_seq_num = tid_agg_rx->head_seq_num;
916
917 /* frame with out of date sequence number */
918 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
919 dev_kfree_skb(skb);
920 goto out;
921 }
922
923 /*
924 * If frame the sequence number exceeds our buffering window
925 * size release some previous frames to make room for this one.
926 */
927 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
928 head_seq_num = ieee80211_sn_inc(
929 ieee80211_sn_sub(mpdu_seq_num, buf_size));
930 /* release stored frames up to new head to stack */
931 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
932 head_seq_num, frames);
933 }
934
935 /* Now the new frame is always in the range of the reordering buffer */
936
937 index = mpdu_seq_num % tid_agg_rx->buf_size;
938
939 /* check if we already stored this frame */
940 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
941 dev_kfree_skb(skb);
942 goto out;
943 }
944
945 /*
946 * If the current MPDU is in the right order and nothing else
947 * is stored we can process it directly, no need to buffer it.
948 * If it is first but there's something stored, we may be able
949 * to release frames after this one.
950 */
951 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
952 tid_agg_rx->stored_mpdu_num == 0) {
953 if (!(status->flag & RX_FLAG_AMSDU_MORE))
954 tid_agg_rx->head_seq_num =
955 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
956 ret = false;
957 goto out;
958 }
959
960 /* put the frame in the reordering buffer */
961 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
962 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
963 tid_agg_rx->reorder_time[index] = jiffies;
964 tid_agg_rx->stored_mpdu_num++;
965 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
966 }
967
968 out:
969 spin_unlock(&tid_agg_rx->reorder_lock);
970 return ret;
971 }
972
973 /*
974 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
975 * true if the MPDU was buffered, false if it should be processed.
976 */
977 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
978 struct sk_buff_head *frames)
979 {
980 struct sk_buff *skb = rx->skb;
981 struct ieee80211_local *local = rx->local;
982 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
983 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
984 struct sta_info *sta = rx->sta;
985 struct tid_ampdu_rx *tid_agg_rx;
986 u16 sc;
987 u8 tid, ack_policy;
988
989 if (!ieee80211_is_data_qos(hdr->frame_control) ||
990 is_multicast_ether_addr(hdr->addr1))
991 goto dont_reorder;
992
993 /*
994 * filter the QoS data rx stream according to
995 * STA/TID and check if this STA/TID is on aggregation
996 */
997
998 if (!sta)
999 goto dont_reorder;
1000
1001 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1002 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1003 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1004
1005 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1006 if (!tid_agg_rx)
1007 goto dont_reorder;
1008
1009 /* qos null data frames are excluded */
1010 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1011 goto dont_reorder;
1012
1013 /* not part of a BA session */
1014 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1015 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1016 goto dont_reorder;
1017
1018 /* not actually part of this BA session */
1019 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1020 goto dont_reorder;
1021
1022 /* new, potentially un-ordered, ampdu frame - process it */
1023
1024 /* reset session timer */
1025 if (tid_agg_rx->timeout)
1026 tid_agg_rx->last_rx = jiffies;
1027
1028 /* if this mpdu is fragmented - terminate rx aggregation session */
1029 sc = le16_to_cpu(hdr->seq_ctrl);
1030 if (sc & IEEE80211_SCTL_FRAG) {
1031 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1032 skb_queue_tail(&rx->sdata->skb_queue, skb);
1033 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1034 return;
1035 }
1036
1037 /*
1038 * No locking needed -- we will only ever process one
1039 * RX packet at a time, and thus own tid_agg_rx. All
1040 * other code manipulating it needs to (and does) make
1041 * sure that we cannot get to it any more before doing
1042 * anything with it.
1043 */
1044 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1045 frames))
1046 return;
1047
1048 dont_reorder:
1049 __skb_queue_tail(frames, skb);
1050 }
1051
1052 static ieee80211_rx_result debug_noinline
1053 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1054 {
1055 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1056 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1057
1058 /*
1059 * Drop duplicate 802.11 retransmissions
1060 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1061 */
1062
1063 if (rx->skb->len < 24)
1064 return RX_CONTINUE;
1065
1066 if (ieee80211_is_ctl(hdr->frame_control) ||
1067 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1068 is_multicast_ether_addr(hdr->addr1))
1069 return RX_CONTINUE;
1070
1071 if (rx->sta) {
1072 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1073 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1074 hdr->seq_ctrl)) {
1075 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1076 rx->local->dot11FrameDuplicateCount++;
1077 rx->sta->num_duplicates++;
1078 }
1079 return RX_DROP_UNUSABLE;
1080 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1081 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1082 }
1083 }
1084
1085 return RX_CONTINUE;
1086 }
1087
1088 static ieee80211_rx_result debug_noinline
1089 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1090 {
1091 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1092
1093 if (unlikely(rx->skb->len < 16)) {
1094 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1095 return RX_DROP_MONITOR;
1096 }
1097
1098 /* Drop disallowed frame classes based on STA auth/assoc state;
1099 * IEEE 802.11, Chap 5.5.
1100 *
1101 * mac80211 filters only based on association state, i.e. it drops
1102 * Class 3 frames from not associated stations. hostapd sends
1103 * deauth/disassoc frames when needed. In addition, hostapd is
1104 * responsible for filtering on both auth and assoc states.
1105 */
1106
1107 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1108 return ieee80211_rx_mesh_check(rx);
1109
1110 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1111 ieee80211_is_pspoll(hdr->frame_control)) &&
1112 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1113 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1114 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1115 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1116 /*
1117 * accept port control frames from the AP even when it's not
1118 * yet marked ASSOC to prevent a race where we don't set the
1119 * assoc bit quickly enough before it sends the first frame
1120 */
1121 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1122 ieee80211_is_data_present(hdr->frame_control)) {
1123 unsigned int hdrlen;
1124 __be16 ethertype;
1125
1126 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1127
1128 if (rx->skb->len < hdrlen + 8)
1129 return RX_DROP_MONITOR;
1130
1131 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1132 if (ethertype == rx->sdata->control_port_protocol)
1133 return RX_CONTINUE;
1134 }
1135
1136 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1137 cfg80211_rx_spurious_frame(rx->sdata->dev,
1138 hdr->addr2,
1139 GFP_ATOMIC))
1140 return RX_DROP_UNUSABLE;
1141
1142 return RX_DROP_MONITOR;
1143 }
1144
1145 return RX_CONTINUE;
1146 }
1147
1148
1149 static ieee80211_rx_result debug_noinline
1150 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1151 {
1152 struct ieee80211_local *local;
1153 struct ieee80211_hdr *hdr;
1154 struct sk_buff *skb;
1155
1156 local = rx->local;
1157 skb = rx->skb;
1158 hdr = (struct ieee80211_hdr *) skb->data;
1159
1160 if (!local->pspolling)
1161 return RX_CONTINUE;
1162
1163 if (!ieee80211_has_fromds(hdr->frame_control))
1164 /* this is not from AP */
1165 return RX_CONTINUE;
1166
1167 if (!ieee80211_is_data(hdr->frame_control))
1168 return RX_CONTINUE;
1169
1170 if (!ieee80211_has_moredata(hdr->frame_control)) {
1171 /* AP has no more frames buffered for us */
1172 local->pspolling = false;
1173 return RX_CONTINUE;
1174 }
1175
1176 /* more data bit is set, let's request a new frame from the AP */
1177 ieee80211_send_pspoll(local, rx->sdata);
1178
1179 return RX_CONTINUE;
1180 }
1181
1182 static void sta_ps_start(struct sta_info *sta)
1183 {
1184 struct ieee80211_sub_if_data *sdata = sta->sdata;
1185 struct ieee80211_local *local = sdata->local;
1186 struct ps_data *ps;
1187
1188 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1189 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1190 ps = &sdata->bss->ps;
1191 else
1192 return;
1193
1194 atomic_inc(&ps->num_sta_ps);
1195 set_sta_flag(sta, WLAN_STA_PS_STA);
1196 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1197 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1198 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1199 sta->sta.addr, sta->sta.aid);
1200 }
1201
1202 static void sta_ps_end(struct sta_info *sta)
1203 {
1204 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1205 sta->sta.addr, sta->sta.aid);
1206
1207 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1208 /*
1209 * Clear the flag only if the other one is still set
1210 * so that the TX path won't start TX'ing new frames
1211 * directly ... In the case that the driver flag isn't
1212 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1213 */
1214 clear_sta_flag(sta, WLAN_STA_PS_STA);
1215 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1216 sta->sta.addr, sta->sta.aid);
1217 return;
1218 }
1219
1220 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1221 clear_sta_flag(sta, WLAN_STA_PS_STA);
1222 ieee80211_sta_ps_deliver_wakeup(sta);
1223 }
1224
1225 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1226 {
1227 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1228 bool in_ps;
1229
1230 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1231
1232 /* Don't let the same PS state be set twice */
1233 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1234 if ((start && in_ps) || (!start && !in_ps))
1235 return -EINVAL;
1236
1237 if (start)
1238 sta_ps_start(sta_inf);
1239 else
1240 sta_ps_end(sta_inf);
1241
1242 return 0;
1243 }
1244 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1245
1246 static ieee80211_rx_result debug_noinline
1247 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1248 {
1249 struct ieee80211_sub_if_data *sdata = rx->sdata;
1250 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1251 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1252 int tid, ac;
1253
1254 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1255 return RX_CONTINUE;
1256
1257 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1258 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1259 return RX_CONTINUE;
1260
1261 /*
1262 * The device handles station powersave, so don't do anything about
1263 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1264 * it to mac80211 since they're handled.)
1265 */
1266 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1267 return RX_CONTINUE;
1268
1269 /*
1270 * Don't do anything if the station isn't already asleep. In
1271 * the uAPSD case, the station will probably be marked asleep,
1272 * in the PS-Poll case the station must be confused ...
1273 */
1274 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1275 return RX_CONTINUE;
1276
1277 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1278 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1279 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1280 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1281 else
1282 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1283 }
1284
1285 /* Free PS Poll skb here instead of returning RX_DROP that would
1286 * count as an dropped frame. */
1287 dev_kfree_skb(rx->skb);
1288
1289 return RX_QUEUED;
1290 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1291 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1292 ieee80211_has_pm(hdr->frame_control) &&
1293 (ieee80211_is_data_qos(hdr->frame_control) ||
1294 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1295 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1296 ac = ieee802_1d_to_ac[tid & 7];
1297
1298 /*
1299 * If this AC is not trigger-enabled do nothing.
1300 *
1301 * NB: This could/should check a separate bitmap of trigger-
1302 * enabled queues, but for now we only implement uAPSD w/o
1303 * TSPEC changes to the ACs, so they're always the same.
1304 */
1305 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1306 return RX_CONTINUE;
1307
1308 /* if we are in a service period, do nothing */
1309 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1310 return RX_CONTINUE;
1311
1312 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1313 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1314 else
1315 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1316 }
1317
1318 return RX_CONTINUE;
1319 }
1320
1321 static ieee80211_rx_result debug_noinline
1322 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1323 {
1324 struct sta_info *sta = rx->sta;
1325 struct sk_buff *skb = rx->skb;
1326 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1327 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1328 int i;
1329
1330 if (!sta)
1331 return RX_CONTINUE;
1332
1333 /*
1334 * Update last_rx only for IBSS packets which are for the current
1335 * BSSID and for station already AUTHORIZED to avoid keeping the
1336 * current IBSS network alive in cases where other STAs start
1337 * using different BSSID. This will also give the station another
1338 * chance to restart the authentication/authorization in case
1339 * something went wrong the first time.
1340 */
1341 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1342 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1343 NL80211_IFTYPE_ADHOC);
1344 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1345 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1346 sta->last_rx = jiffies;
1347 if (ieee80211_is_data(hdr->frame_control) &&
1348 !is_multicast_ether_addr(hdr->addr1)) {
1349 sta->last_rx_rate_idx = status->rate_idx;
1350 sta->last_rx_rate_flag = status->flag;
1351 sta->last_rx_rate_vht_flag = status->vht_flag;
1352 sta->last_rx_rate_vht_nss = status->vht_nss;
1353 }
1354 }
1355 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1356 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1357 NL80211_IFTYPE_OCB);
1358 /* OCB uses wild-card BSSID */
1359 if (is_broadcast_ether_addr(bssid))
1360 sta->last_rx = jiffies;
1361 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1362 /*
1363 * Mesh beacons will update last_rx when if they are found to
1364 * match the current local configuration when processed.
1365 */
1366 sta->last_rx = jiffies;
1367 if (ieee80211_is_data(hdr->frame_control)) {
1368 sta->last_rx_rate_idx = status->rate_idx;
1369 sta->last_rx_rate_flag = status->flag;
1370 sta->last_rx_rate_vht_flag = status->vht_flag;
1371 sta->last_rx_rate_vht_nss = status->vht_nss;
1372 }
1373 }
1374
1375 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1376 return RX_CONTINUE;
1377
1378 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1379 ieee80211_sta_rx_notify(rx->sdata, hdr);
1380
1381 sta->rx_fragments++;
1382 sta->rx_bytes += rx->skb->len;
1383 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1384 sta->last_signal = status->signal;
1385 ewma_add(&sta->avg_signal, -status->signal);
1386 }
1387
1388 if (status->chains) {
1389 sta->chains = status->chains;
1390 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1391 int signal = status->chain_signal[i];
1392
1393 if (!(status->chains & BIT(i)))
1394 continue;
1395
1396 sta->chain_signal_last[i] = signal;
1397 ewma_add(&sta->chain_signal_avg[i], -signal);
1398 }
1399 }
1400
1401 /*
1402 * Change STA power saving mode only at the end of a frame
1403 * exchange sequence.
1404 */
1405 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1406 !ieee80211_has_morefrags(hdr->frame_control) &&
1407 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1408 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1409 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1410 /* PM bit is only checked in frames where it isn't reserved,
1411 * in AP mode it's reserved in non-bufferable management frames
1412 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1413 */
1414 (!ieee80211_is_mgmt(hdr->frame_control) ||
1415 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1416 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1417 if (!ieee80211_has_pm(hdr->frame_control))
1418 sta_ps_end(sta);
1419 } else {
1420 if (ieee80211_has_pm(hdr->frame_control))
1421 sta_ps_start(sta);
1422 }
1423 }
1424
1425 /* mesh power save support */
1426 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1427 ieee80211_mps_rx_h_sta_process(sta, hdr);
1428
1429 /*
1430 * Drop (qos-)data::nullfunc frames silently, since they
1431 * are used only to control station power saving mode.
1432 */
1433 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1434 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1435 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1436
1437 /*
1438 * If we receive a 4-addr nullfunc frame from a STA
1439 * that was not moved to a 4-addr STA vlan yet send
1440 * the event to userspace and for older hostapd drop
1441 * the frame to the monitor interface.
1442 */
1443 if (ieee80211_has_a4(hdr->frame_control) &&
1444 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1445 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1446 !rx->sdata->u.vlan.sta))) {
1447 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1448 cfg80211_rx_unexpected_4addr_frame(
1449 rx->sdata->dev, sta->sta.addr,
1450 GFP_ATOMIC);
1451 return RX_DROP_MONITOR;
1452 }
1453 /*
1454 * Update counter and free packet here to avoid
1455 * counting this as a dropped packed.
1456 */
1457 sta->rx_packets++;
1458 dev_kfree_skb(rx->skb);
1459 return RX_QUEUED;
1460 }
1461
1462 return RX_CONTINUE;
1463 } /* ieee80211_rx_h_sta_process */
1464
1465 static ieee80211_rx_result debug_noinline
1466 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1467 {
1468 struct sk_buff *skb = rx->skb;
1469 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1471 int keyidx;
1472 int hdrlen;
1473 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1474 struct ieee80211_key *sta_ptk = NULL;
1475 int mmie_keyidx = -1;
1476 __le16 fc;
1477 const struct ieee80211_cipher_scheme *cs = NULL;
1478
1479 /*
1480 * Key selection 101
1481 *
1482 * There are four types of keys:
1483 * - GTK (group keys)
1484 * - IGTK (group keys for management frames)
1485 * - PTK (pairwise keys)
1486 * - STK (station-to-station pairwise keys)
1487 *
1488 * When selecting a key, we have to distinguish between multicast
1489 * (including broadcast) and unicast frames, the latter can only
1490 * use PTKs and STKs while the former always use GTKs and IGTKs.
1491 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1492 * unicast frames can also use key indices like GTKs. Hence, if we
1493 * don't have a PTK/STK we check the key index for a WEP key.
1494 *
1495 * Note that in a regular BSS, multicast frames are sent by the
1496 * AP only, associated stations unicast the frame to the AP first
1497 * which then multicasts it on their behalf.
1498 *
1499 * There is also a slight problem in IBSS mode: GTKs are negotiated
1500 * with each station, that is something we don't currently handle.
1501 * The spec seems to expect that one negotiates the same key with
1502 * every station but there's no such requirement; VLANs could be
1503 * possible.
1504 */
1505
1506 /*
1507 * No point in finding a key and decrypting if the frame is neither
1508 * addressed to us nor a multicast frame.
1509 */
1510 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1511 return RX_CONTINUE;
1512
1513 /* start without a key */
1514 rx->key = NULL;
1515 fc = hdr->frame_control;
1516
1517 if (rx->sta) {
1518 int keyid = rx->sta->ptk_idx;
1519
1520 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1521 cs = rx->sta->cipher_scheme;
1522 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1523 if (unlikely(keyid < 0))
1524 return RX_DROP_UNUSABLE;
1525 }
1526 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1527 }
1528
1529 if (!ieee80211_has_protected(fc))
1530 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1531
1532 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1533 rx->key = sta_ptk;
1534 if ((status->flag & RX_FLAG_DECRYPTED) &&
1535 (status->flag & RX_FLAG_IV_STRIPPED))
1536 return RX_CONTINUE;
1537 /* Skip decryption if the frame is not protected. */
1538 if (!ieee80211_has_protected(fc))
1539 return RX_CONTINUE;
1540 } else if (mmie_keyidx >= 0) {
1541 /* Broadcast/multicast robust management frame / BIP */
1542 if ((status->flag & RX_FLAG_DECRYPTED) &&
1543 (status->flag & RX_FLAG_IV_STRIPPED))
1544 return RX_CONTINUE;
1545
1546 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1547 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1548 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1549 if (rx->sta)
1550 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1551 if (!rx->key)
1552 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1553 } else if (!ieee80211_has_protected(fc)) {
1554 /*
1555 * The frame was not protected, so skip decryption. However, we
1556 * need to set rx->key if there is a key that could have been
1557 * used so that the frame may be dropped if encryption would
1558 * have been expected.
1559 */
1560 struct ieee80211_key *key = NULL;
1561 struct ieee80211_sub_if_data *sdata = rx->sdata;
1562 int i;
1563
1564 if (ieee80211_is_mgmt(fc) &&
1565 is_multicast_ether_addr(hdr->addr1) &&
1566 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1567 rx->key = key;
1568 else {
1569 if (rx->sta) {
1570 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1571 key = rcu_dereference(rx->sta->gtk[i]);
1572 if (key)
1573 break;
1574 }
1575 }
1576 if (!key) {
1577 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1578 key = rcu_dereference(sdata->keys[i]);
1579 if (key)
1580 break;
1581 }
1582 }
1583 if (key)
1584 rx->key = key;
1585 }
1586 return RX_CONTINUE;
1587 } else {
1588 u8 keyid;
1589
1590 /*
1591 * The device doesn't give us the IV so we won't be
1592 * able to look up the key. That's ok though, we
1593 * don't need to decrypt the frame, we just won't
1594 * be able to keep statistics accurate.
1595 * Except for key threshold notifications, should
1596 * we somehow allow the driver to tell us which key
1597 * the hardware used if this flag is set?
1598 */
1599 if ((status->flag & RX_FLAG_DECRYPTED) &&
1600 (status->flag & RX_FLAG_IV_STRIPPED))
1601 return RX_CONTINUE;
1602
1603 hdrlen = ieee80211_hdrlen(fc);
1604
1605 if (cs) {
1606 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1607
1608 if (unlikely(keyidx < 0))
1609 return RX_DROP_UNUSABLE;
1610 } else {
1611 if (rx->skb->len < 8 + hdrlen)
1612 return RX_DROP_UNUSABLE; /* TODO: count this? */
1613 /*
1614 * no need to call ieee80211_wep_get_keyidx,
1615 * it verifies a bunch of things we've done already
1616 */
1617 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1618 keyidx = keyid >> 6;
1619 }
1620
1621 /* check per-station GTK first, if multicast packet */
1622 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1623 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1624
1625 /* if not found, try default key */
1626 if (!rx->key) {
1627 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1628
1629 /*
1630 * RSNA-protected unicast frames should always be
1631 * sent with pairwise or station-to-station keys,
1632 * but for WEP we allow using a key index as well.
1633 */
1634 if (rx->key &&
1635 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1636 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1637 !is_multicast_ether_addr(hdr->addr1))
1638 rx->key = NULL;
1639 }
1640 }
1641
1642 if (rx->key) {
1643 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1644 return RX_DROP_MONITOR;
1645
1646 rx->key->tx_rx_count++;
1647 /* TODO: add threshold stuff again */
1648 } else {
1649 return RX_DROP_MONITOR;
1650 }
1651
1652 switch (rx->key->conf.cipher) {
1653 case WLAN_CIPHER_SUITE_WEP40:
1654 case WLAN_CIPHER_SUITE_WEP104:
1655 result = ieee80211_crypto_wep_decrypt(rx);
1656 break;
1657 case WLAN_CIPHER_SUITE_TKIP:
1658 result = ieee80211_crypto_tkip_decrypt(rx);
1659 break;
1660 case WLAN_CIPHER_SUITE_CCMP:
1661 result = ieee80211_crypto_ccmp_decrypt(
1662 rx, IEEE80211_CCMP_MIC_LEN);
1663 break;
1664 case WLAN_CIPHER_SUITE_CCMP_256:
1665 result = ieee80211_crypto_ccmp_decrypt(
1666 rx, IEEE80211_CCMP_256_MIC_LEN);
1667 break;
1668 case WLAN_CIPHER_SUITE_AES_CMAC:
1669 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1670 break;
1671 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1672 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1673 break;
1674 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1675 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1676 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1677 break;
1678 case WLAN_CIPHER_SUITE_GCMP:
1679 case WLAN_CIPHER_SUITE_GCMP_256:
1680 result = ieee80211_crypto_gcmp_decrypt(rx);
1681 break;
1682 default:
1683 result = ieee80211_crypto_hw_decrypt(rx);
1684 }
1685
1686 /* the hdr variable is invalid after the decrypt handlers */
1687
1688 /* either the frame has been decrypted or will be dropped */
1689 status->flag |= RX_FLAG_DECRYPTED;
1690
1691 return result;
1692 }
1693
1694 static inline struct ieee80211_fragment_entry *
1695 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1696 unsigned int frag, unsigned int seq, int rx_queue,
1697 struct sk_buff **skb)
1698 {
1699 struct ieee80211_fragment_entry *entry;
1700
1701 entry = &sdata->fragments[sdata->fragment_next++];
1702 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1703 sdata->fragment_next = 0;
1704
1705 if (!skb_queue_empty(&entry->skb_list))
1706 __skb_queue_purge(&entry->skb_list);
1707
1708 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1709 *skb = NULL;
1710 entry->first_frag_time = jiffies;
1711 entry->seq = seq;
1712 entry->rx_queue = rx_queue;
1713 entry->last_frag = frag;
1714 entry->ccmp = 0;
1715 entry->extra_len = 0;
1716
1717 return entry;
1718 }
1719
1720 static inline struct ieee80211_fragment_entry *
1721 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1722 unsigned int frag, unsigned int seq,
1723 int rx_queue, struct ieee80211_hdr *hdr)
1724 {
1725 struct ieee80211_fragment_entry *entry;
1726 int i, idx;
1727
1728 idx = sdata->fragment_next;
1729 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1730 struct ieee80211_hdr *f_hdr;
1731
1732 idx--;
1733 if (idx < 0)
1734 idx = IEEE80211_FRAGMENT_MAX - 1;
1735
1736 entry = &sdata->fragments[idx];
1737 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1738 entry->rx_queue != rx_queue ||
1739 entry->last_frag + 1 != frag)
1740 continue;
1741
1742 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1743
1744 /*
1745 * Check ftype and addresses are equal, else check next fragment
1746 */
1747 if (((hdr->frame_control ^ f_hdr->frame_control) &
1748 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1749 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1750 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1751 continue;
1752
1753 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1754 __skb_queue_purge(&entry->skb_list);
1755 continue;
1756 }
1757 return entry;
1758 }
1759
1760 return NULL;
1761 }
1762
1763 static ieee80211_rx_result debug_noinline
1764 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1765 {
1766 struct ieee80211_hdr *hdr;
1767 u16 sc;
1768 __le16 fc;
1769 unsigned int frag, seq;
1770 struct ieee80211_fragment_entry *entry;
1771 struct sk_buff *skb;
1772 struct ieee80211_rx_status *status;
1773
1774 hdr = (struct ieee80211_hdr *)rx->skb->data;
1775 fc = hdr->frame_control;
1776
1777 if (ieee80211_is_ctl(fc))
1778 return RX_CONTINUE;
1779
1780 sc = le16_to_cpu(hdr->seq_ctrl);
1781 frag = sc & IEEE80211_SCTL_FRAG;
1782
1783 if (is_multicast_ether_addr(hdr->addr1)) {
1784 rx->local->dot11MulticastReceivedFrameCount++;
1785 goto out_no_led;
1786 }
1787
1788 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1789 goto out;
1790
1791 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1792
1793 if (skb_linearize(rx->skb))
1794 return RX_DROP_UNUSABLE;
1795
1796 /*
1797 * skb_linearize() might change the skb->data and
1798 * previously cached variables (in this case, hdr) need to
1799 * be refreshed with the new data.
1800 */
1801 hdr = (struct ieee80211_hdr *)rx->skb->data;
1802 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1803
1804 if (frag == 0) {
1805 /* This is the first fragment of a new frame. */
1806 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1807 rx->seqno_idx, &(rx->skb));
1808 if (rx->key &&
1809 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1810 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) &&
1811 ieee80211_has_protected(fc)) {
1812 int queue = rx->security_idx;
1813 /* Store CCMP PN so that we can verify that the next
1814 * fragment has a sequential PN value. */
1815 entry->ccmp = 1;
1816 memcpy(entry->last_pn,
1817 rx->key->u.ccmp.rx_pn[queue],
1818 IEEE80211_CCMP_PN_LEN);
1819 }
1820 return RX_QUEUED;
1821 }
1822
1823 /* This is a fragment for a frame that should already be pending in
1824 * fragment cache. Add this fragment to the end of the pending entry.
1825 */
1826 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1827 rx->seqno_idx, hdr);
1828 if (!entry) {
1829 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1830 return RX_DROP_MONITOR;
1831 }
1832
1833 /* Verify that MPDUs within one MSDU have sequential PN values.
1834 * (IEEE 802.11i, 8.3.3.4.5) */
1835 if (entry->ccmp) {
1836 int i;
1837 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1838 int queue;
1839 if (!rx->key ||
1840 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1841 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256))
1842 return RX_DROP_UNUSABLE;
1843 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1844 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1845 pn[i]++;
1846 if (pn[i])
1847 break;
1848 }
1849 queue = rx->security_idx;
1850 rpn = rx->key->u.ccmp.rx_pn[queue];
1851 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1852 return RX_DROP_UNUSABLE;
1853 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1854 }
1855
1856 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1857 __skb_queue_tail(&entry->skb_list, rx->skb);
1858 entry->last_frag = frag;
1859 entry->extra_len += rx->skb->len;
1860 if (ieee80211_has_morefrags(fc)) {
1861 rx->skb = NULL;
1862 return RX_QUEUED;
1863 }
1864
1865 rx->skb = __skb_dequeue(&entry->skb_list);
1866 if (skb_tailroom(rx->skb) < entry->extra_len) {
1867 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1868 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1869 GFP_ATOMIC))) {
1870 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1871 __skb_queue_purge(&entry->skb_list);
1872 return RX_DROP_UNUSABLE;
1873 }
1874 }
1875 while ((skb = __skb_dequeue(&entry->skb_list))) {
1876 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1877 dev_kfree_skb(skb);
1878 }
1879
1880 /* Complete frame has been reassembled - process it now */
1881 status = IEEE80211_SKB_RXCB(rx->skb);
1882 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1883
1884 out:
1885 ieee80211_led_rx(rx->local);
1886 out_no_led:
1887 if (rx->sta)
1888 rx->sta->rx_packets++;
1889 return RX_CONTINUE;
1890 }
1891
1892 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1893 {
1894 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1895 return -EACCES;
1896
1897 return 0;
1898 }
1899
1900 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1901 {
1902 struct sk_buff *skb = rx->skb;
1903 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1904
1905 /*
1906 * Pass through unencrypted frames if the hardware has
1907 * decrypted them already.
1908 */
1909 if (status->flag & RX_FLAG_DECRYPTED)
1910 return 0;
1911
1912 /* Drop unencrypted frames if key is set. */
1913 if (unlikely(!ieee80211_has_protected(fc) &&
1914 !ieee80211_is_nullfunc(fc) &&
1915 ieee80211_is_data(fc) &&
1916 (rx->key || rx->sdata->drop_unencrypted)))
1917 return -EACCES;
1918
1919 return 0;
1920 }
1921
1922 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1923 {
1924 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1925 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1926 __le16 fc = hdr->frame_control;
1927
1928 /*
1929 * Pass through unencrypted frames if the hardware has
1930 * decrypted them already.
1931 */
1932 if (status->flag & RX_FLAG_DECRYPTED)
1933 return 0;
1934
1935 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1936 if (unlikely(!ieee80211_has_protected(fc) &&
1937 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1938 rx->key)) {
1939 if (ieee80211_is_deauth(fc) ||
1940 ieee80211_is_disassoc(fc))
1941 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1942 rx->skb->data,
1943 rx->skb->len);
1944 return -EACCES;
1945 }
1946 /* BIP does not use Protected field, so need to check MMIE */
1947 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1948 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1949 if (ieee80211_is_deauth(fc) ||
1950 ieee80211_is_disassoc(fc))
1951 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1952 rx->skb->data,
1953 rx->skb->len);
1954 return -EACCES;
1955 }
1956 /*
1957 * When using MFP, Action frames are not allowed prior to
1958 * having configured keys.
1959 */
1960 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1961 ieee80211_is_robust_mgmt_frame(rx->skb)))
1962 return -EACCES;
1963 }
1964
1965 return 0;
1966 }
1967
1968 static int
1969 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1970 {
1971 struct ieee80211_sub_if_data *sdata = rx->sdata;
1972 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1973 bool check_port_control = false;
1974 struct ethhdr *ehdr;
1975 int ret;
1976
1977 *port_control = false;
1978 if (ieee80211_has_a4(hdr->frame_control) &&
1979 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1980 return -1;
1981
1982 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1983 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1984
1985 if (!sdata->u.mgd.use_4addr)
1986 return -1;
1987 else
1988 check_port_control = true;
1989 }
1990
1991 if (is_multicast_ether_addr(hdr->addr1) &&
1992 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1993 return -1;
1994
1995 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1996 if (ret < 0)
1997 return ret;
1998
1999 ehdr = (struct ethhdr *) rx->skb->data;
2000 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2001 *port_control = true;
2002 else if (check_port_control)
2003 return -1;
2004
2005 return 0;
2006 }
2007
2008 /*
2009 * requires that rx->skb is a frame with ethernet header
2010 */
2011 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2012 {
2013 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2014 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2015 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2016
2017 /*
2018 * Allow EAPOL frames to us/the PAE group address regardless
2019 * of whether the frame was encrypted or not.
2020 */
2021 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2022 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2023 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2024 return true;
2025
2026 if (ieee80211_802_1x_port_control(rx) ||
2027 ieee80211_drop_unencrypted(rx, fc))
2028 return false;
2029
2030 return true;
2031 }
2032
2033 /*
2034 * requires that rx->skb is a frame with ethernet header
2035 */
2036 static void
2037 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2038 {
2039 struct ieee80211_sub_if_data *sdata = rx->sdata;
2040 struct net_device *dev = sdata->dev;
2041 struct sk_buff *skb, *xmit_skb;
2042 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2043 struct sta_info *dsta;
2044 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2045
2046 skb = rx->skb;
2047 xmit_skb = NULL;
2048
2049 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2050 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2051 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2052 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
2053 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2054 if (is_multicast_ether_addr(ehdr->h_dest)) {
2055 /*
2056 * send multicast frames both to higher layers in
2057 * local net stack and back to the wireless medium
2058 */
2059 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2060 if (!xmit_skb)
2061 net_info_ratelimited("%s: failed to clone multicast frame\n",
2062 dev->name);
2063 } else {
2064 dsta = sta_info_get(sdata, skb->data);
2065 if (dsta) {
2066 /*
2067 * The destination station is associated to
2068 * this AP (in this VLAN), so send the frame
2069 * directly to it and do not pass it to local
2070 * net stack.
2071 */
2072 xmit_skb = skb;
2073 skb = NULL;
2074 }
2075 }
2076 }
2077
2078 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2079 if (skb) {
2080 /* 'align' will only take the values 0 or 2 here since all
2081 * frames are required to be aligned to 2-byte boundaries
2082 * when being passed to mac80211; the code here works just
2083 * as well if that isn't true, but mac80211 assumes it can
2084 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2085 */
2086 int align;
2087
2088 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2089 if (align) {
2090 if (WARN_ON(skb_headroom(skb) < 3)) {
2091 dev_kfree_skb(skb);
2092 skb = NULL;
2093 } else {
2094 u8 *data = skb->data;
2095 size_t len = skb_headlen(skb);
2096 skb->data -= align;
2097 memmove(skb->data, data, len);
2098 skb_set_tail_pointer(skb, len);
2099 }
2100 }
2101 }
2102 #endif
2103
2104 if (skb) {
2105 /* deliver to local stack */
2106 skb->protocol = eth_type_trans(skb, dev);
2107 memset(skb->cb, 0, sizeof(skb->cb));
2108 if (rx->local->napi)
2109 napi_gro_receive(rx->local->napi, skb);
2110 else
2111 netif_receive_skb(skb);
2112 }
2113
2114 if (xmit_skb) {
2115 /*
2116 * Send to wireless media and increase priority by 256 to
2117 * keep the received priority instead of reclassifying
2118 * the frame (see cfg80211_classify8021d).
2119 */
2120 xmit_skb->priority += 256;
2121 xmit_skb->protocol = htons(ETH_P_802_3);
2122 skb_reset_network_header(xmit_skb);
2123 skb_reset_mac_header(xmit_skb);
2124 dev_queue_xmit(xmit_skb);
2125 }
2126 }
2127
2128 static ieee80211_rx_result debug_noinline
2129 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2130 {
2131 struct net_device *dev = rx->sdata->dev;
2132 struct sk_buff *skb = rx->skb;
2133 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2134 __le16 fc = hdr->frame_control;
2135 struct sk_buff_head frame_list;
2136 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2137
2138 if (unlikely(!ieee80211_is_data(fc)))
2139 return RX_CONTINUE;
2140
2141 if (unlikely(!ieee80211_is_data_present(fc)))
2142 return RX_DROP_MONITOR;
2143
2144 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2145 return RX_CONTINUE;
2146
2147 if (ieee80211_has_a4(hdr->frame_control) &&
2148 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2149 !rx->sdata->u.vlan.sta)
2150 return RX_DROP_UNUSABLE;
2151
2152 if (is_multicast_ether_addr(hdr->addr1) &&
2153 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2154 rx->sdata->u.vlan.sta) ||
2155 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2156 rx->sdata->u.mgd.use_4addr)))
2157 return RX_DROP_UNUSABLE;
2158
2159 skb->dev = dev;
2160 __skb_queue_head_init(&frame_list);
2161
2162 if (skb_linearize(skb))
2163 return RX_DROP_UNUSABLE;
2164
2165 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2166 rx->sdata->vif.type,
2167 rx->local->hw.extra_tx_headroom, true);
2168
2169 while (!skb_queue_empty(&frame_list)) {
2170 rx->skb = __skb_dequeue(&frame_list);
2171
2172 if (!ieee80211_frame_allowed(rx, fc)) {
2173 dev_kfree_skb(rx->skb);
2174 continue;
2175 }
2176 dev->stats.rx_packets++;
2177 dev->stats.rx_bytes += rx->skb->len;
2178
2179 ieee80211_deliver_skb(rx);
2180 }
2181
2182 return RX_QUEUED;
2183 }
2184
2185 #ifdef CONFIG_MAC80211_MESH
2186 static ieee80211_rx_result
2187 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2188 {
2189 struct ieee80211_hdr *fwd_hdr, *hdr;
2190 struct ieee80211_tx_info *info;
2191 struct ieee80211s_hdr *mesh_hdr;
2192 struct sk_buff *skb = rx->skb, *fwd_skb;
2193 struct ieee80211_local *local = rx->local;
2194 struct ieee80211_sub_if_data *sdata = rx->sdata;
2195 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2196 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2197 u16 q, hdrlen;
2198
2199 hdr = (struct ieee80211_hdr *) skb->data;
2200 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2201
2202 /* make sure fixed part of mesh header is there, also checks skb len */
2203 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2204 return RX_DROP_MONITOR;
2205
2206 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2207
2208 /* make sure full mesh header is there, also checks skb len */
2209 if (!pskb_may_pull(rx->skb,
2210 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2211 return RX_DROP_MONITOR;
2212
2213 /* reload pointers */
2214 hdr = (struct ieee80211_hdr *) skb->data;
2215 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2216
2217 /* frame is in RMC, don't forward */
2218 if (ieee80211_is_data(hdr->frame_control) &&
2219 is_multicast_ether_addr(hdr->addr1) &&
2220 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2221 return RX_DROP_MONITOR;
2222
2223 if (!ieee80211_is_data(hdr->frame_control) ||
2224 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2225 return RX_CONTINUE;
2226
2227 if (!mesh_hdr->ttl)
2228 return RX_DROP_MONITOR;
2229
2230 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2231 struct mesh_path *mppath;
2232 char *proxied_addr;
2233 char *mpp_addr;
2234
2235 if (is_multicast_ether_addr(hdr->addr1)) {
2236 mpp_addr = hdr->addr3;
2237 proxied_addr = mesh_hdr->eaddr1;
2238 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2239 /* has_a4 already checked in ieee80211_rx_mesh_check */
2240 mpp_addr = hdr->addr4;
2241 proxied_addr = mesh_hdr->eaddr2;
2242 } else {
2243 return RX_DROP_MONITOR;
2244 }
2245
2246 rcu_read_lock();
2247 mppath = mpp_path_lookup(sdata, proxied_addr);
2248 if (!mppath) {
2249 mpp_path_add(sdata, proxied_addr, mpp_addr);
2250 } else {
2251 spin_lock_bh(&mppath->state_lock);
2252 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2253 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2254 spin_unlock_bh(&mppath->state_lock);
2255 }
2256 rcu_read_unlock();
2257 }
2258
2259 /* Frame has reached destination. Don't forward */
2260 if (!is_multicast_ether_addr(hdr->addr1) &&
2261 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2262 return RX_CONTINUE;
2263
2264 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2265 if (ieee80211_queue_stopped(&local->hw, q)) {
2266 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2267 return RX_DROP_MONITOR;
2268 }
2269 skb_set_queue_mapping(skb, q);
2270
2271 if (!--mesh_hdr->ttl) {
2272 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2273 goto out;
2274 }
2275
2276 if (!ifmsh->mshcfg.dot11MeshForwarding)
2277 goto out;
2278
2279 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2280 if (!fwd_skb) {
2281 net_info_ratelimited("%s: failed to clone mesh frame\n",
2282 sdata->name);
2283 goto out;
2284 }
2285
2286 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2287 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2288 info = IEEE80211_SKB_CB(fwd_skb);
2289 memset(info, 0, sizeof(*info));
2290 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2291 info->control.vif = &rx->sdata->vif;
2292 info->control.jiffies = jiffies;
2293 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2294 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2295 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2296 /* update power mode indication when forwarding */
2297 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2298 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2299 /* mesh power mode flags updated in mesh_nexthop_lookup */
2300 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2301 } else {
2302 /* unable to resolve next hop */
2303 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2304 fwd_hdr->addr3, 0,
2305 WLAN_REASON_MESH_PATH_NOFORWARD,
2306 fwd_hdr->addr2);
2307 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2308 kfree_skb(fwd_skb);
2309 return RX_DROP_MONITOR;
2310 }
2311
2312 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2313 ieee80211_add_pending_skb(local, fwd_skb);
2314 out:
2315 if (is_multicast_ether_addr(hdr->addr1) ||
2316 sdata->dev->flags & IFF_PROMISC)
2317 return RX_CONTINUE;
2318 else
2319 return RX_DROP_MONITOR;
2320 }
2321 #endif
2322
2323 static ieee80211_rx_result debug_noinline
2324 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2325 {
2326 struct ieee80211_sub_if_data *sdata = rx->sdata;
2327 struct ieee80211_local *local = rx->local;
2328 struct net_device *dev = sdata->dev;
2329 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2330 __le16 fc = hdr->frame_control;
2331 bool port_control;
2332 int err;
2333
2334 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2335 return RX_CONTINUE;
2336
2337 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2338 return RX_DROP_MONITOR;
2339
2340 if (rx->sta) {
2341 /* The seqno index has the same property as needed
2342 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2343 * for non-QoS-data frames. Here we know it's a data
2344 * frame, so count MSDUs.
2345 */
2346 rx->sta->rx_msdu[rx->seqno_idx]++;
2347 }
2348
2349 /*
2350 * Send unexpected-4addr-frame event to hostapd. For older versions,
2351 * also drop the frame to cooked monitor interfaces.
2352 */
2353 if (ieee80211_has_a4(hdr->frame_control) &&
2354 sdata->vif.type == NL80211_IFTYPE_AP) {
2355 if (rx->sta &&
2356 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2357 cfg80211_rx_unexpected_4addr_frame(
2358 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2359 return RX_DROP_MONITOR;
2360 }
2361
2362 err = __ieee80211_data_to_8023(rx, &port_control);
2363 if (unlikely(err))
2364 return RX_DROP_UNUSABLE;
2365
2366 if (!ieee80211_frame_allowed(rx, fc))
2367 return RX_DROP_MONITOR;
2368
2369 /* directly handle TDLS channel switch requests/responses */
2370 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2371 cpu_to_be16(ETH_P_TDLS))) {
2372 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2373
2374 if (pskb_may_pull(rx->skb,
2375 offsetof(struct ieee80211_tdls_data, u)) &&
2376 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2377 tf->category == WLAN_CATEGORY_TDLS &&
2378 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2379 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2380 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW;
2381 skb_queue_tail(&sdata->skb_queue, rx->skb);
2382 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2383 if (rx->sta)
2384 rx->sta->rx_packets++;
2385
2386 return RX_QUEUED;
2387 }
2388 }
2389
2390 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2391 unlikely(port_control) && sdata->bss) {
2392 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2393 u.ap);
2394 dev = sdata->dev;
2395 rx->sdata = sdata;
2396 }
2397
2398 rx->skb->dev = dev;
2399
2400 dev->stats.rx_packets++;
2401 dev->stats.rx_bytes += rx->skb->len;
2402
2403 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2404 !is_multicast_ether_addr(
2405 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2406 (!local->scanning &&
2407 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2408 mod_timer(&local->dynamic_ps_timer, jiffies +
2409 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2410 }
2411
2412 ieee80211_deliver_skb(rx);
2413
2414 return RX_QUEUED;
2415 }
2416
2417 static ieee80211_rx_result debug_noinline
2418 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2419 {
2420 struct sk_buff *skb = rx->skb;
2421 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2422 struct tid_ampdu_rx *tid_agg_rx;
2423 u16 start_seq_num;
2424 u16 tid;
2425
2426 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2427 return RX_CONTINUE;
2428
2429 if (ieee80211_is_back_req(bar->frame_control)) {
2430 struct {
2431 __le16 control, start_seq_num;
2432 } __packed bar_data;
2433
2434 if (!rx->sta)
2435 return RX_DROP_MONITOR;
2436
2437 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2438 &bar_data, sizeof(bar_data)))
2439 return RX_DROP_MONITOR;
2440
2441 tid = le16_to_cpu(bar_data.control) >> 12;
2442
2443 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2444 if (!tid_agg_rx)
2445 return RX_DROP_MONITOR;
2446
2447 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2448
2449 /* reset session timer */
2450 if (tid_agg_rx->timeout)
2451 mod_timer(&tid_agg_rx->session_timer,
2452 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2453
2454 spin_lock(&tid_agg_rx->reorder_lock);
2455 /* release stored frames up to start of BAR */
2456 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2457 start_seq_num, frames);
2458 spin_unlock(&tid_agg_rx->reorder_lock);
2459
2460 kfree_skb(skb);
2461 return RX_QUEUED;
2462 }
2463
2464 /*
2465 * After this point, we only want management frames,
2466 * so we can drop all remaining control frames to
2467 * cooked monitor interfaces.
2468 */
2469 return RX_DROP_MONITOR;
2470 }
2471
2472 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2473 struct ieee80211_mgmt *mgmt,
2474 size_t len)
2475 {
2476 struct ieee80211_local *local = sdata->local;
2477 struct sk_buff *skb;
2478 struct ieee80211_mgmt *resp;
2479
2480 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2481 /* Not to own unicast address */
2482 return;
2483 }
2484
2485 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2486 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2487 /* Not from the current AP or not associated yet. */
2488 return;
2489 }
2490
2491 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2492 /* Too short SA Query request frame */
2493 return;
2494 }
2495
2496 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2497 if (skb == NULL)
2498 return;
2499
2500 skb_reserve(skb, local->hw.extra_tx_headroom);
2501 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2502 memset(resp, 0, 24);
2503 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2504 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2505 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2506 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2507 IEEE80211_STYPE_ACTION);
2508 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2509 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2510 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2511 memcpy(resp->u.action.u.sa_query.trans_id,
2512 mgmt->u.action.u.sa_query.trans_id,
2513 WLAN_SA_QUERY_TR_ID_LEN);
2514
2515 ieee80211_tx_skb(sdata, skb);
2516 }
2517
2518 static ieee80211_rx_result debug_noinline
2519 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2520 {
2521 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2522 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2523
2524 /*
2525 * From here on, look only at management frames.
2526 * Data and control frames are already handled,
2527 * and unknown (reserved) frames are useless.
2528 */
2529 if (rx->skb->len < 24)
2530 return RX_DROP_MONITOR;
2531
2532 if (!ieee80211_is_mgmt(mgmt->frame_control))
2533 return RX_DROP_MONITOR;
2534
2535 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2536 ieee80211_is_beacon(mgmt->frame_control) &&
2537 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2538 int sig = 0;
2539
2540 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2541 sig = status->signal;
2542
2543 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2544 rx->skb->data, rx->skb->len,
2545 status->freq, sig);
2546 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2547 }
2548
2549 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2550 return RX_DROP_MONITOR;
2551
2552 if (ieee80211_drop_unencrypted_mgmt(rx))
2553 return RX_DROP_UNUSABLE;
2554
2555 return RX_CONTINUE;
2556 }
2557
2558 static ieee80211_rx_result debug_noinline
2559 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2560 {
2561 struct ieee80211_local *local = rx->local;
2562 struct ieee80211_sub_if_data *sdata = rx->sdata;
2563 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2564 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2565 int len = rx->skb->len;
2566
2567 if (!ieee80211_is_action(mgmt->frame_control))
2568 return RX_CONTINUE;
2569
2570 /* drop too small frames */
2571 if (len < IEEE80211_MIN_ACTION_SIZE)
2572 return RX_DROP_UNUSABLE;
2573
2574 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2575 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2576 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2577 return RX_DROP_UNUSABLE;
2578
2579 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2580 return RX_DROP_UNUSABLE;
2581
2582 switch (mgmt->u.action.category) {
2583 case WLAN_CATEGORY_HT:
2584 /* reject HT action frames from stations not supporting HT */
2585 if (!rx->sta->sta.ht_cap.ht_supported)
2586 goto invalid;
2587
2588 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2589 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2590 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2591 sdata->vif.type != NL80211_IFTYPE_AP &&
2592 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2593 break;
2594
2595 /* verify action & smps_control/chanwidth are present */
2596 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2597 goto invalid;
2598
2599 switch (mgmt->u.action.u.ht_smps.action) {
2600 case WLAN_HT_ACTION_SMPS: {
2601 struct ieee80211_supported_band *sband;
2602 enum ieee80211_smps_mode smps_mode;
2603
2604 /* convert to HT capability */
2605 switch (mgmt->u.action.u.ht_smps.smps_control) {
2606 case WLAN_HT_SMPS_CONTROL_DISABLED:
2607 smps_mode = IEEE80211_SMPS_OFF;
2608 break;
2609 case WLAN_HT_SMPS_CONTROL_STATIC:
2610 smps_mode = IEEE80211_SMPS_STATIC;
2611 break;
2612 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2613 smps_mode = IEEE80211_SMPS_DYNAMIC;
2614 break;
2615 default:
2616 goto invalid;
2617 }
2618
2619 /* if no change do nothing */
2620 if (rx->sta->sta.smps_mode == smps_mode)
2621 goto handled;
2622 rx->sta->sta.smps_mode = smps_mode;
2623
2624 sband = rx->local->hw.wiphy->bands[status->band];
2625
2626 rate_control_rate_update(local, sband, rx->sta,
2627 IEEE80211_RC_SMPS_CHANGED);
2628 goto handled;
2629 }
2630 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2631 struct ieee80211_supported_band *sband;
2632 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2633 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2634
2635 /* If it doesn't support 40 MHz it can't change ... */
2636 if (!(rx->sta->sta.ht_cap.cap &
2637 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2638 goto handled;
2639
2640 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2641 max_bw = IEEE80211_STA_RX_BW_20;
2642 else
2643 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2644
2645 /* set cur_max_bandwidth and recalc sta bw */
2646 rx->sta->cur_max_bandwidth = max_bw;
2647 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2648
2649 if (rx->sta->sta.bandwidth == new_bw)
2650 goto handled;
2651
2652 rx->sta->sta.bandwidth = new_bw;
2653 sband = rx->local->hw.wiphy->bands[status->band];
2654
2655 rate_control_rate_update(local, sband, rx->sta,
2656 IEEE80211_RC_BW_CHANGED);
2657 goto handled;
2658 }
2659 default:
2660 goto invalid;
2661 }
2662
2663 break;
2664 case WLAN_CATEGORY_PUBLIC:
2665 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2666 goto invalid;
2667 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2668 break;
2669 if (!rx->sta)
2670 break;
2671 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2672 break;
2673 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2674 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2675 break;
2676 if (len < offsetof(struct ieee80211_mgmt,
2677 u.action.u.ext_chan_switch.variable))
2678 goto invalid;
2679 goto queue;
2680 case WLAN_CATEGORY_VHT:
2681 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2682 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2683 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2684 sdata->vif.type != NL80211_IFTYPE_AP &&
2685 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2686 break;
2687
2688 /* verify action code is present */
2689 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2690 goto invalid;
2691
2692 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2693 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2694 u8 opmode;
2695
2696 /* verify opmode is present */
2697 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2698 goto invalid;
2699
2700 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2701
2702 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2703 opmode, status->band,
2704 false);
2705 goto handled;
2706 }
2707 default:
2708 break;
2709 }
2710 break;
2711 case WLAN_CATEGORY_BACK:
2712 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2713 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2714 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2715 sdata->vif.type != NL80211_IFTYPE_AP &&
2716 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2717 break;
2718
2719 /* verify action_code is present */
2720 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2721 break;
2722
2723 switch (mgmt->u.action.u.addba_req.action_code) {
2724 case WLAN_ACTION_ADDBA_REQ:
2725 if (len < (IEEE80211_MIN_ACTION_SIZE +
2726 sizeof(mgmt->u.action.u.addba_req)))
2727 goto invalid;
2728 break;
2729 case WLAN_ACTION_ADDBA_RESP:
2730 if (len < (IEEE80211_MIN_ACTION_SIZE +
2731 sizeof(mgmt->u.action.u.addba_resp)))
2732 goto invalid;
2733 break;
2734 case WLAN_ACTION_DELBA:
2735 if (len < (IEEE80211_MIN_ACTION_SIZE +
2736 sizeof(mgmt->u.action.u.delba)))
2737 goto invalid;
2738 break;
2739 default:
2740 goto invalid;
2741 }
2742
2743 goto queue;
2744 case WLAN_CATEGORY_SPECTRUM_MGMT:
2745 /* verify action_code is present */
2746 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2747 break;
2748
2749 switch (mgmt->u.action.u.measurement.action_code) {
2750 case WLAN_ACTION_SPCT_MSR_REQ:
2751 if (status->band != IEEE80211_BAND_5GHZ)
2752 break;
2753
2754 if (len < (IEEE80211_MIN_ACTION_SIZE +
2755 sizeof(mgmt->u.action.u.measurement)))
2756 break;
2757
2758 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2759 break;
2760
2761 ieee80211_process_measurement_req(sdata, mgmt, len);
2762 goto handled;
2763 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2764 u8 *bssid;
2765 if (len < (IEEE80211_MIN_ACTION_SIZE +
2766 sizeof(mgmt->u.action.u.chan_switch)))
2767 break;
2768
2769 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2770 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2771 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2772 break;
2773
2774 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2775 bssid = sdata->u.mgd.bssid;
2776 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2777 bssid = sdata->u.ibss.bssid;
2778 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2779 bssid = mgmt->sa;
2780 else
2781 break;
2782
2783 if (!ether_addr_equal(mgmt->bssid, bssid))
2784 break;
2785
2786 goto queue;
2787 }
2788 }
2789 break;
2790 case WLAN_CATEGORY_SA_QUERY:
2791 if (len < (IEEE80211_MIN_ACTION_SIZE +
2792 sizeof(mgmt->u.action.u.sa_query)))
2793 break;
2794
2795 switch (mgmt->u.action.u.sa_query.action) {
2796 case WLAN_ACTION_SA_QUERY_REQUEST:
2797 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2798 break;
2799 ieee80211_process_sa_query_req(sdata, mgmt, len);
2800 goto handled;
2801 }
2802 break;
2803 case WLAN_CATEGORY_SELF_PROTECTED:
2804 if (len < (IEEE80211_MIN_ACTION_SIZE +
2805 sizeof(mgmt->u.action.u.self_prot.action_code)))
2806 break;
2807
2808 switch (mgmt->u.action.u.self_prot.action_code) {
2809 case WLAN_SP_MESH_PEERING_OPEN:
2810 case WLAN_SP_MESH_PEERING_CLOSE:
2811 case WLAN_SP_MESH_PEERING_CONFIRM:
2812 if (!ieee80211_vif_is_mesh(&sdata->vif))
2813 goto invalid;
2814 if (sdata->u.mesh.user_mpm)
2815 /* userspace handles this frame */
2816 break;
2817 goto queue;
2818 case WLAN_SP_MGK_INFORM:
2819 case WLAN_SP_MGK_ACK:
2820 if (!ieee80211_vif_is_mesh(&sdata->vif))
2821 goto invalid;
2822 break;
2823 }
2824 break;
2825 case WLAN_CATEGORY_MESH_ACTION:
2826 if (len < (IEEE80211_MIN_ACTION_SIZE +
2827 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2828 break;
2829
2830 if (!ieee80211_vif_is_mesh(&sdata->vif))
2831 break;
2832 if (mesh_action_is_path_sel(mgmt) &&
2833 !mesh_path_sel_is_hwmp(sdata))
2834 break;
2835 goto queue;
2836 }
2837
2838 return RX_CONTINUE;
2839
2840 invalid:
2841 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2842 /* will return in the next handlers */
2843 return RX_CONTINUE;
2844
2845 handled:
2846 if (rx->sta)
2847 rx->sta->rx_packets++;
2848 dev_kfree_skb(rx->skb);
2849 return RX_QUEUED;
2850
2851 queue:
2852 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2853 skb_queue_tail(&sdata->skb_queue, rx->skb);
2854 ieee80211_queue_work(&local->hw, &sdata->work);
2855 if (rx->sta)
2856 rx->sta->rx_packets++;
2857 return RX_QUEUED;
2858 }
2859
2860 static ieee80211_rx_result debug_noinline
2861 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2862 {
2863 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2864 int sig = 0;
2865
2866 /* skip known-bad action frames and return them in the next handler */
2867 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2868 return RX_CONTINUE;
2869
2870 /*
2871 * Getting here means the kernel doesn't know how to handle
2872 * it, but maybe userspace does ... include returned frames
2873 * so userspace can register for those to know whether ones
2874 * it transmitted were processed or returned.
2875 */
2876
2877 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2878 sig = status->signal;
2879
2880 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2881 rx->skb->data, rx->skb->len, 0)) {
2882 if (rx->sta)
2883 rx->sta->rx_packets++;
2884 dev_kfree_skb(rx->skb);
2885 return RX_QUEUED;
2886 }
2887
2888 return RX_CONTINUE;
2889 }
2890
2891 static ieee80211_rx_result debug_noinline
2892 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2893 {
2894 struct ieee80211_local *local = rx->local;
2895 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2896 struct sk_buff *nskb;
2897 struct ieee80211_sub_if_data *sdata = rx->sdata;
2898 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2899
2900 if (!ieee80211_is_action(mgmt->frame_control))
2901 return RX_CONTINUE;
2902
2903 /*
2904 * For AP mode, hostapd is responsible for handling any action
2905 * frames that we didn't handle, including returning unknown
2906 * ones. For all other modes we will return them to the sender,
2907 * setting the 0x80 bit in the action category, as required by
2908 * 802.11-2012 9.24.4.
2909 * Newer versions of hostapd shall also use the management frame
2910 * registration mechanisms, but older ones still use cooked
2911 * monitor interfaces so push all frames there.
2912 */
2913 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2914 (sdata->vif.type == NL80211_IFTYPE_AP ||
2915 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2916 return RX_DROP_MONITOR;
2917
2918 if (is_multicast_ether_addr(mgmt->da))
2919 return RX_DROP_MONITOR;
2920
2921 /* do not return rejected action frames */
2922 if (mgmt->u.action.category & 0x80)
2923 return RX_DROP_UNUSABLE;
2924
2925 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2926 GFP_ATOMIC);
2927 if (nskb) {
2928 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2929
2930 nmgmt->u.action.category |= 0x80;
2931 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2932 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2933
2934 memset(nskb->cb, 0, sizeof(nskb->cb));
2935
2936 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2937 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2938
2939 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2940 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2941 IEEE80211_TX_CTL_NO_CCK_RATE;
2942 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2943 info->hw_queue =
2944 local->hw.offchannel_tx_hw_queue;
2945 }
2946
2947 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2948 status->band);
2949 }
2950 dev_kfree_skb(rx->skb);
2951 return RX_QUEUED;
2952 }
2953
2954 static ieee80211_rx_result debug_noinline
2955 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2956 {
2957 struct ieee80211_sub_if_data *sdata = rx->sdata;
2958 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2959 __le16 stype;
2960
2961 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2962
2963 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2964 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2965 sdata->vif.type != NL80211_IFTYPE_OCB &&
2966 sdata->vif.type != NL80211_IFTYPE_STATION)
2967 return RX_DROP_MONITOR;
2968
2969 switch (stype) {
2970 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2971 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2972 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2973 /* process for all: mesh, mlme, ibss */
2974 break;
2975 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2976 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2977 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2978 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2979 if (is_multicast_ether_addr(mgmt->da) &&
2980 !is_broadcast_ether_addr(mgmt->da))
2981 return RX_DROP_MONITOR;
2982
2983 /* process only for station */
2984 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2985 return RX_DROP_MONITOR;
2986 break;
2987 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2988 /* process only for ibss and mesh */
2989 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2990 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2991 return RX_DROP_MONITOR;
2992 break;
2993 default:
2994 return RX_DROP_MONITOR;
2995 }
2996
2997 /* queue up frame and kick off work to process it */
2998 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2999 skb_queue_tail(&sdata->skb_queue, rx->skb);
3000 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3001 if (rx->sta)
3002 rx->sta->rx_packets++;
3003
3004 return RX_QUEUED;
3005 }
3006
3007 /* TODO: use IEEE80211_RX_FRAGMENTED */
3008 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3009 struct ieee80211_rate *rate)
3010 {
3011 struct ieee80211_sub_if_data *sdata;
3012 struct ieee80211_local *local = rx->local;
3013 struct sk_buff *skb = rx->skb, *skb2;
3014 struct net_device *prev_dev = NULL;
3015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3016 int needed_headroom;
3017
3018 /*
3019 * If cooked monitor has been processed already, then
3020 * don't do it again. If not, set the flag.
3021 */
3022 if (rx->flags & IEEE80211_RX_CMNTR)
3023 goto out_free_skb;
3024 rx->flags |= IEEE80211_RX_CMNTR;
3025
3026 /* If there are no cooked monitor interfaces, just free the SKB */
3027 if (!local->cooked_mntrs)
3028 goto out_free_skb;
3029
3030 /* vendor data is long removed here */
3031 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3032 /* room for the radiotap header based on driver features */
3033 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3034
3035 if (skb_headroom(skb) < needed_headroom &&
3036 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3037 goto out_free_skb;
3038
3039 /* prepend radiotap information */
3040 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3041 false);
3042
3043 skb_set_mac_header(skb, 0);
3044 skb->ip_summed = CHECKSUM_UNNECESSARY;
3045 skb->pkt_type = PACKET_OTHERHOST;
3046 skb->protocol = htons(ETH_P_802_2);
3047
3048 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3049 if (!ieee80211_sdata_running(sdata))
3050 continue;
3051
3052 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3053 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3054 continue;
3055
3056 if (prev_dev) {
3057 skb2 = skb_clone(skb, GFP_ATOMIC);
3058 if (skb2) {
3059 skb2->dev = prev_dev;
3060 netif_receive_skb(skb2);
3061 }
3062 }
3063
3064 prev_dev = sdata->dev;
3065 sdata->dev->stats.rx_packets++;
3066 sdata->dev->stats.rx_bytes += skb->len;
3067 }
3068
3069 if (prev_dev) {
3070 skb->dev = prev_dev;
3071 netif_receive_skb(skb);
3072 return;
3073 }
3074
3075 out_free_skb:
3076 dev_kfree_skb(skb);
3077 }
3078
3079 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3080 ieee80211_rx_result res)
3081 {
3082 switch (res) {
3083 case RX_DROP_MONITOR:
3084 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3085 if (rx->sta)
3086 rx->sta->rx_dropped++;
3087 /* fall through */
3088 case RX_CONTINUE: {
3089 struct ieee80211_rate *rate = NULL;
3090 struct ieee80211_supported_band *sband;
3091 struct ieee80211_rx_status *status;
3092
3093 status = IEEE80211_SKB_RXCB((rx->skb));
3094
3095 sband = rx->local->hw.wiphy->bands[status->band];
3096 if (!(status->flag & RX_FLAG_HT) &&
3097 !(status->flag & RX_FLAG_VHT))
3098 rate = &sband->bitrates[status->rate_idx];
3099
3100 ieee80211_rx_cooked_monitor(rx, rate);
3101 break;
3102 }
3103 case RX_DROP_UNUSABLE:
3104 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3105 if (rx->sta)
3106 rx->sta->rx_dropped++;
3107 dev_kfree_skb(rx->skb);
3108 break;
3109 case RX_QUEUED:
3110 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3111 break;
3112 }
3113 }
3114
3115 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3116 struct sk_buff_head *frames)
3117 {
3118 ieee80211_rx_result res = RX_DROP_MONITOR;
3119 struct sk_buff *skb;
3120
3121 #define CALL_RXH(rxh) \
3122 do { \
3123 res = rxh(rx); \
3124 if (res != RX_CONTINUE) \
3125 goto rxh_next; \
3126 } while (0);
3127
3128 spin_lock_bh(&rx->local->rx_path_lock);
3129
3130 while ((skb = __skb_dequeue(frames))) {
3131 /*
3132 * all the other fields are valid across frames
3133 * that belong to an aMPDU since they are on the
3134 * same TID from the same station
3135 */
3136 rx->skb = skb;
3137
3138 CALL_RXH(ieee80211_rx_h_check_more_data)
3139 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3140 CALL_RXH(ieee80211_rx_h_sta_process)
3141 CALL_RXH(ieee80211_rx_h_decrypt)
3142 CALL_RXH(ieee80211_rx_h_defragment)
3143 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3144 /* must be after MMIC verify so header is counted in MPDU mic */
3145 #ifdef CONFIG_MAC80211_MESH
3146 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3147 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3148 #endif
3149 CALL_RXH(ieee80211_rx_h_amsdu)
3150 CALL_RXH(ieee80211_rx_h_data)
3151
3152 /* special treatment -- needs the queue */
3153 res = ieee80211_rx_h_ctrl(rx, frames);
3154 if (res != RX_CONTINUE)
3155 goto rxh_next;
3156
3157 CALL_RXH(ieee80211_rx_h_mgmt_check)
3158 CALL_RXH(ieee80211_rx_h_action)
3159 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3160 CALL_RXH(ieee80211_rx_h_action_return)
3161 CALL_RXH(ieee80211_rx_h_mgmt)
3162
3163 rxh_next:
3164 ieee80211_rx_handlers_result(rx, res);
3165
3166 #undef CALL_RXH
3167 }
3168
3169 spin_unlock_bh(&rx->local->rx_path_lock);
3170 }
3171
3172 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3173 {
3174 struct sk_buff_head reorder_release;
3175 ieee80211_rx_result res = RX_DROP_MONITOR;
3176
3177 __skb_queue_head_init(&reorder_release);
3178
3179 #define CALL_RXH(rxh) \
3180 do { \
3181 res = rxh(rx); \
3182 if (res != RX_CONTINUE) \
3183 goto rxh_next; \
3184 } while (0);
3185
3186 CALL_RXH(ieee80211_rx_h_check_dup)
3187 CALL_RXH(ieee80211_rx_h_check)
3188
3189 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3190
3191 ieee80211_rx_handlers(rx, &reorder_release);
3192 return;
3193
3194 rxh_next:
3195 ieee80211_rx_handlers_result(rx, res);
3196
3197 #undef CALL_RXH
3198 }
3199
3200 /*
3201 * This function makes calls into the RX path, therefore
3202 * it has to be invoked under RCU read lock.
3203 */
3204 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3205 {
3206 struct sk_buff_head frames;
3207 struct ieee80211_rx_data rx = {
3208 .sta = sta,
3209 .sdata = sta->sdata,
3210 .local = sta->local,
3211 /* This is OK -- must be QoS data frame */
3212 .security_idx = tid,
3213 .seqno_idx = tid,
3214 .flags = 0,
3215 };
3216 struct tid_ampdu_rx *tid_agg_rx;
3217
3218 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3219 if (!tid_agg_rx)
3220 return;
3221
3222 __skb_queue_head_init(&frames);
3223
3224 spin_lock(&tid_agg_rx->reorder_lock);
3225 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3226 spin_unlock(&tid_agg_rx->reorder_lock);
3227
3228 ieee80211_rx_handlers(&rx, &frames);
3229 }
3230
3231 /* main receive path */
3232
3233 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3234 struct ieee80211_hdr *hdr)
3235 {
3236 struct ieee80211_sub_if_data *sdata = rx->sdata;
3237 struct sk_buff *skb = rx->skb;
3238 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3239 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3240 int multicast = is_multicast_ether_addr(hdr->addr1);
3241
3242 switch (sdata->vif.type) {
3243 case NL80211_IFTYPE_STATION:
3244 if (!bssid && !sdata->u.mgd.use_4addr)
3245 return false;
3246 if (!multicast &&
3247 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3248 if (!(sdata->dev->flags & IFF_PROMISC) ||
3249 sdata->u.mgd.use_4addr)
3250 return false;
3251 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3252 }
3253 break;
3254 case NL80211_IFTYPE_ADHOC:
3255 if (!bssid)
3256 return false;
3257 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3258 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3259 return false;
3260 if (ieee80211_is_beacon(hdr->frame_control)) {
3261 return true;
3262 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3263 return false;
3264 } else if (!multicast &&
3265 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3266 if (!(sdata->dev->flags & IFF_PROMISC))
3267 return false;
3268 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3269 } else if (!rx->sta) {
3270 int rate_idx;
3271 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3272 rate_idx = 0; /* TODO: HT/VHT rates */
3273 else
3274 rate_idx = status->rate_idx;
3275 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3276 BIT(rate_idx));
3277 }
3278 break;
3279 case NL80211_IFTYPE_OCB:
3280 if (!bssid)
3281 return false;
3282 if (ieee80211_is_beacon(hdr->frame_control)) {
3283 return false;
3284 } else if (!is_broadcast_ether_addr(bssid)) {
3285 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n");
3286 return false;
3287 } else if (!multicast &&
3288 !ether_addr_equal(sdata->dev->dev_addr,
3289 hdr->addr1)) {
3290 /* if we are in promisc mode we also accept
3291 * packets not destined for us
3292 */
3293 if (!(sdata->dev->flags & IFF_PROMISC))
3294 return false;
3295 rx->flags &= ~IEEE80211_RX_RA_MATCH;
3296 } else if (!rx->sta) {
3297 int rate_idx;
3298 if (status->flag & RX_FLAG_HT)
3299 rate_idx = 0; /* TODO: HT rates */
3300 else
3301 rate_idx = status->rate_idx;
3302 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3303 BIT(rate_idx));
3304 }
3305 break;
3306 case NL80211_IFTYPE_MESH_POINT:
3307 if (!multicast &&
3308 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3309 if (!(sdata->dev->flags & IFF_PROMISC))
3310 return false;
3311
3312 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3313 }
3314 break;
3315 case NL80211_IFTYPE_AP_VLAN:
3316 case NL80211_IFTYPE_AP:
3317 if (!bssid) {
3318 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3319 return false;
3320 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3321 /*
3322 * Accept public action frames even when the
3323 * BSSID doesn't match, this is used for P2P
3324 * and location updates. Note that mac80211
3325 * itself never looks at these frames.
3326 */
3327 if (!multicast &&
3328 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3329 return false;
3330 if (ieee80211_is_public_action(hdr, skb->len))
3331 return true;
3332 if (!ieee80211_is_beacon(hdr->frame_control))
3333 return false;
3334 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3335 } else if (!ieee80211_has_tods(hdr->frame_control)) {
3336 /* ignore data frames to TDLS-peers */
3337 if (ieee80211_is_data(hdr->frame_control))
3338 return false;
3339 /* ignore action frames to TDLS-peers */
3340 if (ieee80211_is_action(hdr->frame_control) &&
3341 !ether_addr_equal(bssid, hdr->addr1))
3342 return false;
3343 }
3344 break;
3345 case NL80211_IFTYPE_WDS:
3346 if (bssid || !ieee80211_is_data(hdr->frame_control))
3347 return false;
3348 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3349 return false;
3350 break;
3351 case NL80211_IFTYPE_P2P_DEVICE:
3352 if (!ieee80211_is_public_action(hdr, skb->len) &&
3353 !ieee80211_is_probe_req(hdr->frame_control) &&
3354 !ieee80211_is_probe_resp(hdr->frame_control) &&
3355 !ieee80211_is_beacon(hdr->frame_control))
3356 return false;
3357 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3358 !multicast)
3359 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3360 break;
3361 default:
3362 /* should never get here */
3363 WARN_ON_ONCE(1);
3364 break;
3365 }
3366
3367 return true;
3368 }
3369
3370 /*
3371 * This function returns whether or not the SKB
3372 * was destined for RX processing or not, which,
3373 * if consume is true, is equivalent to whether
3374 * or not the skb was consumed.
3375 */
3376 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3377 struct sk_buff *skb, bool consume)
3378 {
3379 struct ieee80211_local *local = rx->local;
3380 struct ieee80211_sub_if_data *sdata = rx->sdata;
3381 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3382 struct ieee80211_hdr *hdr = (void *)skb->data;
3383
3384 rx->skb = skb;
3385 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3386
3387 if (!prepare_for_handlers(rx, hdr))
3388 return false;
3389
3390 if (!consume) {
3391 skb = skb_copy(skb, GFP_ATOMIC);
3392 if (!skb) {
3393 if (net_ratelimit())
3394 wiphy_debug(local->hw.wiphy,
3395 "failed to copy skb for %s\n",
3396 sdata->name);
3397 return true;
3398 }
3399
3400 rx->skb = skb;
3401 }
3402
3403 ieee80211_invoke_rx_handlers(rx);
3404 return true;
3405 }
3406
3407 /*
3408 * This is the actual Rx frames handler. as it belongs to Rx path it must
3409 * be called with rcu_read_lock protection.
3410 */
3411 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3412 struct sk_buff *skb)
3413 {
3414 struct ieee80211_local *local = hw_to_local(hw);
3415 struct ieee80211_sub_if_data *sdata;
3416 struct ieee80211_hdr *hdr;
3417 __le16 fc;
3418 struct ieee80211_rx_data rx;
3419 struct ieee80211_sub_if_data *prev;
3420 struct sta_info *sta, *tmp, *prev_sta;
3421 int err = 0;
3422
3423 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3424 memset(&rx, 0, sizeof(rx));
3425 rx.skb = skb;
3426 rx.local = local;
3427
3428 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3429 local->dot11ReceivedFragmentCount++;
3430
3431 if (ieee80211_is_mgmt(fc)) {
3432 /* drop frame if too short for header */
3433 if (skb->len < ieee80211_hdrlen(fc))
3434 err = -ENOBUFS;
3435 else
3436 err = skb_linearize(skb);
3437 } else {
3438 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3439 }
3440
3441 if (err) {
3442 dev_kfree_skb(skb);
3443 return;
3444 }
3445
3446 hdr = (struct ieee80211_hdr *)skb->data;
3447 ieee80211_parse_qos(&rx);
3448 ieee80211_verify_alignment(&rx);
3449
3450 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3451 ieee80211_is_beacon(hdr->frame_control)))
3452 ieee80211_scan_rx(local, skb);
3453
3454 if (ieee80211_is_data(fc)) {
3455 prev_sta = NULL;
3456
3457 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3458 if (!prev_sta) {
3459 prev_sta = sta;
3460 continue;
3461 }
3462
3463 rx.sta = prev_sta;
3464 rx.sdata = prev_sta->sdata;
3465 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3466
3467 prev_sta = sta;
3468 }
3469
3470 if (prev_sta) {
3471 rx.sta = prev_sta;
3472 rx.sdata = prev_sta->sdata;
3473
3474 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3475 return;
3476 goto out;
3477 }
3478 }
3479
3480 prev = NULL;
3481
3482 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3483 if (!ieee80211_sdata_running(sdata))
3484 continue;
3485
3486 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3487 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3488 continue;
3489
3490 /*
3491 * frame is destined for this interface, but if it's
3492 * not also for the previous one we handle that after
3493 * the loop to avoid copying the SKB once too much
3494 */
3495
3496 if (!prev) {
3497 prev = sdata;
3498 continue;
3499 }
3500
3501 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3502 rx.sdata = prev;
3503 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3504
3505 prev = sdata;
3506 }
3507
3508 if (prev) {
3509 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3510 rx.sdata = prev;
3511
3512 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3513 return;
3514 }
3515
3516 out:
3517 dev_kfree_skb(skb);
3518 }
3519
3520 /*
3521 * This is the receive path handler. It is called by a low level driver when an
3522 * 802.11 MPDU is received from the hardware.
3523 */
3524 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3525 {
3526 struct ieee80211_local *local = hw_to_local(hw);
3527 struct ieee80211_rate *rate = NULL;
3528 struct ieee80211_supported_band *sband;
3529 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3530
3531 WARN_ON_ONCE(softirq_count() == 0);
3532
3533 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3534 goto drop;
3535
3536 sband = local->hw.wiphy->bands[status->band];
3537 if (WARN_ON(!sband))
3538 goto drop;
3539
3540 /*
3541 * If we're suspending, it is possible although not too likely
3542 * that we'd be receiving frames after having already partially
3543 * quiesced the stack. We can't process such frames then since
3544 * that might, for example, cause stations to be added or other
3545 * driver callbacks be invoked.
3546 */
3547 if (unlikely(local->quiescing || local->suspended))
3548 goto drop;
3549
3550 /* We might be during a HW reconfig, prevent Rx for the same reason */
3551 if (unlikely(local->in_reconfig))
3552 goto drop;
3553
3554 /*
3555 * The same happens when we're not even started,
3556 * but that's worth a warning.
3557 */
3558 if (WARN_ON(!local->started))
3559 goto drop;
3560
3561 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3562 /*
3563 * Validate the rate, unless a PLCP error means that
3564 * we probably can't have a valid rate here anyway.
3565 */
3566
3567 if (status->flag & RX_FLAG_HT) {
3568 /*
3569 * rate_idx is MCS index, which can be [0-76]
3570 * as documented on:
3571 *
3572 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3573 *
3574 * Anything else would be some sort of driver or
3575 * hardware error. The driver should catch hardware
3576 * errors.
3577 */
3578 if (WARN(status->rate_idx > 76,
3579 "Rate marked as an HT rate but passed "
3580 "status->rate_idx is not "
3581 "an MCS index [0-76]: %d (0x%02x)\n",
3582 status->rate_idx,
3583 status->rate_idx))
3584 goto drop;
3585 } else if (status->flag & RX_FLAG_VHT) {
3586 if (WARN_ONCE(status->rate_idx > 9 ||
3587 !status->vht_nss ||
3588 status->vht_nss > 8,
3589 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3590 status->rate_idx, status->vht_nss))
3591 goto drop;
3592 } else {
3593 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3594 goto drop;
3595 rate = &sband->bitrates[status->rate_idx];
3596 }
3597 }
3598
3599 status->rx_flags = 0;
3600
3601 /*
3602 * key references and virtual interfaces are protected using RCU
3603 * and this requires that we are in a read-side RCU section during
3604 * receive processing
3605 */
3606 rcu_read_lock();
3607
3608 /*
3609 * Frames with failed FCS/PLCP checksum are not returned,
3610 * all other frames are returned without radiotap header
3611 * if it was previously present.
3612 * Also, frames with less than 16 bytes are dropped.
3613 */
3614 skb = ieee80211_rx_monitor(local, skb, rate);
3615 if (!skb) {
3616 rcu_read_unlock();
3617 return;
3618 }
3619
3620 ieee80211_tpt_led_trig_rx(local,
3621 ((struct ieee80211_hdr *)skb->data)->frame_control,
3622 skb->len);
3623 __ieee80211_rx_handle_packet(hw, skb);
3624
3625 rcu_read_unlock();
3626
3627 return;
3628 drop:
3629 kfree_skb(skb);
3630 }
3631 EXPORT_SYMBOL(ieee80211_rx);
3632
3633 /* This is a version of the rx handler that can be called from hard irq
3634 * context. Post the skb on the queue and schedule the tasklet */
3635 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3636 {
3637 struct ieee80211_local *local = hw_to_local(hw);
3638
3639 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3640
3641 skb->pkt_type = IEEE80211_RX_MSG;
3642 skb_queue_tail(&local->skb_queue, skb);
3643 tasklet_schedule(&local->tasklet);
3644 }
3645 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.106731 seconds and 5 git commands to generate.