mac80211: fix alignment warning
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/skbuff.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/rcupdate.h>
17 #include <net/mac80211.h>
18 #include <net/ieee80211_radiotap.h>
19
20 #include "ieee80211_i.h"
21 #include "ieee80211_led.h"
22 #include "wep.h"
23 #include "wpa.h"
24 #include "tkip.h"
25 #include "wme.h"
26
27 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
28 struct tid_ampdu_rx *tid_agg_rx,
29 struct sk_buff *skb, u16 mpdu_seq_num,
30 int bar_req);
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb,
39 int rtap_len)
40 {
41 skb_pull(skb, rtap_len);
42
43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 if (likely(skb->len > FCS_LEN))
45 skb_trim(skb, skb->len - FCS_LEN);
46 else {
47 /* driver bug */
48 WARN_ON(1);
49 dev_kfree_skb(skb);
50 skb = NULL;
51 }
52 }
53
54 return skb;
55 }
56
57 static inline int should_drop_frame(struct ieee80211_rx_status *status,
58 struct sk_buff *skb,
59 int present_fcs_len,
60 int radiotap_len)
61 {
62 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
63
64 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
65 return 1;
66 if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
67 return 1;
68 if (((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
69 cpu_to_le16(IEEE80211_FTYPE_CTL)) &&
70 ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
71 cpu_to_le16(IEEE80211_STYPE_PSPOLL)) &&
72 ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
73 cpu_to_le16(IEEE80211_STYPE_BACK_REQ)))
74 return 1;
75 return 0;
76 }
77
78 /*
79 * This function copies a received frame to all monitor interfaces and
80 * returns a cleaned-up SKB that no longer includes the FCS nor the
81 * radiotap header the driver might have added.
82 */
83 static struct sk_buff *
84 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
85 struct ieee80211_rx_status *status)
86 {
87 struct ieee80211_sub_if_data *sdata;
88 struct ieee80211_rate *rate;
89 int needed_headroom = 0;
90 struct ieee80211_radiotap_header *rthdr;
91 __le64 *rttsft = NULL;
92 struct ieee80211_rtap_fixed_data {
93 u8 flags;
94 u8 rate;
95 __le16 chan_freq;
96 __le16 chan_flags;
97 u8 antsignal;
98 u8 padding_for_rxflags;
99 __le16 rx_flags;
100 } __attribute__ ((packed)) *rtfixed;
101 struct sk_buff *skb, *skb2;
102 struct net_device *prev_dev = NULL;
103 int present_fcs_len = 0;
104 int rtap_len = 0;
105
106 /*
107 * First, we may need to make a copy of the skb because
108 * (1) we need to modify it for radiotap (if not present), and
109 * (2) the other RX handlers will modify the skb we got.
110 *
111 * We don't need to, of course, if we aren't going to return
112 * the SKB because it has a bad FCS/PLCP checksum.
113 */
114 if (status->flag & RX_FLAG_RADIOTAP)
115 rtap_len = ieee80211_get_radiotap_len(origskb->data);
116 else
117 /* room for radiotap header, always present fields and TSFT */
118 needed_headroom = sizeof(*rthdr) + sizeof(*rtfixed) + 8;
119
120 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
121 present_fcs_len = FCS_LEN;
122
123 if (!local->monitors) {
124 if (should_drop_frame(status, origskb, present_fcs_len,
125 rtap_len)) {
126 dev_kfree_skb(origskb);
127 return NULL;
128 }
129
130 return remove_monitor_info(local, origskb, rtap_len);
131 }
132
133 if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
134 /* only need to expand headroom if necessary */
135 skb = origskb;
136 origskb = NULL;
137
138 /*
139 * This shouldn't trigger often because most devices have an
140 * RX header they pull before we get here, and that should
141 * be big enough for our radiotap information. We should
142 * probably export the length to drivers so that we can have
143 * them allocate enough headroom to start with.
144 */
145 if (skb_headroom(skb) < needed_headroom &&
146 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
147 dev_kfree_skb(skb);
148 return NULL;
149 }
150 } else {
151 /*
152 * Need to make a copy and possibly remove radiotap header
153 * and FCS from the original.
154 */
155 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
156
157 origskb = remove_monitor_info(local, origskb, rtap_len);
158
159 if (!skb)
160 return origskb;
161 }
162
163 /* if necessary, prepend radiotap information */
164 if (!(status->flag & RX_FLAG_RADIOTAP)) {
165 rtfixed = (void *) skb_push(skb, sizeof(*rtfixed));
166 rtap_len = sizeof(*rthdr) + sizeof(*rtfixed);
167 if (status->flag & RX_FLAG_TSFT) {
168 rttsft = (void *) skb_push(skb, sizeof(*rttsft));
169 rtap_len += 8;
170 }
171 rthdr = (void *) skb_push(skb, sizeof(*rthdr));
172 memset(rthdr, 0, sizeof(*rthdr));
173 memset(rtfixed, 0, sizeof(*rtfixed));
174 rthdr->it_present =
175 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
176 (1 << IEEE80211_RADIOTAP_RATE) |
177 (1 << IEEE80211_RADIOTAP_CHANNEL) |
178 (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) |
179 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
180 rtfixed->flags = 0;
181 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
182 rtfixed->flags |= IEEE80211_RADIOTAP_F_FCS;
183
184 if (rttsft) {
185 *rttsft = cpu_to_le64(status->mactime);
186 rthdr->it_present |=
187 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
188 }
189
190 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
191 rtfixed->rx_flags = 0;
192 if (status->flag &
193 (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
194 rtfixed->rx_flags |=
195 cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
196
197 rate = ieee80211_get_rate(local, status->phymode,
198 status->rate);
199 if (rate)
200 rtfixed->rate = rate->rate / 5;
201
202 rtfixed->chan_freq = cpu_to_le16(status->freq);
203
204 if (status->phymode == MODE_IEEE80211A)
205 rtfixed->chan_flags =
206 cpu_to_le16(IEEE80211_CHAN_OFDM |
207 IEEE80211_CHAN_5GHZ);
208 else
209 rtfixed->chan_flags =
210 cpu_to_le16(IEEE80211_CHAN_DYN |
211 IEEE80211_CHAN_2GHZ);
212
213 rtfixed->antsignal = status->ssi;
214 rthdr->it_len = cpu_to_le16(rtap_len);
215 }
216
217 skb_reset_mac_header(skb);
218 skb->ip_summed = CHECKSUM_UNNECESSARY;
219 skb->pkt_type = PACKET_OTHERHOST;
220 skb->protocol = htons(ETH_P_802_2);
221
222 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
223 if (!netif_running(sdata->dev))
224 continue;
225
226 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
227 continue;
228
229 if (prev_dev) {
230 skb2 = skb_clone(skb, GFP_ATOMIC);
231 if (skb2) {
232 skb2->dev = prev_dev;
233 netif_rx(skb2);
234 }
235 }
236
237 prev_dev = sdata->dev;
238 sdata->dev->stats.rx_packets++;
239 sdata->dev->stats.rx_bytes += skb->len;
240 }
241
242 if (prev_dev) {
243 skb->dev = prev_dev;
244 netif_rx(skb);
245 } else
246 dev_kfree_skb(skb);
247
248 return origskb;
249 }
250
251
252 /* pre-rx handlers
253 *
254 * these don't have dev/sdata fields in the rx data
255 * The sta value should also not be used because it may
256 * be NULL even though a STA (in IBSS mode) will be added.
257 */
258
259 static ieee80211_txrx_result
260 ieee80211_rx_h_parse_qos(struct ieee80211_txrx_data *rx)
261 {
262 u8 *data = rx->skb->data;
263 int tid;
264
265 /* does the frame have a qos control field? */
266 if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
267 u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
268 /* frame has qos control */
269 tid = qc[0] & QOS_CONTROL_TID_MASK;
270 if (qc[0] & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
271 rx->flags |= IEEE80211_TXRXD_RX_AMSDU;
272 else
273 rx->flags &= ~IEEE80211_TXRXD_RX_AMSDU;
274 } else {
275 if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
276 /* Separate TID for management frames */
277 tid = NUM_RX_DATA_QUEUES - 1;
278 } else {
279 /* no qos control present */
280 tid = 0; /* 802.1d - Best Effort */
281 }
282 }
283
284 I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
285 /* only a debug counter, sta might not be assigned properly yet */
286 if (rx->sta)
287 I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
288
289 rx->u.rx.queue = tid;
290 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
291 * For now, set skb->priority to 0 for other cases. */
292 rx->skb->priority = (tid > 7) ? 0 : tid;
293
294 return TXRX_CONTINUE;
295 }
296
297
298 static u32 ieee80211_rx_load_stats(struct ieee80211_local *local,
299 struct sk_buff *skb,
300 struct ieee80211_rx_status *status)
301 {
302 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
303 u32 load = 0, hdrtime;
304 struct ieee80211_rate *rate;
305 struct ieee80211_hw_mode *mode = local->hw.conf.mode;
306 int i;
307
308 /* Estimate total channel use caused by this frame */
309
310 if (unlikely(mode->num_rates < 0))
311 return TXRX_CONTINUE;
312
313 rate = &mode->rates[0];
314 for (i = 0; i < mode->num_rates; i++) {
315 if (mode->rates[i].val == status->rate) {
316 rate = &mode->rates[i];
317 break;
318 }
319 }
320
321 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
322 * 1 usec = 1/8 * (1080 / 10) = 13.5 */
323
324 if (mode->mode == MODE_IEEE80211A ||
325 (mode->mode == MODE_IEEE80211G &&
326 rate->flags & IEEE80211_RATE_ERP))
327 hdrtime = CHAN_UTIL_HDR_SHORT;
328 else
329 hdrtime = CHAN_UTIL_HDR_LONG;
330
331 load = hdrtime;
332 if (!is_multicast_ether_addr(hdr->addr1))
333 load += hdrtime;
334
335 load += skb->len * rate->rate_inv;
336
337 /* Divide channel_use by 8 to avoid wrapping around the counter */
338 load >>= CHAN_UTIL_SHIFT;
339
340 return load;
341 }
342
343 static ieee80211_txrx_result
344 ieee80211_rx_h_verify_ip_alignment(struct ieee80211_txrx_data *rx)
345 {
346 int hdrlen;
347
348 /*
349 * Drivers are required to align the payload data in a way that
350 * guarantees that the contained IP header is aligned to a four-
351 * byte boundary. In the case of regular frames, this simply means
352 * aligning the payload to a four-byte boundary (because either
353 * the IP header is directly contained, or IV/RFC1042 headers that
354 * have a length divisible by four are in front of it.
355 *
356 * With A-MSDU frames, however, the payload data address must
357 * yield two modulo four because there are 14-byte 802.3 headers
358 * within the A-MSDU frames that push the IP header further back
359 * to a multiple of four again. Thankfully, the specs were sane
360 * enough this time around to require padding each A-MSDU subframe
361 * to a length that is a multiple of four.
362 *
363 * Padding like atheros hardware adds which is inbetween the 802.11
364 * header and the payload is not supported, the driver is required
365 * to move the 802.11 header further back in that case.
366 */
367 hdrlen = ieee80211_get_hdrlen(rx->fc);
368 if (rx->flags & IEEE80211_TXRXD_RX_AMSDU)
369 hdrlen += ETH_HLEN;
370 WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
371
372 return TXRX_CONTINUE;
373 }
374
375 ieee80211_rx_handler ieee80211_rx_pre_handlers[] =
376 {
377 ieee80211_rx_h_parse_qos,
378 ieee80211_rx_h_verify_ip_alignment,
379 NULL
380 };
381
382 /* rx handlers */
383
384 static ieee80211_txrx_result
385 ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
386 {
387 if (rx->sta)
388 rx->sta->channel_use_raw += rx->u.rx.load;
389 rx->sdata->channel_use_raw += rx->u.rx.load;
390 return TXRX_CONTINUE;
391 }
392
393 static ieee80211_txrx_result
394 ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
395 {
396 struct ieee80211_local *local = rx->local;
397 struct sk_buff *skb = rx->skb;
398
399 if (unlikely(local->sta_hw_scanning))
400 return ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
401
402 if (unlikely(local->sta_sw_scanning)) {
403 /* drop all the other packets during a software scan anyway */
404 if (ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status)
405 != TXRX_QUEUED)
406 dev_kfree_skb(skb);
407 return TXRX_QUEUED;
408 }
409
410 if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) {
411 /* scanning finished during invoking of handlers */
412 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
413 return TXRX_DROP;
414 }
415
416 return TXRX_CONTINUE;
417 }
418
419 static ieee80211_txrx_result
420 ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
421 {
422 struct ieee80211_hdr *hdr;
423 hdr = (struct ieee80211_hdr *) rx->skb->data;
424
425 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
426 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
427 if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
428 rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
429 hdr->seq_ctrl)) {
430 if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) {
431 rx->local->dot11FrameDuplicateCount++;
432 rx->sta->num_duplicates++;
433 }
434 return TXRX_DROP;
435 } else
436 rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
437 }
438
439 if (unlikely(rx->skb->len < 16)) {
440 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
441 return TXRX_DROP;
442 }
443
444 /* Drop disallowed frame classes based on STA auth/assoc state;
445 * IEEE 802.11, Chap 5.5.
446 *
447 * 80211.o does filtering only based on association state, i.e., it
448 * drops Class 3 frames from not associated stations. hostapd sends
449 * deauth/disassoc frames when needed. In addition, hostapd is
450 * responsible for filtering on both auth and assoc states.
451 */
452 if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
453 ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
454 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
455 rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
456 (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
457 if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
458 !(rx->fc & IEEE80211_FCTL_TODS) &&
459 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
460 || !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
461 /* Drop IBSS frames and frames for other hosts
462 * silently. */
463 return TXRX_DROP;
464 }
465
466 return TXRX_DROP;
467 }
468
469 return TXRX_CONTINUE;
470 }
471
472
473 static ieee80211_txrx_result
474 ieee80211_rx_h_decrypt(struct ieee80211_txrx_data *rx)
475 {
476 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
477 int keyidx;
478 int hdrlen;
479 ieee80211_txrx_result result = TXRX_DROP;
480 struct ieee80211_key *stakey = NULL;
481
482 /*
483 * Key selection 101
484 *
485 * There are three types of keys:
486 * - GTK (group keys)
487 * - PTK (pairwise keys)
488 * - STK (station-to-station pairwise keys)
489 *
490 * When selecting a key, we have to distinguish between multicast
491 * (including broadcast) and unicast frames, the latter can only
492 * use PTKs and STKs while the former always use GTKs. Unless, of
493 * course, actual WEP keys ("pre-RSNA") are used, then unicast
494 * frames can also use key indizes like GTKs. Hence, if we don't
495 * have a PTK/STK we check the key index for a WEP key.
496 *
497 * Note that in a regular BSS, multicast frames are sent by the
498 * AP only, associated stations unicast the frame to the AP first
499 * which then multicasts it on their behalf.
500 *
501 * There is also a slight problem in IBSS mode: GTKs are negotiated
502 * with each station, that is something we don't currently handle.
503 * The spec seems to expect that one negotiates the same key with
504 * every station but there's no such requirement; VLANs could be
505 * possible.
506 */
507
508 if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
509 return TXRX_CONTINUE;
510
511 /*
512 * No point in finding a key and decrypting if the frame is neither
513 * addressed to us nor a multicast frame.
514 */
515 if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
516 return TXRX_CONTINUE;
517
518 if (rx->sta)
519 stakey = rcu_dereference(rx->sta->key);
520
521 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
522 rx->key = stakey;
523 } else {
524 /*
525 * The device doesn't give us the IV so we won't be
526 * able to look up the key. That's ok though, we
527 * don't need to decrypt the frame, we just won't
528 * be able to keep statistics accurate.
529 * Except for key threshold notifications, should
530 * we somehow allow the driver to tell us which key
531 * the hardware used if this flag is set?
532 */
533 if ((rx->u.rx.status->flag & RX_FLAG_DECRYPTED) &&
534 (rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED))
535 return TXRX_CONTINUE;
536
537 hdrlen = ieee80211_get_hdrlen(rx->fc);
538
539 if (rx->skb->len < 8 + hdrlen)
540 return TXRX_DROP; /* TODO: count this? */
541
542 /*
543 * no need to call ieee80211_wep_get_keyidx,
544 * it verifies a bunch of things we've done already
545 */
546 keyidx = rx->skb->data[hdrlen + 3] >> 6;
547
548 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
549
550 /*
551 * RSNA-protected unicast frames should always be sent with
552 * pairwise or station-to-station keys, but for WEP we allow
553 * using a key index as well.
554 */
555 if (rx->key && rx->key->conf.alg != ALG_WEP &&
556 !is_multicast_ether_addr(hdr->addr1))
557 rx->key = NULL;
558 }
559
560 if (rx->key) {
561 rx->key->tx_rx_count++;
562 /* TODO: add threshold stuff again */
563 } else {
564 #ifdef CONFIG_MAC80211_DEBUG
565 if (net_ratelimit())
566 printk(KERN_DEBUG "%s: RX protected frame,"
567 " but have no key\n", rx->dev->name);
568 #endif /* CONFIG_MAC80211_DEBUG */
569 return TXRX_DROP;
570 }
571
572 /* Check for weak IVs if possible */
573 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
574 ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
575 (!(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED) ||
576 !(rx->u.rx.status->flag & RX_FLAG_DECRYPTED)) &&
577 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
578 rx->sta->wep_weak_iv_count++;
579
580 switch (rx->key->conf.alg) {
581 case ALG_WEP:
582 result = ieee80211_crypto_wep_decrypt(rx);
583 break;
584 case ALG_TKIP:
585 result = ieee80211_crypto_tkip_decrypt(rx);
586 break;
587 case ALG_CCMP:
588 result = ieee80211_crypto_ccmp_decrypt(rx);
589 break;
590 }
591
592 /* either the frame has been decrypted or will be dropped */
593 rx->u.rx.status->flag |= RX_FLAG_DECRYPTED;
594
595 return result;
596 }
597
598 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
599 {
600 struct ieee80211_sub_if_data *sdata;
601 DECLARE_MAC_BUF(mac);
602
603 sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
604
605 if (sdata->bss)
606 atomic_inc(&sdata->bss->num_sta_ps);
607 sta->flags |= WLAN_STA_PS;
608 sta->pspoll = 0;
609 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
610 printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
611 dev->name, print_mac(mac, sta->addr), sta->aid);
612 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
613 }
614
615 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
616 {
617 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
618 struct sk_buff *skb;
619 int sent = 0;
620 struct ieee80211_sub_if_data *sdata;
621 struct ieee80211_tx_packet_data *pkt_data;
622 DECLARE_MAC_BUF(mac);
623
624 sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
625 if (sdata->bss)
626 atomic_dec(&sdata->bss->num_sta_ps);
627 sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
628 sta->pspoll = 0;
629 if (!skb_queue_empty(&sta->ps_tx_buf)) {
630 if (local->ops->set_tim)
631 local->ops->set_tim(local_to_hw(local), sta->aid, 0);
632 if (sdata->bss)
633 bss_tim_clear(local, sdata->bss, sta->aid);
634 }
635 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
636 printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
637 dev->name, print_mac(mac, sta->addr), sta->aid);
638 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
639 /* Send all buffered frames to the station */
640 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
641 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
642 sent++;
643 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
644 dev_queue_xmit(skb);
645 }
646 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
647 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
648 local->total_ps_buffered--;
649 sent++;
650 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
651 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
652 "since STA not sleeping anymore\n", dev->name,
653 print_mac(mac, sta->addr), sta->aid);
654 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
655 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
656 dev_queue_xmit(skb);
657 }
658
659 return sent;
660 }
661
662 static ieee80211_txrx_result
663 ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
664 {
665 struct sta_info *sta = rx->sta;
666 struct net_device *dev = rx->dev;
667 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
668
669 if (!sta)
670 return TXRX_CONTINUE;
671
672 /* Update last_rx only for IBSS packets which are for the current
673 * BSSID to avoid keeping the current IBSS network alive in cases where
674 * other STAs are using different BSSID. */
675 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
676 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
677 IEEE80211_IF_TYPE_IBSS);
678 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
679 sta->last_rx = jiffies;
680 } else
681 if (!is_multicast_ether_addr(hdr->addr1) ||
682 rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
683 /* Update last_rx only for unicast frames in order to prevent
684 * the Probe Request frames (the only broadcast frames from a
685 * STA in infrastructure mode) from keeping a connection alive.
686 */
687 sta->last_rx = jiffies;
688 }
689
690 if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
691 return TXRX_CONTINUE;
692
693 sta->rx_fragments++;
694 sta->rx_bytes += rx->skb->len;
695 sta->last_rssi = rx->u.rx.status->ssi;
696 sta->last_signal = rx->u.rx.status->signal;
697 sta->last_noise = rx->u.rx.status->noise;
698
699 if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
700 /* Change STA power saving mode only in the end of a frame
701 * exchange sequence */
702 if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
703 rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
704 else if (!(sta->flags & WLAN_STA_PS) &&
705 (rx->fc & IEEE80211_FCTL_PM))
706 ap_sta_ps_start(dev, sta);
707 }
708
709 /* Drop data::nullfunc frames silently, since they are used only to
710 * control station power saving mode. */
711 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
712 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
713 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
714 /* Update counter and free packet here to avoid counting this
715 * as a dropped packed. */
716 sta->rx_packets++;
717 dev_kfree_skb(rx->skb);
718 return TXRX_QUEUED;
719 }
720
721 return TXRX_CONTINUE;
722 } /* ieee80211_rx_h_sta_process */
723
724 static inline struct ieee80211_fragment_entry *
725 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
726 unsigned int frag, unsigned int seq, int rx_queue,
727 struct sk_buff **skb)
728 {
729 struct ieee80211_fragment_entry *entry;
730 int idx;
731
732 idx = sdata->fragment_next;
733 entry = &sdata->fragments[sdata->fragment_next++];
734 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
735 sdata->fragment_next = 0;
736
737 if (!skb_queue_empty(&entry->skb_list)) {
738 #ifdef CONFIG_MAC80211_DEBUG
739 struct ieee80211_hdr *hdr =
740 (struct ieee80211_hdr *) entry->skb_list.next->data;
741 DECLARE_MAC_BUF(mac);
742 DECLARE_MAC_BUF(mac2);
743 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
744 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
745 "addr1=%s addr2=%s\n",
746 sdata->dev->name, idx,
747 jiffies - entry->first_frag_time, entry->seq,
748 entry->last_frag, print_mac(mac, hdr->addr1),
749 print_mac(mac2, hdr->addr2));
750 #endif /* CONFIG_MAC80211_DEBUG */
751 __skb_queue_purge(&entry->skb_list);
752 }
753
754 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
755 *skb = NULL;
756 entry->first_frag_time = jiffies;
757 entry->seq = seq;
758 entry->rx_queue = rx_queue;
759 entry->last_frag = frag;
760 entry->ccmp = 0;
761 entry->extra_len = 0;
762
763 return entry;
764 }
765
766 static inline struct ieee80211_fragment_entry *
767 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
768 u16 fc, unsigned int frag, unsigned int seq,
769 int rx_queue, struct ieee80211_hdr *hdr)
770 {
771 struct ieee80211_fragment_entry *entry;
772 int i, idx;
773
774 idx = sdata->fragment_next;
775 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
776 struct ieee80211_hdr *f_hdr;
777 u16 f_fc;
778
779 idx--;
780 if (idx < 0)
781 idx = IEEE80211_FRAGMENT_MAX - 1;
782
783 entry = &sdata->fragments[idx];
784 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
785 entry->rx_queue != rx_queue ||
786 entry->last_frag + 1 != frag)
787 continue;
788
789 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
790 f_fc = le16_to_cpu(f_hdr->frame_control);
791
792 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
793 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
794 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
795 continue;
796
797 if (entry->first_frag_time + 2 * HZ < jiffies) {
798 __skb_queue_purge(&entry->skb_list);
799 continue;
800 }
801 return entry;
802 }
803
804 return NULL;
805 }
806
807 static ieee80211_txrx_result
808 ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
809 {
810 struct ieee80211_hdr *hdr;
811 u16 sc;
812 unsigned int frag, seq;
813 struct ieee80211_fragment_entry *entry;
814 struct sk_buff *skb;
815 DECLARE_MAC_BUF(mac);
816
817 hdr = (struct ieee80211_hdr *) rx->skb->data;
818 sc = le16_to_cpu(hdr->seq_ctrl);
819 frag = sc & IEEE80211_SCTL_FRAG;
820
821 if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
822 (rx->skb)->len < 24 ||
823 is_multicast_ether_addr(hdr->addr1))) {
824 /* not fragmented */
825 goto out;
826 }
827 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
828
829 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
830
831 if (frag == 0) {
832 /* This is the first fragment of a new frame. */
833 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
834 rx->u.rx.queue, &(rx->skb));
835 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
836 (rx->fc & IEEE80211_FCTL_PROTECTED)) {
837 /* Store CCMP PN so that we can verify that the next
838 * fragment has a sequential PN value. */
839 entry->ccmp = 1;
840 memcpy(entry->last_pn,
841 rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
842 CCMP_PN_LEN);
843 }
844 return TXRX_QUEUED;
845 }
846
847 /* This is a fragment for a frame that should already be pending in
848 * fragment cache. Add this fragment to the end of the pending entry.
849 */
850 entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
851 rx->u.rx.queue, hdr);
852 if (!entry) {
853 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
854 return TXRX_DROP;
855 }
856
857 /* Verify that MPDUs within one MSDU have sequential PN values.
858 * (IEEE 802.11i, 8.3.3.4.5) */
859 if (entry->ccmp) {
860 int i;
861 u8 pn[CCMP_PN_LEN], *rpn;
862 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
863 return TXRX_DROP;
864 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
865 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
866 pn[i]++;
867 if (pn[i])
868 break;
869 }
870 rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
871 if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
872 if (net_ratelimit())
873 printk(KERN_DEBUG "%s: defrag: CCMP PN not "
874 "sequential A2=%s"
875 " PN=%02x%02x%02x%02x%02x%02x "
876 "(expected %02x%02x%02x%02x%02x%02x)\n",
877 rx->dev->name, print_mac(mac, hdr->addr2),
878 rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
879 rpn[5], pn[0], pn[1], pn[2], pn[3],
880 pn[4], pn[5]);
881 return TXRX_DROP;
882 }
883 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
884 }
885
886 skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
887 __skb_queue_tail(&entry->skb_list, rx->skb);
888 entry->last_frag = frag;
889 entry->extra_len += rx->skb->len;
890 if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
891 rx->skb = NULL;
892 return TXRX_QUEUED;
893 }
894
895 rx->skb = __skb_dequeue(&entry->skb_list);
896 if (skb_tailroom(rx->skb) < entry->extra_len) {
897 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
898 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
899 GFP_ATOMIC))) {
900 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
901 __skb_queue_purge(&entry->skb_list);
902 return TXRX_DROP;
903 }
904 }
905 while ((skb = __skb_dequeue(&entry->skb_list))) {
906 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
907 dev_kfree_skb(skb);
908 }
909
910 /* Complete frame has been reassembled - process it now */
911 rx->flags |= IEEE80211_TXRXD_FRAGMENTED;
912
913 out:
914 if (rx->sta)
915 rx->sta->rx_packets++;
916 if (is_multicast_ether_addr(hdr->addr1))
917 rx->local->dot11MulticastReceivedFrameCount++;
918 else
919 ieee80211_led_rx(rx->local);
920 return TXRX_CONTINUE;
921 }
922
923 static ieee80211_txrx_result
924 ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
925 {
926 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
927 struct sk_buff *skb;
928 int no_pending_pkts;
929 DECLARE_MAC_BUF(mac);
930
931 if (likely(!rx->sta ||
932 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
933 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
934 !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)))
935 return TXRX_CONTINUE;
936
937 if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
938 (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
939 return TXRX_DROP;
940
941 skb = skb_dequeue(&rx->sta->tx_filtered);
942 if (!skb) {
943 skb = skb_dequeue(&rx->sta->ps_tx_buf);
944 if (skb)
945 rx->local->total_ps_buffered--;
946 }
947 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
948 skb_queue_empty(&rx->sta->ps_tx_buf);
949
950 if (skb) {
951 struct ieee80211_hdr *hdr =
952 (struct ieee80211_hdr *) skb->data;
953
954 /* tell TX path to send one frame even though the STA may
955 * still remain is PS mode after this frame exchange */
956 rx->sta->pspoll = 1;
957
958 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
959 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
960 print_mac(mac, rx->sta->addr), rx->sta->aid,
961 skb_queue_len(&rx->sta->ps_tx_buf));
962 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
963
964 /* Use MoreData flag to indicate whether there are more
965 * buffered frames for this STA */
966 if (no_pending_pkts) {
967 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
968 rx->sta->flags &= ~WLAN_STA_TIM;
969 } else
970 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
971
972 dev_queue_xmit(skb);
973
974 if (no_pending_pkts) {
975 if (rx->local->ops->set_tim)
976 rx->local->ops->set_tim(local_to_hw(rx->local),
977 rx->sta->aid, 0);
978 if (rx->sdata->bss)
979 bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
980 }
981 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
982 } else if (!rx->u.rx.sent_ps_buffered) {
983 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
984 "though there is no buffered frames for it\n",
985 rx->dev->name, print_mac(mac, rx->sta->addr));
986 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
987
988 }
989
990 /* Free PS Poll skb here instead of returning TXRX_DROP that would
991 * count as an dropped frame. */
992 dev_kfree_skb(rx->skb);
993
994 return TXRX_QUEUED;
995 }
996
997 static ieee80211_txrx_result
998 ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx)
999 {
1000 u16 fc = rx->fc;
1001 u8 *data = rx->skb->data;
1002 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
1003
1004 if (!WLAN_FC_IS_QOS_DATA(fc))
1005 return TXRX_CONTINUE;
1006
1007 /* remove the qos control field, update frame type and meta-data */
1008 memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
1009 hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
1010 /* change frame type to non QOS */
1011 rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
1012 hdr->frame_control = cpu_to_le16(fc);
1013
1014 return TXRX_CONTINUE;
1015 }
1016
1017 static int
1018 ieee80211_802_1x_port_control(struct ieee80211_txrx_data *rx)
1019 {
1020 if (unlikely(rx->sdata->ieee802_1x_pac &&
1021 (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)))) {
1022 #ifdef CONFIG_MAC80211_DEBUG
1023 printk(KERN_DEBUG "%s: dropped frame "
1024 "(unauthorized port)\n", rx->dev->name);
1025 #endif /* CONFIG_MAC80211_DEBUG */
1026 return -EACCES;
1027 }
1028
1029 return 0;
1030 }
1031
1032 static int
1033 ieee80211_drop_unencrypted(struct ieee80211_txrx_data *rx)
1034 {
1035 /*
1036 * Pass through unencrypted frames if the hardware has
1037 * decrypted them already.
1038 */
1039 if (rx->u.rx.status->flag & RX_FLAG_DECRYPTED)
1040 return 0;
1041
1042 /* Drop unencrypted frames if key is set. */
1043 if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
1044 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
1045 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1046 (rx->key || rx->sdata->drop_unencrypted))) {
1047 if (net_ratelimit())
1048 printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
1049 "encryption\n", rx->dev->name);
1050 return -EACCES;
1051 }
1052 return 0;
1053 }
1054
1055 static int
1056 ieee80211_data_to_8023(struct ieee80211_txrx_data *rx)
1057 {
1058 struct net_device *dev = rx->dev;
1059 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1060 u16 fc, hdrlen, ethertype;
1061 u8 *payload;
1062 u8 dst[ETH_ALEN];
1063 u8 src[ETH_ALEN];
1064 struct sk_buff *skb = rx->skb;
1065 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1066 DECLARE_MAC_BUF(mac);
1067 DECLARE_MAC_BUF(mac2);
1068 DECLARE_MAC_BUF(mac3);
1069 DECLARE_MAC_BUF(mac4);
1070
1071 fc = rx->fc;
1072
1073 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1074 return -1;
1075
1076 hdrlen = ieee80211_get_hdrlen(fc);
1077
1078 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1079 * header
1080 * IEEE 802.11 address fields:
1081 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1082 * 0 0 DA SA BSSID n/a
1083 * 0 1 DA BSSID SA n/a
1084 * 1 0 BSSID SA DA n/a
1085 * 1 1 RA TA DA SA
1086 */
1087
1088 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1089 case IEEE80211_FCTL_TODS:
1090 /* BSSID SA DA */
1091 memcpy(dst, hdr->addr3, ETH_ALEN);
1092 memcpy(src, hdr->addr2, ETH_ALEN);
1093
1094 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
1095 sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) {
1096 if (net_ratelimit())
1097 printk(KERN_DEBUG "%s: dropped ToDS frame "
1098 "(BSSID=%s SA=%s DA=%s)\n",
1099 dev->name,
1100 print_mac(mac, hdr->addr1),
1101 print_mac(mac2, hdr->addr2),
1102 print_mac(mac3, hdr->addr3));
1103 return -1;
1104 }
1105 break;
1106 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1107 /* RA TA DA SA */
1108 memcpy(dst, hdr->addr3, ETH_ALEN);
1109 memcpy(src, hdr->addr4, ETH_ALEN);
1110
1111 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS)) {
1112 if (net_ratelimit())
1113 printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
1114 "frame (RA=%s TA=%s DA=%s SA=%s)\n",
1115 rx->dev->name,
1116 print_mac(mac, hdr->addr1),
1117 print_mac(mac2, hdr->addr2),
1118 print_mac(mac3, hdr->addr3),
1119 print_mac(mac4, hdr->addr4));
1120 return -1;
1121 }
1122 break;
1123 case IEEE80211_FCTL_FROMDS:
1124 /* DA BSSID SA */
1125 memcpy(dst, hdr->addr1, ETH_ALEN);
1126 memcpy(src, hdr->addr3, ETH_ALEN);
1127
1128 if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1129 (is_multicast_ether_addr(dst) &&
1130 !compare_ether_addr(src, dev->dev_addr)))
1131 return -1;
1132 break;
1133 case 0:
1134 /* DA SA BSSID */
1135 memcpy(dst, hdr->addr1, ETH_ALEN);
1136 memcpy(src, hdr->addr2, ETH_ALEN);
1137
1138 if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
1139 if (net_ratelimit()) {
1140 printk(KERN_DEBUG "%s: dropped IBSS frame "
1141 "(DA=%s SA=%s BSSID=%s)\n",
1142 dev->name,
1143 print_mac(mac, hdr->addr1),
1144 print_mac(mac2, hdr->addr2),
1145 print_mac(mac3, hdr->addr3));
1146 }
1147 return -1;
1148 }
1149 break;
1150 }
1151
1152 if (unlikely(skb->len - hdrlen < 8)) {
1153 if (net_ratelimit()) {
1154 printk(KERN_DEBUG "%s: RX too short data frame "
1155 "payload\n", dev->name);
1156 }
1157 return -1;
1158 }
1159
1160 payload = skb->data + hdrlen;
1161 ethertype = (payload[6] << 8) | payload[7];
1162
1163 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1164 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1165 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1166 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1167 * replace EtherType */
1168 skb_pull(skb, hdrlen + 6);
1169 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1170 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1171 } else {
1172 struct ethhdr *ehdr;
1173 __be16 len;
1174
1175 skb_pull(skb, hdrlen);
1176 len = htons(skb->len);
1177 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1178 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1179 memcpy(ehdr->h_source, src, ETH_ALEN);
1180 ehdr->h_proto = len;
1181 }
1182 return 0;
1183 }
1184
1185 /*
1186 * requires that rx->skb is a frame with ethernet header
1187 */
1188 static bool ieee80211_frame_allowed(struct ieee80211_txrx_data *rx)
1189 {
1190 static const u8 pae_group_addr[ETH_ALEN]
1191 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1192 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1193
1194 /*
1195 * Allow EAPOL frames to us/the PAE group address regardless
1196 * of whether the frame was encrypted or not.
1197 */
1198 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1199 (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1200 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1201 return true;
1202
1203 if (ieee80211_802_1x_port_control(rx) ||
1204 ieee80211_drop_unencrypted(rx))
1205 return false;
1206
1207 return true;
1208 }
1209
1210 /*
1211 * requires that rx->skb is a frame with ethernet header
1212 */
1213 static void
1214 ieee80211_deliver_skb(struct ieee80211_txrx_data *rx)
1215 {
1216 struct net_device *dev = rx->dev;
1217 struct ieee80211_local *local = rx->local;
1218 struct sk_buff *skb, *xmit_skb;
1219 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1220 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1221 struct sta_info *dsta;
1222
1223 skb = rx->skb;
1224 xmit_skb = NULL;
1225
1226 if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
1227 sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1228 (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
1229 if (is_multicast_ether_addr(ehdr->h_dest)) {
1230 /*
1231 * send multicast frames both to higher layers in
1232 * local net stack and back to the wireless medium
1233 */
1234 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1235 if (!xmit_skb && net_ratelimit())
1236 printk(KERN_DEBUG "%s: failed to clone "
1237 "multicast frame\n", dev->name);
1238 } else {
1239 dsta = sta_info_get(local, skb->data);
1240 if (dsta && dsta->dev == dev) {
1241 /*
1242 * The destination station is associated to
1243 * this AP (in this VLAN), so send the frame
1244 * directly to it and do not pass it to local
1245 * net stack.
1246 */
1247 xmit_skb = skb;
1248 skb = NULL;
1249 }
1250 if (dsta)
1251 sta_info_put(dsta);
1252 }
1253 }
1254
1255 if (skb) {
1256 /* deliver to local stack */
1257 skb->protocol = eth_type_trans(skb, dev);
1258 memset(skb->cb, 0, sizeof(skb->cb));
1259 netif_rx(skb);
1260 }
1261
1262 if (xmit_skb) {
1263 /* send to wireless media */
1264 xmit_skb->protocol = htons(ETH_P_802_3);
1265 skb_reset_network_header(xmit_skb);
1266 skb_reset_mac_header(xmit_skb);
1267 dev_queue_xmit(xmit_skb);
1268 }
1269 }
1270
1271 static ieee80211_txrx_result
1272 ieee80211_rx_h_amsdu(struct ieee80211_txrx_data *rx)
1273 {
1274 struct net_device *dev = rx->dev;
1275 struct ieee80211_local *local = rx->local;
1276 u16 fc, ethertype;
1277 u8 *payload;
1278 struct sk_buff *skb = rx->skb, *frame = NULL;
1279 const struct ethhdr *eth;
1280 int remaining, err;
1281 u8 dst[ETH_ALEN];
1282 u8 src[ETH_ALEN];
1283 DECLARE_MAC_BUF(mac);
1284
1285 fc = rx->fc;
1286 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1287 return TXRX_CONTINUE;
1288
1289 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1290 return TXRX_DROP;
1291
1292 if (!(rx->flags & IEEE80211_TXRXD_RX_AMSDU))
1293 return TXRX_CONTINUE;
1294
1295 err = ieee80211_data_to_8023(rx);
1296 if (unlikely(err))
1297 return TXRX_DROP;
1298
1299 skb->dev = dev;
1300
1301 dev->stats.rx_packets++;
1302 dev->stats.rx_bytes += skb->len;
1303
1304 /* skip the wrapping header */
1305 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1306 if (!eth)
1307 return TXRX_DROP;
1308
1309 while (skb != frame) {
1310 u8 padding;
1311 __be16 len = eth->h_proto;
1312 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1313
1314 remaining = skb->len;
1315 memcpy(dst, eth->h_dest, ETH_ALEN);
1316 memcpy(src, eth->h_source, ETH_ALEN);
1317
1318 padding = ((4 - subframe_len) & 0x3);
1319 /* the last MSDU has no padding */
1320 if (subframe_len > remaining) {
1321 printk(KERN_DEBUG "%s: wrong buffer size", dev->name);
1322 return TXRX_DROP;
1323 }
1324
1325 skb_pull(skb, sizeof(struct ethhdr));
1326 /* if last subframe reuse skb */
1327 if (remaining <= subframe_len + padding)
1328 frame = skb;
1329 else {
1330 frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1331 subframe_len);
1332
1333 if (frame == NULL)
1334 return TXRX_DROP;
1335
1336 skb_reserve(frame, local->hw.extra_tx_headroom +
1337 sizeof(struct ethhdr));
1338 memcpy(skb_put(frame, ntohs(len)), skb->data,
1339 ntohs(len));
1340
1341 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1342 padding);
1343 if (!eth) {
1344 printk(KERN_DEBUG "%s: wrong buffer size ",
1345 dev->name);
1346 dev_kfree_skb(frame);
1347 return TXRX_DROP;
1348 }
1349 }
1350
1351 skb_reset_network_header(frame);
1352 frame->dev = dev;
1353 frame->priority = skb->priority;
1354 rx->skb = frame;
1355
1356 payload = frame->data;
1357 ethertype = (payload[6] << 8) | payload[7];
1358
1359 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1360 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1361 compare_ether_addr(payload,
1362 bridge_tunnel_header) == 0)) {
1363 /* remove RFC1042 or Bridge-Tunnel
1364 * encapsulation and replace EtherType */
1365 skb_pull(frame, 6);
1366 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1367 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1368 } else {
1369 memcpy(skb_push(frame, sizeof(__be16)),
1370 &len, sizeof(__be16));
1371 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1372 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1373 }
1374
1375 if (!ieee80211_frame_allowed(rx)) {
1376 if (skb == frame) /* last frame */
1377 return TXRX_DROP;
1378 dev_kfree_skb(frame);
1379 continue;
1380 }
1381
1382 ieee80211_deliver_skb(rx);
1383 }
1384
1385 return TXRX_QUEUED;
1386 }
1387
1388 static ieee80211_txrx_result
1389 ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
1390 {
1391 struct net_device *dev = rx->dev;
1392 u16 fc;
1393 int err;
1394
1395 fc = rx->fc;
1396 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1397 return TXRX_CONTINUE;
1398
1399 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1400 return TXRX_DROP;
1401
1402 err = ieee80211_data_to_8023(rx);
1403 if (unlikely(err))
1404 return TXRX_DROP;
1405
1406 if (!ieee80211_frame_allowed(rx))
1407 return TXRX_DROP;
1408
1409 rx->skb->dev = dev;
1410
1411 dev->stats.rx_packets++;
1412 dev->stats.rx_bytes += rx->skb->len;
1413
1414 ieee80211_deliver_skb(rx);
1415
1416 return TXRX_QUEUED;
1417 }
1418
1419 static ieee80211_txrx_result
1420 ieee80211_rx_h_ctrl(struct ieee80211_txrx_data *rx)
1421 {
1422 struct ieee80211_local *local = rx->local;
1423 struct ieee80211_hw *hw = &local->hw;
1424 struct sk_buff *skb = rx->skb;
1425 struct ieee80211_bar *bar = (struct ieee80211_bar *) skb->data;
1426 struct tid_ampdu_rx *tid_agg_rx;
1427 u16 start_seq_num;
1428 u16 tid;
1429
1430 if (likely((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL))
1431 return TXRX_CONTINUE;
1432
1433 if ((rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BACK_REQ) {
1434 if (!rx->sta)
1435 return TXRX_CONTINUE;
1436 tid = le16_to_cpu(bar->control) >> 12;
1437 tid_agg_rx = &(rx->sta->ampdu_mlme.tid_rx[tid]);
1438 if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL)
1439 return TXRX_CONTINUE;
1440
1441 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1442
1443 /* reset session timer */
1444 if (tid_agg_rx->timeout) {
1445 unsigned long expires =
1446 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1447 mod_timer(&tid_agg_rx->session_timer, expires);
1448 }
1449
1450 /* manage reordering buffer according to requested */
1451 /* sequence number */
1452 rcu_read_lock();
1453 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1454 start_seq_num, 1);
1455 rcu_read_unlock();
1456 return TXRX_DROP;
1457 }
1458
1459 return TXRX_CONTINUE;
1460 }
1461
1462 static ieee80211_txrx_result
1463 ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
1464 {
1465 struct ieee80211_sub_if_data *sdata;
1466
1467 if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
1468 return TXRX_DROP;
1469
1470 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1471 if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
1472 sdata->vif.type == IEEE80211_IF_TYPE_IBSS) &&
1473 !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
1474 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
1475 else
1476 return TXRX_DROP;
1477
1478 return TXRX_QUEUED;
1479 }
1480
1481 static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers(
1482 struct ieee80211_local *local,
1483 ieee80211_rx_handler *handlers,
1484 struct ieee80211_txrx_data *rx,
1485 struct sta_info *sta)
1486 {
1487 ieee80211_rx_handler *handler;
1488 ieee80211_txrx_result res = TXRX_DROP;
1489
1490 for (handler = handlers; *handler != NULL; handler++) {
1491 res = (*handler)(rx);
1492
1493 switch (res) {
1494 case TXRX_CONTINUE:
1495 continue;
1496 case TXRX_DROP:
1497 I802_DEBUG_INC(local->rx_handlers_drop);
1498 if (sta)
1499 sta->rx_dropped++;
1500 break;
1501 case TXRX_QUEUED:
1502 I802_DEBUG_INC(local->rx_handlers_queued);
1503 break;
1504 }
1505 break;
1506 }
1507
1508 if (res == TXRX_DROP)
1509 dev_kfree_skb(rx->skb);
1510 return res;
1511 }
1512
1513 static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local,
1514 ieee80211_rx_handler *handlers,
1515 struct ieee80211_txrx_data *rx,
1516 struct sta_info *sta)
1517 {
1518 if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) ==
1519 TXRX_CONTINUE)
1520 dev_kfree_skb(rx->skb);
1521 }
1522
1523 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1524 struct ieee80211_hdr *hdr,
1525 struct sta_info *sta,
1526 struct ieee80211_txrx_data *rx)
1527 {
1528 int keyidx, hdrlen;
1529 DECLARE_MAC_BUF(mac);
1530 DECLARE_MAC_BUF(mac2);
1531
1532 hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
1533 if (rx->skb->len >= hdrlen + 4)
1534 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1535 else
1536 keyidx = -1;
1537
1538 if (net_ratelimit())
1539 printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
1540 "failure from %s to %s keyidx=%d\n",
1541 dev->name, print_mac(mac, hdr->addr2),
1542 print_mac(mac2, hdr->addr1), keyidx);
1543
1544 if (!sta) {
1545 /*
1546 * Some hardware seem to generate incorrect Michael MIC
1547 * reports; ignore them to avoid triggering countermeasures.
1548 */
1549 if (net_ratelimit())
1550 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1551 "error for unknown address %s\n",
1552 dev->name, print_mac(mac, hdr->addr2));
1553 goto ignore;
1554 }
1555
1556 if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
1557 if (net_ratelimit())
1558 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1559 "error for a frame with no PROTECTED flag (src "
1560 "%s)\n", dev->name, print_mac(mac, hdr->addr2));
1561 goto ignore;
1562 }
1563
1564 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
1565 /*
1566 * APs with pairwise keys should never receive Michael MIC
1567 * errors for non-zero keyidx because these are reserved for
1568 * group keys and only the AP is sending real multicast
1569 * frames in the BSS.
1570 */
1571 if (net_ratelimit())
1572 printk(KERN_DEBUG "%s: ignored Michael MIC error for "
1573 "a frame with non-zero keyidx (%d)"
1574 " (src %s)\n", dev->name, keyidx,
1575 print_mac(mac, hdr->addr2));
1576 goto ignore;
1577 }
1578
1579 if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
1580 ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
1581 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
1582 if (net_ratelimit())
1583 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1584 "error for a frame that cannot be encrypted "
1585 "(fc=0x%04x) (src %s)\n",
1586 dev->name, rx->fc, print_mac(mac, hdr->addr2));
1587 goto ignore;
1588 }
1589
1590 mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
1591 ignore:
1592 dev_kfree_skb(rx->skb);
1593 rx->skb = NULL;
1594 }
1595
1596 ieee80211_rx_handler ieee80211_rx_handlers[] =
1597 {
1598 ieee80211_rx_h_if_stats,
1599 ieee80211_rx_h_passive_scan,
1600 ieee80211_rx_h_check,
1601 ieee80211_rx_h_decrypt,
1602 ieee80211_rx_h_sta_process,
1603 ieee80211_rx_h_defragment,
1604 ieee80211_rx_h_ps_poll,
1605 ieee80211_rx_h_michael_mic_verify,
1606 /* this must be after decryption - so header is counted in MPDU mic
1607 * must be before pae and data, so QOS_DATA format frames
1608 * are not passed to user space by these functions
1609 */
1610 ieee80211_rx_h_remove_qos_control,
1611 ieee80211_rx_h_amsdu,
1612 ieee80211_rx_h_data,
1613 ieee80211_rx_h_ctrl,
1614 ieee80211_rx_h_mgmt,
1615 NULL
1616 };
1617
1618 /* main receive path */
1619
1620 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1621 u8 *bssid, struct ieee80211_txrx_data *rx,
1622 struct ieee80211_hdr *hdr)
1623 {
1624 int multicast = is_multicast_ether_addr(hdr->addr1);
1625
1626 switch (sdata->vif.type) {
1627 case IEEE80211_IF_TYPE_STA:
1628 if (!bssid)
1629 return 0;
1630 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1631 if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1632 return 0;
1633 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1634 } else if (!multicast &&
1635 compare_ether_addr(sdata->dev->dev_addr,
1636 hdr->addr1) != 0) {
1637 if (!(sdata->dev->flags & IFF_PROMISC))
1638 return 0;
1639 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1640 }
1641 break;
1642 case IEEE80211_IF_TYPE_IBSS:
1643 if (!bssid)
1644 return 0;
1645 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1646 if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1647 return 0;
1648 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1649 } else if (!multicast &&
1650 compare_ether_addr(sdata->dev->dev_addr,
1651 hdr->addr1) != 0) {
1652 if (!(sdata->dev->flags & IFF_PROMISC))
1653 return 0;
1654 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1655 } else if (!rx->sta)
1656 rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
1657 bssid, hdr->addr2);
1658 break;
1659 case IEEE80211_IF_TYPE_VLAN:
1660 case IEEE80211_IF_TYPE_AP:
1661 if (!bssid) {
1662 if (compare_ether_addr(sdata->dev->dev_addr,
1663 hdr->addr1))
1664 return 0;
1665 } else if (!ieee80211_bssid_match(bssid,
1666 sdata->dev->dev_addr)) {
1667 if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1668 return 0;
1669 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1670 }
1671 if (sdata->dev == sdata->local->mdev &&
1672 !(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1673 /* do not receive anything via
1674 * master device when not scanning */
1675 return 0;
1676 break;
1677 case IEEE80211_IF_TYPE_WDS:
1678 if (bssid ||
1679 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
1680 return 0;
1681 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1682 return 0;
1683 break;
1684 case IEEE80211_IF_TYPE_MNTR:
1685 /* take everything */
1686 break;
1687 case IEEE80211_IF_TYPE_INVALID:
1688 /* should never get here */
1689 WARN_ON(1);
1690 break;
1691 }
1692
1693 return 1;
1694 }
1695
1696 /*
1697 * This is the actual Rx frames handler. as it blongs to Rx path it must
1698 * be called with rcu_read_lock protection.
1699 */
1700 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1701 struct sk_buff *skb,
1702 struct ieee80211_rx_status *status,
1703 u32 load)
1704 {
1705 struct ieee80211_local *local = hw_to_local(hw);
1706 struct ieee80211_sub_if_data *sdata;
1707 struct sta_info *sta;
1708 struct ieee80211_hdr *hdr;
1709 struct ieee80211_txrx_data rx;
1710 u16 type;
1711 int prepares;
1712 struct ieee80211_sub_if_data *prev = NULL;
1713 struct sk_buff *skb_new;
1714 u8 *bssid;
1715
1716 hdr = (struct ieee80211_hdr *) skb->data;
1717 memset(&rx, 0, sizeof(rx));
1718 rx.skb = skb;
1719 rx.local = local;
1720
1721 rx.u.rx.status = status;
1722 rx.u.rx.load = load;
1723 rx.fc = le16_to_cpu(hdr->frame_control);
1724 type = rx.fc & IEEE80211_FCTL_FTYPE;
1725
1726 if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
1727 local->dot11ReceivedFragmentCount++;
1728
1729 sta = rx.sta = sta_info_get(local, hdr->addr2);
1730 if (sta) {
1731 rx.dev = rx.sta->dev;
1732 rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
1733 }
1734
1735 if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1736 ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx);
1737 goto end;
1738 }
1739
1740 if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
1741 rx.flags |= IEEE80211_TXRXD_RXIN_SCAN;
1742
1743 if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx,
1744 sta) != TXRX_CONTINUE)
1745 goto end;
1746 skb = rx.skb;
1747
1748 if (sta && !(sta->flags & (WLAN_STA_WDS | WLAN_STA_ASSOC_AP)) &&
1749 !atomic_read(&local->iff_promiscs) &&
1750 !is_multicast_ether_addr(hdr->addr1)) {
1751 rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
1752 ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx,
1753 rx.sta);
1754 sta_info_put(sta);
1755 return;
1756 }
1757
1758 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1759 if (!netif_running(sdata->dev))
1760 continue;
1761
1762 if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
1763 continue;
1764
1765 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1766 rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
1767 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1768 /* prepare_for_handlers can change sta */
1769 sta = rx.sta;
1770
1771 if (!prepares)
1772 continue;
1773
1774 /*
1775 * frame is destined for this interface, but if it's not
1776 * also for the previous one we handle that after the
1777 * loop to avoid copying the SKB once too much
1778 */
1779
1780 if (!prev) {
1781 prev = sdata;
1782 continue;
1783 }
1784
1785 /*
1786 * frame was destined for the previous interface
1787 * so invoke RX handlers for it
1788 */
1789
1790 skb_new = skb_copy(skb, GFP_ATOMIC);
1791 if (!skb_new) {
1792 if (net_ratelimit())
1793 printk(KERN_DEBUG "%s: failed to copy "
1794 "multicast frame for %s",
1795 wiphy_name(local->hw.wiphy),
1796 prev->dev->name);
1797 continue;
1798 }
1799 rx.fc = le16_to_cpu(hdr->frame_control);
1800 rx.skb = skb_new;
1801 rx.dev = prev->dev;
1802 rx.sdata = prev;
1803 ieee80211_invoke_rx_handlers(local, local->rx_handlers,
1804 &rx, sta);
1805 prev = sdata;
1806 }
1807 if (prev) {
1808 rx.fc = le16_to_cpu(hdr->frame_control);
1809 rx.skb = skb;
1810 rx.dev = prev->dev;
1811 rx.sdata = prev;
1812 ieee80211_invoke_rx_handlers(local, local->rx_handlers,
1813 &rx, sta);
1814 } else
1815 dev_kfree_skb(skb);
1816
1817 end:
1818 if (sta)
1819 sta_info_put(sta);
1820 }
1821
1822 #define SEQ_MODULO 0x1000
1823 #define SEQ_MASK 0xfff
1824
1825 static inline int seq_less(u16 sq1, u16 sq2)
1826 {
1827 return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
1828 }
1829
1830 static inline u16 seq_inc(u16 sq)
1831 {
1832 return ((sq + 1) & SEQ_MASK);
1833 }
1834
1835 static inline u16 seq_sub(u16 sq1, u16 sq2)
1836 {
1837 return ((sq1 - sq2) & SEQ_MASK);
1838 }
1839
1840
1841 /*
1842 * As it function blongs to Rx path it must be called with
1843 * the proper rcu_read_lock protection for its flow.
1844 */
1845 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
1846 struct tid_ampdu_rx *tid_agg_rx,
1847 struct sk_buff *skb, u16 mpdu_seq_num,
1848 int bar_req)
1849 {
1850 struct ieee80211_local *local = hw_to_local(hw);
1851 struct ieee80211_rx_status status;
1852 u16 head_seq_num, buf_size;
1853 int index;
1854 u32 pkt_load;
1855
1856 buf_size = tid_agg_rx->buf_size;
1857 head_seq_num = tid_agg_rx->head_seq_num;
1858
1859 /* frame with out of date sequence number */
1860 if (seq_less(mpdu_seq_num, head_seq_num)) {
1861 dev_kfree_skb(skb);
1862 return 1;
1863 }
1864
1865 /* if frame sequence number exceeds our buffering window size or
1866 * block Ack Request arrived - release stored frames */
1867 if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
1868 /* new head to the ordering buffer */
1869 if (bar_req)
1870 head_seq_num = mpdu_seq_num;
1871 else
1872 head_seq_num =
1873 seq_inc(seq_sub(mpdu_seq_num, buf_size));
1874 /* release stored frames up to new head to stack */
1875 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1876 index = seq_sub(tid_agg_rx->head_seq_num,
1877 tid_agg_rx->ssn)
1878 % tid_agg_rx->buf_size;
1879
1880 if (tid_agg_rx->reorder_buf[index]) {
1881 /* release the reordered frames to stack */
1882 memcpy(&status,
1883 tid_agg_rx->reorder_buf[index]->cb,
1884 sizeof(status));
1885 pkt_load = ieee80211_rx_load_stats(local,
1886 tid_agg_rx->reorder_buf[index],
1887 &status);
1888 __ieee80211_rx_handle_packet(hw,
1889 tid_agg_rx->reorder_buf[index],
1890 &status, pkt_load);
1891 tid_agg_rx->stored_mpdu_num--;
1892 tid_agg_rx->reorder_buf[index] = NULL;
1893 }
1894 tid_agg_rx->head_seq_num =
1895 seq_inc(tid_agg_rx->head_seq_num);
1896 }
1897 if (bar_req)
1898 return 1;
1899 }
1900
1901 /* now the new frame is always in the range of the reordering */
1902 /* buffer window */
1903 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
1904 % tid_agg_rx->buf_size;
1905 /* check if we already stored this frame */
1906 if (tid_agg_rx->reorder_buf[index]) {
1907 dev_kfree_skb(skb);
1908 return 1;
1909 }
1910
1911 /* if arrived mpdu is in the right order and nothing else stored */
1912 /* release it immediately */
1913 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1914 tid_agg_rx->stored_mpdu_num == 0) {
1915 tid_agg_rx->head_seq_num =
1916 seq_inc(tid_agg_rx->head_seq_num);
1917 return 0;
1918 }
1919
1920 /* put the frame in the reordering buffer */
1921 tid_agg_rx->reorder_buf[index] = skb;
1922 tid_agg_rx->stored_mpdu_num++;
1923 /* release the buffer until next missing frame */
1924 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
1925 % tid_agg_rx->buf_size;
1926 while (tid_agg_rx->reorder_buf[index]) {
1927 /* release the reordered frame back to stack */
1928 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
1929 sizeof(status));
1930 pkt_load = ieee80211_rx_load_stats(local,
1931 tid_agg_rx->reorder_buf[index],
1932 &status);
1933 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
1934 &status, pkt_load);
1935 tid_agg_rx->stored_mpdu_num--;
1936 tid_agg_rx->reorder_buf[index] = NULL;
1937 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
1938 index = seq_sub(tid_agg_rx->head_seq_num,
1939 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
1940 }
1941 return 1;
1942 }
1943
1944 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
1945 struct sk_buff *skb)
1946 {
1947 struct ieee80211_hw *hw = &local->hw;
1948 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1949 struct sta_info *sta;
1950 struct tid_ampdu_rx *tid_agg_rx;
1951 u16 fc, sc;
1952 u16 mpdu_seq_num;
1953 u8 ret = 0, *qc;
1954 int tid;
1955
1956 sta = sta_info_get(local, hdr->addr2);
1957 if (!sta)
1958 return ret;
1959
1960 fc = le16_to_cpu(hdr->frame_control);
1961
1962 /* filter the QoS data rx stream according to
1963 * STA/TID and check if this STA/TID is on aggregation */
1964 if (!WLAN_FC_IS_QOS_DATA(fc))
1965 goto end_reorder;
1966
1967 qc = skb->data + ieee80211_get_hdrlen(fc) - QOS_CONTROL_LEN;
1968 tid = qc[0] & QOS_CONTROL_TID_MASK;
1969 tid_agg_rx = &(sta->ampdu_mlme.tid_rx[tid]);
1970
1971 if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL)
1972 goto end_reorder;
1973
1974 /* null data frames are excluded */
1975 if (unlikely(fc & IEEE80211_STYPE_QOS_NULLFUNC))
1976 goto end_reorder;
1977
1978 /* new un-ordered ampdu frame - process it */
1979
1980 /* reset session timer */
1981 if (tid_agg_rx->timeout) {
1982 unsigned long expires =
1983 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1984 mod_timer(&tid_agg_rx->session_timer, expires);
1985 }
1986
1987 /* if this mpdu is fragmented - terminate rx aggregation session */
1988 sc = le16_to_cpu(hdr->seq_ctrl);
1989 if (sc & IEEE80211_SCTL_FRAG) {
1990 ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr,
1991 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
1992 ret = 1;
1993 goto end_reorder;
1994 }
1995
1996 /* according to mpdu sequence number deal with reordering buffer */
1997 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1998 ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
1999 mpdu_seq_num, 0);
2000 end_reorder:
2001 if (sta)
2002 sta_info_put(sta);
2003 return ret;
2004 }
2005
2006 /*
2007 * This is the receive path handler. It is called by a low level driver when an
2008 * 802.11 MPDU is received from the hardware.
2009 */
2010 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2011 struct ieee80211_rx_status *status)
2012 {
2013 struct ieee80211_local *local = hw_to_local(hw);
2014 u32 pkt_load;
2015
2016 /*
2017 * key references and virtual interfaces are protected using RCU
2018 * and this requires that we are in a read-side RCU section during
2019 * receive processing
2020 */
2021 rcu_read_lock();
2022
2023 /*
2024 * Frames with failed FCS/PLCP checksum are not returned,
2025 * all other frames are returned without radiotap header
2026 * if it was previously present.
2027 * Also, frames with less than 16 bytes are dropped.
2028 */
2029 skb = ieee80211_rx_monitor(local, skb, status);
2030 if (!skb) {
2031 rcu_read_unlock();
2032 return;
2033 }
2034
2035 pkt_load = ieee80211_rx_load_stats(local, skb, status);
2036 local->channel_use_raw += pkt_load;
2037
2038 if (!ieee80211_rx_reorder_ampdu(local, skb))
2039 __ieee80211_rx_handle_packet(hw, skb, status, pkt_load);
2040
2041 rcu_read_unlock();
2042 }
2043 EXPORT_SYMBOL(__ieee80211_rx);
2044
2045 /* This is a version of the rx handler that can be called from hard irq
2046 * context. Post the skb on the queue and schedule the tasklet */
2047 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2048 struct ieee80211_rx_status *status)
2049 {
2050 struct ieee80211_local *local = hw_to_local(hw);
2051
2052 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2053
2054 skb->dev = local->mdev;
2055 /* copy status into skb->cb for use by tasklet */
2056 memcpy(skb->cb, status, sizeof(*status));
2057 skb->pkt_type = IEEE80211_RX_MSG;
2058 skb_queue_tail(&local->skb_queue, skb);
2059 tasklet_schedule(&local->tasklet);
2060 }
2061 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.076442 seconds and 5 git commands to generate.