vti6: Don't unregister pernet ops twice on init errors
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 if (likely(skb->len > FCS_LEN))
45 __pskb_trim(skb, skb->len - FCS_LEN);
46 else {
47 /* driver bug */
48 WARN_ON(1);
49 dev_kfree_skb(skb);
50 return NULL;
51 }
52 }
53
54 return skb;
55 }
56
57 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
58 {
59 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
60 struct ieee80211_hdr *hdr;
61
62 hdr = (void *)(skb->data);
63
64 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
65 RX_FLAG_FAILED_PLCP_CRC |
66 RX_FLAG_AMPDU_IS_ZEROLEN))
67 return 1;
68 if (unlikely(skb->len < 16 + present_fcs_len))
69 return 1;
70 if (ieee80211_is_ctl(hdr->frame_control) &&
71 !ieee80211_is_pspoll(hdr->frame_control) &&
72 !ieee80211_is_back_req(hdr->frame_control))
73 return 1;
74 return 0;
75 }
76
77 static int
78 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
79 struct ieee80211_rx_status *status)
80 {
81 int len;
82
83 /* always present fields */
84 len = sizeof(struct ieee80211_radiotap_header) + 8;
85
86 /* allocate extra bitmaps */
87 if (status->chains)
88 len += 4 * hweight8(status->chains);
89
90 if (ieee80211_have_rx_timestamp(status)) {
91 len = ALIGN(len, 8);
92 len += 8;
93 }
94 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
95 len += 1;
96
97 /* antenna field, if we don't have per-chain info */
98 if (!status->chains)
99 len += 1;
100
101 /* padding for RX_FLAGS if necessary */
102 len = ALIGN(len, 2);
103
104 if (status->flag & RX_FLAG_HT) /* HT info */
105 len += 3;
106
107 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
108 len = ALIGN(len, 4);
109 len += 8;
110 }
111
112 if (status->flag & RX_FLAG_VHT) {
113 len = ALIGN(len, 2);
114 len += 12;
115 }
116
117 if (status->chains) {
118 /* antenna and antenna signal fields */
119 len += 2 * hweight8(status->chains);
120 }
121
122 return len;
123 }
124
125 /*
126 * ieee80211_add_rx_radiotap_header - add radiotap header
127 *
128 * add a radiotap header containing all the fields which the hardware provided.
129 */
130 static void
131 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
132 struct sk_buff *skb,
133 struct ieee80211_rate *rate,
134 int rtap_len, bool has_fcs)
135 {
136 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
137 struct ieee80211_radiotap_header *rthdr;
138 unsigned char *pos;
139 __le32 *it_present;
140 u32 it_present_val;
141 u16 rx_flags = 0;
142 u16 channel_flags = 0;
143 int mpdulen, chain;
144 unsigned long chains = status->chains;
145
146 mpdulen = skb->len;
147 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
148 mpdulen += FCS_LEN;
149
150 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
151 memset(rthdr, 0, rtap_len);
152 it_present = &rthdr->it_present;
153
154 /* radiotap header, set always present flags */
155 rthdr->it_len = cpu_to_le16(rtap_len);
156 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
157 BIT(IEEE80211_RADIOTAP_CHANNEL) |
158 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
159
160 if (!status->chains)
161 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
162
163 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
164 it_present_val |=
165 BIT(IEEE80211_RADIOTAP_EXT) |
166 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
167 put_unaligned_le32(it_present_val, it_present);
168 it_present++;
169 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
170 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
171 }
172
173 put_unaligned_le32(it_present_val, it_present);
174
175 pos = (void *)(it_present + 1);
176
177 /* the order of the following fields is important */
178
179 /* IEEE80211_RADIOTAP_TSFT */
180 if (ieee80211_have_rx_timestamp(status)) {
181 /* padding */
182 while ((pos - (u8 *)rthdr) & 7)
183 *pos++ = 0;
184 put_unaligned_le64(
185 ieee80211_calculate_rx_timestamp(local, status,
186 mpdulen, 0),
187 pos);
188 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
189 pos += 8;
190 }
191
192 /* IEEE80211_RADIOTAP_FLAGS */
193 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
194 *pos |= IEEE80211_RADIOTAP_F_FCS;
195 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
196 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
197 if (status->flag & RX_FLAG_SHORTPRE)
198 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
199 pos++;
200
201 /* IEEE80211_RADIOTAP_RATE */
202 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
203 /*
204 * Without rate information don't add it. If we have,
205 * MCS information is a separate field in radiotap,
206 * added below. The byte here is needed as padding
207 * for the channel though, so initialise it to 0.
208 */
209 *pos = 0;
210 } else {
211 int shift = 0;
212 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
213 if (status->flag & RX_FLAG_10MHZ)
214 shift = 1;
215 else if (status->flag & RX_FLAG_5MHZ)
216 shift = 2;
217 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
218 }
219 pos++;
220
221 /* IEEE80211_RADIOTAP_CHANNEL */
222 put_unaligned_le16(status->freq, pos);
223 pos += 2;
224 if (status->flag & RX_FLAG_10MHZ)
225 channel_flags |= IEEE80211_CHAN_HALF;
226 else if (status->flag & RX_FLAG_5MHZ)
227 channel_flags |= IEEE80211_CHAN_QUARTER;
228
229 if (status->band == IEEE80211_BAND_5GHZ)
230 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
231 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
232 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
233 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
234 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
235 else if (rate)
236 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
237 else
238 channel_flags |= IEEE80211_CHAN_2GHZ;
239 put_unaligned_le16(channel_flags, pos);
240 pos += 2;
241
242 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
243 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
244 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
245 *pos = status->signal;
246 rthdr->it_present |=
247 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
248 pos++;
249 }
250
251 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
252
253 if (!status->chains) {
254 /* IEEE80211_RADIOTAP_ANTENNA */
255 *pos = status->antenna;
256 pos++;
257 }
258
259 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
260
261 /* IEEE80211_RADIOTAP_RX_FLAGS */
262 /* ensure 2 byte alignment for the 2 byte field as required */
263 if ((pos - (u8 *)rthdr) & 1)
264 *pos++ = 0;
265 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
266 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
267 put_unaligned_le16(rx_flags, pos);
268 pos += 2;
269
270 if (status->flag & RX_FLAG_HT) {
271 unsigned int stbc;
272
273 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
274 *pos++ = local->hw.radiotap_mcs_details;
275 *pos = 0;
276 if (status->flag & RX_FLAG_SHORT_GI)
277 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
278 if (status->flag & RX_FLAG_40MHZ)
279 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
280 if (status->flag & RX_FLAG_HT_GF)
281 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
282 if (status->flag & RX_FLAG_LDPC)
283 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
284 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
285 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
286 pos++;
287 *pos++ = status->rate_idx;
288 }
289
290 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
291 u16 flags = 0;
292
293 /* ensure 4 byte alignment */
294 while ((pos - (u8 *)rthdr) & 3)
295 pos++;
296 rthdr->it_present |=
297 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
298 put_unaligned_le32(status->ampdu_reference, pos);
299 pos += 4;
300 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
301 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
302 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
303 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
304 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
305 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
306 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
307 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
308 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
309 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
310 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
311 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
312 put_unaligned_le16(flags, pos);
313 pos += 2;
314 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
315 *pos++ = status->ampdu_delimiter_crc;
316 else
317 *pos++ = 0;
318 *pos++ = 0;
319 }
320
321 if (status->flag & RX_FLAG_VHT) {
322 u16 known = local->hw.radiotap_vht_details;
323
324 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
325 /* known field - how to handle 80+80? */
326 if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
327 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
328 put_unaligned_le16(known, pos);
329 pos += 2;
330 /* flags */
331 if (status->flag & RX_FLAG_SHORT_GI)
332 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
333 /* in VHT, STBC is binary */
334 if (status->flag & RX_FLAG_STBC_MASK)
335 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
336 if (status->vht_flag & RX_VHT_FLAG_BF)
337 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
338 pos++;
339 /* bandwidth */
340 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
341 *pos++ = 4;
342 else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
343 *pos++ = 0; /* marked not known above */
344 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
345 *pos++ = 11;
346 else if (status->flag & RX_FLAG_40MHZ)
347 *pos++ = 1;
348 else /* 20 MHz */
349 *pos++ = 0;
350 /* MCS/NSS */
351 *pos = (status->rate_idx << 4) | status->vht_nss;
352 pos += 4;
353 /* coding field */
354 if (status->flag & RX_FLAG_LDPC)
355 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
356 pos++;
357 /* group ID */
358 pos++;
359 /* partial_aid */
360 pos += 2;
361 }
362
363 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
364 *pos++ = status->chain_signal[chain];
365 *pos++ = chain;
366 }
367 }
368
369 /*
370 * This function copies a received frame to all monitor interfaces and
371 * returns a cleaned-up SKB that no longer includes the FCS nor the
372 * radiotap header the driver might have added.
373 */
374 static struct sk_buff *
375 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
376 struct ieee80211_rate *rate)
377 {
378 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
379 struct ieee80211_sub_if_data *sdata;
380 int needed_headroom;
381 struct sk_buff *skb, *skb2;
382 struct net_device *prev_dev = NULL;
383 int present_fcs_len = 0;
384
385 /*
386 * First, we may need to make a copy of the skb because
387 * (1) we need to modify it for radiotap (if not present), and
388 * (2) the other RX handlers will modify the skb we got.
389 *
390 * We don't need to, of course, if we aren't going to return
391 * the SKB because it has a bad FCS/PLCP checksum.
392 */
393
394 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
395 present_fcs_len = FCS_LEN;
396
397 /* ensure hdr->frame_control is in skb head */
398 if (!pskb_may_pull(origskb, 2)) {
399 dev_kfree_skb(origskb);
400 return NULL;
401 }
402
403 if (!local->monitors) {
404 if (should_drop_frame(origskb, present_fcs_len)) {
405 dev_kfree_skb(origskb);
406 return NULL;
407 }
408
409 return remove_monitor_info(local, origskb);
410 }
411
412 /* room for the radiotap header based on driver features */
413 needed_headroom = ieee80211_rx_radiotap_space(local, status);
414
415 if (should_drop_frame(origskb, present_fcs_len)) {
416 /* only need to expand headroom if necessary */
417 skb = origskb;
418 origskb = NULL;
419
420 /*
421 * This shouldn't trigger often because most devices have an
422 * RX header they pull before we get here, and that should
423 * be big enough for our radiotap information. We should
424 * probably export the length to drivers so that we can have
425 * them allocate enough headroom to start with.
426 */
427 if (skb_headroom(skb) < needed_headroom &&
428 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
429 dev_kfree_skb(skb);
430 return NULL;
431 }
432 } else {
433 /*
434 * Need to make a copy and possibly remove radiotap header
435 * and FCS from the original.
436 */
437 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
438
439 origskb = remove_monitor_info(local, origskb);
440
441 if (!skb)
442 return origskb;
443 }
444
445 /* prepend radiotap information */
446 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
447 true);
448
449 skb_reset_mac_header(skb);
450 skb->ip_summed = CHECKSUM_UNNECESSARY;
451 skb->pkt_type = PACKET_OTHERHOST;
452 skb->protocol = htons(ETH_P_802_2);
453
454 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
455 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
456 continue;
457
458 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
459 continue;
460
461 if (!ieee80211_sdata_running(sdata))
462 continue;
463
464 if (prev_dev) {
465 skb2 = skb_clone(skb, GFP_ATOMIC);
466 if (skb2) {
467 skb2->dev = prev_dev;
468 netif_receive_skb(skb2);
469 }
470 }
471
472 prev_dev = sdata->dev;
473 sdata->dev->stats.rx_packets++;
474 sdata->dev->stats.rx_bytes += skb->len;
475 }
476
477 if (prev_dev) {
478 skb->dev = prev_dev;
479 netif_receive_skb(skb);
480 } else
481 dev_kfree_skb(skb);
482
483 return origskb;
484 }
485
486 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
487 {
488 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
490 int tid, seqno_idx, security_idx;
491
492 /* does the frame have a qos control field? */
493 if (ieee80211_is_data_qos(hdr->frame_control)) {
494 u8 *qc = ieee80211_get_qos_ctl(hdr);
495 /* frame has qos control */
496 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
497 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
498 status->rx_flags |= IEEE80211_RX_AMSDU;
499
500 seqno_idx = tid;
501 security_idx = tid;
502 } else {
503 /*
504 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
505 *
506 * Sequence numbers for management frames, QoS data
507 * frames with a broadcast/multicast address in the
508 * Address 1 field, and all non-QoS data frames sent
509 * by QoS STAs are assigned using an additional single
510 * modulo-4096 counter, [...]
511 *
512 * We also use that counter for non-QoS STAs.
513 */
514 seqno_idx = IEEE80211_NUM_TIDS;
515 security_idx = 0;
516 if (ieee80211_is_mgmt(hdr->frame_control))
517 security_idx = IEEE80211_NUM_TIDS;
518 tid = 0;
519 }
520
521 rx->seqno_idx = seqno_idx;
522 rx->security_idx = security_idx;
523 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
524 * For now, set skb->priority to 0 for other cases. */
525 rx->skb->priority = (tid > 7) ? 0 : tid;
526 }
527
528 /**
529 * DOC: Packet alignment
530 *
531 * Drivers always need to pass packets that are aligned to two-byte boundaries
532 * to the stack.
533 *
534 * Additionally, should, if possible, align the payload data in a way that
535 * guarantees that the contained IP header is aligned to a four-byte
536 * boundary. In the case of regular frames, this simply means aligning the
537 * payload to a four-byte boundary (because either the IP header is directly
538 * contained, or IV/RFC1042 headers that have a length divisible by four are
539 * in front of it). If the payload data is not properly aligned and the
540 * architecture doesn't support efficient unaligned operations, mac80211
541 * will align the data.
542 *
543 * With A-MSDU frames, however, the payload data address must yield two modulo
544 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
545 * push the IP header further back to a multiple of four again. Thankfully, the
546 * specs were sane enough this time around to require padding each A-MSDU
547 * subframe to a length that is a multiple of four.
548 *
549 * Padding like Atheros hardware adds which is between the 802.11 header and
550 * the payload is not supported, the driver is required to move the 802.11
551 * header to be directly in front of the payload in that case.
552 */
553 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
554 {
555 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
556 WARN_ONCE((unsigned long)rx->skb->data & 1,
557 "unaligned packet at 0x%p\n", rx->skb->data);
558 #endif
559 }
560
561
562 /* rx handlers */
563
564 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
565 {
566 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
567
568 if (is_multicast_ether_addr(hdr->addr1))
569 return 0;
570
571 return ieee80211_is_robust_mgmt_frame(skb);
572 }
573
574
575 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
576 {
577 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
578
579 if (!is_multicast_ether_addr(hdr->addr1))
580 return 0;
581
582 return ieee80211_is_robust_mgmt_frame(skb);
583 }
584
585
586 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
587 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
588 {
589 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
590 struct ieee80211_mmie *mmie;
591
592 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
593 return -1;
594
595 if (!ieee80211_is_robust_mgmt_frame(skb))
596 return -1; /* not a robust management frame */
597
598 mmie = (struct ieee80211_mmie *)
599 (skb->data + skb->len - sizeof(*mmie));
600 if (mmie->element_id != WLAN_EID_MMIE ||
601 mmie->length != sizeof(*mmie) - 2)
602 return -1;
603
604 return le16_to_cpu(mmie->key_id);
605 }
606
607 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
608 struct sk_buff *skb)
609 {
610 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
611 __le16 fc;
612 int hdrlen;
613 u8 keyid;
614
615 fc = hdr->frame_control;
616 hdrlen = ieee80211_hdrlen(fc);
617
618 if (skb->len < hdrlen + cs->hdr_len)
619 return -EINVAL;
620
621 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
622 keyid &= cs->key_idx_mask;
623 keyid >>= cs->key_idx_shift;
624
625 return keyid;
626 }
627
628 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
629 {
630 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
631 char *dev_addr = rx->sdata->vif.addr;
632
633 if (ieee80211_is_data(hdr->frame_control)) {
634 if (is_multicast_ether_addr(hdr->addr1)) {
635 if (ieee80211_has_tods(hdr->frame_control) ||
636 !ieee80211_has_fromds(hdr->frame_control))
637 return RX_DROP_MONITOR;
638 if (ether_addr_equal(hdr->addr3, dev_addr))
639 return RX_DROP_MONITOR;
640 } else {
641 if (!ieee80211_has_a4(hdr->frame_control))
642 return RX_DROP_MONITOR;
643 if (ether_addr_equal(hdr->addr4, dev_addr))
644 return RX_DROP_MONITOR;
645 }
646 }
647
648 /* If there is not an established peer link and this is not a peer link
649 * establisment frame, beacon or probe, drop the frame.
650 */
651
652 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
653 struct ieee80211_mgmt *mgmt;
654
655 if (!ieee80211_is_mgmt(hdr->frame_control))
656 return RX_DROP_MONITOR;
657
658 if (ieee80211_is_action(hdr->frame_control)) {
659 u8 category;
660
661 /* make sure category field is present */
662 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
663 return RX_DROP_MONITOR;
664
665 mgmt = (struct ieee80211_mgmt *)hdr;
666 category = mgmt->u.action.category;
667 if (category != WLAN_CATEGORY_MESH_ACTION &&
668 category != WLAN_CATEGORY_SELF_PROTECTED)
669 return RX_DROP_MONITOR;
670 return RX_CONTINUE;
671 }
672
673 if (ieee80211_is_probe_req(hdr->frame_control) ||
674 ieee80211_is_probe_resp(hdr->frame_control) ||
675 ieee80211_is_beacon(hdr->frame_control) ||
676 ieee80211_is_auth(hdr->frame_control))
677 return RX_CONTINUE;
678
679 return RX_DROP_MONITOR;
680 }
681
682 return RX_CONTINUE;
683 }
684
685 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
686 struct tid_ampdu_rx *tid_agg_rx,
687 int index,
688 struct sk_buff_head *frames)
689 {
690 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
691 struct ieee80211_rx_status *status;
692
693 lockdep_assert_held(&tid_agg_rx->reorder_lock);
694
695 if (!skb)
696 goto no_frame;
697
698 /* release the frame from the reorder ring buffer */
699 tid_agg_rx->stored_mpdu_num--;
700 tid_agg_rx->reorder_buf[index] = NULL;
701 status = IEEE80211_SKB_RXCB(skb);
702 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
703 __skb_queue_tail(frames, skb);
704
705 no_frame:
706 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
707 }
708
709 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
710 struct tid_ampdu_rx *tid_agg_rx,
711 u16 head_seq_num,
712 struct sk_buff_head *frames)
713 {
714 int index;
715
716 lockdep_assert_held(&tid_agg_rx->reorder_lock);
717
718 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
719 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
720 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
721 frames);
722 }
723 }
724
725 /*
726 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
727 * the skb was added to the buffer longer than this time ago, the earlier
728 * frames that have not yet been received are assumed to be lost and the skb
729 * can be released for processing. This may also release other skb's from the
730 * reorder buffer if there are no additional gaps between the frames.
731 *
732 * Callers must hold tid_agg_rx->reorder_lock.
733 */
734 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
735
736 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
737 struct tid_ampdu_rx *tid_agg_rx,
738 struct sk_buff_head *frames)
739 {
740 int index, j;
741
742 lockdep_assert_held(&tid_agg_rx->reorder_lock);
743
744 /* release the buffer until next missing frame */
745 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
746 if (!tid_agg_rx->reorder_buf[index] &&
747 tid_agg_rx->stored_mpdu_num) {
748 /*
749 * No buffers ready to be released, but check whether any
750 * frames in the reorder buffer have timed out.
751 */
752 int skipped = 1;
753 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
754 j = (j + 1) % tid_agg_rx->buf_size) {
755 if (!tid_agg_rx->reorder_buf[j]) {
756 skipped++;
757 continue;
758 }
759 if (skipped &&
760 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
761 HT_RX_REORDER_BUF_TIMEOUT))
762 goto set_release_timer;
763
764 ht_dbg_ratelimited(sdata,
765 "release an RX reorder frame due to timeout on earlier frames\n");
766 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
767 frames);
768
769 /*
770 * Increment the head seq# also for the skipped slots.
771 */
772 tid_agg_rx->head_seq_num =
773 (tid_agg_rx->head_seq_num +
774 skipped) & IEEE80211_SN_MASK;
775 skipped = 0;
776 }
777 } else while (tid_agg_rx->reorder_buf[index]) {
778 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
779 frames);
780 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
781 }
782
783 if (tid_agg_rx->stored_mpdu_num) {
784 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
785
786 for (; j != (index - 1) % tid_agg_rx->buf_size;
787 j = (j + 1) % tid_agg_rx->buf_size) {
788 if (tid_agg_rx->reorder_buf[j])
789 break;
790 }
791
792 set_release_timer:
793
794 mod_timer(&tid_agg_rx->reorder_timer,
795 tid_agg_rx->reorder_time[j] + 1 +
796 HT_RX_REORDER_BUF_TIMEOUT);
797 } else {
798 del_timer(&tid_agg_rx->reorder_timer);
799 }
800 }
801
802 /*
803 * As this function belongs to the RX path it must be under
804 * rcu_read_lock protection. It returns false if the frame
805 * can be processed immediately, true if it was consumed.
806 */
807 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
808 struct tid_ampdu_rx *tid_agg_rx,
809 struct sk_buff *skb,
810 struct sk_buff_head *frames)
811 {
812 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
813 u16 sc = le16_to_cpu(hdr->seq_ctrl);
814 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
815 u16 head_seq_num, buf_size;
816 int index;
817 bool ret = true;
818
819 spin_lock(&tid_agg_rx->reorder_lock);
820
821 buf_size = tid_agg_rx->buf_size;
822 head_seq_num = tid_agg_rx->head_seq_num;
823
824 /* frame with out of date sequence number */
825 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
826 dev_kfree_skb(skb);
827 goto out;
828 }
829
830 /*
831 * If frame the sequence number exceeds our buffering window
832 * size release some previous frames to make room for this one.
833 */
834 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
835 head_seq_num = ieee80211_sn_inc(
836 ieee80211_sn_sub(mpdu_seq_num, buf_size));
837 /* release stored frames up to new head to stack */
838 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
839 head_seq_num, frames);
840 }
841
842 /* Now the new frame is always in the range of the reordering buffer */
843
844 index = mpdu_seq_num % tid_agg_rx->buf_size;
845
846 /* check if we already stored this frame */
847 if (tid_agg_rx->reorder_buf[index]) {
848 dev_kfree_skb(skb);
849 goto out;
850 }
851
852 /*
853 * If the current MPDU is in the right order and nothing else
854 * is stored we can process it directly, no need to buffer it.
855 * If it is first but there's something stored, we may be able
856 * to release frames after this one.
857 */
858 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
859 tid_agg_rx->stored_mpdu_num == 0) {
860 tid_agg_rx->head_seq_num =
861 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
862 ret = false;
863 goto out;
864 }
865
866 /* put the frame in the reordering buffer */
867 tid_agg_rx->reorder_buf[index] = skb;
868 tid_agg_rx->reorder_time[index] = jiffies;
869 tid_agg_rx->stored_mpdu_num++;
870 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
871
872 out:
873 spin_unlock(&tid_agg_rx->reorder_lock);
874 return ret;
875 }
876
877 /*
878 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
879 * true if the MPDU was buffered, false if it should be processed.
880 */
881 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
882 struct sk_buff_head *frames)
883 {
884 struct sk_buff *skb = rx->skb;
885 struct ieee80211_local *local = rx->local;
886 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
887 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
888 struct sta_info *sta = rx->sta;
889 struct tid_ampdu_rx *tid_agg_rx;
890 u16 sc;
891 u8 tid, ack_policy;
892
893 if (!ieee80211_is_data_qos(hdr->frame_control) ||
894 is_multicast_ether_addr(hdr->addr1))
895 goto dont_reorder;
896
897 /*
898 * filter the QoS data rx stream according to
899 * STA/TID and check if this STA/TID is on aggregation
900 */
901
902 if (!sta)
903 goto dont_reorder;
904
905 ack_policy = *ieee80211_get_qos_ctl(hdr) &
906 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
907 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
908
909 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
910 if (!tid_agg_rx)
911 goto dont_reorder;
912
913 /* qos null data frames are excluded */
914 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
915 goto dont_reorder;
916
917 /* not part of a BA session */
918 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
919 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
920 goto dont_reorder;
921
922 /* not actually part of this BA session */
923 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
924 goto dont_reorder;
925
926 /* new, potentially un-ordered, ampdu frame - process it */
927
928 /* reset session timer */
929 if (tid_agg_rx->timeout)
930 tid_agg_rx->last_rx = jiffies;
931
932 /* if this mpdu is fragmented - terminate rx aggregation session */
933 sc = le16_to_cpu(hdr->seq_ctrl);
934 if (sc & IEEE80211_SCTL_FRAG) {
935 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
936 skb_queue_tail(&rx->sdata->skb_queue, skb);
937 ieee80211_queue_work(&local->hw, &rx->sdata->work);
938 return;
939 }
940
941 /*
942 * No locking needed -- we will only ever process one
943 * RX packet at a time, and thus own tid_agg_rx. All
944 * other code manipulating it needs to (and does) make
945 * sure that we cannot get to it any more before doing
946 * anything with it.
947 */
948 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
949 frames))
950 return;
951
952 dont_reorder:
953 __skb_queue_tail(frames, skb);
954 }
955
956 static ieee80211_rx_result debug_noinline
957 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
958 {
959 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
960 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
961
962 /*
963 * Drop duplicate 802.11 retransmissions
964 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
965 */
966 if (rx->skb->len >= 24 && rx->sta &&
967 !ieee80211_is_ctl(hdr->frame_control) &&
968 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
969 !is_multicast_ether_addr(hdr->addr1)) {
970 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
971 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
972 hdr->seq_ctrl)) {
973 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
974 rx->local->dot11FrameDuplicateCount++;
975 rx->sta->num_duplicates++;
976 }
977 return RX_DROP_UNUSABLE;
978 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
979 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
980 }
981 }
982
983 if (unlikely(rx->skb->len < 16)) {
984 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
985 return RX_DROP_MONITOR;
986 }
987
988 /* Drop disallowed frame classes based on STA auth/assoc state;
989 * IEEE 802.11, Chap 5.5.
990 *
991 * mac80211 filters only based on association state, i.e. it drops
992 * Class 3 frames from not associated stations. hostapd sends
993 * deauth/disassoc frames when needed. In addition, hostapd is
994 * responsible for filtering on both auth and assoc states.
995 */
996
997 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
998 return ieee80211_rx_mesh_check(rx);
999
1000 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1001 ieee80211_is_pspoll(hdr->frame_control)) &&
1002 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1003 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1004 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1005 /*
1006 * accept port control frames from the AP even when it's not
1007 * yet marked ASSOC to prevent a race where we don't set the
1008 * assoc bit quickly enough before it sends the first frame
1009 */
1010 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1011 ieee80211_is_data_present(hdr->frame_control)) {
1012 unsigned int hdrlen;
1013 __be16 ethertype;
1014
1015 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1016
1017 if (rx->skb->len < hdrlen + 8)
1018 return RX_DROP_MONITOR;
1019
1020 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1021 if (ethertype == rx->sdata->control_port_protocol)
1022 return RX_CONTINUE;
1023 }
1024
1025 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1026 cfg80211_rx_spurious_frame(rx->sdata->dev,
1027 hdr->addr2,
1028 GFP_ATOMIC))
1029 return RX_DROP_UNUSABLE;
1030
1031 return RX_DROP_MONITOR;
1032 }
1033
1034 return RX_CONTINUE;
1035 }
1036
1037
1038 static ieee80211_rx_result debug_noinline
1039 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1040 {
1041 struct ieee80211_local *local;
1042 struct ieee80211_hdr *hdr;
1043 struct sk_buff *skb;
1044
1045 local = rx->local;
1046 skb = rx->skb;
1047 hdr = (struct ieee80211_hdr *) skb->data;
1048
1049 if (!local->pspolling)
1050 return RX_CONTINUE;
1051
1052 if (!ieee80211_has_fromds(hdr->frame_control))
1053 /* this is not from AP */
1054 return RX_CONTINUE;
1055
1056 if (!ieee80211_is_data(hdr->frame_control))
1057 return RX_CONTINUE;
1058
1059 if (!ieee80211_has_moredata(hdr->frame_control)) {
1060 /* AP has no more frames buffered for us */
1061 local->pspolling = false;
1062 return RX_CONTINUE;
1063 }
1064
1065 /* more data bit is set, let's request a new frame from the AP */
1066 ieee80211_send_pspoll(local, rx->sdata);
1067
1068 return RX_CONTINUE;
1069 }
1070
1071 static void sta_ps_start(struct sta_info *sta)
1072 {
1073 struct ieee80211_sub_if_data *sdata = sta->sdata;
1074 struct ieee80211_local *local = sdata->local;
1075 struct ps_data *ps;
1076
1077 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1078 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1079 ps = &sdata->bss->ps;
1080 else
1081 return;
1082
1083 atomic_inc(&ps->num_sta_ps);
1084 set_sta_flag(sta, WLAN_STA_PS_STA);
1085 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1086 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1087 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1088 sta->sta.addr, sta->sta.aid);
1089 }
1090
1091 static void sta_ps_end(struct sta_info *sta)
1092 {
1093 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1094 sta->sta.addr, sta->sta.aid);
1095
1096 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1097 /*
1098 * Clear the flag only if the other one is still set
1099 * so that the TX path won't start TX'ing new frames
1100 * directly ... In the case that the driver flag isn't
1101 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1102 */
1103 clear_sta_flag(sta, WLAN_STA_PS_STA);
1104 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1105 sta->sta.addr, sta->sta.aid);
1106 return;
1107 }
1108
1109 ieee80211_sta_ps_deliver_wakeup(sta);
1110 }
1111
1112 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1113 {
1114 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1115 bool in_ps;
1116
1117 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1118
1119 /* Don't let the same PS state be set twice */
1120 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1121 if ((start && in_ps) || (!start && !in_ps))
1122 return -EINVAL;
1123
1124 if (start)
1125 sta_ps_start(sta_inf);
1126 else
1127 sta_ps_end(sta_inf);
1128
1129 return 0;
1130 }
1131 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1132
1133 static ieee80211_rx_result debug_noinline
1134 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1135 {
1136 struct ieee80211_sub_if_data *sdata = rx->sdata;
1137 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1138 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1139 int tid, ac;
1140
1141 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1142 return RX_CONTINUE;
1143
1144 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1145 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1146 return RX_CONTINUE;
1147
1148 /*
1149 * The device handles station powersave, so don't do anything about
1150 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1151 * it to mac80211 since they're handled.)
1152 */
1153 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1154 return RX_CONTINUE;
1155
1156 /*
1157 * Don't do anything if the station isn't already asleep. In
1158 * the uAPSD case, the station will probably be marked asleep,
1159 * in the PS-Poll case the station must be confused ...
1160 */
1161 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1162 return RX_CONTINUE;
1163
1164 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1165 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1166 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1167 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1168 else
1169 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1170 }
1171
1172 /* Free PS Poll skb here instead of returning RX_DROP that would
1173 * count as an dropped frame. */
1174 dev_kfree_skb(rx->skb);
1175
1176 return RX_QUEUED;
1177 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1178 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1179 ieee80211_has_pm(hdr->frame_control) &&
1180 (ieee80211_is_data_qos(hdr->frame_control) ||
1181 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1182 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1183 ac = ieee802_1d_to_ac[tid & 7];
1184
1185 /*
1186 * If this AC is not trigger-enabled do nothing.
1187 *
1188 * NB: This could/should check a separate bitmap of trigger-
1189 * enabled queues, but for now we only implement uAPSD w/o
1190 * TSPEC changes to the ACs, so they're always the same.
1191 */
1192 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1193 return RX_CONTINUE;
1194
1195 /* if we are in a service period, do nothing */
1196 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1197 return RX_CONTINUE;
1198
1199 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1200 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1201 else
1202 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1203 }
1204
1205 return RX_CONTINUE;
1206 }
1207
1208 static ieee80211_rx_result debug_noinline
1209 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1210 {
1211 struct sta_info *sta = rx->sta;
1212 struct sk_buff *skb = rx->skb;
1213 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1214 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1215 int i;
1216
1217 if (!sta)
1218 return RX_CONTINUE;
1219
1220 /*
1221 * Update last_rx only for IBSS packets which are for the current
1222 * BSSID and for station already AUTHORIZED to avoid keeping the
1223 * current IBSS network alive in cases where other STAs start
1224 * using different BSSID. This will also give the station another
1225 * chance to restart the authentication/authorization in case
1226 * something went wrong the first time.
1227 */
1228 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1229 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1230 NL80211_IFTYPE_ADHOC);
1231 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1232 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1233 sta->last_rx = jiffies;
1234 if (ieee80211_is_data(hdr->frame_control)) {
1235 sta->last_rx_rate_idx = status->rate_idx;
1236 sta->last_rx_rate_flag = status->flag;
1237 sta->last_rx_rate_vht_flag = status->vht_flag;
1238 sta->last_rx_rate_vht_nss = status->vht_nss;
1239 }
1240 }
1241 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1242 /*
1243 * Mesh beacons will update last_rx when if they are found to
1244 * match the current local configuration when processed.
1245 */
1246 sta->last_rx = jiffies;
1247 if (ieee80211_is_data(hdr->frame_control)) {
1248 sta->last_rx_rate_idx = status->rate_idx;
1249 sta->last_rx_rate_flag = status->flag;
1250 sta->last_rx_rate_vht_flag = status->vht_flag;
1251 sta->last_rx_rate_vht_nss = status->vht_nss;
1252 }
1253 }
1254
1255 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1256 return RX_CONTINUE;
1257
1258 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1259 ieee80211_sta_rx_notify(rx->sdata, hdr);
1260
1261 sta->rx_fragments++;
1262 sta->rx_bytes += rx->skb->len;
1263 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1264 sta->last_signal = status->signal;
1265 ewma_add(&sta->avg_signal, -status->signal);
1266 }
1267
1268 if (status->chains) {
1269 sta->chains = status->chains;
1270 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1271 int signal = status->chain_signal[i];
1272
1273 if (!(status->chains & BIT(i)))
1274 continue;
1275
1276 sta->chain_signal_last[i] = signal;
1277 ewma_add(&sta->chain_signal_avg[i], -signal);
1278 }
1279 }
1280
1281 /*
1282 * Change STA power saving mode only at the end of a frame
1283 * exchange sequence.
1284 */
1285 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1286 !ieee80211_has_morefrags(hdr->frame_control) &&
1287 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1288 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1289 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1290 /* PM bit is only checked in frames where it isn't reserved,
1291 * in AP mode it's reserved in non-bufferable management frames
1292 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1293 */
1294 (!ieee80211_is_mgmt(hdr->frame_control) ||
1295 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1296 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1297 if (!ieee80211_has_pm(hdr->frame_control))
1298 sta_ps_end(sta);
1299 } else {
1300 if (ieee80211_has_pm(hdr->frame_control))
1301 sta_ps_start(sta);
1302 }
1303 }
1304
1305 /* mesh power save support */
1306 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1307 ieee80211_mps_rx_h_sta_process(sta, hdr);
1308
1309 /*
1310 * Drop (qos-)data::nullfunc frames silently, since they
1311 * are used only to control station power saving mode.
1312 */
1313 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1314 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1315 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1316
1317 /*
1318 * If we receive a 4-addr nullfunc frame from a STA
1319 * that was not moved to a 4-addr STA vlan yet send
1320 * the event to userspace and for older hostapd drop
1321 * the frame to the monitor interface.
1322 */
1323 if (ieee80211_has_a4(hdr->frame_control) &&
1324 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1325 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1326 !rx->sdata->u.vlan.sta))) {
1327 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1328 cfg80211_rx_unexpected_4addr_frame(
1329 rx->sdata->dev, sta->sta.addr,
1330 GFP_ATOMIC);
1331 return RX_DROP_MONITOR;
1332 }
1333 /*
1334 * Update counter and free packet here to avoid
1335 * counting this as a dropped packed.
1336 */
1337 sta->rx_packets++;
1338 dev_kfree_skb(rx->skb);
1339 return RX_QUEUED;
1340 }
1341
1342 return RX_CONTINUE;
1343 } /* ieee80211_rx_h_sta_process */
1344
1345 static ieee80211_rx_result debug_noinline
1346 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1347 {
1348 struct sk_buff *skb = rx->skb;
1349 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1350 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1351 int keyidx;
1352 int hdrlen;
1353 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1354 struct ieee80211_key *sta_ptk = NULL;
1355 int mmie_keyidx = -1;
1356 __le16 fc;
1357 const struct ieee80211_cipher_scheme *cs = NULL;
1358
1359 /*
1360 * Key selection 101
1361 *
1362 * There are four types of keys:
1363 * - GTK (group keys)
1364 * - IGTK (group keys for management frames)
1365 * - PTK (pairwise keys)
1366 * - STK (station-to-station pairwise keys)
1367 *
1368 * When selecting a key, we have to distinguish between multicast
1369 * (including broadcast) and unicast frames, the latter can only
1370 * use PTKs and STKs while the former always use GTKs and IGTKs.
1371 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1372 * unicast frames can also use key indices like GTKs. Hence, if we
1373 * don't have a PTK/STK we check the key index for a WEP key.
1374 *
1375 * Note that in a regular BSS, multicast frames are sent by the
1376 * AP only, associated stations unicast the frame to the AP first
1377 * which then multicasts it on their behalf.
1378 *
1379 * There is also a slight problem in IBSS mode: GTKs are negotiated
1380 * with each station, that is something we don't currently handle.
1381 * The spec seems to expect that one negotiates the same key with
1382 * every station but there's no such requirement; VLANs could be
1383 * possible.
1384 */
1385
1386 /*
1387 * No point in finding a key and decrypting if the frame is neither
1388 * addressed to us nor a multicast frame.
1389 */
1390 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1391 return RX_CONTINUE;
1392
1393 /* start without a key */
1394 rx->key = NULL;
1395 fc = hdr->frame_control;
1396
1397 if (rx->sta) {
1398 int keyid = rx->sta->ptk_idx;
1399
1400 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1401 cs = rx->sta->cipher_scheme;
1402 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1403 if (unlikely(keyid < 0))
1404 return RX_DROP_UNUSABLE;
1405 }
1406 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1407 }
1408
1409 if (!ieee80211_has_protected(fc))
1410 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1411
1412 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1413 rx->key = sta_ptk;
1414 if ((status->flag & RX_FLAG_DECRYPTED) &&
1415 (status->flag & RX_FLAG_IV_STRIPPED))
1416 return RX_CONTINUE;
1417 /* Skip decryption if the frame is not protected. */
1418 if (!ieee80211_has_protected(fc))
1419 return RX_CONTINUE;
1420 } else if (mmie_keyidx >= 0) {
1421 /* Broadcast/multicast robust management frame / BIP */
1422 if ((status->flag & RX_FLAG_DECRYPTED) &&
1423 (status->flag & RX_FLAG_IV_STRIPPED))
1424 return RX_CONTINUE;
1425
1426 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1427 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1428 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1429 if (rx->sta)
1430 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1431 if (!rx->key)
1432 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1433 } else if (!ieee80211_has_protected(fc)) {
1434 /*
1435 * The frame was not protected, so skip decryption. However, we
1436 * need to set rx->key if there is a key that could have been
1437 * used so that the frame may be dropped if encryption would
1438 * have been expected.
1439 */
1440 struct ieee80211_key *key = NULL;
1441 struct ieee80211_sub_if_data *sdata = rx->sdata;
1442 int i;
1443
1444 if (ieee80211_is_mgmt(fc) &&
1445 is_multicast_ether_addr(hdr->addr1) &&
1446 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1447 rx->key = key;
1448 else {
1449 if (rx->sta) {
1450 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1451 key = rcu_dereference(rx->sta->gtk[i]);
1452 if (key)
1453 break;
1454 }
1455 }
1456 if (!key) {
1457 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1458 key = rcu_dereference(sdata->keys[i]);
1459 if (key)
1460 break;
1461 }
1462 }
1463 if (key)
1464 rx->key = key;
1465 }
1466 return RX_CONTINUE;
1467 } else {
1468 u8 keyid;
1469
1470 /*
1471 * The device doesn't give us the IV so we won't be
1472 * able to look up the key. That's ok though, we
1473 * don't need to decrypt the frame, we just won't
1474 * be able to keep statistics accurate.
1475 * Except for key threshold notifications, should
1476 * we somehow allow the driver to tell us which key
1477 * the hardware used if this flag is set?
1478 */
1479 if ((status->flag & RX_FLAG_DECRYPTED) &&
1480 (status->flag & RX_FLAG_IV_STRIPPED))
1481 return RX_CONTINUE;
1482
1483 hdrlen = ieee80211_hdrlen(fc);
1484
1485 if (cs) {
1486 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1487
1488 if (unlikely(keyidx < 0))
1489 return RX_DROP_UNUSABLE;
1490 } else {
1491 if (rx->skb->len < 8 + hdrlen)
1492 return RX_DROP_UNUSABLE; /* TODO: count this? */
1493 /*
1494 * no need to call ieee80211_wep_get_keyidx,
1495 * it verifies a bunch of things we've done already
1496 */
1497 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1498 keyidx = keyid >> 6;
1499 }
1500
1501 /* check per-station GTK first, if multicast packet */
1502 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1503 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1504
1505 /* if not found, try default key */
1506 if (!rx->key) {
1507 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1508
1509 /*
1510 * RSNA-protected unicast frames should always be
1511 * sent with pairwise or station-to-station keys,
1512 * but for WEP we allow using a key index as well.
1513 */
1514 if (rx->key &&
1515 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1516 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1517 !is_multicast_ether_addr(hdr->addr1))
1518 rx->key = NULL;
1519 }
1520 }
1521
1522 if (rx->key) {
1523 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1524 return RX_DROP_MONITOR;
1525
1526 rx->key->tx_rx_count++;
1527 /* TODO: add threshold stuff again */
1528 } else {
1529 return RX_DROP_MONITOR;
1530 }
1531
1532 switch (rx->key->conf.cipher) {
1533 case WLAN_CIPHER_SUITE_WEP40:
1534 case WLAN_CIPHER_SUITE_WEP104:
1535 result = ieee80211_crypto_wep_decrypt(rx);
1536 break;
1537 case WLAN_CIPHER_SUITE_TKIP:
1538 result = ieee80211_crypto_tkip_decrypt(rx);
1539 break;
1540 case WLAN_CIPHER_SUITE_CCMP:
1541 result = ieee80211_crypto_ccmp_decrypt(rx);
1542 break;
1543 case WLAN_CIPHER_SUITE_AES_CMAC:
1544 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1545 break;
1546 default:
1547 result = ieee80211_crypto_hw_decrypt(rx);
1548 }
1549
1550 /* the hdr variable is invalid after the decrypt handlers */
1551
1552 /* either the frame has been decrypted or will be dropped */
1553 status->flag |= RX_FLAG_DECRYPTED;
1554
1555 return result;
1556 }
1557
1558 static inline struct ieee80211_fragment_entry *
1559 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1560 unsigned int frag, unsigned int seq, int rx_queue,
1561 struct sk_buff **skb)
1562 {
1563 struct ieee80211_fragment_entry *entry;
1564
1565 entry = &sdata->fragments[sdata->fragment_next++];
1566 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1567 sdata->fragment_next = 0;
1568
1569 if (!skb_queue_empty(&entry->skb_list))
1570 __skb_queue_purge(&entry->skb_list);
1571
1572 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1573 *skb = NULL;
1574 entry->first_frag_time = jiffies;
1575 entry->seq = seq;
1576 entry->rx_queue = rx_queue;
1577 entry->last_frag = frag;
1578 entry->ccmp = 0;
1579 entry->extra_len = 0;
1580
1581 return entry;
1582 }
1583
1584 static inline struct ieee80211_fragment_entry *
1585 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1586 unsigned int frag, unsigned int seq,
1587 int rx_queue, struct ieee80211_hdr *hdr)
1588 {
1589 struct ieee80211_fragment_entry *entry;
1590 int i, idx;
1591
1592 idx = sdata->fragment_next;
1593 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1594 struct ieee80211_hdr *f_hdr;
1595
1596 idx--;
1597 if (idx < 0)
1598 idx = IEEE80211_FRAGMENT_MAX - 1;
1599
1600 entry = &sdata->fragments[idx];
1601 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1602 entry->rx_queue != rx_queue ||
1603 entry->last_frag + 1 != frag)
1604 continue;
1605
1606 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1607
1608 /*
1609 * Check ftype and addresses are equal, else check next fragment
1610 */
1611 if (((hdr->frame_control ^ f_hdr->frame_control) &
1612 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1613 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1614 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1615 continue;
1616
1617 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1618 __skb_queue_purge(&entry->skb_list);
1619 continue;
1620 }
1621 return entry;
1622 }
1623
1624 return NULL;
1625 }
1626
1627 static ieee80211_rx_result debug_noinline
1628 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1629 {
1630 struct ieee80211_hdr *hdr;
1631 u16 sc;
1632 __le16 fc;
1633 unsigned int frag, seq;
1634 struct ieee80211_fragment_entry *entry;
1635 struct sk_buff *skb;
1636 struct ieee80211_rx_status *status;
1637
1638 hdr = (struct ieee80211_hdr *)rx->skb->data;
1639 fc = hdr->frame_control;
1640
1641 if (ieee80211_is_ctl(fc))
1642 return RX_CONTINUE;
1643
1644 sc = le16_to_cpu(hdr->seq_ctrl);
1645 frag = sc & IEEE80211_SCTL_FRAG;
1646
1647 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1648 is_multicast_ether_addr(hdr->addr1))) {
1649 /* not fragmented */
1650 goto out;
1651 }
1652 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1653
1654 if (skb_linearize(rx->skb))
1655 return RX_DROP_UNUSABLE;
1656
1657 /*
1658 * skb_linearize() might change the skb->data and
1659 * previously cached variables (in this case, hdr) need to
1660 * be refreshed with the new data.
1661 */
1662 hdr = (struct ieee80211_hdr *)rx->skb->data;
1663 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1664
1665 if (frag == 0) {
1666 /* This is the first fragment of a new frame. */
1667 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1668 rx->seqno_idx, &(rx->skb));
1669 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1670 ieee80211_has_protected(fc)) {
1671 int queue = rx->security_idx;
1672 /* Store CCMP PN so that we can verify that the next
1673 * fragment has a sequential PN value. */
1674 entry->ccmp = 1;
1675 memcpy(entry->last_pn,
1676 rx->key->u.ccmp.rx_pn[queue],
1677 IEEE80211_CCMP_PN_LEN);
1678 }
1679 return RX_QUEUED;
1680 }
1681
1682 /* This is a fragment for a frame that should already be pending in
1683 * fragment cache. Add this fragment to the end of the pending entry.
1684 */
1685 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1686 rx->seqno_idx, hdr);
1687 if (!entry) {
1688 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1689 return RX_DROP_MONITOR;
1690 }
1691
1692 /* Verify that MPDUs within one MSDU have sequential PN values.
1693 * (IEEE 802.11i, 8.3.3.4.5) */
1694 if (entry->ccmp) {
1695 int i;
1696 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1697 int queue;
1698 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1699 return RX_DROP_UNUSABLE;
1700 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1701 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1702 pn[i]++;
1703 if (pn[i])
1704 break;
1705 }
1706 queue = rx->security_idx;
1707 rpn = rx->key->u.ccmp.rx_pn[queue];
1708 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1709 return RX_DROP_UNUSABLE;
1710 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1711 }
1712
1713 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1714 __skb_queue_tail(&entry->skb_list, rx->skb);
1715 entry->last_frag = frag;
1716 entry->extra_len += rx->skb->len;
1717 if (ieee80211_has_morefrags(fc)) {
1718 rx->skb = NULL;
1719 return RX_QUEUED;
1720 }
1721
1722 rx->skb = __skb_dequeue(&entry->skb_list);
1723 if (skb_tailroom(rx->skb) < entry->extra_len) {
1724 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1725 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1726 GFP_ATOMIC))) {
1727 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1728 __skb_queue_purge(&entry->skb_list);
1729 return RX_DROP_UNUSABLE;
1730 }
1731 }
1732 while ((skb = __skb_dequeue(&entry->skb_list))) {
1733 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1734 dev_kfree_skb(skb);
1735 }
1736
1737 /* Complete frame has been reassembled - process it now */
1738 status = IEEE80211_SKB_RXCB(rx->skb);
1739 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1740
1741 out:
1742 if (rx->sta)
1743 rx->sta->rx_packets++;
1744 if (is_multicast_ether_addr(hdr->addr1))
1745 rx->local->dot11MulticastReceivedFrameCount++;
1746 else
1747 ieee80211_led_rx(rx->local);
1748 return RX_CONTINUE;
1749 }
1750
1751 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1752 {
1753 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1754 return -EACCES;
1755
1756 return 0;
1757 }
1758
1759 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1760 {
1761 struct sk_buff *skb = rx->skb;
1762 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1763
1764 /*
1765 * Pass through unencrypted frames if the hardware has
1766 * decrypted them already.
1767 */
1768 if (status->flag & RX_FLAG_DECRYPTED)
1769 return 0;
1770
1771 /* Drop unencrypted frames if key is set. */
1772 if (unlikely(!ieee80211_has_protected(fc) &&
1773 !ieee80211_is_nullfunc(fc) &&
1774 ieee80211_is_data(fc) &&
1775 (rx->key || rx->sdata->drop_unencrypted)))
1776 return -EACCES;
1777
1778 return 0;
1779 }
1780
1781 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1782 {
1783 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1784 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1785 __le16 fc = hdr->frame_control;
1786
1787 /*
1788 * Pass through unencrypted frames if the hardware has
1789 * decrypted them already.
1790 */
1791 if (status->flag & RX_FLAG_DECRYPTED)
1792 return 0;
1793
1794 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1795 if (unlikely(!ieee80211_has_protected(fc) &&
1796 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1797 rx->key)) {
1798 if (ieee80211_is_deauth(fc) ||
1799 ieee80211_is_disassoc(fc))
1800 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1801 rx->skb->data,
1802 rx->skb->len);
1803 return -EACCES;
1804 }
1805 /* BIP does not use Protected field, so need to check MMIE */
1806 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1807 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1808 if (ieee80211_is_deauth(fc) ||
1809 ieee80211_is_disassoc(fc))
1810 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1811 rx->skb->data,
1812 rx->skb->len);
1813 return -EACCES;
1814 }
1815 /*
1816 * When using MFP, Action frames are not allowed prior to
1817 * having configured keys.
1818 */
1819 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1820 ieee80211_is_robust_mgmt_frame(rx->skb)))
1821 return -EACCES;
1822 }
1823
1824 return 0;
1825 }
1826
1827 static int
1828 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1829 {
1830 struct ieee80211_sub_if_data *sdata = rx->sdata;
1831 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1832 bool check_port_control = false;
1833 struct ethhdr *ehdr;
1834 int ret;
1835
1836 *port_control = false;
1837 if (ieee80211_has_a4(hdr->frame_control) &&
1838 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1839 return -1;
1840
1841 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1842 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1843
1844 if (!sdata->u.mgd.use_4addr)
1845 return -1;
1846 else
1847 check_port_control = true;
1848 }
1849
1850 if (is_multicast_ether_addr(hdr->addr1) &&
1851 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1852 return -1;
1853
1854 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1855 if (ret < 0)
1856 return ret;
1857
1858 ehdr = (struct ethhdr *) rx->skb->data;
1859 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1860 *port_control = true;
1861 else if (check_port_control)
1862 return -1;
1863
1864 return 0;
1865 }
1866
1867 /*
1868 * requires that rx->skb is a frame with ethernet header
1869 */
1870 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1871 {
1872 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1873 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1874 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1875
1876 /*
1877 * Allow EAPOL frames to us/the PAE group address regardless
1878 * of whether the frame was encrypted or not.
1879 */
1880 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1881 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1882 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1883 return true;
1884
1885 if (ieee80211_802_1x_port_control(rx) ||
1886 ieee80211_drop_unencrypted(rx, fc))
1887 return false;
1888
1889 return true;
1890 }
1891
1892 /*
1893 * requires that rx->skb is a frame with ethernet header
1894 */
1895 static void
1896 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1897 {
1898 struct ieee80211_sub_if_data *sdata = rx->sdata;
1899 struct net_device *dev = sdata->dev;
1900 struct sk_buff *skb, *xmit_skb;
1901 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1902 struct sta_info *dsta;
1903 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1904
1905 skb = rx->skb;
1906 xmit_skb = NULL;
1907
1908 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1909 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1910 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1911 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1912 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1913 if (is_multicast_ether_addr(ehdr->h_dest)) {
1914 /*
1915 * send multicast frames both to higher layers in
1916 * local net stack and back to the wireless medium
1917 */
1918 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1919 if (!xmit_skb)
1920 net_info_ratelimited("%s: failed to clone multicast frame\n",
1921 dev->name);
1922 } else {
1923 dsta = sta_info_get(sdata, skb->data);
1924 if (dsta) {
1925 /*
1926 * The destination station is associated to
1927 * this AP (in this VLAN), so send the frame
1928 * directly to it and do not pass it to local
1929 * net stack.
1930 */
1931 xmit_skb = skb;
1932 skb = NULL;
1933 }
1934 }
1935 }
1936
1937 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1938 if (skb) {
1939 /* 'align' will only take the values 0 or 2 here since all
1940 * frames are required to be aligned to 2-byte boundaries
1941 * when being passed to mac80211; the code here works just
1942 * as well if that isn't true, but mac80211 assumes it can
1943 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
1944 */
1945 int align;
1946
1947 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
1948 if (align) {
1949 if (WARN_ON(skb_headroom(skb) < 3)) {
1950 dev_kfree_skb(skb);
1951 skb = NULL;
1952 } else {
1953 u8 *data = skb->data;
1954 size_t len = skb_headlen(skb);
1955 skb->data -= align;
1956 memmove(skb->data, data, len);
1957 skb_set_tail_pointer(skb, len);
1958 }
1959 }
1960 }
1961 #endif
1962
1963 if (skb) {
1964 /* deliver to local stack */
1965 skb->protocol = eth_type_trans(skb, dev);
1966 memset(skb->cb, 0, sizeof(skb->cb));
1967 if (rx->local->napi)
1968 napi_gro_receive(rx->local->napi, skb);
1969 else
1970 netif_receive_skb(skb);
1971 }
1972
1973 if (xmit_skb) {
1974 /*
1975 * Send to wireless media and increase priority by 256 to
1976 * keep the received priority instead of reclassifying
1977 * the frame (see cfg80211_classify8021d).
1978 */
1979 xmit_skb->priority += 256;
1980 xmit_skb->protocol = htons(ETH_P_802_3);
1981 skb_reset_network_header(xmit_skb);
1982 skb_reset_mac_header(xmit_skb);
1983 dev_queue_xmit(xmit_skb);
1984 }
1985 }
1986
1987 static ieee80211_rx_result debug_noinline
1988 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1989 {
1990 struct net_device *dev = rx->sdata->dev;
1991 struct sk_buff *skb = rx->skb;
1992 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1993 __le16 fc = hdr->frame_control;
1994 struct sk_buff_head frame_list;
1995 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1996
1997 if (unlikely(!ieee80211_is_data(fc)))
1998 return RX_CONTINUE;
1999
2000 if (unlikely(!ieee80211_is_data_present(fc)))
2001 return RX_DROP_MONITOR;
2002
2003 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2004 return RX_CONTINUE;
2005
2006 if (ieee80211_has_a4(hdr->frame_control) &&
2007 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2008 !rx->sdata->u.vlan.sta)
2009 return RX_DROP_UNUSABLE;
2010
2011 if (is_multicast_ether_addr(hdr->addr1) &&
2012 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2013 rx->sdata->u.vlan.sta) ||
2014 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2015 rx->sdata->u.mgd.use_4addr)))
2016 return RX_DROP_UNUSABLE;
2017
2018 skb->dev = dev;
2019 __skb_queue_head_init(&frame_list);
2020
2021 if (skb_linearize(skb))
2022 return RX_DROP_UNUSABLE;
2023
2024 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2025 rx->sdata->vif.type,
2026 rx->local->hw.extra_tx_headroom, true);
2027
2028 while (!skb_queue_empty(&frame_list)) {
2029 rx->skb = __skb_dequeue(&frame_list);
2030
2031 if (!ieee80211_frame_allowed(rx, fc)) {
2032 dev_kfree_skb(rx->skb);
2033 continue;
2034 }
2035 dev->stats.rx_packets++;
2036 dev->stats.rx_bytes += rx->skb->len;
2037
2038 ieee80211_deliver_skb(rx);
2039 }
2040
2041 return RX_QUEUED;
2042 }
2043
2044 #ifdef CONFIG_MAC80211_MESH
2045 static ieee80211_rx_result
2046 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2047 {
2048 struct ieee80211_hdr *fwd_hdr, *hdr;
2049 struct ieee80211_tx_info *info;
2050 struct ieee80211s_hdr *mesh_hdr;
2051 struct sk_buff *skb = rx->skb, *fwd_skb;
2052 struct ieee80211_local *local = rx->local;
2053 struct ieee80211_sub_if_data *sdata = rx->sdata;
2054 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2055 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2056 u16 q, hdrlen;
2057
2058 hdr = (struct ieee80211_hdr *) skb->data;
2059 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2060
2061 /* make sure fixed part of mesh header is there, also checks skb len */
2062 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2063 return RX_DROP_MONITOR;
2064
2065 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2066
2067 /* make sure full mesh header is there, also checks skb len */
2068 if (!pskb_may_pull(rx->skb,
2069 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2070 return RX_DROP_MONITOR;
2071
2072 /* reload pointers */
2073 hdr = (struct ieee80211_hdr *) skb->data;
2074 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2075
2076 /* frame is in RMC, don't forward */
2077 if (ieee80211_is_data(hdr->frame_control) &&
2078 is_multicast_ether_addr(hdr->addr1) &&
2079 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2080 return RX_DROP_MONITOR;
2081
2082 if (!ieee80211_is_data(hdr->frame_control) ||
2083 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2084 return RX_CONTINUE;
2085
2086 if (!mesh_hdr->ttl)
2087 return RX_DROP_MONITOR;
2088
2089 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2090 struct mesh_path *mppath;
2091 char *proxied_addr;
2092 char *mpp_addr;
2093
2094 if (is_multicast_ether_addr(hdr->addr1)) {
2095 mpp_addr = hdr->addr3;
2096 proxied_addr = mesh_hdr->eaddr1;
2097 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2098 /* has_a4 already checked in ieee80211_rx_mesh_check */
2099 mpp_addr = hdr->addr4;
2100 proxied_addr = mesh_hdr->eaddr2;
2101 } else {
2102 return RX_DROP_MONITOR;
2103 }
2104
2105 rcu_read_lock();
2106 mppath = mpp_path_lookup(sdata, proxied_addr);
2107 if (!mppath) {
2108 mpp_path_add(sdata, proxied_addr, mpp_addr);
2109 } else {
2110 spin_lock_bh(&mppath->state_lock);
2111 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2112 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2113 spin_unlock_bh(&mppath->state_lock);
2114 }
2115 rcu_read_unlock();
2116 }
2117
2118 /* Frame has reached destination. Don't forward */
2119 if (!is_multicast_ether_addr(hdr->addr1) &&
2120 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2121 return RX_CONTINUE;
2122
2123 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2124 if (ieee80211_queue_stopped(&local->hw, q)) {
2125 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2126 return RX_DROP_MONITOR;
2127 }
2128 skb_set_queue_mapping(skb, q);
2129
2130 if (!--mesh_hdr->ttl) {
2131 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2132 goto out;
2133 }
2134
2135 if (!ifmsh->mshcfg.dot11MeshForwarding)
2136 goto out;
2137
2138 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2139 if (!fwd_skb) {
2140 net_info_ratelimited("%s: failed to clone mesh frame\n",
2141 sdata->name);
2142 goto out;
2143 }
2144
2145 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2146 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2147 info = IEEE80211_SKB_CB(fwd_skb);
2148 memset(info, 0, sizeof(*info));
2149 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2150 info->control.vif = &rx->sdata->vif;
2151 info->control.jiffies = jiffies;
2152 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2153 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2154 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2155 /* update power mode indication when forwarding */
2156 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2157 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2158 /* mesh power mode flags updated in mesh_nexthop_lookup */
2159 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2160 } else {
2161 /* unable to resolve next hop */
2162 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2163 fwd_hdr->addr3, 0,
2164 WLAN_REASON_MESH_PATH_NOFORWARD,
2165 fwd_hdr->addr2);
2166 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2167 kfree_skb(fwd_skb);
2168 return RX_DROP_MONITOR;
2169 }
2170
2171 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2172 ieee80211_add_pending_skb(local, fwd_skb);
2173 out:
2174 if (is_multicast_ether_addr(hdr->addr1) ||
2175 sdata->dev->flags & IFF_PROMISC)
2176 return RX_CONTINUE;
2177 else
2178 return RX_DROP_MONITOR;
2179 }
2180 #endif
2181
2182 static ieee80211_rx_result debug_noinline
2183 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2184 {
2185 struct ieee80211_sub_if_data *sdata = rx->sdata;
2186 struct ieee80211_local *local = rx->local;
2187 struct net_device *dev = sdata->dev;
2188 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2189 __le16 fc = hdr->frame_control;
2190 bool port_control;
2191 int err;
2192
2193 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2194 return RX_CONTINUE;
2195
2196 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2197 return RX_DROP_MONITOR;
2198
2199 /*
2200 * Send unexpected-4addr-frame event to hostapd. For older versions,
2201 * also drop the frame to cooked monitor interfaces.
2202 */
2203 if (ieee80211_has_a4(hdr->frame_control) &&
2204 sdata->vif.type == NL80211_IFTYPE_AP) {
2205 if (rx->sta &&
2206 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2207 cfg80211_rx_unexpected_4addr_frame(
2208 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2209 return RX_DROP_MONITOR;
2210 }
2211
2212 err = __ieee80211_data_to_8023(rx, &port_control);
2213 if (unlikely(err))
2214 return RX_DROP_UNUSABLE;
2215
2216 if (!ieee80211_frame_allowed(rx, fc))
2217 return RX_DROP_MONITOR;
2218
2219 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2220 unlikely(port_control) && sdata->bss) {
2221 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2222 u.ap);
2223 dev = sdata->dev;
2224 rx->sdata = sdata;
2225 }
2226
2227 rx->skb->dev = dev;
2228
2229 dev->stats.rx_packets++;
2230 dev->stats.rx_bytes += rx->skb->len;
2231
2232 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2233 !is_multicast_ether_addr(
2234 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2235 (!local->scanning &&
2236 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2237 mod_timer(&local->dynamic_ps_timer, jiffies +
2238 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2239 }
2240
2241 ieee80211_deliver_skb(rx);
2242
2243 return RX_QUEUED;
2244 }
2245
2246 static ieee80211_rx_result debug_noinline
2247 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2248 {
2249 struct sk_buff *skb = rx->skb;
2250 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2251 struct tid_ampdu_rx *tid_agg_rx;
2252 u16 start_seq_num;
2253 u16 tid;
2254
2255 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2256 return RX_CONTINUE;
2257
2258 if (ieee80211_is_back_req(bar->frame_control)) {
2259 struct {
2260 __le16 control, start_seq_num;
2261 } __packed bar_data;
2262
2263 if (!rx->sta)
2264 return RX_DROP_MONITOR;
2265
2266 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2267 &bar_data, sizeof(bar_data)))
2268 return RX_DROP_MONITOR;
2269
2270 tid = le16_to_cpu(bar_data.control) >> 12;
2271
2272 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2273 if (!tid_agg_rx)
2274 return RX_DROP_MONITOR;
2275
2276 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2277
2278 /* reset session timer */
2279 if (tid_agg_rx->timeout)
2280 mod_timer(&tid_agg_rx->session_timer,
2281 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2282
2283 spin_lock(&tid_agg_rx->reorder_lock);
2284 /* release stored frames up to start of BAR */
2285 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2286 start_seq_num, frames);
2287 spin_unlock(&tid_agg_rx->reorder_lock);
2288
2289 kfree_skb(skb);
2290 return RX_QUEUED;
2291 }
2292
2293 /*
2294 * After this point, we only want management frames,
2295 * so we can drop all remaining control frames to
2296 * cooked monitor interfaces.
2297 */
2298 return RX_DROP_MONITOR;
2299 }
2300
2301 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2302 struct ieee80211_mgmt *mgmt,
2303 size_t len)
2304 {
2305 struct ieee80211_local *local = sdata->local;
2306 struct sk_buff *skb;
2307 struct ieee80211_mgmt *resp;
2308
2309 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2310 /* Not to own unicast address */
2311 return;
2312 }
2313
2314 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2315 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2316 /* Not from the current AP or not associated yet. */
2317 return;
2318 }
2319
2320 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2321 /* Too short SA Query request frame */
2322 return;
2323 }
2324
2325 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2326 if (skb == NULL)
2327 return;
2328
2329 skb_reserve(skb, local->hw.extra_tx_headroom);
2330 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2331 memset(resp, 0, 24);
2332 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2333 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2334 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2335 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2336 IEEE80211_STYPE_ACTION);
2337 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2338 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2339 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2340 memcpy(resp->u.action.u.sa_query.trans_id,
2341 mgmt->u.action.u.sa_query.trans_id,
2342 WLAN_SA_QUERY_TR_ID_LEN);
2343
2344 ieee80211_tx_skb(sdata, skb);
2345 }
2346
2347 static ieee80211_rx_result debug_noinline
2348 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2349 {
2350 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2351 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2352
2353 /*
2354 * From here on, look only at management frames.
2355 * Data and control frames are already handled,
2356 * and unknown (reserved) frames are useless.
2357 */
2358 if (rx->skb->len < 24)
2359 return RX_DROP_MONITOR;
2360
2361 if (!ieee80211_is_mgmt(mgmt->frame_control))
2362 return RX_DROP_MONITOR;
2363
2364 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2365 ieee80211_is_beacon(mgmt->frame_control) &&
2366 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2367 int sig = 0;
2368
2369 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2370 sig = status->signal;
2371
2372 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2373 rx->skb->data, rx->skb->len,
2374 status->freq, sig);
2375 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2376 }
2377
2378 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2379 return RX_DROP_MONITOR;
2380
2381 if (ieee80211_drop_unencrypted_mgmt(rx))
2382 return RX_DROP_UNUSABLE;
2383
2384 return RX_CONTINUE;
2385 }
2386
2387 static ieee80211_rx_result debug_noinline
2388 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2389 {
2390 struct ieee80211_local *local = rx->local;
2391 struct ieee80211_sub_if_data *sdata = rx->sdata;
2392 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2393 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2394 int len = rx->skb->len;
2395
2396 if (!ieee80211_is_action(mgmt->frame_control))
2397 return RX_CONTINUE;
2398
2399 /* drop too small frames */
2400 if (len < IEEE80211_MIN_ACTION_SIZE)
2401 return RX_DROP_UNUSABLE;
2402
2403 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2404 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2405 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2406 return RX_DROP_UNUSABLE;
2407
2408 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2409 return RX_DROP_UNUSABLE;
2410
2411 switch (mgmt->u.action.category) {
2412 case WLAN_CATEGORY_HT:
2413 /* reject HT action frames from stations not supporting HT */
2414 if (!rx->sta->sta.ht_cap.ht_supported)
2415 goto invalid;
2416
2417 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2418 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2419 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2420 sdata->vif.type != NL80211_IFTYPE_AP &&
2421 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2422 break;
2423
2424 /* verify action & smps_control/chanwidth are present */
2425 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2426 goto invalid;
2427
2428 switch (mgmt->u.action.u.ht_smps.action) {
2429 case WLAN_HT_ACTION_SMPS: {
2430 struct ieee80211_supported_band *sband;
2431 enum ieee80211_smps_mode smps_mode;
2432
2433 /* convert to HT capability */
2434 switch (mgmt->u.action.u.ht_smps.smps_control) {
2435 case WLAN_HT_SMPS_CONTROL_DISABLED:
2436 smps_mode = IEEE80211_SMPS_OFF;
2437 break;
2438 case WLAN_HT_SMPS_CONTROL_STATIC:
2439 smps_mode = IEEE80211_SMPS_STATIC;
2440 break;
2441 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2442 smps_mode = IEEE80211_SMPS_DYNAMIC;
2443 break;
2444 default:
2445 goto invalid;
2446 }
2447
2448 /* if no change do nothing */
2449 if (rx->sta->sta.smps_mode == smps_mode)
2450 goto handled;
2451 rx->sta->sta.smps_mode = smps_mode;
2452
2453 sband = rx->local->hw.wiphy->bands[status->band];
2454
2455 rate_control_rate_update(local, sband, rx->sta,
2456 IEEE80211_RC_SMPS_CHANGED);
2457 goto handled;
2458 }
2459 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2460 struct ieee80211_supported_band *sband;
2461 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2462 enum ieee80211_sta_rx_bandwidth new_bw;
2463
2464 /* If it doesn't support 40 MHz it can't change ... */
2465 if (!(rx->sta->sta.ht_cap.cap &
2466 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2467 goto handled;
2468
2469 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2470 new_bw = IEEE80211_STA_RX_BW_20;
2471 else
2472 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2473
2474 if (rx->sta->sta.bandwidth == new_bw)
2475 goto handled;
2476
2477 sband = rx->local->hw.wiphy->bands[status->band];
2478
2479 rate_control_rate_update(local, sband, rx->sta,
2480 IEEE80211_RC_BW_CHANGED);
2481 goto handled;
2482 }
2483 default:
2484 goto invalid;
2485 }
2486
2487 break;
2488 case WLAN_CATEGORY_PUBLIC:
2489 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2490 goto invalid;
2491 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2492 break;
2493 if (!rx->sta)
2494 break;
2495 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2496 break;
2497 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2498 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2499 break;
2500 if (len < offsetof(struct ieee80211_mgmt,
2501 u.action.u.ext_chan_switch.variable))
2502 goto invalid;
2503 goto queue;
2504 case WLAN_CATEGORY_VHT:
2505 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2506 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2507 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2508 sdata->vif.type != NL80211_IFTYPE_AP &&
2509 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2510 break;
2511
2512 /* verify action code is present */
2513 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2514 goto invalid;
2515
2516 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2517 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2518 u8 opmode;
2519
2520 /* verify opmode is present */
2521 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2522 goto invalid;
2523
2524 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2525
2526 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2527 opmode, status->band,
2528 false);
2529 goto handled;
2530 }
2531 default:
2532 break;
2533 }
2534 break;
2535 case WLAN_CATEGORY_BACK:
2536 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2537 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2538 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2539 sdata->vif.type != NL80211_IFTYPE_AP &&
2540 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2541 break;
2542
2543 /* verify action_code is present */
2544 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2545 break;
2546
2547 switch (mgmt->u.action.u.addba_req.action_code) {
2548 case WLAN_ACTION_ADDBA_REQ:
2549 if (len < (IEEE80211_MIN_ACTION_SIZE +
2550 sizeof(mgmt->u.action.u.addba_req)))
2551 goto invalid;
2552 break;
2553 case WLAN_ACTION_ADDBA_RESP:
2554 if (len < (IEEE80211_MIN_ACTION_SIZE +
2555 sizeof(mgmt->u.action.u.addba_resp)))
2556 goto invalid;
2557 break;
2558 case WLAN_ACTION_DELBA:
2559 if (len < (IEEE80211_MIN_ACTION_SIZE +
2560 sizeof(mgmt->u.action.u.delba)))
2561 goto invalid;
2562 break;
2563 default:
2564 goto invalid;
2565 }
2566
2567 goto queue;
2568 case WLAN_CATEGORY_SPECTRUM_MGMT:
2569 /* verify action_code is present */
2570 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2571 break;
2572
2573 switch (mgmt->u.action.u.measurement.action_code) {
2574 case WLAN_ACTION_SPCT_MSR_REQ:
2575 if (status->band != IEEE80211_BAND_5GHZ)
2576 break;
2577
2578 if (len < (IEEE80211_MIN_ACTION_SIZE +
2579 sizeof(mgmt->u.action.u.measurement)))
2580 break;
2581
2582 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2583 break;
2584
2585 ieee80211_process_measurement_req(sdata, mgmt, len);
2586 goto handled;
2587 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2588 u8 *bssid;
2589 if (len < (IEEE80211_MIN_ACTION_SIZE +
2590 sizeof(mgmt->u.action.u.chan_switch)))
2591 break;
2592
2593 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2594 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2595 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2596 break;
2597
2598 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2599 bssid = sdata->u.mgd.bssid;
2600 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2601 bssid = sdata->u.ibss.bssid;
2602 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2603 bssid = mgmt->sa;
2604 else
2605 break;
2606
2607 if (!ether_addr_equal(mgmt->bssid, bssid))
2608 break;
2609
2610 goto queue;
2611 }
2612 }
2613 break;
2614 case WLAN_CATEGORY_SA_QUERY:
2615 if (len < (IEEE80211_MIN_ACTION_SIZE +
2616 sizeof(mgmt->u.action.u.sa_query)))
2617 break;
2618
2619 switch (mgmt->u.action.u.sa_query.action) {
2620 case WLAN_ACTION_SA_QUERY_REQUEST:
2621 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2622 break;
2623 ieee80211_process_sa_query_req(sdata, mgmt, len);
2624 goto handled;
2625 }
2626 break;
2627 case WLAN_CATEGORY_SELF_PROTECTED:
2628 if (len < (IEEE80211_MIN_ACTION_SIZE +
2629 sizeof(mgmt->u.action.u.self_prot.action_code)))
2630 break;
2631
2632 switch (mgmt->u.action.u.self_prot.action_code) {
2633 case WLAN_SP_MESH_PEERING_OPEN:
2634 case WLAN_SP_MESH_PEERING_CLOSE:
2635 case WLAN_SP_MESH_PEERING_CONFIRM:
2636 if (!ieee80211_vif_is_mesh(&sdata->vif))
2637 goto invalid;
2638 if (sdata->u.mesh.user_mpm)
2639 /* userspace handles this frame */
2640 break;
2641 goto queue;
2642 case WLAN_SP_MGK_INFORM:
2643 case WLAN_SP_MGK_ACK:
2644 if (!ieee80211_vif_is_mesh(&sdata->vif))
2645 goto invalid;
2646 break;
2647 }
2648 break;
2649 case WLAN_CATEGORY_MESH_ACTION:
2650 if (len < (IEEE80211_MIN_ACTION_SIZE +
2651 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2652 break;
2653
2654 if (!ieee80211_vif_is_mesh(&sdata->vif))
2655 break;
2656 if (mesh_action_is_path_sel(mgmt) &&
2657 !mesh_path_sel_is_hwmp(sdata))
2658 break;
2659 goto queue;
2660 }
2661
2662 return RX_CONTINUE;
2663
2664 invalid:
2665 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2666 /* will return in the next handlers */
2667 return RX_CONTINUE;
2668
2669 handled:
2670 if (rx->sta)
2671 rx->sta->rx_packets++;
2672 dev_kfree_skb(rx->skb);
2673 return RX_QUEUED;
2674
2675 queue:
2676 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2677 skb_queue_tail(&sdata->skb_queue, rx->skb);
2678 ieee80211_queue_work(&local->hw, &sdata->work);
2679 if (rx->sta)
2680 rx->sta->rx_packets++;
2681 return RX_QUEUED;
2682 }
2683
2684 static ieee80211_rx_result debug_noinline
2685 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2686 {
2687 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2688 int sig = 0;
2689
2690 /* skip known-bad action frames and return them in the next handler */
2691 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2692 return RX_CONTINUE;
2693
2694 /*
2695 * Getting here means the kernel doesn't know how to handle
2696 * it, but maybe userspace does ... include returned frames
2697 * so userspace can register for those to know whether ones
2698 * it transmitted were processed or returned.
2699 */
2700
2701 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2702 sig = status->signal;
2703
2704 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2705 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2706 if (rx->sta)
2707 rx->sta->rx_packets++;
2708 dev_kfree_skb(rx->skb);
2709 return RX_QUEUED;
2710 }
2711
2712 return RX_CONTINUE;
2713 }
2714
2715 static ieee80211_rx_result debug_noinline
2716 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2717 {
2718 struct ieee80211_local *local = rx->local;
2719 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2720 struct sk_buff *nskb;
2721 struct ieee80211_sub_if_data *sdata = rx->sdata;
2722 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2723
2724 if (!ieee80211_is_action(mgmt->frame_control))
2725 return RX_CONTINUE;
2726
2727 /*
2728 * For AP mode, hostapd is responsible for handling any action
2729 * frames that we didn't handle, including returning unknown
2730 * ones. For all other modes we will return them to the sender,
2731 * setting the 0x80 bit in the action category, as required by
2732 * 802.11-2012 9.24.4.
2733 * Newer versions of hostapd shall also use the management frame
2734 * registration mechanisms, but older ones still use cooked
2735 * monitor interfaces so push all frames there.
2736 */
2737 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2738 (sdata->vif.type == NL80211_IFTYPE_AP ||
2739 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2740 return RX_DROP_MONITOR;
2741
2742 if (is_multicast_ether_addr(mgmt->da))
2743 return RX_DROP_MONITOR;
2744
2745 /* do not return rejected action frames */
2746 if (mgmt->u.action.category & 0x80)
2747 return RX_DROP_UNUSABLE;
2748
2749 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2750 GFP_ATOMIC);
2751 if (nskb) {
2752 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2753
2754 nmgmt->u.action.category |= 0x80;
2755 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2756 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2757
2758 memset(nskb->cb, 0, sizeof(nskb->cb));
2759
2760 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2761 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2762
2763 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2764 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2765 IEEE80211_TX_CTL_NO_CCK_RATE;
2766 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2767 info->hw_queue =
2768 local->hw.offchannel_tx_hw_queue;
2769 }
2770
2771 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2772 status->band);
2773 }
2774 dev_kfree_skb(rx->skb);
2775 return RX_QUEUED;
2776 }
2777
2778 static ieee80211_rx_result debug_noinline
2779 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2780 {
2781 struct ieee80211_sub_if_data *sdata = rx->sdata;
2782 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2783 __le16 stype;
2784
2785 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2786
2787 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2788 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2789 sdata->vif.type != NL80211_IFTYPE_STATION)
2790 return RX_DROP_MONITOR;
2791
2792 switch (stype) {
2793 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2794 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2795 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2796 /* process for all: mesh, mlme, ibss */
2797 break;
2798 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2799 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2800 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2801 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2802 if (is_multicast_ether_addr(mgmt->da) &&
2803 !is_broadcast_ether_addr(mgmt->da))
2804 return RX_DROP_MONITOR;
2805
2806 /* process only for station */
2807 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2808 return RX_DROP_MONITOR;
2809 break;
2810 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2811 /* process only for ibss and mesh */
2812 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2813 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2814 return RX_DROP_MONITOR;
2815 break;
2816 default:
2817 return RX_DROP_MONITOR;
2818 }
2819
2820 /* queue up frame and kick off work to process it */
2821 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2822 skb_queue_tail(&sdata->skb_queue, rx->skb);
2823 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2824 if (rx->sta)
2825 rx->sta->rx_packets++;
2826
2827 return RX_QUEUED;
2828 }
2829
2830 /* TODO: use IEEE80211_RX_FRAGMENTED */
2831 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2832 struct ieee80211_rate *rate)
2833 {
2834 struct ieee80211_sub_if_data *sdata;
2835 struct ieee80211_local *local = rx->local;
2836 struct sk_buff *skb = rx->skb, *skb2;
2837 struct net_device *prev_dev = NULL;
2838 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2839 int needed_headroom;
2840
2841 /*
2842 * If cooked monitor has been processed already, then
2843 * don't do it again. If not, set the flag.
2844 */
2845 if (rx->flags & IEEE80211_RX_CMNTR)
2846 goto out_free_skb;
2847 rx->flags |= IEEE80211_RX_CMNTR;
2848
2849 /* If there are no cooked monitor interfaces, just free the SKB */
2850 if (!local->cooked_mntrs)
2851 goto out_free_skb;
2852
2853 /* room for the radiotap header based on driver features */
2854 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2855
2856 if (skb_headroom(skb) < needed_headroom &&
2857 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2858 goto out_free_skb;
2859
2860 /* prepend radiotap information */
2861 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2862 false);
2863
2864 skb_set_mac_header(skb, 0);
2865 skb->ip_summed = CHECKSUM_UNNECESSARY;
2866 skb->pkt_type = PACKET_OTHERHOST;
2867 skb->protocol = htons(ETH_P_802_2);
2868
2869 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2870 if (!ieee80211_sdata_running(sdata))
2871 continue;
2872
2873 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2874 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2875 continue;
2876
2877 if (prev_dev) {
2878 skb2 = skb_clone(skb, GFP_ATOMIC);
2879 if (skb2) {
2880 skb2->dev = prev_dev;
2881 netif_receive_skb(skb2);
2882 }
2883 }
2884
2885 prev_dev = sdata->dev;
2886 sdata->dev->stats.rx_packets++;
2887 sdata->dev->stats.rx_bytes += skb->len;
2888 }
2889
2890 if (prev_dev) {
2891 skb->dev = prev_dev;
2892 netif_receive_skb(skb);
2893 return;
2894 }
2895
2896 out_free_skb:
2897 dev_kfree_skb(skb);
2898 }
2899
2900 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2901 ieee80211_rx_result res)
2902 {
2903 switch (res) {
2904 case RX_DROP_MONITOR:
2905 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2906 if (rx->sta)
2907 rx->sta->rx_dropped++;
2908 /* fall through */
2909 case RX_CONTINUE: {
2910 struct ieee80211_rate *rate = NULL;
2911 struct ieee80211_supported_band *sband;
2912 struct ieee80211_rx_status *status;
2913
2914 status = IEEE80211_SKB_RXCB((rx->skb));
2915
2916 sband = rx->local->hw.wiphy->bands[status->band];
2917 if (!(status->flag & RX_FLAG_HT) &&
2918 !(status->flag & RX_FLAG_VHT))
2919 rate = &sband->bitrates[status->rate_idx];
2920
2921 ieee80211_rx_cooked_monitor(rx, rate);
2922 break;
2923 }
2924 case RX_DROP_UNUSABLE:
2925 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2926 if (rx->sta)
2927 rx->sta->rx_dropped++;
2928 dev_kfree_skb(rx->skb);
2929 break;
2930 case RX_QUEUED:
2931 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2932 break;
2933 }
2934 }
2935
2936 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2937 struct sk_buff_head *frames)
2938 {
2939 ieee80211_rx_result res = RX_DROP_MONITOR;
2940 struct sk_buff *skb;
2941
2942 #define CALL_RXH(rxh) \
2943 do { \
2944 res = rxh(rx); \
2945 if (res != RX_CONTINUE) \
2946 goto rxh_next; \
2947 } while (0);
2948
2949 spin_lock_bh(&rx->local->rx_path_lock);
2950
2951 while ((skb = __skb_dequeue(frames))) {
2952 /*
2953 * all the other fields are valid across frames
2954 * that belong to an aMPDU since they are on the
2955 * same TID from the same station
2956 */
2957 rx->skb = skb;
2958
2959 CALL_RXH(ieee80211_rx_h_check_more_data)
2960 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2961 CALL_RXH(ieee80211_rx_h_sta_process)
2962 CALL_RXH(ieee80211_rx_h_decrypt)
2963 CALL_RXH(ieee80211_rx_h_defragment)
2964 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2965 /* must be after MMIC verify so header is counted in MPDU mic */
2966 #ifdef CONFIG_MAC80211_MESH
2967 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2968 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2969 #endif
2970 CALL_RXH(ieee80211_rx_h_amsdu)
2971 CALL_RXH(ieee80211_rx_h_data)
2972
2973 /* special treatment -- needs the queue */
2974 res = ieee80211_rx_h_ctrl(rx, frames);
2975 if (res != RX_CONTINUE)
2976 goto rxh_next;
2977
2978 CALL_RXH(ieee80211_rx_h_mgmt_check)
2979 CALL_RXH(ieee80211_rx_h_action)
2980 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2981 CALL_RXH(ieee80211_rx_h_action_return)
2982 CALL_RXH(ieee80211_rx_h_mgmt)
2983
2984 rxh_next:
2985 ieee80211_rx_handlers_result(rx, res);
2986
2987 #undef CALL_RXH
2988 }
2989
2990 spin_unlock_bh(&rx->local->rx_path_lock);
2991 }
2992
2993 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2994 {
2995 struct sk_buff_head reorder_release;
2996 ieee80211_rx_result res = RX_DROP_MONITOR;
2997
2998 __skb_queue_head_init(&reorder_release);
2999
3000 #define CALL_RXH(rxh) \
3001 do { \
3002 res = rxh(rx); \
3003 if (res != RX_CONTINUE) \
3004 goto rxh_next; \
3005 } while (0);
3006
3007 CALL_RXH(ieee80211_rx_h_check)
3008
3009 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3010
3011 ieee80211_rx_handlers(rx, &reorder_release);
3012 return;
3013
3014 rxh_next:
3015 ieee80211_rx_handlers_result(rx, res);
3016
3017 #undef CALL_RXH
3018 }
3019
3020 /*
3021 * This function makes calls into the RX path, therefore
3022 * it has to be invoked under RCU read lock.
3023 */
3024 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3025 {
3026 struct sk_buff_head frames;
3027 struct ieee80211_rx_data rx = {
3028 .sta = sta,
3029 .sdata = sta->sdata,
3030 .local = sta->local,
3031 /* This is OK -- must be QoS data frame */
3032 .security_idx = tid,
3033 .seqno_idx = tid,
3034 .flags = 0,
3035 };
3036 struct tid_ampdu_rx *tid_agg_rx;
3037
3038 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3039 if (!tid_agg_rx)
3040 return;
3041
3042 __skb_queue_head_init(&frames);
3043
3044 spin_lock(&tid_agg_rx->reorder_lock);
3045 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3046 spin_unlock(&tid_agg_rx->reorder_lock);
3047
3048 ieee80211_rx_handlers(&rx, &frames);
3049 }
3050
3051 /* main receive path */
3052
3053 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3054 struct ieee80211_hdr *hdr)
3055 {
3056 struct ieee80211_sub_if_data *sdata = rx->sdata;
3057 struct sk_buff *skb = rx->skb;
3058 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3059 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3060 int multicast = is_multicast_ether_addr(hdr->addr1);
3061
3062 switch (sdata->vif.type) {
3063 case NL80211_IFTYPE_STATION:
3064 if (!bssid && !sdata->u.mgd.use_4addr)
3065 return false;
3066 if (!multicast &&
3067 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3068 if (!(sdata->dev->flags & IFF_PROMISC) ||
3069 sdata->u.mgd.use_4addr)
3070 return false;
3071 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3072 }
3073 break;
3074 case NL80211_IFTYPE_ADHOC:
3075 if (!bssid)
3076 return false;
3077 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3078 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3079 return false;
3080 if (ieee80211_is_beacon(hdr->frame_control)) {
3081 return true;
3082 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3083 return false;
3084 } else if (!multicast &&
3085 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3086 if (!(sdata->dev->flags & IFF_PROMISC))
3087 return false;
3088 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3089 } else if (!rx->sta) {
3090 int rate_idx;
3091 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3092 rate_idx = 0; /* TODO: HT/VHT rates */
3093 else
3094 rate_idx = status->rate_idx;
3095 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3096 BIT(rate_idx));
3097 }
3098 break;
3099 case NL80211_IFTYPE_MESH_POINT:
3100 if (!multicast &&
3101 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3102 if (!(sdata->dev->flags & IFF_PROMISC))
3103 return false;
3104
3105 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3106 }
3107 break;
3108 case NL80211_IFTYPE_AP_VLAN:
3109 case NL80211_IFTYPE_AP:
3110 if (!bssid) {
3111 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3112 return false;
3113 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3114 /*
3115 * Accept public action frames even when the
3116 * BSSID doesn't match, this is used for P2P
3117 * and location updates. Note that mac80211
3118 * itself never looks at these frames.
3119 */
3120 if (!multicast &&
3121 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3122 return false;
3123 if (ieee80211_is_public_action(hdr, skb->len))
3124 return true;
3125 if (!ieee80211_is_beacon(hdr->frame_control))
3126 return false;
3127 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3128 }
3129 break;
3130 case NL80211_IFTYPE_WDS:
3131 if (bssid || !ieee80211_is_data(hdr->frame_control))
3132 return false;
3133 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3134 return false;
3135 break;
3136 case NL80211_IFTYPE_P2P_DEVICE:
3137 if (!ieee80211_is_public_action(hdr, skb->len) &&
3138 !ieee80211_is_probe_req(hdr->frame_control) &&
3139 !ieee80211_is_probe_resp(hdr->frame_control) &&
3140 !ieee80211_is_beacon(hdr->frame_control))
3141 return false;
3142 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3143 !multicast)
3144 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3145 break;
3146 default:
3147 /* should never get here */
3148 WARN_ON_ONCE(1);
3149 break;
3150 }
3151
3152 return true;
3153 }
3154
3155 /*
3156 * This function returns whether or not the SKB
3157 * was destined for RX processing or not, which,
3158 * if consume is true, is equivalent to whether
3159 * or not the skb was consumed.
3160 */
3161 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3162 struct sk_buff *skb, bool consume)
3163 {
3164 struct ieee80211_local *local = rx->local;
3165 struct ieee80211_sub_if_data *sdata = rx->sdata;
3166 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3167 struct ieee80211_hdr *hdr = (void *)skb->data;
3168
3169 rx->skb = skb;
3170 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3171
3172 if (!prepare_for_handlers(rx, hdr))
3173 return false;
3174
3175 if (!consume) {
3176 skb = skb_copy(skb, GFP_ATOMIC);
3177 if (!skb) {
3178 if (net_ratelimit())
3179 wiphy_debug(local->hw.wiphy,
3180 "failed to copy skb for %s\n",
3181 sdata->name);
3182 return true;
3183 }
3184
3185 rx->skb = skb;
3186 }
3187
3188 ieee80211_invoke_rx_handlers(rx);
3189 return true;
3190 }
3191
3192 /*
3193 * This is the actual Rx frames handler. as it blongs to Rx path it must
3194 * be called with rcu_read_lock protection.
3195 */
3196 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3197 struct sk_buff *skb)
3198 {
3199 struct ieee80211_local *local = hw_to_local(hw);
3200 struct ieee80211_sub_if_data *sdata;
3201 struct ieee80211_hdr *hdr;
3202 __le16 fc;
3203 struct ieee80211_rx_data rx;
3204 struct ieee80211_sub_if_data *prev;
3205 struct sta_info *sta, *tmp, *prev_sta;
3206 int err = 0;
3207
3208 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3209 memset(&rx, 0, sizeof(rx));
3210 rx.skb = skb;
3211 rx.local = local;
3212
3213 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3214 local->dot11ReceivedFragmentCount++;
3215
3216 if (ieee80211_is_mgmt(fc)) {
3217 /* drop frame if too short for header */
3218 if (skb->len < ieee80211_hdrlen(fc))
3219 err = -ENOBUFS;
3220 else
3221 err = skb_linearize(skb);
3222 } else {
3223 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3224 }
3225
3226 if (err) {
3227 dev_kfree_skb(skb);
3228 return;
3229 }
3230
3231 hdr = (struct ieee80211_hdr *)skb->data;
3232 ieee80211_parse_qos(&rx);
3233 ieee80211_verify_alignment(&rx);
3234
3235 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3236 ieee80211_is_beacon(hdr->frame_control)))
3237 ieee80211_scan_rx(local, skb);
3238
3239 if (ieee80211_is_data(fc)) {
3240 prev_sta = NULL;
3241
3242 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3243 if (!prev_sta) {
3244 prev_sta = sta;
3245 continue;
3246 }
3247
3248 rx.sta = prev_sta;
3249 rx.sdata = prev_sta->sdata;
3250 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3251
3252 prev_sta = sta;
3253 }
3254
3255 if (prev_sta) {
3256 rx.sta = prev_sta;
3257 rx.sdata = prev_sta->sdata;
3258
3259 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3260 return;
3261 goto out;
3262 }
3263 }
3264
3265 prev = NULL;
3266
3267 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3268 if (!ieee80211_sdata_running(sdata))
3269 continue;
3270
3271 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3272 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3273 continue;
3274
3275 /*
3276 * frame is destined for this interface, but if it's
3277 * not also for the previous one we handle that after
3278 * the loop to avoid copying the SKB once too much
3279 */
3280
3281 if (!prev) {
3282 prev = sdata;
3283 continue;
3284 }
3285
3286 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3287 rx.sdata = prev;
3288 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3289
3290 prev = sdata;
3291 }
3292
3293 if (prev) {
3294 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3295 rx.sdata = prev;
3296
3297 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3298 return;
3299 }
3300
3301 out:
3302 dev_kfree_skb(skb);
3303 }
3304
3305 /*
3306 * This is the receive path handler. It is called by a low level driver when an
3307 * 802.11 MPDU is received from the hardware.
3308 */
3309 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3310 {
3311 struct ieee80211_local *local = hw_to_local(hw);
3312 struct ieee80211_rate *rate = NULL;
3313 struct ieee80211_supported_band *sband;
3314 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3315
3316 WARN_ON_ONCE(softirq_count() == 0);
3317
3318 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3319 goto drop;
3320
3321 sband = local->hw.wiphy->bands[status->band];
3322 if (WARN_ON(!sband))
3323 goto drop;
3324
3325 /*
3326 * If we're suspending, it is possible although not too likely
3327 * that we'd be receiving frames after having already partially
3328 * quiesced the stack. We can't process such frames then since
3329 * that might, for example, cause stations to be added or other
3330 * driver callbacks be invoked.
3331 */
3332 if (unlikely(local->quiescing || local->suspended))
3333 goto drop;
3334
3335 /* We might be during a HW reconfig, prevent Rx for the same reason */
3336 if (unlikely(local->in_reconfig))
3337 goto drop;
3338
3339 /*
3340 * The same happens when we're not even started,
3341 * but that's worth a warning.
3342 */
3343 if (WARN_ON(!local->started))
3344 goto drop;
3345
3346 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3347 /*
3348 * Validate the rate, unless a PLCP error means that
3349 * we probably can't have a valid rate here anyway.
3350 */
3351
3352 if (status->flag & RX_FLAG_HT) {
3353 /*
3354 * rate_idx is MCS index, which can be [0-76]
3355 * as documented on:
3356 *
3357 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3358 *
3359 * Anything else would be some sort of driver or
3360 * hardware error. The driver should catch hardware
3361 * errors.
3362 */
3363 if (WARN(status->rate_idx > 76,
3364 "Rate marked as an HT rate but passed "
3365 "status->rate_idx is not "
3366 "an MCS index [0-76]: %d (0x%02x)\n",
3367 status->rate_idx,
3368 status->rate_idx))
3369 goto drop;
3370 } else if (status->flag & RX_FLAG_VHT) {
3371 if (WARN_ONCE(status->rate_idx > 9 ||
3372 !status->vht_nss ||
3373 status->vht_nss > 8,
3374 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3375 status->rate_idx, status->vht_nss))
3376 goto drop;
3377 } else {
3378 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3379 goto drop;
3380 rate = &sband->bitrates[status->rate_idx];
3381 }
3382 }
3383
3384 status->rx_flags = 0;
3385
3386 /*
3387 * key references and virtual interfaces are protected using RCU
3388 * and this requires that we are in a read-side RCU section during
3389 * receive processing
3390 */
3391 rcu_read_lock();
3392
3393 /*
3394 * Frames with failed FCS/PLCP checksum are not returned,
3395 * all other frames are returned without radiotap header
3396 * if it was previously present.
3397 * Also, frames with less than 16 bytes are dropped.
3398 */
3399 skb = ieee80211_rx_monitor(local, skb, rate);
3400 if (!skb) {
3401 rcu_read_unlock();
3402 return;
3403 }
3404
3405 ieee80211_tpt_led_trig_rx(local,
3406 ((struct ieee80211_hdr *)skb->data)->frame_control,
3407 skb->len);
3408 __ieee80211_rx_handle_packet(hw, skb);
3409
3410 rcu_read_unlock();
3411
3412 return;
3413 drop:
3414 kfree_skb(skb);
3415 }
3416 EXPORT_SYMBOL(ieee80211_rx);
3417
3418 /* This is a version of the rx handler that can be called from hard irq
3419 * context. Post the skb on the queue and schedule the tasklet */
3420 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3421 {
3422 struct ieee80211_local *local = hw_to_local(hw);
3423
3424 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3425
3426 skb->pkt_type = IEEE80211_RX_MSG;
3427 skb_queue_tail(&local->skb_queue, skb);
3428 tasklet_schedule(&local->tasklet);
3429 }
3430 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.106324 seconds and 5 git commands to generate.