mac80211: ignore PSM bit of reordered frames
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_TSFT)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 return len;
89 }
90
91 /*
92 * ieee80211_add_rx_radiotap_header - add radiotap header
93 *
94 * add a radiotap header containing all the fields which the hardware provided.
95 */
96 static void
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
98 struct sk_buff *skb,
99 struct ieee80211_rate *rate,
100 int rtap_len)
101 {
102 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
103 struct ieee80211_radiotap_header *rthdr;
104 unsigned char *pos;
105 u16 rx_flags = 0;
106
107 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
108 memset(rthdr, 0, rtap_len);
109
110 /* radiotap header, set always present flags */
111 rthdr->it_present =
112 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
113 (1 << IEEE80211_RADIOTAP_CHANNEL) |
114 (1 << IEEE80211_RADIOTAP_ANTENNA) |
115 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
116 rthdr->it_len = cpu_to_le16(rtap_len);
117
118 pos = (unsigned char *)(rthdr+1);
119
120 /* the order of the following fields is important */
121
122 /* IEEE80211_RADIOTAP_TSFT */
123 if (status->flag & RX_FLAG_TSFT) {
124 put_unaligned_le64(status->mactime, pos);
125 rthdr->it_present |=
126 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
127 pos += 8;
128 }
129
130 /* IEEE80211_RADIOTAP_FLAGS */
131 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
132 *pos |= IEEE80211_RADIOTAP_F_FCS;
133 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
134 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
135 if (status->flag & RX_FLAG_SHORTPRE)
136 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
137 pos++;
138
139 /* IEEE80211_RADIOTAP_RATE */
140 if (status->flag & RX_FLAG_HT) {
141 /*
142 * TODO: add following information into radiotap header once
143 * suitable fields are defined for it:
144 * - MCS index (status->rate_idx)
145 * - HT40 (status->flag & RX_FLAG_40MHZ)
146 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
147 */
148 *pos = 0;
149 } else {
150 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 *pos = rate->bitrate / 5;
152 }
153 pos++;
154
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status->freq, pos);
157 pos += 2;
158 if (status->band == IEEE80211_BAND_5GHZ)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 pos);
161 else if (status->flag & RX_FLAG_HT)
162 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 pos);
164 else if (rate->flags & IEEE80211_RATE_ERP_G)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 pos);
167 else
168 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 pos);
170 pos += 2;
171
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 *pos = status->signal;
175 rthdr->it_present |=
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 pos++;
178 }
179
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos = status->antenna;
184 pos++;
185
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos - (u8 *)rthdr) & 1)
191 pos++;
192 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 put_unaligned_le16(rx_flags, pos);
195 pos += 2;
196 }
197
198 /*
199 * This function copies a received frame to all monitor interfaces and
200 * returns a cleaned-up SKB that no longer includes the FCS nor the
201 * radiotap header the driver might have added.
202 */
203 static struct sk_buff *
204 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
205 struct ieee80211_rate *rate)
206 {
207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
208 struct ieee80211_sub_if_data *sdata;
209 int needed_headroom = 0;
210 struct sk_buff *skb, *skb2;
211 struct net_device *prev_dev = NULL;
212 int present_fcs_len = 0;
213
214 /*
215 * First, we may need to make a copy of the skb because
216 * (1) we need to modify it for radiotap (if not present), and
217 * (2) the other RX handlers will modify the skb we got.
218 *
219 * We don't need to, of course, if we aren't going to return
220 * the SKB because it has a bad FCS/PLCP checksum.
221 */
222
223 /* room for the radiotap header based on driver features */
224 needed_headroom = ieee80211_rx_radiotap_len(local, status);
225
226 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
227 present_fcs_len = FCS_LEN;
228
229 /* make sure hdr->frame_control is on the linear part */
230 if (!pskb_may_pull(origskb, 2)) {
231 dev_kfree_skb(origskb);
232 return NULL;
233 }
234
235 if (!local->monitors) {
236 if (should_drop_frame(origskb, present_fcs_len)) {
237 dev_kfree_skb(origskb);
238 return NULL;
239 }
240
241 return remove_monitor_info(local, origskb);
242 }
243
244 if (should_drop_frame(origskb, present_fcs_len)) {
245 /* only need to expand headroom if necessary */
246 skb = origskb;
247 origskb = NULL;
248
249 /*
250 * This shouldn't trigger often because most devices have an
251 * RX header they pull before we get here, and that should
252 * be big enough for our radiotap information. We should
253 * probably export the length to drivers so that we can have
254 * them allocate enough headroom to start with.
255 */
256 if (skb_headroom(skb) < needed_headroom &&
257 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
258 dev_kfree_skb(skb);
259 return NULL;
260 }
261 } else {
262 /*
263 * Need to make a copy and possibly remove radiotap header
264 * and FCS from the original.
265 */
266 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
267
268 origskb = remove_monitor_info(local, origskb);
269
270 if (!skb)
271 return origskb;
272 }
273
274 /* prepend radiotap information */
275 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
276
277 skb_reset_mac_header(skb);
278 skb->ip_summed = CHECKSUM_UNNECESSARY;
279 skb->pkt_type = PACKET_OTHERHOST;
280 skb->protocol = htons(ETH_P_802_2);
281
282 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
283 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
284 continue;
285
286 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
287 continue;
288
289 if (!ieee80211_sdata_running(sdata))
290 continue;
291
292 if (prev_dev) {
293 skb2 = skb_clone(skb, GFP_ATOMIC);
294 if (skb2) {
295 skb2->dev = prev_dev;
296 netif_receive_skb(skb2);
297 }
298 }
299
300 prev_dev = sdata->dev;
301 sdata->dev->stats.rx_packets++;
302 sdata->dev->stats.rx_bytes += skb->len;
303 }
304
305 if (prev_dev) {
306 skb->dev = prev_dev;
307 netif_receive_skb(skb);
308 } else
309 dev_kfree_skb(skb);
310
311 return origskb;
312 }
313
314
315 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
316 {
317 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
318 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
319 int tid;
320
321 /* does the frame have a qos control field? */
322 if (ieee80211_is_data_qos(hdr->frame_control)) {
323 u8 *qc = ieee80211_get_qos_ctl(hdr);
324 /* frame has qos control */
325 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
326 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
327 status->rx_flags |= IEEE80211_RX_AMSDU;
328 } else {
329 /*
330 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
331 *
332 * Sequence numbers for management frames, QoS data
333 * frames with a broadcast/multicast address in the
334 * Address 1 field, and all non-QoS data frames sent
335 * by QoS STAs are assigned using an additional single
336 * modulo-4096 counter, [...]
337 *
338 * We also use that counter for non-QoS STAs.
339 */
340 tid = NUM_RX_DATA_QUEUES - 1;
341 }
342
343 rx->queue = tid;
344 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
345 * For now, set skb->priority to 0 for other cases. */
346 rx->skb->priority = (tid > 7) ? 0 : tid;
347 }
348
349 /**
350 * DOC: Packet alignment
351 *
352 * Drivers always need to pass packets that are aligned to two-byte boundaries
353 * to the stack.
354 *
355 * Additionally, should, if possible, align the payload data in a way that
356 * guarantees that the contained IP header is aligned to a four-byte
357 * boundary. In the case of regular frames, this simply means aligning the
358 * payload to a four-byte boundary (because either the IP header is directly
359 * contained, or IV/RFC1042 headers that have a length divisible by four are
360 * in front of it). If the payload data is not properly aligned and the
361 * architecture doesn't support efficient unaligned operations, mac80211
362 * will align the data.
363 *
364 * With A-MSDU frames, however, the payload data address must yield two modulo
365 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
366 * push the IP header further back to a multiple of four again. Thankfully, the
367 * specs were sane enough this time around to require padding each A-MSDU
368 * subframe to a length that is a multiple of four.
369 *
370 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
371 * the payload is not supported, the driver is required to move the 802.11
372 * header to be directly in front of the payload in that case.
373 */
374 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
375 {
376 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
377 WARN_ONCE((unsigned long)rx->skb->data & 1,
378 "unaligned packet at 0x%p\n", rx->skb->data);
379 #endif
380 }
381
382
383 /* rx handlers */
384
385 static ieee80211_rx_result debug_noinline
386 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
387 {
388 struct ieee80211_local *local = rx->local;
389 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
390 struct sk_buff *skb = rx->skb;
391
392 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN)))
393 return RX_CONTINUE;
394
395 if (test_bit(SCAN_HW_SCANNING, &local->scanning))
396 return ieee80211_scan_rx(rx->sdata, skb);
397
398 if (test_bit(SCAN_SW_SCANNING, &local->scanning)) {
399 /* drop all the other packets during a software scan anyway */
400 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
401 dev_kfree_skb(skb);
402 return RX_QUEUED;
403 }
404
405 /* scanning finished during invoking of handlers */
406 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
407 return RX_DROP_UNUSABLE;
408 }
409
410
411 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
412 {
413 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
414
415 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
416 return 0;
417
418 return ieee80211_is_robust_mgmt_frame(hdr);
419 }
420
421
422 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
423 {
424 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
425
426 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
427 return 0;
428
429 return ieee80211_is_robust_mgmt_frame(hdr);
430 }
431
432
433 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
434 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
435 {
436 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
437 struct ieee80211_mmie *mmie;
438
439 if (skb->len < 24 + sizeof(*mmie) ||
440 !is_multicast_ether_addr(hdr->da))
441 return -1;
442
443 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
444 return -1; /* not a robust management frame */
445
446 mmie = (struct ieee80211_mmie *)
447 (skb->data + skb->len - sizeof(*mmie));
448 if (mmie->element_id != WLAN_EID_MMIE ||
449 mmie->length != sizeof(*mmie) - 2)
450 return -1;
451
452 return le16_to_cpu(mmie->key_id);
453 }
454
455
456 static ieee80211_rx_result
457 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
458 {
459 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
460 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
461 char *dev_addr = rx->sdata->vif.addr;
462
463 if (ieee80211_is_data(hdr->frame_control)) {
464 if (is_multicast_ether_addr(hdr->addr1)) {
465 if (ieee80211_has_tods(hdr->frame_control) ||
466 !ieee80211_has_fromds(hdr->frame_control))
467 return RX_DROP_MONITOR;
468 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
469 return RX_DROP_MONITOR;
470 } else {
471 if (!ieee80211_has_a4(hdr->frame_control))
472 return RX_DROP_MONITOR;
473 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
474 return RX_DROP_MONITOR;
475 }
476 }
477
478 /* If there is not an established peer link and this is not a peer link
479 * establisment frame, beacon or probe, drop the frame.
480 */
481
482 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
483 struct ieee80211_mgmt *mgmt;
484
485 if (!ieee80211_is_mgmt(hdr->frame_control))
486 return RX_DROP_MONITOR;
487
488 if (ieee80211_is_action(hdr->frame_control)) {
489 mgmt = (struct ieee80211_mgmt *)hdr;
490 if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
491 return RX_DROP_MONITOR;
492 return RX_CONTINUE;
493 }
494
495 if (ieee80211_is_probe_req(hdr->frame_control) ||
496 ieee80211_is_probe_resp(hdr->frame_control) ||
497 ieee80211_is_beacon(hdr->frame_control))
498 return RX_CONTINUE;
499
500 return RX_DROP_MONITOR;
501
502 }
503
504 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
505
506 if (ieee80211_is_data(hdr->frame_control) &&
507 is_multicast_ether_addr(hdr->addr1) &&
508 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
509 return RX_DROP_MONITOR;
510 #undef msh_h_get
511
512 return RX_CONTINUE;
513 }
514
515 #define SEQ_MODULO 0x1000
516 #define SEQ_MASK 0xfff
517
518 static inline int seq_less(u16 sq1, u16 sq2)
519 {
520 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
521 }
522
523 static inline u16 seq_inc(u16 sq)
524 {
525 return (sq + 1) & SEQ_MASK;
526 }
527
528 static inline u16 seq_sub(u16 sq1, u16 sq2)
529 {
530 return (sq1 - sq2) & SEQ_MASK;
531 }
532
533
534 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
535 struct tid_ampdu_rx *tid_agg_rx,
536 int index,
537 struct sk_buff_head *frames)
538 {
539 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
540 struct ieee80211_rx_status *status;
541
542 lockdep_assert_held(&tid_agg_rx->reorder_lock);
543
544 if (!skb)
545 goto no_frame;
546
547 /* release the frame from the reorder ring buffer */
548 tid_agg_rx->stored_mpdu_num--;
549 tid_agg_rx->reorder_buf[index] = NULL;
550 status = IEEE80211_SKB_RXCB(skb);
551 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
552 __skb_queue_tail(frames, skb);
553
554 no_frame:
555 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
556 }
557
558 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
559 struct tid_ampdu_rx *tid_agg_rx,
560 u16 head_seq_num,
561 struct sk_buff_head *frames)
562 {
563 int index;
564
565 lockdep_assert_held(&tid_agg_rx->reorder_lock);
566
567 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
568 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
569 tid_agg_rx->buf_size;
570 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
571 }
572 }
573
574 /*
575 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
576 * the skb was added to the buffer longer than this time ago, the earlier
577 * frames that have not yet been received are assumed to be lost and the skb
578 * can be released for processing. This may also release other skb's from the
579 * reorder buffer if there are no additional gaps between the frames.
580 *
581 * Callers must hold tid_agg_rx->reorder_lock.
582 */
583 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
584
585 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
586 struct tid_ampdu_rx *tid_agg_rx,
587 struct sk_buff_head *frames)
588 {
589 int index, j;
590
591 lockdep_assert_held(&tid_agg_rx->reorder_lock);
592
593 /* release the buffer until next missing frame */
594 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
595 tid_agg_rx->buf_size;
596 if (!tid_agg_rx->reorder_buf[index] &&
597 tid_agg_rx->stored_mpdu_num > 1) {
598 /*
599 * No buffers ready to be released, but check whether any
600 * frames in the reorder buffer have timed out.
601 */
602 int skipped = 1;
603 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
604 j = (j + 1) % tid_agg_rx->buf_size) {
605 if (!tid_agg_rx->reorder_buf[j]) {
606 skipped++;
607 continue;
608 }
609 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
610 HT_RX_REORDER_BUF_TIMEOUT))
611 goto set_release_timer;
612
613 #ifdef CONFIG_MAC80211_HT_DEBUG
614 if (net_ratelimit())
615 wiphy_debug(hw->wiphy,
616 "release an RX reorder frame due to timeout on earlier frames\n");
617 #endif
618 ieee80211_release_reorder_frame(hw, tid_agg_rx,
619 j, frames);
620
621 /*
622 * Increment the head seq# also for the skipped slots.
623 */
624 tid_agg_rx->head_seq_num =
625 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
626 skipped = 0;
627 }
628 } else while (tid_agg_rx->reorder_buf[index]) {
629 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
630 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
631 tid_agg_rx->buf_size;
632 }
633
634 /*
635 * Disable the reorder release timer for now.
636 *
637 * The current implementation lacks a proper locking scheme
638 * which would protect vital statistic and debug counters
639 * from being updated by two different but concurrent BHs.
640 *
641 * More information about the topic is available from:
642 * - thread: http://marc.info/?t=128635927000001
643 *
644 * What was wrong:
645 * => http://marc.info/?l=linux-wireless&m=128636170811964
646 * "Basically the thing is that until your patch, the data
647 * in the struct didn't actually need locking because it
648 * was accessed by the RX path only which is not concurrent."
649 *
650 * List of what needs to be fixed:
651 * => http://marc.info/?l=linux-wireless&m=128656352920957
652 *
653
654 if (tid_agg_rx->stored_mpdu_num) {
655 j = index = seq_sub(tid_agg_rx->head_seq_num,
656 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
657
658 for (; j != (index - 1) % tid_agg_rx->buf_size;
659 j = (j + 1) % tid_agg_rx->buf_size) {
660 if (tid_agg_rx->reorder_buf[j])
661 break;
662 }
663
664 set_release_timer:
665
666 mod_timer(&tid_agg_rx->reorder_timer,
667 tid_agg_rx->reorder_time[j] +
668 HT_RX_REORDER_BUF_TIMEOUT);
669 } else {
670 del_timer(&tid_agg_rx->reorder_timer);
671 }
672 */
673
674 set_release_timer:
675 return;
676 }
677
678 /*
679 * As this function belongs to the RX path it must be under
680 * rcu_read_lock protection. It returns false if the frame
681 * can be processed immediately, true if it was consumed.
682 */
683 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
684 struct tid_ampdu_rx *tid_agg_rx,
685 struct sk_buff *skb,
686 struct sk_buff_head *frames)
687 {
688 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
689 u16 sc = le16_to_cpu(hdr->seq_ctrl);
690 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
691 u16 head_seq_num, buf_size;
692 int index;
693 bool ret = true;
694
695 spin_lock(&tid_agg_rx->reorder_lock);
696
697 buf_size = tid_agg_rx->buf_size;
698 head_seq_num = tid_agg_rx->head_seq_num;
699
700 /* frame with out of date sequence number */
701 if (seq_less(mpdu_seq_num, head_seq_num)) {
702 dev_kfree_skb(skb);
703 goto out;
704 }
705
706 /*
707 * If frame the sequence number exceeds our buffering window
708 * size release some previous frames to make room for this one.
709 */
710 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
711 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
712 /* release stored frames up to new head to stack */
713 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
714 frames);
715 }
716
717 /* Now the new frame is always in the range of the reordering buffer */
718
719 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
720
721 /* check if we already stored this frame */
722 if (tid_agg_rx->reorder_buf[index]) {
723 dev_kfree_skb(skb);
724 goto out;
725 }
726
727 /*
728 * If the current MPDU is in the right order and nothing else
729 * is stored we can process it directly, no need to buffer it.
730 */
731 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
732 tid_agg_rx->stored_mpdu_num == 0) {
733 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
734 ret = false;
735 goto out;
736 }
737
738 /* put the frame in the reordering buffer */
739 tid_agg_rx->reorder_buf[index] = skb;
740 tid_agg_rx->reorder_time[index] = jiffies;
741 tid_agg_rx->stored_mpdu_num++;
742 ieee80211_sta_reorder_release(hw, tid_agg_rx, frames);
743
744 out:
745 spin_unlock(&tid_agg_rx->reorder_lock);
746 return ret;
747 }
748
749 /*
750 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
751 * true if the MPDU was buffered, false if it should be processed.
752 */
753 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
754 struct sk_buff_head *frames)
755 {
756 struct sk_buff *skb = rx->skb;
757 struct ieee80211_local *local = rx->local;
758 struct ieee80211_hw *hw = &local->hw;
759 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
760 struct sta_info *sta = rx->sta;
761 struct tid_ampdu_rx *tid_agg_rx;
762 u16 sc;
763 int tid;
764
765 if (!ieee80211_is_data_qos(hdr->frame_control))
766 goto dont_reorder;
767
768 /*
769 * filter the QoS data rx stream according to
770 * STA/TID and check if this STA/TID is on aggregation
771 */
772
773 if (!sta)
774 goto dont_reorder;
775
776 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
777
778 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
779 if (!tid_agg_rx)
780 goto dont_reorder;
781
782 /* qos null data frames are excluded */
783 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
784 goto dont_reorder;
785
786 /* new, potentially un-ordered, ampdu frame - process it */
787
788 /* reset session timer */
789 if (tid_agg_rx->timeout)
790 mod_timer(&tid_agg_rx->session_timer,
791 TU_TO_EXP_TIME(tid_agg_rx->timeout));
792
793 /* if this mpdu is fragmented - terminate rx aggregation session */
794 sc = le16_to_cpu(hdr->seq_ctrl);
795 if (sc & IEEE80211_SCTL_FRAG) {
796 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
797 skb_queue_tail(&rx->sdata->skb_queue, skb);
798 ieee80211_queue_work(&local->hw, &rx->sdata->work);
799 return;
800 }
801
802 /*
803 * No locking needed -- we will only ever process one
804 * RX packet at a time, and thus own tid_agg_rx. All
805 * other code manipulating it needs to (and does) make
806 * sure that we cannot get to it any more before doing
807 * anything with it.
808 */
809 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames))
810 return;
811
812 dont_reorder:
813 __skb_queue_tail(frames, skb);
814 }
815
816 static ieee80211_rx_result debug_noinline
817 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
818 {
819 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
820 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
821
822 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
823 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
824 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
825 rx->sta->last_seq_ctrl[rx->queue] ==
826 hdr->seq_ctrl)) {
827 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
828 rx->local->dot11FrameDuplicateCount++;
829 rx->sta->num_duplicates++;
830 }
831 return RX_DROP_MONITOR;
832 } else
833 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
834 }
835
836 if (unlikely(rx->skb->len < 16)) {
837 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
838 return RX_DROP_MONITOR;
839 }
840
841 /* Drop disallowed frame classes based on STA auth/assoc state;
842 * IEEE 802.11, Chap 5.5.
843 *
844 * mac80211 filters only based on association state, i.e. it drops
845 * Class 3 frames from not associated stations. hostapd sends
846 * deauth/disassoc frames when needed. In addition, hostapd is
847 * responsible for filtering on both auth and assoc states.
848 */
849
850 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
851 return ieee80211_rx_mesh_check(rx);
852
853 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
854 ieee80211_is_pspoll(hdr->frame_control)) &&
855 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
856 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
857 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
858 if ((!ieee80211_has_fromds(hdr->frame_control) &&
859 !ieee80211_has_tods(hdr->frame_control) &&
860 ieee80211_is_data(hdr->frame_control)) ||
861 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) {
862 /* Drop IBSS frames and frames for other hosts
863 * silently. */
864 return RX_DROP_MONITOR;
865 }
866
867 return RX_DROP_MONITOR;
868 }
869
870 return RX_CONTINUE;
871 }
872
873
874 static ieee80211_rx_result debug_noinline
875 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
876 {
877 struct sk_buff *skb = rx->skb;
878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
879 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
880 int keyidx;
881 int hdrlen;
882 ieee80211_rx_result result = RX_DROP_UNUSABLE;
883 struct ieee80211_key *sta_ptk = NULL;
884 int mmie_keyidx = -1;
885 __le16 fc;
886
887 /*
888 * Key selection 101
889 *
890 * There are four types of keys:
891 * - GTK (group keys)
892 * - IGTK (group keys for management frames)
893 * - PTK (pairwise keys)
894 * - STK (station-to-station pairwise keys)
895 *
896 * When selecting a key, we have to distinguish between multicast
897 * (including broadcast) and unicast frames, the latter can only
898 * use PTKs and STKs while the former always use GTKs and IGTKs.
899 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
900 * unicast frames can also use key indices like GTKs. Hence, if we
901 * don't have a PTK/STK we check the key index for a WEP key.
902 *
903 * Note that in a regular BSS, multicast frames are sent by the
904 * AP only, associated stations unicast the frame to the AP first
905 * which then multicasts it on their behalf.
906 *
907 * There is also a slight problem in IBSS mode: GTKs are negotiated
908 * with each station, that is something we don't currently handle.
909 * The spec seems to expect that one negotiates the same key with
910 * every station but there's no such requirement; VLANs could be
911 * possible.
912 */
913
914 /*
915 * No point in finding a key and decrypting if the frame is neither
916 * addressed to us nor a multicast frame.
917 */
918 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
919 return RX_CONTINUE;
920
921 /* start without a key */
922 rx->key = NULL;
923
924 if (rx->sta)
925 sta_ptk = rcu_dereference(rx->sta->ptk);
926
927 fc = hdr->frame_control;
928
929 if (!ieee80211_has_protected(fc))
930 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
931
932 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
933 rx->key = sta_ptk;
934 if ((status->flag & RX_FLAG_DECRYPTED) &&
935 (status->flag & RX_FLAG_IV_STRIPPED))
936 return RX_CONTINUE;
937 /* Skip decryption if the frame is not protected. */
938 if (!ieee80211_has_protected(fc))
939 return RX_CONTINUE;
940 } else if (mmie_keyidx >= 0) {
941 /* Broadcast/multicast robust management frame / BIP */
942 if ((status->flag & RX_FLAG_DECRYPTED) &&
943 (status->flag & RX_FLAG_IV_STRIPPED))
944 return RX_CONTINUE;
945
946 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
947 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
948 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
949 if (rx->sta)
950 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
951 if (!rx->key)
952 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
953 } else if (!ieee80211_has_protected(fc)) {
954 /*
955 * The frame was not protected, so skip decryption. However, we
956 * need to set rx->key if there is a key that could have been
957 * used so that the frame may be dropped if encryption would
958 * have been expected.
959 */
960 struct ieee80211_key *key = NULL;
961 struct ieee80211_sub_if_data *sdata = rx->sdata;
962 int i;
963
964 if (ieee80211_is_mgmt(fc) &&
965 is_multicast_ether_addr(hdr->addr1) &&
966 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
967 rx->key = key;
968 else {
969 if (rx->sta) {
970 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
971 key = rcu_dereference(rx->sta->gtk[i]);
972 if (key)
973 break;
974 }
975 }
976 if (!key) {
977 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
978 key = rcu_dereference(sdata->keys[i]);
979 if (key)
980 break;
981 }
982 }
983 if (key)
984 rx->key = key;
985 }
986 return RX_CONTINUE;
987 } else {
988 u8 keyid;
989 /*
990 * The device doesn't give us the IV so we won't be
991 * able to look up the key. That's ok though, we
992 * don't need to decrypt the frame, we just won't
993 * be able to keep statistics accurate.
994 * Except for key threshold notifications, should
995 * we somehow allow the driver to tell us which key
996 * the hardware used if this flag is set?
997 */
998 if ((status->flag & RX_FLAG_DECRYPTED) &&
999 (status->flag & RX_FLAG_IV_STRIPPED))
1000 return RX_CONTINUE;
1001
1002 hdrlen = ieee80211_hdrlen(fc);
1003
1004 if (rx->skb->len < 8 + hdrlen)
1005 return RX_DROP_UNUSABLE; /* TODO: count this? */
1006
1007 /*
1008 * no need to call ieee80211_wep_get_keyidx,
1009 * it verifies a bunch of things we've done already
1010 */
1011 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1012 keyidx = keyid >> 6;
1013
1014 /* check per-station GTK first, if multicast packet */
1015 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1016 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1017
1018 /* if not found, try default key */
1019 if (!rx->key) {
1020 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1021
1022 /*
1023 * RSNA-protected unicast frames should always be
1024 * sent with pairwise or station-to-station keys,
1025 * but for WEP we allow using a key index as well.
1026 */
1027 if (rx->key &&
1028 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1029 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1030 !is_multicast_ether_addr(hdr->addr1))
1031 rx->key = NULL;
1032 }
1033 }
1034
1035 if (rx->key) {
1036 rx->key->tx_rx_count++;
1037 /* TODO: add threshold stuff again */
1038 } else {
1039 return RX_DROP_MONITOR;
1040 }
1041
1042 if (skb_linearize(rx->skb))
1043 return RX_DROP_UNUSABLE;
1044 /* the hdr variable is invalid now! */
1045
1046 switch (rx->key->conf.cipher) {
1047 case WLAN_CIPHER_SUITE_WEP40:
1048 case WLAN_CIPHER_SUITE_WEP104:
1049 /* Check for weak IVs if possible */
1050 if (rx->sta && ieee80211_is_data(fc) &&
1051 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1052 !(status->flag & RX_FLAG_DECRYPTED)) &&
1053 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1054 rx->sta->wep_weak_iv_count++;
1055
1056 result = ieee80211_crypto_wep_decrypt(rx);
1057 break;
1058 case WLAN_CIPHER_SUITE_TKIP:
1059 result = ieee80211_crypto_tkip_decrypt(rx);
1060 break;
1061 case WLAN_CIPHER_SUITE_CCMP:
1062 result = ieee80211_crypto_ccmp_decrypt(rx);
1063 break;
1064 case WLAN_CIPHER_SUITE_AES_CMAC:
1065 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1066 break;
1067 default:
1068 /*
1069 * We can reach here only with HW-only algorithms
1070 * but why didn't it decrypt the frame?!
1071 */
1072 return RX_DROP_UNUSABLE;
1073 }
1074
1075 /* either the frame has been decrypted or will be dropped */
1076 status->flag |= RX_FLAG_DECRYPTED;
1077
1078 return result;
1079 }
1080
1081 static ieee80211_rx_result debug_noinline
1082 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1083 {
1084 struct ieee80211_local *local;
1085 struct ieee80211_hdr *hdr;
1086 struct sk_buff *skb;
1087
1088 local = rx->local;
1089 skb = rx->skb;
1090 hdr = (struct ieee80211_hdr *) skb->data;
1091
1092 if (!local->pspolling)
1093 return RX_CONTINUE;
1094
1095 if (!ieee80211_has_fromds(hdr->frame_control))
1096 /* this is not from AP */
1097 return RX_CONTINUE;
1098
1099 if (!ieee80211_is_data(hdr->frame_control))
1100 return RX_CONTINUE;
1101
1102 if (!ieee80211_has_moredata(hdr->frame_control)) {
1103 /* AP has no more frames buffered for us */
1104 local->pspolling = false;
1105 return RX_CONTINUE;
1106 }
1107
1108 /* more data bit is set, let's request a new frame from the AP */
1109 ieee80211_send_pspoll(local, rx->sdata);
1110
1111 return RX_CONTINUE;
1112 }
1113
1114 static void ap_sta_ps_start(struct sta_info *sta)
1115 {
1116 struct ieee80211_sub_if_data *sdata = sta->sdata;
1117 struct ieee80211_local *local = sdata->local;
1118
1119 atomic_inc(&sdata->bss->num_sta_ps);
1120 set_sta_flags(sta, WLAN_STA_PS_STA);
1121 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1122 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1123 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1124 sdata->name, sta->sta.addr, sta->sta.aid);
1125 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1126 }
1127
1128 static void ap_sta_ps_end(struct sta_info *sta)
1129 {
1130 struct ieee80211_sub_if_data *sdata = sta->sdata;
1131
1132 atomic_dec(&sdata->bss->num_sta_ps);
1133
1134 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1135 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1136 sdata->name, sta->sta.addr, sta->sta.aid);
1137 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1138
1139 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1140 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1141 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1142 sdata->name, sta->sta.addr, sta->sta.aid);
1143 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1144 return;
1145 }
1146
1147 ieee80211_sta_ps_deliver_wakeup(sta);
1148 }
1149
1150 static ieee80211_rx_result debug_noinline
1151 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1152 {
1153 struct sta_info *sta = rx->sta;
1154 struct sk_buff *skb = rx->skb;
1155 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1156 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1157
1158 if (!sta)
1159 return RX_CONTINUE;
1160
1161 /*
1162 * Update last_rx only for IBSS packets which are for the current
1163 * BSSID to avoid keeping the current IBSS network alive in cases
1164 * where other STAs start using different BSSID.
1165 */
1166 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1167 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1168 NL80211_IFTYPE_ADHOC);
1169 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1170 sta->last_rx = jiffies;
1171 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1172 /*
1173 * Mesh beacons will update last_rx when if they are found to
1174 * match the current local configuration when processed.
1175 */
1176 sta->last_rx = jiffies;
1177 }
1178
1179 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1180 return RX_CONTINUE;
1181
1182 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1183 ieee80211_sta_rx_notify(rx->sdata, hdr);
1184
1185 sta->rx_fragments++;
1186 sta->rx_bytes += rx->skb->len;
1187 sta->last_signal = status->signal;
1188 ewma_add(&sta->avg_signal, -status->signal);
1189
1190 /*
1191 * Change STA power saving mode only at the end of a frame
1192 * exchange sequence.
1193 */
1194 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1195 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1196 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1197 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1198 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1199 /*
1200 * Ignore doze->wake transitions that are
1201 * indicated by non-data frames, the standard
1202 * is unclear here, but for example going to
1203 * PS mode and then scanning would cause a
1204 * doze->wake transition for the probe request,
1205 * and that is clearly undesirable.
1206 */
1207 if (ieee80211_is_data(hdr->frame_control) &&
1208 !ieee80211_has_pm(hdr->frame_control))
1209 ap_sta_ps_end(sta);
1210 } else {
1211 if (ieee80211_has_pm(hdr->frame_control))
1212 ap_sta_ps_start(sta);
1213 }
1214 }
1215
1216 /*
1217 * Drop (qos-)data::nullfunc frames silently, since they
1218 * are used only to control station power saving mode.
1219 */
1220 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1221 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1222 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1223
1224 /*
1225 * If we receive a 4-addr nullfunc frame from a STA
1226 * that was not moved to a 4-addr STA vlan yet, drop
1227 * the frame to the monitor interface, to make sure
1228 * that hostapd sees it
1229 */
1230 if (ieee80211_has_a4(hdr->frame_control) &&
1231 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1232 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1233 !rx->sdata->u.vlan.sta)))
1234 return RX_DROP_MONITOR;
1235 /*
1236 * Update counter and free packet here to avoid
1237 * counting this as a dropped packed.
1238 */
1239 sta->rx_packets++;
1240 dev_kfree_skb(rx->skb);
1241 return RX_QUEUED;
1242 }
1243
1244 return RX_CONTINUE;
1245 } /* ieee80211_rx_h_sta_process */
1246
1247 static inline struct ieee80211_fragment_entry *
1248 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1249 unsigned int frag, unsigned int seq, int rx_queue,
1250 struct sk_buff **skb)
1251 {
1252 struct ieee80211_fragment_entry *entry;
1253 int idx;
1254
1255 idx = sdata->fragment_next;
1256 entry = &sdata->fragments[sdata->fragment_next++];
1257 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1258 sdata->fragment_next = 0;
1259
1260 if (!skb_queue_empty(&entry->skb_list)) {
1261 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1262 struct ieee80211_hdr *hdr =
1263 (struct ieee80211_hdr *) entry->skb_list.next->data;
1264 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1265 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1266 "addr1=%pM addr2=%pM\n",
1267 sdata->name, idx,
1268 jiffies - entry->first_frag_time, entry->seq,
1269 entry->last_frag, hdr->addr1, hdr->addr2);
1270 #endif
1271 __skb_queue_purge(&entry->skb_list);
1272 }
1273
1274 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1275 *skb = NULL;
1276 entry->first_frag_time = jiffies;
1277 entry->seq = seq;
1278 entry->rx_queue = rx_queue;
1279 entry->last_frag = frag;
1280 entry->ccmp = 0;
1281 entry->extra_len = 0;
1282
1283 return entry;
1284 }
1285
1286 static inline struct ieee80211_fragment_entry *
1287 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1288 unsigned int frag, unsigned int seq,
1289 int rx_queue, struct ieee80211_hdr *hdr)
1290 {
1291 struct ieee80211_fragment_entry *entry;
1292 int i, idx;
1293
1294 idx = sdata->fragment_next;
1295 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1296 struct ieee80211_hdr *f_hdr;
1297
1298 idx--;
1299 if (idx < 0)
1300 idx = IEEE80211_FRAGMENT_MAX - 1;
1301
1302 entry = &sdata->fragments[idx];
1303 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1304 entry->rx_queue != rx_queue ||
1305 entry->last_frag + 1 != frag)
1306 continue;
1307
1308 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1309
1310 /*
1311 * Check ftype and addresses are equal, else check next fragment
1312 */
1313 if (((hdr->frame_control ^ f_hdr->frame_control) &
1314 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1315 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1316 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1317 continue;
1318
1319 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1320 __skb_queue_purge(&entry->skb_list);
1321 continue;
1322 }
1323 return entry;
1324 }
1325
1326 return NULL;
1327 }
1328
1329 static ieee80211_rx_result debug_noinline
1330 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1331 {
1332 struct ieee80211_hdr *hdr;
1333 u16 sc;
1334 __le16 fc;
1335 unsigned int frag, seq;
1336 struct ieee80211_fragment_entry *entry;
1337 struct sk_buff *skb;
1338 struct ieee80211_rx_status *status;
1339
1340 hdr = (struct ieee80211_hdr *)rx->skb->data;
1341 fc = hdr->frame_control;
1342 sc = le16_to_cpu(hdr->seq_ctrl);
1343 frag = sc & IEEE80211_SCTL_FRAG;
1344
1345 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1346 (rx->skb)->len < 24 ||
1347 is_multicast_ether_addr(hdr->addr1))) {
1348 /* not fragmented */
1349 goto out;
1350 }
1351 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1352
1353 if (skb_linearize(rx->skb))
1354 return RX_DROP_UNUSABLE;
1355
1356 /*
1357 * skb_linearize() might change the skb->data and
1358 * previously cached variables (in this case, hdr) need to
1359 * be refreshed with the new data.
1360 */
1361 hdr = (struct ieee80211_hdr *)rx->skb->data;
1362 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1363
1364 if (frag == 0) {
1365 /* This is the first fragment of a new frame. */
1366 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1367 rx->queue, &(rx->skb));
1368 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1369 ieee80211_has_protected(fc)) {
1370 int queue = ieee80211_is_mgmt(fc) ?
1371 NUM_RX_DATA_QUEUES : rx->queue;
1372 /* Store CCMP PN so that we can verify that the next
1373 * fragment has a sequential PN value. */
1374 entry->ccmp = 1;
1375 memcpy(entry->last_pn,
1376 rx->key->u.ccmp.rx_pn[queue],
1377 CCMP_PN_LEN);
1378 }
1379 return RX_QUEUED;
1380 }
1381
1382 /* This is a fragment for a frame that should already be pending in
1383 * fragment cache. Add this fragment to the end of the pending entry.
1384 */
1385 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1386 if (!entry) {
1387 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1388 return RX_DROP_MONITOR;
1389 }
1390
1391 /* Verify that MPDUs within one MSDU have sequential PN values.
1392 * (IEEE 802.11i, 8.3.3.4.5) */
1393 if (entry->ccmp) {
1394 int i;
1395 u8 pn[CCMP_PN_LEN], *rpn;
1396 int queue;
1397 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1398 return RX_DROP_UNUSABLE;
1399 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1400 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1401 pn[i]++;
1402 if (pn[i])
1403 break;
1404 }
1405 queue = ieee80211_is_mgmt(fc) ?
1406 NUM_RX_DATA_QUEUES : rx->queue;
1407 rpn = rx->key->u.ccmp.rx_pn[queue];
1408 if (memcmp(pn, rpn, CCMP_PN_LEN))
1409 return RX_DROP_UNUSABLE;
1410 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1411 }
1412
1413 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1414 __skb_queue_tail(&entry->skb_list, rx->skb);
1415 entry->last_frag = frag;
1416 entry->extra_len += rx->skb->len;
1417 if (ieee80211_has_morefrags(fc)) {
1418 rx->skb = NULL;
1419 return RX_QUEUED;
1420 }
1421
1422 rx->skb = __skb_dequeue(&entry->skb_list);
1423 if (skb_tailroom(rx->skb) < entry->extra_len) {
1424 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1425 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1426 GFP_ATOMIC))) {
1427 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1428 __skb_queue_purge(&entry->skb_list);
1429 return RX_DROP_UNUSABLE;
1430 }
1431 }
1432 while ((skb = __skb_dequeue(&entry->skb_list))) {
1433 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1434 dev_kfree_skb(skb);
1435 }
1436
1437 /* Complete frame has been reassembled - process it now */
1438 status = IEEE80211_SKB_RXCB(rx->skb);
1439 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1440
1441 out:
1442 if (rx->sta)
1443 rx->sta->rx_packets++;
1444 if (is_multicast_ether_addr(hdr->addr1))
1445 rx->local->dot11MulticastReceivedFrameCount++;
1446 else
1447 ieee80211_led_rx(rx->local);
1448 return RX_CONTINUE;
1449 }
1450
1451 static ieee80211_rx_result debug_noinline
1452 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1453 {
1454 struct ieee80211_sub_if_data *sdata = rx->sdata;
1455 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1456 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1457
1458 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1459 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1460 return RX_CONTINUE;
1461
1462 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1463 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1464 return RX_DROP_UNUSABLE;
1465
1466 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1467 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1468 else
1469 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1470
1471 /* Free PS Poll skb here instead of returning RX_DROP that would
1472 * count as an dropped frame. */
1473 dev_kfree_skb(rx->skb);
1474
1475 return RX_QUEUED;
1476 }
1477
1478 static ieee80211_rx_result debug_noinline
1479 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1480 {
1481 u8 *data = rx->skb->data;
1482 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1483
1484 if (!ieee80211_is_data_qos(hdr->frame_control))
1485 return RX_CONTINUE;
1486
1487 /* remove the qos control field, update frame type and meta-data */
1488 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1489 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1490 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1491 /* change frame type to non QOS */
1492 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1493
1494 return RX_CONTINUE;
1495 }
1496
1497 static int
1498 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1499 {
1500 if (unlikely(!rx->sta ||
1501 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1502 return -EACCES;
1503
1504 return 0;
1505 }
1506
1507 static int
1508 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1509 {
1510 struct sk_buff *skb = rx->skb;
1511 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1512
1513 /*
1514 * Pass through unencrypted frames if the hardware has
1515 * decrypted them already.
1516 */
1517 if (status->flag & RX_FLAG_DECRYPTED)
1518 return 0;
1519
1520 /* Drop unencrypted frames if key is set. */
1521 if (unlikely(!ieee80211_has_protected(fc) &&
1522 !ieee80211_is_nullfunc(fc) &&
1523 ieee80211_is_data(fc) &&
1524 (rx->key || rx->sdata->drop_unencrypted)))
1525 return -EACCES;
1526
1527 return 0;
1528 }
1529
1530 static int
1531 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1532 {
1533 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1534 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1535 __le16 fc = hdr->frame_control;
1536
1537 /*
1538 * Pass through unencrypted frames if the hardware has
1539 * decrypted them already.
1540 */
1541 if (status->flag & RX_FLAG_DECRYPTED)
1542 return 0;
1543
1544 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1545 if (unlikely(!ieee80211_has_protected(fc) &&
1546 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1547 rx->key)) {
1548 if (ieee80211_is_deauth(fc))
1549 cfg80211_send_unprot_deauth(rx->sdata->dev,
1550 rx->skb->data,
1551 rx->skb->len);
1552 else if (ieee80211_is_disassoc(fc))
1553 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1554 rx->skb->data,
1555 rx->skb->len);
1556 return -EACCES;
1557 }
1558 /* BIP does not use Protected field, so need to check MMIE */
1559 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1560 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1561 if (ieee80211_is_deauth(fc))
1562 cfg80211_send_unprot_deauth(rx->sdata->dev,
1563 rx->skb->data,
1564 rx->skb->len);
1565 else if (ieee80211_is_disassoc(fc))
1566 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1567 rx->skb->data,
1568 rx->skb->len);
1569 return -EACCES;
1570 }
1571 /*
1572 * When using MFP, Action frames are not allowed prior to
1573 * having configured keys.
1574 */
1575 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1576 ieee80211_is_robust_mgmt_frame(
1577 (struct ieee80211_hdr *) rx->skb->data)))
1578 return -EACCES;
1579 }
1580
1581 return 0;
1582 }
1583
1584 static int
1585 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1586 {
1587 struct ieee80211_sub_if_data *sdata = rx->sdata;
1588 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1589
1590 if (ieee80211_has_a4(hdr->frame_control) &&
1591 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1592 return -1;
1593
1594 if (is_multicast_ether_addr(hdr->addr1) &&
1595 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1596 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1597 return -1;
1598
1599 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1600 }
1601
1602 /*
1603 * requires that rx->skb is a frame with ethernet header
1604 */
1605 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1606 {
1607 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1608 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1609 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1610
1611 /*
1612 * Allow EAPOL frames to us/the PAE group address regardless
1613 * of whether the frame was encrypted or not.
1614 */
1615 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1616 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1617 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1618 return true;
1619
1620 if (ieee80211_802_1x_port_control(rx) ||
1621 ieee80211_drop_unencrypted(rx, fc))
1622 return false;
1623
1624 return true;
1625 }
1626
1627 /*
1628 * requires that rx->skb is a frame with ethernet header
1629 */
1630 static void
1631 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1632 {
1633 struct ieee80211_sub_if_data *sdata = rx->sdata;
1634 struct net_device *dev = sdata->dev;
1635 struct sk_buff *skb, *xmit_skb;
1636 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1637 struct sta_info *dsta;
1638 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1639
1640 skb = rx->skb;
1641 xmit_skb = NULL;
1642
1643 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1644 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1645 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1646 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1647 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1648 if (is_multicast_ether_addr(ehdr->h_dest)) {
1649 /*
1650 * send multicast frames both to higher layers in
1651 * local net stack and back to the wireless medium
1652 */
1653 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1654 if (!xmit_skb && net_ratelimit())
1655 printk(KERN_DEBUG "%s: failed to clone "
1656 "multicast frame\n", dev->name);
1657 } else {
1658 dsta = sta_info_get(sdata, skb->data);
1659 if (dsta) {
1660 /*
1661 * The destination station is associated to
1662 * this AP (in this VLAN), so send the frame
1663 * directly to it and do not pass it to local
1664 * net stack.
1665 */
1666 xmit_skb = skb;
1667 skb = NULL;
1668 }
1669 }
1670 }
1671
1672 if (skb) {
1673 int align __maybe_unused;
1674
1675 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1676 /*
1677 * 'align' will only take the values 0 or 2 here
1678 * since all frames are required to be aligned
1679 * to 2-byte boundaries when being passed to
1680 * mac80211. That also explains the __skb_push()
1681 * below.
1682 */
1683 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1684 if (align) {
1685 if (WARN_ON(skb_headroom(skb) < 3)) {
1686 dev_kfree_skb(skb);
1687 skb = NULL;
1688 } else {
1689 u8 *data = skb->data;
1690 size_t len = skb_headlen(skb);
1691 skb->data -= align;
1692 memmove(skb->data, data, len);
1693 skb_set_tail_pointer(skb, len);
1694 }
1695 }
1696 #endif
1697
1698 if (skb) {
1699 /* deliver to local stack */
1700 skb->protocol = eth_type_trans(skb, dev);
1701 memset(skb->cb, 0, sizeof(skb->cb));
1702 netif_receive_skb(skb);
1703 }
1704 }
1705
1706 if (xmit_skb) {
1707 /* send to wireless media */
1708 xmit_skb->protocol = htons(ETH_P_802_3);
1709 skb_reset_network_header(xmit_skb);
1710 skb_reset_mac_header(xmit_skb);
1711 dev_queue_xmit(xmit_skb);
1712 }
1713 }
1714
1715 static ieee80211_rx_result debug_noinline
1716 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1717 {
1718 struct net_device *dev = rx->sdata->dev;
1719 struct sk_buff *skb = rx->skb;
1720 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1721 __le16 fc = hdr->frame_control;
1722 struct sk_buff_head frame_list;
1723 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1724
1725 if (unlikely(!ieee80211_is_data(fc)))
1726 return RX_CONTINUE;
1727
1728 if (unlikely(!ieee80211_is_data_present(fc)))
1729 return RX_DROP_MONITOR;
1730
1731 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1732 return RX_CONTINUE;
1733
1734 if (ieee80211_has_a4(hdr->frame_control) &&
1735 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1736 !rx->sdata->u.vlan.sta)
1737 return RX_DROP_UNUSABLE;
1738
1739 if (is_multicast_ether_addr(hdr->addr1) &&
1740 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1741 rx->sdata->u.vlan.sta) ||
1742 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1743 rx->sdata->u.mgd.use_4addr)))
1744 return RX_DROP_UNUSABLE;
1745
1746 skb->dev = dev;
1747 __skb_queue_head_init(&frame_list);
1748
1749 if (skb_linearize(skb))
1750 return RX_DROP_UNUSABLE;
1751
1752 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1753 rx->sdata->vif.type,
1754 rx->local->hw.extra_tx_headroom);
1755
1756 while (!skb_queue_empty(&frame_list)) {
1757 rx->skb = __skb_dequeue(&frame_list);
1758
1759 if (!ieee80211_frame_allowed(rx, fc)) {
1760 dev_kfree_skb(rx->skb);
1761 continue;
1762 }
1763 dev->stats.rx_packets++;
1764 dev->stats.rx_bytes += rx->skb->len;
1765
1766 ieee80211_deliver_skb(rx);
1767 }
1768
1769 return RX_QUEUED;
1770 }
1771
1772 #ifdef CONFIG_MAC80211_MESH
1773 static ieee80211_rx_result
1774 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1775 {
1776 struct ieee80211_hdr *hdr;
1777 struct ieee80211s_hdr *mesh_hdr;
1778 unsigned int hdrlen;
1779 struct sk_buff *skb = rx->skb, *fwd_skb;
1780 struct ieee80211_local *local = rx->local;
1781 struct ieee80211_sub_if_data *sdata = rx->sdata;
1782 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1783
1784 hdr = (struct ieee80211_hdr *) skb->data;
1785 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1786 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1787
1788 if (!ieee80211_is_data(hdr->frame_control))
1789 return RX_CONTINUE;
1790
1791 if (!mesh_hdr->ttl)
1792 /* illegal frame */
1793 return RX_DROP_MONITOR;
1794
1795 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1796 struct mesh_path *mppath;
1797 char *proxied_addr;
1798 char *mpp_addr;
1799
1800 if (is_multicast_ether_addr(hdr->addr1)) {
1801 mpp_addr = hdr->addr3;
1802 proxied_addr = mesh_hdr->eaddr1;
1803 } else {
1804 mpp_addr = hdr->addr4;
1805 proxied_addr = mesh_hdr->eaddr2;
1806 }
1807
1808 rcu_read_lock();
1809 mppath = mpp_path_lookup(proxied_addr, sdata);
1810 if (!mppath) {
1811 mpp_path_add(proxied_addr, mpp_addr, sdata);
1812 } else {
1813 spin_lock_bh(&mppath->state_lock);
1814 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1815 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1816 spin_unlock_bh(&mppath->state_lock);
1817 }
1818 rcu_read_unlock();
1819 }
1820
1821 /* Frame has reached destination. Don't forward */
1822 if (!is_multicast_ether_addr(hdr->addr1) &&
1823 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1824 return RX_CONTINUE;
1825
1826 mesh_hdr->ttl--;
1827
1828 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1829 if (!mesh_hdr->ttl)
1830 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1831 dropped_frames_ttl);
1832 else {
1833 struct ieee80211_hdr *fwd_hdr;
1834 struct ieee80211_tx_info *info;
1835
1836 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1837
1838 if (!fwd_skb && net_ratelimit())
1839 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1840 sdata->name);
1841
1842 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1843 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1844 info = IEEE80211_SKB_CB(fwd_skb);
1845 memset(info, 0, sizeof(*info));
1846 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1847 info->control.vif = &rx->sdata->vif;
1848 skb_set_queue_mapping(skb,
1849 ieee80211_select_queue(rx->sdata, fwd_skb));
1850 ieee80211_set_qos_hdr(local, skb);
1851 if (is_multicast_ether_addr(fwd_hdr->addr1))
1852 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1853 fwded_mcast);
1854 else {
1855 int err;
1856 /*
1857 * Save TA to addr1 to send TA a path error if a
1858 * suitable next hop is not found
1859 */
1860 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1861 ETH_ALEN);
1862 err = mesh_nexthop_lookup(fwd_skb, sdata);
1863 /* Failed to immediately resolve next hop:
1864 * fwded frame was dropped or will be added
1865 * later to the pending skb queue. */
1866 if (err)
1867 return RX_DROP_MONITOR;
1868
1869 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1870 fwded_unicast);
1871 }
1872 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1873 fwded_frames);
1874 ieee80211_add_pending_skb(local, fwd_skb);
1875 }
1876 }
1877
1878 if (is_multicast_ether_addr(hdr->addr1) ||
1879 sdata->dev->flags & IFF_PROMISC)
1880 return RX_CONTINUE;
1881 else
1882 return RX_DROP_MONITOR;
1883 }
1884 #endif
1885
1886 static ieee80211_rx_result debug_noinline
1887 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1888 {
1889 struct ieee80211_sub_if_data *sdata = rx->sdata;
1890 struct ieee80211_local *local = rx->local;
1891 struct net_device *dev = sdata->dev;
1892 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1893 __le16 fc = hdr->frame_control;
1894 int err;
1895
1896 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1897 return RX_CONTINUE;
1898
1899 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1900 return RX_DROP_MONITOR;
1901
1902 /*
1903 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1904 * that a 4-addr station can be detected and moved into a separate VLAN
1905 */
1906 if (ieee80211_has_a4(hdr->frame_control) &&
1907 sdata->vif.type == NL80211_IFTYPE_AP)
1908 return RX_DROP_MONITOR;
1909
1910 err = __ieee80211_data_to_8023(rx);
1911 if (unlikely(err))
1912 return RX_DROP_UNUSABLE;
1913
1914 if (!ieee80211_frame_allowed(rx, fc))
1915 return RX_DROP_MONITOR;
1916
1917 rx->skb->dev = dev;
1918
1919 dev->stats.rx_packets++;
1920 dev->stats.rx_bytes += rx->skb->len;
1921
1922 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1923 !is_multicast_ether_addr(((struct ethhdr *)rx->skb->data)->h_dest)) {
1924 mod_timer(&local->dynamic_ps_timer, jiffies +
1925 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1926 }
1927
1928 ieee80211_deliver_skb(rx);
1929
1930 return RX_QUEUED;
1931 }
1932
1933 static ieee80211_rx_result debug_noinline
1934 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1935 {
1936 struct ieee80211_local *local = rx->local;
1937 struct ieee80211_hw *hw = &local->hw;
1938 struct sk_buff *skb = rx->skb;
1939 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1940 struct tid_ampdu_rx *tid_agg_rx;
1941 u16 start_seq_num;
1942 u16 tid;
1943
1944 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1945 return RX_CONTINUE;
1946
1947 if (ieee80211_is_back_req(bar->frame_control)) {
1948 struct {
1949 __le16 control, start_seq_num;
1950 } __packed bar_data;
1951
1952 if (!rx->sta)
1953 return RX_DROP_MONITOR;
1954
1955 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1956 &bar_data, sizeof(bar_data)))
1957 return RX_DROP_MONITOR;
1958
1959 tid = le16_to_cpu(bar_data.control) >> 12;
1960
1961 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
1962 if (!tid_agg_rx)
1963 return RX_DROP_MONITOR;
1964
1965 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1966
1967 /* reset session timer */
1968 if (tid_agg_rx->timeout)
1969 mod_timer(&tid_agg_rx->session_timer,
1970 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1971
1972 spin_lock(&tid_agg_rx->reorder_lock);
1973 /* release stored frames up to start of BAR */
1974 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1975 frames);
1976 spin_unlock(&tid_agg_rx->reorder_lock);
1977
1978 kfree_skb(skb);
1979 return RX_QUEUED;
1980 }
1981
1982 /*
1983 * After this point, we only want management frames,
1984 * so we can drop all remaining control frames to
1985 * cooked monitor interfaces.
1986 */
1987 return RX_DROP_MONITOR;
1988 }
1989
1990 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1991 struct ieee80211_mgmt *mgmt,
1992 size_t len)
1993 {
1994 struct ieee80211_local *local = sdata->local;
1995 struct sk_buff *skb;
1996 struct ieee80211_mgmt *resp;
1997
1998 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1999 /* Not to own unicast address */
2000 return;
2001 }
2002
2003 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2004 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2005 /* Not from the current AP or not associated yet. */
2006 return;
2007 }
2008
2009 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2010 /* Too short SA Query request frame */
2011 return;
2012 }
2013
2014 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2015 if (skb == NULL)
2016 return;
2017
2018 skb_reserve(skb, local->hw.extra_tx_headroom);
2019 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2020 memset(resp, 0, 24);
2021 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2022 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2023 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2024 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2025 IEEE80211_STYPE_ACTION);
2026 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2027 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2028 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2029 memcpy(resp->u.action.u.sa_query.trans_id,
2030 mgmt->u.action.u.sa_query.trans_id,
2031 WLAN_SA_QUERY_TR_ID_LEN);
2032
2033 ieee80211_tx_skb(sdata, skb);
2034 }
2035
2036 static ieee80211_rx_result debug_noinline
2037 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2038 {
2039 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2040 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2041
2042 /*
2043 * From here on, look only at management frames.
2044 * Data and control frames are already handled,
2045 * and unknown (reserved) frames are useless.
2046 */
2047 if (rx->skb->len < 24)
2048 return RX_DROP_MONITOR;
2049
2050 if (!ieee80211_is_mgmt(mgmt->frame_control))
2051 return RX_DROP_MONITOR;
2052
2053 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2054 return RX_DROP_MONITOR;
2055
2056 if (ieee80211_drop_unencrypted_mgmt(rx))
2057 return RX_DROP_UNUSABLE;
2058
2059 return RX_CONTINUE;
2060 }
2061
2062 static ieee80211_rx_result debug_noinline
2063 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2064 {
2065 struct ieee80211_local *local = rx->local;
2066 struct ieee80211_sub_if_data *sdata = rx->sdata;
2067 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2068 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2069 int len = rx->skb->len;
2070
2071 if (!ieee80211_is_action(mgmt->frame_control))
2072 return RX_CONTINUE;
2073
2074 /* drop too small frames */
2075 if (len < IEEE80211_MIN_ACTION_SIZE)
2076 return RX_DROP_UNUSABLE;
2077
2078 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2079 return RX_DROP_UNUSABLE;
2080
2081 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2082 return RX_DROP_UNUSABLE;
2083
2084 switch (mgmt->u.action.category) {
2085 case WLAN_CATEGORY_BACK:
2086 /*
2087 * The aggregation code is not prepared to handle
2088 * anything but STA/AP due to the BSSID handling;
2089 * IBSS could work in the code but isn't supported
2090 * by drivers or the standard.
2091 */
2092 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2093 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2094 sdata->vif.type != NL80211_IFTYPE_AP)
2095 break;
2096
2097 /* verify action_code is present */
2098 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2099 break;
2100
2101 switch (mgmt->u.action.u.addba_req.action_code) {
2102 case WLAN_ACTION_ADDBA_REQ:
2103 if (len < (IEEE80211_MIN_ACTION_SIZE +
2104 sizeof(mgmt->u.action.u.addba_req)))
2105 goto invalid;
2106 break;
2107 case WLAN_ACTION_ADDBA_RESP:
2108 if (len < (IEEE80211_MIN_ACTION_SIZE +
2109 sizeof(mgmt->u.action.u.addba_resp)))
2110 goto invalid;
2111 break;
2112 case WLAN_ACTION_DELBA:
2113 if (len < (IEEE80211_MIN_ACTION_SIZE +
2114 sizeof(mgmt->u.action.u.delba)))
2115 goto invalid;
2116 break;
2117 default:
2118 goto invalid;
2119 }
2120
2121 goto queue;
2122 case WLAN_CATEGORY_SPECTRUM_MGMT:
2123 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2124 break;
2125
2126 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2127 break;
2128
2129 /* verify action_code is present */
2130 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2131 break;
2132
2133 switch (mgmt->u.action.u.measurement.action_code) {
2134 case WLAN_ACTION_SPCT_MSR_REQ:
2135 if (len < (IEEE80211_MIN_ACTION_SIZE +
2136 sizeof(mgmt->u.action.u.measurement)))
2137 break;
2138 ieee80211_process_measurement_req(sdata, mgmt, len);
2139 goto handled;
2140 case WLAN_ACTION_SPCT_CHL_SWITCH:
2141 if (len < (IEEE80211_MIN_ACTION_SIZE +
2142 sizeof(mgmt->u.action.u.chan_switch)))
2143 break;
2144
2145 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2146 break;
2147
2148 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2149 break;
2150
2151 goto queue;
2152 }
2153 break;
2154 case WLAN_CATEGORY_SA_QUERY:
2155 if (len < (IEEE80211_MIN_ACTION_SIZE +
2156 sizeof(mgmt->u.action.u.sa_query)))
2157 break;
2158
2159 switch (mgmt->u.action.u.sa_query.action) {
2160 case WLAN_ACTION_SA_QUERY_REQUEST:
2161 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2162 break;
2163 ieee80211_process_sa_query_req(sdata, mgmt, len);
2164 goto handled;
2165 }
2166 break;
2167 case WLAN_CATEGORY_MESH_PLINK:
2168 if (!ieee80211_vif_is_mesh(&sdata->vif))
2169 break;
2170 goto queue;
2171 case WLAN_CATEGORY_MESH_PATH_SEL:
2172 if (!mesh_path_sel_is_hwmp(sdata))
2173 break;
2174 goto queue;
2175 }
2176
2177 return RX_CONTINUE;
2178
2179 invalid:
2180 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2181 /* will return in the next handlers */
2182 return RX_CONTINUE;
2183
2184 handled:
2185 if (rx->sta)
2186 rx->sta->rx_packets++;
2187 dev_kfree_skb(rx->skb);
2188 return RX_QUEUED;
2189
2190 queue:
2191 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2192 skb_queue_tail(&sdata->skb_queue, rx->skb);
2193 ieee80211_queue_work(&local->hw, &sdata->work);
2194 if (rx->sta)
2195 rx->sta->rx_packets++;
2196 return RX_QUEUED;
2197 }
2198
2199 static ieee80211_rx_result debug_noinline
2200 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2201 {
2202 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2203
2204 /* skip known-bad action frames and return them in the next handler */
2205 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2206 return RX_CONTINUE;
2207
2208 /*
2209 * Getting here means the kernel doesn't know how to handle
2210 * it, but maybe userspace does ... include returned frames
2211 * so userspace can register for those to know whether ones
2212 * it transmitted were processed or returned.
2213 */
2214
2215 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2216 rx->skb->data, rx->skb->len,
2217 GFP_ATOMIC)) {
2218 if (rx->sta)
2219 rx->sta->rx_packets++;
2220 dev_kfree_skb(rx->skb);
2221 return RX_QUEUED;
2222 }
2223
2224
2225 return RX_CONTINUE;
2226 }
2227
2228 static ieee80211_rx_result debug_noinline
2229 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2230 {
2231 struct ieee80211_local *local = rx->local;
2232 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2233 struct sk_buff *nskb;
2234 struct ieee80211_sub_if_data *sdata = rx->sdata;
2235 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2236
2237 if (!ieee80211_is_action(mgmt->frame_control))
2238 return RX_CONTINUE;
2239
2240 /*
2241 * For AP mode, hostapd is responsible for handling any action
2242 * frames that we didn't handle, including returning unknown
2243 * ones. For all other modes we will return them to the sender,
2244 * setting the 0x80 bit in the action category, as required by
2245 * 802.11-2007 7.3.1.11.
2246 * Newer versions of hostapd shall also use the management frame
2247 * registration mechanisms, but older ones still use cooked
2248 * monitor interfaces so push all frames there.
2249 */
2250 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2251 (sdata->vif.type == NL80211_IFTYPE_AP ||
2252 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2253 return RX_DROP_MONITOR;
2254
2255 /* do not return rejected action frames */
2256 if (mgmt->u.action.category & 0x80)
2257 return RX_DROP_UNUSABLE;
2258
2259 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2260 GFP_ATOMIC);
2261 if (nskb) {
2262 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2263
2264 nmgmt->u.action.category |= 0x80;
2265 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2266 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2267
2268 memset(nskb->cb, 0, sizeof(nskb->cb));
2269
2270 ieee80211_tx_skb(rx->sdata, nskb);
2271 }
2272 dev_kfree_skb(rx->skb);
2273 return RX_QUEUED;
2274 }
2275
2276 static ieee80211_rx_result debug_noinline
2277 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2278 {
2279 struct ieee80211_sub_if_data *sdata = rx->sdata;
2280 ieee80211_rx_result rxs;
2281 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2282 __le16 stype;
2283
2284 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2285 if (rxs != RX_CONTINUE)
2286 return rxs;
2287
2288 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2289
2290 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2291 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2292 sdata->vif.type != NL80211_IFTYPE_STATION)
2293 return RX_DROP_MONITOR;
2294
2295 switch (stype) {
2296 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2297 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2298 /* process for all: mesh, mlme, ibss */
2299 break;
2300 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2301 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2302 if (is_multicast_ether_addr(mgmt->da) &&
2303 !is_broadcast_ether_addr(mgmt->da))
2304 return RX_DROP_MONITOR;
2305
2306 /* process only for station */
2307 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2308 return RX_DROP_MONITOR;
2309 break;
2310 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2311 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2312 /* process only for ibss */
2313 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2314 return RX_DROP_MONITOR;
2315 break;
2316 default:
2317 return RX_DROP_MONITOR;
2318 }
2319
2320 /* queue up frame and kick off work to process it */
2321 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2322 skb_queue_tail(&sdata->skb_queue, rx->skb);
2323 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2324 if (rx->sta)
2325 rx->sta->rx_packets++;
2326
2327 return RX_QUEUED;
2328 }
2329
2330 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2331 struct ieee80211_rx_data *rx)
2332 {
2333 int keyidx;
2334 unsigned int hdrlen;
2335
2336 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2337 if (rx->skb->len >= hdrlen + 4)
2338 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2339 else
2340 keyidx = -1;
2341
2342 if (!rx->sta) {
2343 /*
2344 * Some hardware seem to generate incorrect Michael MIC
2345 * reports; ignore them to avoid triggering countermeasures.
2346 */
2347 return;
2348 }
2349
2350 if (!ieee80211_has_protected(hdr->frame_control))
2351 return;
2352
2353 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2354 /*
2355 * APs with pairwise keys should never receive Michael MIC
2356 * errors for non-zero keyidx because these are reserved for
2357 * group keys and only the AP is sending real multicast
2358 * frames in the BSS.
2359 */
2360 return;
2361 }
2362
2363 if (!ieee80211_is_data(hdr->frame_control) &&
2364 !ieee80211_is_auth(hdr->frame_control))
2365 return;
2366
2367 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2368 GFP_ATOMIC);
2369 }
2370
2371 /* TODO: use IEEE80211_RX_FRAGMENTED */
2372 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2373 struct ieee80211_rate *rate)
2374 {
2375 struct ieee80211_sub_if_data *sdata;
2376 struct ieee80211_local *local = rx->local;
2377 struct ieee80211_rtap_hdr {
2378 struct ieee80211_radiotap_header hdr;
2379 u8 flags;
2380 u8 rate_or_pad;
2381 __le16 chan_freq;
2382 __le16 chan_flags;
2383 } __packed *rthdr;
2384 struct sk_buff *skb = rx->skb, *skb2;
2385 struct net_device *prev_dev = NULL;
2386 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2387
2388 /*
2389 * If cooked monitor has been processed already, then
2390 * don't do it again. If not, set the flag.
2391 */
2392 if (rx->flags & IEEE80211_RX_CMNTR)
2393 goto out_free_skb;
2394 rx->flags |= IEEE80211_RX_CMNTR;
2395
2396 if (skb_headroom(skb) < sizeof(*rthdr) &&
2397 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2398 goto out_free_skb;
2399
2400 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2401 memset(rthdr, 0, sizeof(*rthdr));
2402 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2403 rthdr->hdr.it_present =
2404 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2405 (1 << IEEE80211_RADIOTAP_CHANNEL));
2406
2407 if (rate) {
2408 rthdr->rate_or_pad = rate->bitrate / 5;
2409 rthdr->hdr.it_present |=
2410 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2411 }
2412 rthdr->chan_freq = cpu_to_le16(status->freq);
2413
2414 if (status->band == IEEE80211_BAND_5GHZ)
2415 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2416 IEEE80211_CHAN_5GHZ);
2417 else
2418 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2419 IEEE80211_CHAN_2GHZ);
2420
2421 skb_set_mac_header(skb, 0);
2422 skb->ip_summed = CHECKSUM_UNNECESSARY;
2423 skb->pkt_type = PACKET_OTHERHOST;
2424 skb->protocol = htons(ETH_P_802_2);
2425
2426 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2427 if (!ieee80211_sdata_running(sdata))
2428 continue;
2429
2430 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2431 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2432 continue;
2433
2434 if (prev_dev) {
2435 skb2 = skb_clone(skb, GFP_ATOMIC);
2436 if (skb2) {
2437 skb2->dev = prev_dev;
2438 netif_receive_skb(skb2);
2439 }
2440 }
2441
2442 prev_dev = sdata->dev;
2443 sdata->dev->stats.rx_packets++;
2444 sdata->dev->stats.rx_bytes += skb->len;
2445 }
2446
2447 if (prev_dev) {
2448 skb->dev = prev_dev;
2449 netif_receive_skb(skb);
2450 return;
2451 }
2452
2453 out_free_skb:
2454 dev_kfree_skb(skb);
2455 }
2456
2457 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2458 ieee80211_rx_result res)
2459 {
2460 switch (res) {
2461 case RX_DROP_MONITOR:
2462 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2463 if (rx->sta)
2464 rx->sta->rx_dropped++;
2465 /* fall through */
2466 case RX_CONTINUE: {
2467 struct ieee80211_rate *rate = NULL;
2468 struct ieee80211_supported_band *sband;
2469 struct ieee80211_rx_status *status;
2470
2471 status = IEEE80211_SKB_RXCB((rx->skb));
2472
2473 sband = rx->local->hw.wiphy->bands[status->band];
2474 if (!(status->flag & RX_FLAG_HT))
2475 rate = &sband->bitrates[status->rate_idx];
2476
2477 ieee80211_rx_cooked_monitor(rx, rate);
2478 break;
2479 }
2480 case RX_DROP_UNUSABLE:
2481 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2482 if (rx->sta)
2483 rx->sta->rx_dropped++;
2484 dev_kfree_skb(rx->skb);
2485 break;
2486 case RX_QUEUED:
2487 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2488 break;
2489 }
2490 }
2491
2492 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2493 struct sk_buff_head *frames)
2494 {
2495 ieee80211_rx_result res = RX_DROP_MONITOR;
2496 struct sk_buff *skb;
2497
2498 #define CALL_RXH(rxh) \
2499 do { \
2500 res = rxh(rx); \
2501 if (res != RX_CONTINUE) \
2502 goto rxh_next; \
2503 } while (0);
2504
2505 while ((skb = __skb_dequeue(frames))) {
2506 /*
2507 * all the other fields are valid across frames
2508 * that belong to an aMPDU since they are on the
2509 * same TID from the same station
2510 */
2511 rx->skb = skb;
2512 rx->flags = 0;
2513
2514 CALL_RXH(ieee80211_rx_h_decrypt)
2515 CALL_RXH(ieee80211_rx_h_check_more_data)
2516 CALL_RXH(ieee80211_rx_h_sta_process)
2517 CALL_RXH(ieee80211_rx_h_defragment)
2518 CALL_RXH(ieee80211_rx_h_ps_poll)
2519 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2520 /* must be after MMIC verify so header is counted in MPDU mic */
2521 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2522 CALL_RXH(ieee80211_rx_h_amsdu)
2523 #ifdef CONFIG_MAC80211_MESH
2524 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2525 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2526 #endif
2527 CALL_RXH(ieee80211_rx_h_data)
2528
2529 /* special treatment -- needs the queue */
2530 res = ieee80211_rx_h_ctrl(rx, frames);
2531 if (res != RX_CONTINUE)
2532 goto rxh_next;
2533
2534 CALL_RXH(ieee80211_rx_h_mgmt_check)
2535 CALL_RXH(ieee80211_rx_h_action)
2536 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2537 CALL_RXH(ieee80211_rx_h_action_return)
2538 CALL_RXH(ieee80211_rx_h_mgmt)
2539
2540 rxh_next:
2541 ieee80211_rx_handlers_result(rx, res);
2542
2543 #undef CALL_RXH
2544 }
2545 }
2546
2547 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2548 {
2549 struct sk_buff_head reorder_release;
2550 ieee80211_rx_result res = RX_DROP_MONITOR;
2551
2552 __skb_queue_head_init(&reorder_release);
2553
2554 #define CALL_RXH(rxh) \
2555 do { \
2556 res = rxh(rx); \
2557 if (res != RX_CONTINUE) \
2558 goto rxh_next; \
2559 } while (0);
2560
2561 CALL_RXH(ieee80211_rx_h_passive_scan)
2562 CALL_RXH(ieee80211_rx_h_check)
2563
2564 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2565
2566 ieee80211_rx_handlers(rx, &reorder_release);
2567 return;
2568
2569 rxh_next:
2570 ieee80211_rx_handlers_result(rx, res);
2571
2572 #undef CALL_RXH
2573 }
2574
2575 /*
2576 * This function makes calls into the RX path, therefore
2577 * it has to be invoked under RCU read lock.
2578 */
2579 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2580 {
2581 struct sk_buff_head frames;
2582 struct ieee80211_rx_data rx = {
2583 .sta = sta,
2584 .sdata = sta->sdata,
2585 .local = sta->local,
2586 .queue = tid,
2587 };
2588 struct tid_ampdu_rx *tid_agg_rx;
2589
2590 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2591 if (!tid_agg_rx)
2592 return;
2593
2594 __skb_queue_head_init(&frames);
2595
2596 spin_lock(&tid_agg_rx->reorder_lock);
2597 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx, &frames);
2598 spin_unlock(&tid_agg_rx->reorder_lock);
2599
2600 ieee80211_rx_handlers(&rx, &frames);
2601 }
2602
2603 /* main receive path */
2604
2605 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2606 struct ieee80211_hdr *hdr)
2607 {
2608 struct ieee80211_sub_if_data *sdata = rx->sdata;
2609 struct sk_buff *skb = rx->skb;
2610 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2611 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2612 int multicast = is_multicast_ether_addr(hdr->addr1);
2613
2614 switch (sdata->vif.type) {
2615 case NL80211_IFTYPE_STATION:
2616 if (!bssid && !sdata->u.mgd.use_4addr)
2617 return 0;
2618 if (!multicast &&
2619 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2620 if (!(sdata->dev->flags & IFF_PROMISC))
2621 return 0;
2622 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2623 }
2624 break;
2625 case NL80211_IFTYPE_ADHOC:
2626 if (!bssid)
2627 return 0;
2628 if (ieee80211_is_beacon(hdr->frame_control)) {
2629 return 1;
2630 }
2631 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2632 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2633 return 0;
2634 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2635 } else if (!multicast &&
2636 compare_ether_addr(sdata->vif.addr,
2637 hdr->addr1) != 0) {
2638 if (!(sdata->dev->flags & IFF_PROMISC))
2639 return 0;
2640 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2641 } else if (!rx->sta) {
2642 int rate_idx;
2643 if (status->flag & RX_FLAG_HT)
2644 rate_idx = 0; /* TODO: HT rates */
2645 else
2646 rate_idx = status->rate_idx;
2647 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2648 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2649 }
2650 break;
2651 case NL80211_IFTYPE_MESH_POINT:
2652 if (!multicast &&
2653 compare_ether_addr(sdata->vif.addr,
2654 hdr->addr1) != 0) {
2655 if (!(sdata->dev->flags & IFF_PROMISC))
2656 return 0;
2657
2658 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2659 }
2660 break;
2661 case NL80211_IFTYPE_AP_VLAN:
2662 case NL80211_IFTYPE_AP:
2663 if (!bssid) {
2664 if (compare_ether_addr(sdata->vif.addr,
2665 hdr->addr1))
2666 return 0;
2667 } else if (!ieee80211_bssid_match(bssid,
2668 sdata->vif.addr)) {
2669 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2670 return 0;
2671 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2672 }
2673 break;
2674 case NL80211_IFTYPE_WDS:
2675 if (bssid || !ieee80211_is_data(hdr->frame_control))
2676 return 0;
2677 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2678 return 0;
2679 break;
2680 default:
2681 /* should never get here */
2682 WARN_ON(1);
2683 break;
2684 }
2685
2686 return 1;
2687 }
2688
2689 /*
2690 * This function returns whether or not the SKB
2691 * was destined for RX processing or not, which,
2692 * if consume is true, is equivalent to whether
2693 * or not the skb was consumed.
2694 */
2695 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2696 struct sk_buff *skb, bool consume)
2697 {
2698 struct ieee80211_local *local = rx->local;
2699 struct ieee80211_sub_if_data *sdata = rx->sdata;
2700 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2701 struct ieee80211_hdr *hdr = (void *)skb->data;
2702 int prepares;
2703
2704 rx->skb = skb;
2705 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2706 prepares = prepare_for_handlers(rx, hdr);
2707
2708 if (!prepares)
2709 return false;
2710
2711 if (status->flag & RX_FLAG_MMIC_ERROR) {
2712 if (status->rx_flags & IEEE80211_RX_RA_MATCH)
2713 ieee80211_rx_michael_mic_report(hdr, rx);
2714 return false;
2715 }
2716
2717 if (!consume) {
2718 skb = skb_copy(skb, GFP_ATOMIC);
2719 if (!skb) {
2720 if (net_ratelimit())
2721 wiphy_debug(local->hw.wiphy,
2722 "failed to copy multicast frame for %s\n",
2723 sdata->name);
2724 return true;
2725 }
2726
2727 rx->skb = skb;
2728 }
2729
2730 ieee80211_invoke_rx_handlers(rx);
2731 return true;
2732 }
2733
2734 /*
2735 * This is the actual Rx frames handler. as it blongs to Rx path it must
2736 * be called with rcu_read_lock protection.
2737 */
2738 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2739 struct sk_buff *skb)
2740 {
2741 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2742 struct ieee80211_local *local = hw_to_local(hw);
2743 struct ieee80211_sub_if_data *sdata;
2744 struct ieee80211_hdr *hdr;
2745 __le16 fc;
2746 struct ieee80211_rx_data rx;
2747 struct ieee80211_sub_if_data *prev;
2748 struct sta_info *sta, *tmp, *prev_sta;
2749 int err = 0;
2750
2751 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2752 memset(&rx, 0, sizeof(rx));
2753 rx.skb = skb;
2754 rx.local = local;
2755
2756 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2757 local->dot11ReceivedFragmentCount++;
2758
2759 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2760 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2761 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2762
2763 if (ieee80211_is_mgmt(fc))
2764 err = skb_linearize(skb);
2765 else
2766 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2767
2768 if (err) {
2769 dev_kfree_skb(skb);
2770 return;
2771 }
2772
2773 hdr = (struct ieee80211_hdr *)skb->data;
2774 ieee80211_parse_qos(&rx);
2775 ieee80211_verify_alignment(&rx);
2776
2777 if (ieee80211_is_data(fc)) {
2778 prev_sta = NULL;
2779
2780 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2781 if (!prev_sta) {
2782 prev_sta = sta;
2783 continue;
2784 }
2785
2786 rx.sta = prev_sta;
2787 rx.sdata = prev_sta->sdata;
2788 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2789
2790 prev_sta = sta;
2791 }
2792
2793 if (prev_sta) {
2794 rx.sta = prev_sta;
2795 rx.sdata = prev_sta->sdata;
2796
2797 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2798 return;
2799 goto out;
2800 }
2801 }
2802
2803 prev = NULL;
2804
2805 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2806 if (!ieee80211_sdata_running(sdata))
2807 continue;
2808
2809 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2810 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2811 continue;
2812
2813 /*
2814 * frame is destined for this interface, but if it's
2815 * not also for the previous one we handle that after
2816 * the loop to avoid copying the SKB once too much
2817 */
2818
2819 if (!prev) {
2820 prev = sdata;
2821 continue;
2822 }
2823
2824 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2825 rx.sdata = prev;
2826 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2827
2828 prev = sdata;
2829 }
2830
2831 if (prev) {
2832 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2833 rx.sdata = prev;
2834
2835 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2836 return;
2837 }
2838
2839 out:
2840 dev_kfree_skb(skb);
2841 }
2842
2843 /*
2844 * This is the receive path handler. It is called by a low level driver when an
2845 * 802.11 MPDU is received from the hardware.
2846 */
2847 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2848 {
2849 struct ieee80211_local *local = hw_to_local(hw);
2850 struct ieee80211_rate *rate = NULL;
2851 struct ieee80211_supported_band *sband;
2852 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2853
2854 WARN_ON_ONCE(softirq_count() == 0);
2855
2856 if (WARN_ON(status->band < 0 ||
2857 status->band >= IEEE80211_NUM_BANDS))
2858 goto drop;
2859
2860 sband = local->hw.wiphy->bands[status->band];
2861 if (WARN_ON(!sband))
2862 goto drop;
2863
2864 /*
2865 * If we're suspending, it is possible although not too likely
2866 * that we'd be receiving frames after having already partially
2867 * quiesced the stack. We can't process such frames then since
2868 * that might, for example, cause stations to be added or other
2869 * driver callbacks be invoked.
2870 */
2871 if (unlikely(local->quiescing || local->suspended))
2872 goto drop;
2873
2874 /*
2875 * The same happens when we're not even started,
2876 * but that's worth a warning.
2877 */
2878 if (WARN_ON(!local->started))
2879 goto drop;
2880
2881 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2882 /*
2883 * Validate the rate, unless a PLCP error means that
2884 * we probably can't have a valid rate here anyway.
2885 */
2886
2887 if (status->flag & RX_FLAG_HT) {
2888 /*
2889 * rate_idx is MCS index, which can be [0-76]
2890 * as documented on:
2891 *
2892 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2893 *
2894 * Anything else would be some sort of driver or
2895 * hardware error. The driver should catch hardware
2896 * errors.
2897 */
2898 if (WARN((status->rate_idx < 0 ||
2899 status->rate_idx > 76),
2900 "Rate marked as an HT rate but passed "
2901 "status->rate_idx is not "
2902 "an MCS index [0-76]: %d (0x%02x)\n",
2903 status->rate_idx,
2904 status->rate_idx))
2905 goto drop;
2906 } else {
2907 if (WARN_ON(status->rate_idx < 0 ||
2908 status->rate_idx >= sband->n_bitrates))
2909 goto drop;
2910 rate = &sband->bitrates[status->rate_idx];
2911 }
2912 }
2913
2914 status->rx_flags = 0;
2915
2916 /*
2917 * key references and virtual interfaces are protected using RCU
2918 * and this requires that we are in a read-side RCU section during
2919 * receive processing
2920 */
2921 rcu_read_lock();
2922
2923 /*
2924 * Frames with failed FCS/PLCP checksum are not returned,
2925 * all other frames are returned without radiotap header
2926 * if it was previously present.
2927 * Also, frames with less than 16 bytes are dropped.
2928 */
2929 skb = ieee80211_rx_monitor(local, skb, rate);
2930 if (!skb) {
2931 rcu_read_unlock();
2932 return;
2933 }
2934
2935 __ieee80211_rx_handle_packet(hw, skb);
2936
2937 rcu_read_unlock();
2938
2939 return;
2940 drop:
2941 kfree_skb(skb);
2942 }
2943 EXPORT_SYMBOL(ieee80211_rx);
2944
2945 /* This is a version of the rx handler that can be called from hard irq
2946 * context. Post the skb on the queue and schedule the tasklet */
2947 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2948 {
2949 struct ieee80211_local *local = hw_to_local(hw);
2950
2951 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2952
2953 skb->pkt_type = IEEE80211_RX_MSG;
2954 skb_queue_tail(&local->skb_queue, skb);
2955 tasklet_schedule(&local->tasklet);
2956 }
2957 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.206242 seconds and 5 git commands to generate.