Merge tag 'iommu-fixes-v3.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 if (likely(skb->len > FCS_LEN))
45 __pskb_trim(skb, skb->len - FCS_LEN);
46 else {
47 /* driver bug */
48 WARN_ON(1);
49 dev_kfree_skb(skb);
50 return NULL;
51 }
52 }
53
54 return skb;
55 }
56
57 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len)
58 {
59 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
60 struct ieee80211_hdr *hdr = (void *)skb->data;
61
62 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
63 RX_FLAG_FAILED_PLCP_CRC |
64 RX_FLAG_AMPDU_IS_ZEROLEN))
65 return true;
66
67 if (unlikely(skb->len < 16 + present_fcs_len))
68 return true;
69
70 if (ieee80211_is_ctl(hdr->frame_control) &&
71 !ieee80211_is_pspoll(hdr->frame_control) &&
72 !ieee80211_is_back_req(hdr->frame_control))
73 return true;
74
75 return false;
76 }
77
78 static int
79 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
80 struct ieee80211_rx_status *status)
81 {
82 int len;
83
84 /* always present fields */
85 len = sizeof(struct ieee80211_radiotap_header) + 8;
86
87 /* allocate extra bitmaps */
88 if (status->chains)
89 len += 4 * hweight8(status->chains);
90
91 if (ieee80211_have_rx_timestamp(status)) {
92 len = ALIGN(len, 8);
93 len += 8;
94 }
95 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
96 len += 1;
97
98 /* antenna field, if we don't have per-chain info */
99 if (!status->chains)
100 len += 1;
101
102 /* padding for RX_FLAGS if necessary */
103 len = ALIGN(len, 2);
104
105 if (status->flag & RX_FLAG_HT) /* HT info */
106 len += 3;
107
108 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
109 len = ALIGN(len, 4);
110 len += 8;
111 }
112
113 if (status->flag & RX_FLAG_VHT) {
114 len = ALIGN(len, 2);
115 len += 12;
116 }
117
118 if (status->chains) {
119 /* antenna and antenna signal fields */
120 len += 2 * hweight8(status->chains);
121 }
122
123 return len;
124 }
125
126 /*
127 * ieee80211_add_rx_radiotap_header - add radiotap header
128 *
129 * add a radiotap header containing all the fields which the hardware provided.
130 */
131 static void
132 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
133 struct sk_buff *skb,
134 struct ieee80211_rate *rate,
135 int rtap_len, bool has_fcs)
136 {
137 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
138 struct ieee80211_radiotap_header *rthdr;
139 unsigned char *pos;
140 __le32 *it_present;
141 u32 it_present_val;
142 u16 rx_flags = 0;
143 u16 channel_flags = 0;
144 int mpdulen, chain;
145 unsigned long chains = status->chains;
146
147 mpdulen = skb->len;
148 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
149 mpdulen += FCS_LEN;
150
151 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
152 memset(rthdr, 0, rtap_len);
153 it_present = &rthdr->it_present;
154
155 /* radiotap header, set always present flags */
156 rthdr->it_len = cpu_to_le16(rtap_len);
157 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
158 BIT(IEEE80211_RADIOTAP_CHANNEL) |
159 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
160
161 if (!status->chains)
162 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
163
164 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
165 it_present_val |=
166 BIT(IEEE80211_RADIOTAP_EXT) |
167 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
168 put_unaligned_le32(it_present_val, it_present);
169 it_present++;
170 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
171 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
172 }
173
174 put_unaligned_le32(it_present_val, it_present);
175
176 pos = (void *)(it_present + 1);
177
178 /* the order of the following fields is important */
179
180 /* IEEE80211_RADIOTAP_TSFT */
181 if (ieee80211_have_rx_timestamp(status)) {
182 /* padding */
183 while ((pos - (u8 *)rthdr) & 7)
184 *pos++ = 0;
185 put_unaligned_le64(
186 ieee80211_calculate_rx_timestamp(local, status,
187 mpdulen, 0),
188 pos);
189 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
190 pos += 8;
191 }
192
193 /* IEEE80211_RADIOTAP_FLAGS */
194 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
195 *pos |= IEEE80211_RADIOTAP_F_FCS;
196 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
197 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
198 if (status->flag & RX_FLAG_SHORTPRE)
199 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
200 pos++;
201
202 /* IEEE80211_RADIOTAP_RATE */
203 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
204 /*
205 * Without rate information don't add it. If we have,
206 * MCS information is a separate field in radiotap,
207 * added below. The byte here is needed as padding
208 * for the channel though, so initialise it to 0.
209 */
210 *pos = 0;
211 } else {
212 int shift = 0;
213 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
214 if (status->flag & RX_FLAG_10MHZ)
215 shift = 1;
216 else if (status->flag & RX_FLAG_5MHZ)
217 shift = 2;
218 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
219 }
220 pos++;
221
222 /* IEEE80211_RADIOTAP_CHANNEL */
223 put_unaligned_le16(status->freq, pos);
224 pos += 2;
225 if (status->flag & RX_FLAG_10MHZ)
226 channel_flags |= IEEE80211_CHAN_HALF;
227 else if (status->flag & RX_FLAG_5MHZ)
228 channel_flags |= IEEE80211_CHAN_QUARTER;
229
230 if (status->band == IEEE80211_BAND_5GHZ)
231 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
232 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
233 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
234 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
235 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
236 else if (rate)
237 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
238 else
239 channel_flags |= IEEE80211_CHAN_2GHZ;
240 put_unaligned_le16(channel_flags, pos);
241 pos += 2;
242
243 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
244 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
245 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
246 *pos = status->signal;
247 rthdr->it_present |=
248 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
249 pos++;
250 }
251
252 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
253
254 if (!status->chains) {
255 /* IEEE80211_RADIOTAP_ANTENNA */
256 *pos = status->antenna;
257 pos++;
258 }
259
260 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
261
262 /* IEEE80211_RADIOTAP_RX_FLAGS */
263 /* ensure 2 byte alignment for the 2 byte field as required */
264 if ((pos - (u8 *)rthdr) & 1)
265 *pos++ = 0;
266 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
267 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
268 put_unaligned_le16(rx_flags, pos);
269 pos += 2;
270
271 if (status->flag & RX_FLAG_HT) {
272 unsigned int stbc;
273
274 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
275 *pos++ = local->hw.radiotap_mcs_details;
276 *pos = 0;
277 if (status->flag & RX_FLAG_SHORT_GI)
278 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
279 if (status->flag & RX_FLAG_40MHZ)
280 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
281 if (status->flag & RX_FLAG_HT_GF)
282 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
283 if (status->flag & RX_FLAG_LDPC)
284 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
285 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
286 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
287 pos++;
288 *pos++ = status->rate_idx;
289 }
290
291 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
292 u16 flags = 0;
293
294 /* ensure 4 byte alignment */
295 while ((pos - (u8 *)rthdr) & 3)
296 pos++;
297 rthdr->it_present |=
298 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
299 put_unaligned_le32(status->ampdu_reference, pos);
300 pos += 4;
301 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
302 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
303 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
304 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
305 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
306 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
307 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
308 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
309 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
310 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
311 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
312 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
313 put_unaligned_le16(flags, pos);
314 pos += 2;
315 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
316 *pos++ = status->ampdu_delimiter_crc;
317 else
318 *pos++ = 0;
319 *pos++ = 0;
320 }
321
322 if (status->flag & RX_FLAG_VHT) {
323 u16 known = local->hw.radiotap_vht_details;
324
325 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
326 /* known field - how to handle 80+80? */
327 if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
328 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
329 put_unaligned_le16(known, pos);
330 pos += 2;
331 /* flags */
332 if (status->flag & RX_FLAG_SHORT_GI)
333 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
334 /* in VHT, STBC is binary */
335 if (status->flag & RX_FLAG_STBC_MASK)
336 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
337 if (status->vht_flag & RX_VHT_FLAG_BF)
338 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
339 pos++;
340 /* bandwidth */
341 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
342 *pos++ = 4;
343 else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
344 *pos++ = 0; /* marked not known above */
345 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
346 *pos++ = 11;
347 else if (status->flag & RX_FLAG_40MHZ)
348 *pos++ = 1;
349 else /* 20 MHz */
350 *pos++ = 0;
351 /* MCS/NSS */
352 *pos = (status->rate_idx << 4) | status->vht_nss;
353 pos += 4;
354 /* coding field */
355 if (status->flag & RX_FLAG_LDPC)
356 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
357 pos++;
358 /* group ID */
359 pos++;
360 /* partial_aid */
361 pos += 2;
362 }
363
364 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
365 *pos++ = status->chain_signal[chain];
366 *pos++ = chain;
367 }
368 }
369
370 /*
371 * This function copies a received frame to all monitor interfaces and
372 * returns a cleaned-up SKB that no longer includes the FCS nor the
373 * radiotap header the driver might have added.
374 */
375 static struct sk_buff *
376 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
377 struct ieee80211_rate *rate)
378 {
379 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
380 struct ieee80211_sub_if_data *sdata;
381 int needed_headroom;
382 struct sk_buff *skb, *skb2;
383 struct net_device *prev_dev = NULL;
384 int present_fcs_len = 0;
385
386 /*
387 * First, we may need to make a copy of the skb because
388 * (1) we need to modify it for radiotap (if not present), and
389 * (2) the other RX handlers will modify the skb we got.
390 *
391 * We don't need to, of course, if we aren't going to return
392 * the SKB because it has a bad FCS/PLCP checksum.
393 */
394
395 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
396 present_fcs_len = FCS_LEN;
397
398 /* ensure hdr->frame_control is in skb head */
399 if (!pskb_may_pull(origskb, 2)) {
400 dev_kfree_skb(origskb);
401 return NULL;
402 }
403
404 if (!local->monitors) {
405 if (should_drop_frame(origskb, present_fcs_len)) {
406 dev_kfree_skb(origskb);
407 return NULL;
408 }
409
410 return remove_monitor_info(local, origskb);
411 }
412
413 /* room for the radiotap header based on driver features */
414 needed_headroom = ieee80211_rx_radiotap_space(local, status);
415
416 if (should_drop_frame(origskb, present_fcs_len)) {
417 /* only need to expand headroom if necessary */
418 skb = origskb;
419 origskb = NULL;
420
421 /*
422 * This shouldn't trigger often because most devices have an
423 * RX header they pull before we get here, and that should
424 * be big enough for our radiotap information. We should
425 * probably export the length to drivers so that we can have
426 * them allocate enough headroom to start with.
427 */
428 if (skb_headroom(skb) < needed_headroom &&
429 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
430 dev_kfree_skb(skb);
431 return NULL;
432 }
433 } else {
434 /*
435 * Need to make a copy and possibly remove radiotap header
436 * and FCS from the original.
437 */
438 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
439
440 origskb = remove_monitor_info(local, origskb);
441
442 if (!skb)
443 return origskb;
444 }
445
446 /* prepend radiotap information */
447 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
448 true);
449
450 skb_reset_mac_header(skb);
451 skb->ip_summed = CHECKSUM_UNNECESSARY;
452 skb->pkt_type = PACKET_OTHERHOST;
453 skb->protocol = htons(ETH_P_802_2);
454
455 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
456 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
457 continue;
458
459 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
460 continue;
461
462 if (!ieee80211_sdata_running(sdata))
463 continue;
464
465 if (prev_dev) {
466 skb2 = skb_clone(skb, GFP_ATOMIC);
467 if (skb2) {
468 skb2->dev = prev_dev;
469 netif_receive_skb(skb2);
470 }
471 }
472
473 prev_dev = sdata->dev;
474 sdata->dev->stats.rx_packets++;
475 sdata->dev->stats.rx_bytes += skb->len;
476 }
477
478 if (prev_dev) {
479 skb->dev = prev_dev;
480 netif_receive_skb(skb);
481 } else
482 dev_kfree_skb(skb);
483
484 return origskb;
485 }
486
487 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
488 {
489 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
490 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
491 int tid, seqno_idx, security_idx;
492
493 /* does the frame have a qos control field? */
494 if (ieee80211_is_data_qos(hdr->frame_control)) {
495 u8 *qc = ieee80211_get_qos_ctl(hdr);
496 /* frame has qos control */
497 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
498 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
499 status->rx_flags |= IEEE80211_RX_AMSDU;
500
501 seqno_idx = tid;
502 security_idx = tid;
503 } else {
504 /*
505 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
506 *
507 * Sequence numbers for management frames, QoS data
508 * frames with a broadcast/multicast address in the
509 * Address 1 field, and all non-QoS data frames sent
510 * by QoS STAs are assigned using an additional single
511 * modulo-4096 counter, [...]
512 *
513 * We also use that counter for non-QoS STAs.
514 */
515 seqno_idx = IEEE80211_NUM_TIDS;
516 security_idx = 0;
517 if (ieee80211_is_mgmt(hdr->frame_control))
518 security_idx = IEEE80211_NUM_TIDS;
519 tid = 0;
520 }
521
522 rx->seqno_idx = seqno_idx;
523 rx->security_idx = security_idx;
524 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
525 * For now, set skb->priority to 0 for other cases. */
526 rx->skb->priority = (tid > 7) ? 0 : tid;
527 }
528
529 /**
530 * DOC: Packet alignment
531 *
532 * Drivers always need to pass packets that are aligned to two-byte boundaries
533 * to the stack.
534 *
535 * Additionally, should, if possible, align the payload data in a way that
536 * guarantees that the contained IP header is aligned to a four-byte
537 * boundary. In the case of regular frames, this simply means aligning the
538 * payload to a four-byte boundary (because either the IP header is directly
539 * contained, or IV/RFC1042 headers that have a length divisible by four are
540 * in front of it). If the payload data is not properly aligned and the
541 * architecture doesn't support efficient unaligned operations, mac80211
542 * will align the data.
543 *
544 * With A-MSDU frames, however, the payload data address must yield two modulo
545 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
546 * push the IP header further back to a multiple of four again. Thankfully, the
547 * specs were sane enough this time around to require padding each A-MSDU
548 * subframe to a length that is a multiple of four.
549 *
550 * Padding like Atheros hardware adds which is between the 802.11 header and
551 * the payload is not supported, the driver is required to move the 802.11
552 * header to be directly in front of the payload in that case.
553 */
554 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
555 {
556 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
557 WARN_ONCE((unsigned long)rx->skb->data & 1,
558 "unaligned packet at 0x%p\n", rx->skb->data);
559 #endif
560 }
561
562
563 /* rx handlers */
564
565 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
566 {
567 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
568
569 if (is_multicast_ether_addr(hdr->addr1))
570 return 0;
571
572 return ieee80211_is_robust_mgmt_frame(skb);
573 }
574
575
576 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
577 {
578 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
579
580 if (!is_multicast_ether_addr(hdr->addr1))
581 return 0;
582
583 return ieee80211_is_robust_mgmt_frame(skb);
584 }
585
586
587 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
588 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
589 {
590 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
591 struct ieee80211_mmie *mmie;
592
593 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
594 return -1;
595
596 if (!ieee80211_is_robust_mgmt_frame(skb))
597 return -1; /* not a robust management frame */
598
599 mmie = (struct ieee80211_mmie *)
600 (skb->data + skb->len - sizeof(*mmie));
601 if (mmie->element_id != WLAN_EID_MMIE ||
602 mmie->length != sizeof(*mmie) - 2)
603 return -1;
604
605 return le16_to_cpu(mmie->key_id);
606 }
607
608 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
609 struct sk_buff *skb)
610 {
611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
612 __le16 fc;
613 int hdrlen;
614 u8 keyid;
615
616 fc = hdr->frame_control;
617 hdrlen = ieee80211_hdrlen(fc);
618
619 if (skb->len < hdrlen + cs->hdr_len)
620 return -EINVAL;
621
622 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
623 keyid &= cs->key_idx_mask;
624 keyid >>= cs->key_idx_shift;
625
626 return keyid;
627 }
628
629 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
630 {
631 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
632 char *dev_addr = rx->sdata->vif.addr;
633
634 if (ieee80211_is_data(hdr->frame_control)) {
635 if (is_multicast_ether_addr(hdr->addr1)) {
636 if (ieee80211_has_tods(hdr->frame_control) ||
637 !ieee80211_has_fromds(hdr->frame_control))
638 return RX_DROP_MONITOR;
639 if (ether_addr_equal(hdr->addr3, dev_addr))
640 return RX_DROP_MONITOR;
641 } else {
642 if (!ieee80211_has_a4(hdr->frame_control))
643 return RX_DROP_MONITOR;
644 if (ether_addr_equal(hdr->addr4, dev_addr))
645 return RX_DROP_MONITOR;
646 }
647 }
648
649 /* If there is not an established peer link and this is not a peer link
650 * establisment frame, beacon or probe, drop the frame.
651 */
652
653 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
654 struct ieee80211_mgmt *mgmt;
655
656 if (!ieee80211_is_mgmt(hdr->frame_control))
657 return RX_DROP_MONITOR;
658
659 if (ieee80211_is_action(hdr->frame_control)) {
660 u8 category;
661
662 /* make sure category field is present */
663 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
664 return RX_DROP_MONITOR;
665
666 mgmt = (struct ieee80211_mgmt *)hdr;
667 category = mgmt->u.action.category;
668 if (category != WLAN_CATEGORY_MESH_ACTION &&
669 category != WLAN_CATEGORY_SELF_PROTECTED)
670 return RX_DROP_MONITOR;
671 return RX_CONTINUE;
672 }
673
674 if (ieee80211_is_probe_req(hdr->frame_control) ||
675 ieee80211_is_probe_resp(hdr->frame_control) ||
676 ieee80211_is_beacon(hdr->frame_control) ||
677 ieee80211_is_auth(hdr->frame_control))
678 return RX_CONTINUE;
679
680 return RX_DROP_MONITOR;
681 }
682
683 return RX_CONTINUE;
684 }
685
686 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
687 struct tid_ampdu_rx *tid_agg_rx,
688 int index,
689 struct sk_buff_head *frames)
690 {
691 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
692 struct ieee80211_rx_status *status;
693
694 lockdep_assert_held(&tid_agg_rx->reorder_lock);
695
696 if (!skb)
697 goto no_frame;
698
699 /* release the frame from the reorder ring buffer */
700 tid_agg_rx->stored_mpdu_num--;
701 tid_agg_rx->reorder_buf[index] = NULL;
702 status = IEEE80211_SKB_RXCB(skb);
703 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
704 __skb_queue_tail(frames, skb);
705
706 no_frame:
707 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
708 }
709
710 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
711 struct tid_ampdu_rx *tid_agg_rx,
712 u16 head_seq_num,
713 struct sk_buff_head *frames)
714 {
715 int index;
716
717 lockdep_assert_held(&tid_agg_rx->reorder_lock);
718
719 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
720 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
721 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
722 frames);
723 }
724 }
725
726 /*
727 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
728 * the skb was added to the buffer longer than this time ago, the earlier
729 * frames that have not yet been received are assumed to be lost and the skb
730 * can be released for processing. This may also release other skb's from the
731 * reorder buffer if there are no additional gaps between the frames.
732 *
733 * Callers must hold tid_agg_rx->reorder_lock.
734 */
735 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
736
737 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
738 struct tid_ampdu_rx *tid_agg_rx,
739 struct sk_buff_head *frames)
740 {
741 int index, j;
742
743 lockdep_assert_held(&tid_agg_rx->reorder_lock);
744
745 /* release the buffer until next missing frame */
746 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
747 if (!tid_agg_rx->reorder_buf[index] &&
748 tid_agg_rx->stored_mpdu_num) {
749 /*
750 * No buffers ready to be released, but check whether any
751 * frames in the reorder buffer have timed out.
752 */
753 int skipped = 1;
754 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
755 j = (j + 1) % tid_agg_rx->buf_size) {
756 if (!tid_agg_rx->reorder_buf[j]) {
757 skipped++;
758 continue;
759 }
760 if (skipped &&
761 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
762 HT_RX_REORDER_BUF_TIMEOUT))
763 goto set_release_timer;
764
765 ht_dbg_ratelimited(sdata,
766 "release an RX reorder frame due to timeout on earlier frames\n");
767 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
768 frames);
769
770 /*
771 * Increment the head seq# also for the skipped slots.
772 */
773 tid_agg_rx->head_seq_num =
774 (tid_agg_rx->head_seq_num +
775 skipped) & IEEE80211_SN_MASK;
776 skipped = 0;
777 }
778 } else while (tid_agg_rx->reorder_buf[index]) {
779 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
780 frames);
781 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
782 }
783
784 if (tid_agg_rx->stored_mpdu_num) {
785 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
786
787 for (; j != (index - 1) % tid_agg_rx->buf_size;
788 j = (j + 1) % tid_agg_rx->buf_size) {
789 if (tid_agg_rx->reorder_buf[j])
790 break;
791 }
792
793 set_release_timer:
794
795 mod_timer(&tid_agg_rx->reorder_timer,
796 tid_agg_rx->reorder_time[j] + 1 +
797 HT_RX_REORDER_BUF_TIMEOUT);
798 } else {
799 del_timer(&tid_agg_rx->reorder_timer);
800 }
801 }
802
803 /*
804 * As this function belongs to the RX path it must be under
805 * rcu_read_lock protection. It returns false if the frame
806 * can be processed immediately, true if it was consumed.
807 */
808 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
809 struct tid_ampdu_rx *tid_agg_rx,
810 struct sk_buff *skb,
811 struct sk_buff_head *frames)
812 {
813 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
814 u16 sc = le16_to_cpu(hdr->seq_ctrl);
815 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
816 u16 head_seq_num, buf_size;
817 int index;
818 bool ret = true;
819
820 spin_lock(&tid_agg_rx->reorder_lock);
821
822 buf_size = tid_agg_rx->buf_size;
823 head_seq_num = tid_agg_rx->head_seq_num;
824
825 /* frame with out of date sequence number */
826 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
827 dev_kfree_skb(skb);
828 goto out;
829 }
830
831 /*
832 * If frame the sequence number exceeds our buffering window
833 * size release some previous frames to make room for this one.
834 */
835 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
836 head_seq_num = ieee80211_sn_inc(
837 ieee80211_sn_sub(mpdu_seq_num, buf_size));
838 /* release stored frames up to new head to stack */
839 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
840 head_seq_num, frames);
841 }
842
843 /* Now the new frame is always in the range of the reordering buffer */
844
845 index = mpdu_seq_num % tid_agg_rx->buf_size;
846
847 /* check if we already stored this frame */
848 if (tid_agg_rx->reorder_buf[index]) {
849 dev_kfree_skb(skb);
850 goto out;
851 }
852
853 /*
854 * If the current MPDU is in the right order and nothing else
855 * is stored we can process it directly, no need to buffer it.
856 * If it is first but there's something stored, we may be able
857 * to release frames after this one.
858 */
859 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
860 tid_agg_rx->stored_mpdu_num == 0) {
861 tid_agg_rx->head_seq_num =
862 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
863 ret = false;
864 goto out;
865 }
866
867 /* put the frame in the reordering buffer */
868 tid_agg_rx->reorder_buf[index] = skb;
869 tid_agg_rx->reorder_time[index] = jiffies;
870 tid_agg_rx->stored_mpdu_num++;
871 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
872
873 out:
874 spin_unlock(&tid_agg_rx->reorder_lock);
875 return ret;
876 }
877
878 /*
879 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
880 * true if the MPDU was buffered, false if it should be processed.
881 */
882 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
883 struct sk_buff_head *frames)
884 {
885 struct sk_buff *skb = rx->skb;
886 struct ieee80211_local *local = rx->local;
887 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
888 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
889 struct sta_info *sta = rx->sta;
890 struct tid_ampdu_rx *tid_agg_rx;
891 u16 sc;
892 u8 tid, ack_policy;
893
894 if (!ieee80211_is_data_qos(hdr->frame_control) ||
895 is_multicast_ether_addr(hdr->addr1))
896 goto dont_reorder;
897
898 /*
899 * filter the QoS data rx stream according to
900 * STA/TID and check if this STA/TID is on aggregation
901 */
902
903 if (!sta)
904 goto dont_reorder;
905
906 ack_policy = *ieee80211_get_qos_ctl(hdr) &
907 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
908 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
909
910 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
911 if (!tid_agg_rx)
912 goto dont_reorder;
913
914 /* qos null data frames are excluded */
915 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
916 goto dont_reorder;
917
918 /* not part of a BA session */
919 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
920 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
921 goto dont_reorder;
922
923 /* not actually part of this BA session */
924 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
925 goto dont_reorder;
926
927 /* new, potentially un-ordered, ampdu frame - process it */
928
929 /* reset session timer */
930 if (tid_agg_rx->timeout)
931 tid_agg_rx->last_rx = jiffies;
932
933 /* if this mpdu is fragmented - terminate rx aggregation session */
934 sc = le16_to_cpu(hdr->seq_ctrl);
935 if (sc & IEEE80211_SCTL_FRAG) {
936 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
937 skb_queue_tail(&rx->sdata->skb_queue, skb);
938 ieee80211_queue_work(&local->hw, &rx->sdata->work);
939 return;
940 }
941
942 /*
943 * No locking needed -- we will only ever process one
944 * RX packet at a time, and thus own tid_agg_rx. All
945 * other code manipulating it needs to (and does) make
946 * sure that we cannot get to it any more before doing
947 * anything with it.
948 */
949 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
950 frames))
951 return;
952
953 dont_reorder:
954 __skb_queue_tail(frames, skb);
955 }
956
957 static ieee80211_rx_result debug_noinline
958 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
959 {
960 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
961 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
962
963 /*
964 * Drop duplicate 802.11 retransmissions
965 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
966 */
967 if (rx->skb->len >= 24 && rx->sta &&
968 !ieee80211_is_ctl(hdr->frame_control) &&
969 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
970 !is_multicast_ether_addr(hdr->addr1)) {
971 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
972 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
973 hdr->seq_ctrl)) {
974 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
975 rx->local->dot11FrameDuplicateCount++;
976 rx->sta->num_duplicates++;
977 }
978 return RX_DROP_UNUSABLE;
979 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
980 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
981 }
982 }
983
984 if (unlikely(rx->skb->len < 16)) {
985 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
986 return RX_DROP_MONITOR;
987 }
988
989 /* Drop disallowed frame classes based on STA auth/assoc state;
990 * IEEE 802.11, Chap 5.5.
991 *
992 * mac80211 filters only based on association state, i.e. it drops
993 * Class 3 frames from not associated stations. hostapd sends
994 * deauth/disassoc frames when needed. In addition, hostapd is
995 * responsible for filtering on both auth and assoc states.
996 */
997
998 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
999 return ieee80211_rx_mesh_check(rx);
1000
1001 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1002 ieee80211_is_pspoll(hdr->frame_control)) &&
1003 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1004 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1005 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1006 /*
1007 * accept port control frames from the AP even when it's not
1008 * yet marked ASSOC to prevent a race where we don't set the
1009 * assoc bit quickly enough before it sends the first frame
1010 */
1011 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1012 ieee80211_is_data_present(hdr->frame_control)) {
1013 unsigned int hdrlen;
1014 __be16 ethertype;
1015
1016 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1017
1018 if (rx->skb->len < hdrlen + 8)
1019 return RX_DROP_MONITOR;
1020
1021 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1022 if (ethertype == rx->sdata->control_port_protocol)
1023 return RX_CONTINUE;
1024 }
1025
1026 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1027 cfg80211_rx_spurious_frame(rx->sdata->dev,
1028 hdr->addr2,
1029 GFP_ATOMIC))
1030 return RX_DROP_UNUSABLE;
1031
1032 return RX_DROP_MONITOR;
1033 }
1034
1035 return RX_CONTINUE;
1036 }
1037
1038
1039 static ieee80211_rx_result debug_noinline
1040 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1041 {
1042 struct ieee80211_local *local;
1043 struct ieee80211_hdr *hdr;
1044 struct sk_buff *skb;
1045
1046 local = rx->local;
1047 skb = rx->skb;
1048 hdr = (struct ieee80211_hdr *) skb->data;
1049
1050 if (!local->pspolling)
1051 return RX_CONTINUE;
1052
1053 if (!ieee80211_has_fromds(hdr->frame_control))
1054 /* this is not from AP */
1055 return RX_CONTINUE;
1056
1057 if (!ieee80211_is_data(hdr->frame_control))
1058 return RX_CONTINUE;
1059
1060 if (!ieee80211_has_moredata(hdr->frame_control)) {
1061 /* AP has no more frames buffered for us */
1062 local->pspolling = false;
1063 return RX_CONTINUE;
1064 }
1065
1066 /* more data bit is set, let's request a new frame from the AP */
1067 ieee80211_send_pspoll(local, rx->sdata);
1068
1069 return RX_CONTINUE;
1070 }
1071
1072 static void sta_ps_start(struct sta_info *sta)
1073 {
1074 struct ieee80211_sub_if_data *sdata = sta->sdata;
1075 struct ieee80211_local *local = sdata->local;
1076 struct ps_data *ps;
1077
1078 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1079 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1080 ps = &sdata->bss->ps;
1081 else
1082 return;
1083
1084 atomic_inc(&ps->num_sta_ps);
1085 set_sta_flag(sta, WLAN_STA_PS_STA);
1086 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1087 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1088 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1089 sta->sta.addr, sta->sta.aid);
1090 }
1091
1092 static void sta_ps_end(struct sta_info *sta)
1093 {
1094 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1095 sta->sta.addr, sta->sta.aid);
1096
1097 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1098 /*
1099 * Clear the flag only if the other one is still set
1100 * so that the TX path won't start TX'ing new frames
1101 * directly ... In the case that the driver flag isn't
1102 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1103 */
1104 clear_sta_flag(sta, WLAN_STA_PS_STA);
1105 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1106 sta->sta.addr, sta->sta.aid);
1107 return;
1108 }
1109
1110 ieee80211_sta_ps_deliver_wakeup(sta);
1111 }
1112
1113 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1114 {
1115 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1116 bool in_ps;
1117
1118 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1119
1120 /* Don't let the same PS state be set twice */
1121 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1122 if ((start && in_ps) || (!start && !in_ps))
1123 return -EINVAL;
1124
1125 if (start)
1126 sta_ps_start(sta_inf);
1127 else
1128 sta_ps_end(sta_inf);
1129
1130 return 0;
1131 }
1132 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1133
1134 static ieee80211_rx_result debug_noinline
1135 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1136 {
1137 struct ieee80211_sub_if_data *sdata = rx->sdata;
1138 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1139 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1140 int tid, ac;
1141
1142 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1143 return RX_CONTINUE;
1144
1145 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1146 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1147 return RX_CONTINUE;
1148
1149 /*
1150 * The device handles station powersave, so don't do anything about
1151 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1152 * it to mac80211 since they're handled.)
1153 */
1154 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1155 return RX_CONTINUE;
1156
1157 /*
1158 * Don't do anything if the station isn't already asleep. In
1159 * the uAPSD case, the station will probably be marked asleep,
1160 * in the PS-Poll case the station must be confused ...
1161 */
1162 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1163 return RX_CONTINUE;
1164
1165 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1166 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1167 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1168 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1169 else
1170 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1171 }
1172
1173 /* Free PS Poll skb here instead of returning RX_DROP that would
1174 * count as an dropped frame. */
1175 dev_kfree_skb(rx->skb);
1176
1177 return RX_QUEUED;
1178 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1179 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1180 ieee80211_has_pm(hdr->frame_control) &&
1181 (ieee80211_is_data_qos(hdr->frame_control) ||
1182 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1183 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1184 ac = ieee802_1d_to_ac[tid & 7];
1185
1186 /*
1187 * If this AC is not trigger-enabled do nothing.
1188 *
1189 * NB: This could/should check a separate bitmap of trigger-
1190 * enabled queues, but for now we only implement uAPSD w/o
1191 * TSPEC changes to the ACs, so they're always the same.
1192 */
1193 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1194 return RX_CONTINUE;
1195
1196 /* if we are in a service period, do nothing */
1197 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1198 return RX_CONTINUE;
1199
1200 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1201 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1202 else
1203 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1204 }
1205
1206 return RX_CONTINUE;
1207 }
1208
1209 static ieee80211_rx_result debug_noinline
1210 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1211 {
1212 struct sta_info *sta = rx->sta;
1213 struct sk_buff *skb = rx->skb;
1214 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1215 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1216 int i;
1217
1218 if (!sta)
1219 return RX_CONTINUE;
1220
1221 /*
1222 * Update last_rx only for IBSS packets which are for the current
1223 * BSSID and for station already AUTHORIZED to avoid keeping the
1224 * current IBSS network alive in cases where other STAs start
1225 * using different BSSID. This will also give the station another
1226 * chance to restart the authentication/authorization in case
1227 * something went wrong the first time.
1228 */
1229 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1230 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1231 NL80211_IFTYPE_ADHOC);
1232 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1233 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1234 sta->last_rx = jiffies;
1235 if (ieee80211_is_data(hdr->frame_control) &&
1236 !is_multicast_ether_addr(hdr->addr1)) {
1237 sta->last_rx_rate_idx = status->rate_idx;
1238 sta->last_rx_rate_flag = status->flag;
1239 sta->last_rx_rate_vht_flag = status->vht_flag;
1240 sta->last_rx_rate_vht_nss = status->vht_nss;
1241 }
1242 }
1243 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1244 /*
1245 * Mesh beacons will update last_rx when if they are found to
1246 * match the current local configuration when processed.
1247 */
1248 sta->last_rx = jiffies;
1249 if (ieee80211_is_data(hdr->frame_control)) {
1250 sta->last_rx_rate_idx = status->rate_idx;
1251 sta->last_rx_rate_flag = status->flag;
1252 sta->last_rx_rate_vht_flag = status->vht_flag;
1253 sta->last_rx_rate_vht_nss = status->vht_nss;
1254 }
1255 }
1256
1257 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1258 return RX_CONTINUE;
1259
1260 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1261 ieee80211_sta_rx_notify(rx->sdata, hdr);
1262
1263 sta->rx_fragments++;
1264 sta->rx_bytes += rx->skb->len;
1265 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1266 sta->last_signal = status->signal;
1267 ewma_add(&sta->avg_signal, -status->signal);
1268 }
1269
1270 if (status->chains) {
1271 sta->chains = status->chains;
1272 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1273 int signal = status->chain_signal[i];
1274
1275 if (!(status->chains & BIT(i)))
1276 continue;
1277
1278 sta->chain_signal_last[i] = signal;
1279 ewma_add(&sta->chain_signal_avg[i], -signal);
1280 }
1281 }
1282
1283 /*
1284 * Change STA power saving mode only at the end of a frame
1285 * exchange sequence.
1286 */
1287 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1288 !ieee80211_has_morefrags(hdr->frame_control) &&
1289 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1290 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1291 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1292 /* PM bit is only checked in frames where it isn't reserved,
1293 * in AP mode it's reserved in non-bufferable management frames
1294 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1295 */
1296 (!ieee80211_is_mgmt(hdr->frame_control) ||
1297 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1298 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1299 if (!ieee80211_has_pm(hdr->frame_control))
1300 sta_ps_end(sta);
1301 } else {
1302 if (ieee80211_has_pm(hdr->frame_control))
1303 sta_ps_start(sta);
1304 }
1305 }
1306
1307 /* mesh power save support */
1308 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1309 ieee80211_mps_rx_h_sta_process(sta, hdr);
1310
1311 /*
1312 * Drop (qos-)data::nullfunc frames silently, since they
1313 * are used only to control station power saving mode.
1314 */
1315 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1316 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1317 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1318
1319 /*
1320 * If we receive a 4-addr nullfunc frame from a STA
1321 * that was not moved to a 4-addr STA vlan yet send
1322 * the event to userspace and for older hostapd drop
1323 * the frame to the monitor interface.
1324 */
1325 if (ieee80211_has_a4(hdr->frame_control) &&
1326 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1327 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1328 !rx->sdata->u.vlan.sta))) {
1329 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1330 cfg80211_rx_unexpected_4addr_frame(
1331 rx->sdata->dev, sta->sta.addr,
1332 GFP_ATOMIC);
1333 return RX_DROP_MONITOR;
1334 }
1335 /*
1336 * Update counter and free packet here to avoid
1337 * counting this as a dropped packed.
1338 */
1339 sta->rx_packets++;
1340 dev_kfree_skb(rx->skb);
1341 return RX_QUEUED;
1342 }
1343
1344 return RX_CONTINUE;
1345 } /* ieee80211_rx_h_sta_process */
1346
1347 static ieee80211_rx_result debug_noinline
1348 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1349 {
1350 struct sk_buff *skb = rx->skb;
1351 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1352 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1353 int keyidx;
1354 int hdrlen;
1355 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1356 struct ieee80211_key *sta_ptk = NULL;
1357 int mmie_keyidx = -1;
1358 __le16 fc;
1359 const struct ieee80211_cipher_scheme *cs = NULL;
1360
1361 /*
1362 * Key selection 101
1363 *
1364 * There are four types of keys:
1365 * - GTK (group keys)
1366 * - IGTK (group keys for management frames)
1367 * - PTK (pairwise keys)
1368 * - STK (station-to-station pairwise keys)
1369 *
1370 * When selecting a key, we have to distinguish between multicast
1371 * (including broadcast) and unicast frames, the latter can only
1372 * use PTKs and STKs while the former always use GTKs and IGTKs.
1373 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1374 * unicast frames can also use key indices like GTKs. Hence, if we
1375 * don't have a PTK/STK we check the key index for a WEP key.
1376 *
1377 * Note that in a regular BSS, multicast frames are sent by the
1378 * AP only, associated stations unicast the frame to the AP first
1379 * which then multicasts it on their behalf.
1380 *
1381 * There is also a slight problem in IBSS mode: GTKs are negotiated
1382 * with each station, that is something we don't currently handle.
1383 * The spec seems to expect that one negotiates the same key with
1384 * every station but there's no such requirement; VLANs could be
1385 * possible.
1386 */
1387
1388 /*
1389 * No point in finding a key and decrypting if the frame is neither
1390 * addressed to us nor a multicast frame.
1391 */
1392 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1393 return RX_CONTINUE;
1394
1395 /* start without a key */
1396 rx->key = NULL;
1397 fc = hdr->frame_control;
1398
1399 if (rx->sta) {
1400 int keyid = rx->sta->ptk_idx;
1401
1402 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1403 cs = rx->sta->cipher_scheme;
1404 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1405 if (unlikely(keyid < 0))
1406 return RX_DROP_UNUSABLE;
1407 }
1408 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1409 }
1410
1411 if (!ieee80211_has_protected(fc))
1412 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1413
1414 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1415 rx->key = sta_ptk;
1416 if ((status->flag & RX_FLAG_DECRYPTED) &&
1417 (status->flag & RX_FLAG_IV_STRIPPED))
1418 return RX_CONTINUE;
1419 /* Skip decryption if the frame is not protected. */
1420 if (!ieee80211_has_protected(fc))
1421 return RX_CONTINUE;
1422 } else if (mmie_keyidx >= 0) {
1423 /* Broadcast/multicast robust management frame / BIP */
1424 if ((status->flag & RX_FLAG_DECRYPTED) &&
1425 (status->flag & RX_FLAG_IV_STRIPPED))
1426 return RX_CONTINUE;
1427
1428 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1429 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1430 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1431 if (rx->sta)
1432 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1433 if (!rx->key)
1434 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1435 } else if (!ieee80211_has_protected(fc)) {
1436 /*
1437 * The frame was not protected, so skip decryption. However, we
1438 * need to set rx->key if there is a key that could have been
1439 * used so that the frame may be dropped if encryption would
1440 * have been expected.
1441 */
1442 struct ieee80211_key *key = NULL;
1443 struct ieee80211_sub_if_data *sdata = rx->sdata;
1444 int i;
1445
1446 if (ieee80211_is_mgmt(fc) &&
1447 is_multicast_ether_addr(hdr->addr1) &&
1448 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1449 rx->key = key;
1450 else {
1451 if (rx->sta) {
1452 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1453 key = rcu_dereference(rx->sta->gtk[i]);
1454 if (key)
1455 break;
1456 }
1457 }
1458 if (!key) {
1459 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1460 key = rcu_dereference(sdata->keys[i]);
1461 if (key)
1462 break;
1463 }
1464 }
1465 if (key)
1466 rx->key = key;
1467 }
1468 return RX_CONTINUE;
1469 } else {
1470 u8 keyid;
1471
1472 /*
1473 * The device doesn't give us the IV so we won't be
1474 * able to look up the key. That's ok though, we
1475 * don't need to decrypt the frame, we just won't
1476 * be able to keep statistics accurate.
1477 * Except for key threshold notifications, should
1478 * we somehow allow the driver to tell us which key
1479 * the hardware used if this flag is set?
1480 */
1481 if ((status->flag & RX_FLAG_DECRYPTED) &&
1482 (status->flag & RX_FLAG_IV_STRIPPED))
1483 return RX_CONTINUE;
1484
1485 hdrlen = ieee80211_hdrlen(fc);
1486
1487 if (cs) {
1488 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1489
1490 if (unlikely(keyidx < 0))
1491 return RX_DROP_UNUSABLE;
1492 } else {
1493 if (rx->skb->len < 8 + hdrlen)
1494 return RX_DROP_UNUSABLE; /* TODO: count this? */
1495 /*
1496 * no need to call ieee80211_wep_get_keyidx,
1497 * it verifies a bunch of things we've done already
1498 */
1499 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1500 keyidx = keyid >> 6;
1501 }
1502
1503 /* check per-station GTK first, if multicast packet */
1504 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1505 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1506
1507 /* if not found, try default key */
1508 if (!rx->key) {
1509 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1510
1511 /*
1512 * RSNA-protected unicast frames should always be
1513 * sent with pairwise or station-to-station keys,
1514 * but for WEP we allow using a key index as well.
1515 */
1516 if (rx->key &&
1517 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1518 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1519 !is_multicast_ether_addr(hdr->addr1))
1520 rx->key = NULL;
1521 }
1522 }
1523
1524 if (rx->key) {
1525 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1526 return RX_DROP_MONITOR;
1527
1528 rx->key->tx_rx_count++;
1529 /* TODO: add threshold stuff again */
1530 } else {
1531 return RX_DROP_MONITOR;
1532 }
1533
1534 switch (rx->key->conf.cipher) {
1535 case WLAN_CIPHER_SUITE_WEP40:
1536 case WLAN_CIPHER_SUITE_WEP104:
1537 result = ieee80211_crypto_wep_decrypt(rx);
1538 break;
1539 case WLAN_CIPHER_SUITE_TKIP:
1540 result = ieee80211_crypto_tkip_decrypt(rx);
1541 break;
1542 case WLAN_CIPHER_SUITE_CCMP:
1543 result = ieee80211_crypto_ccmp_decrypt(rx);
1544 break;
1545 case WLAN_CIPHER_SUITE_AES_CMAC:
1546 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1547 break;
1548 default:
1549 result = ieee80211_crypto_hw_decrypt(rx);
1550 }
1551
1552 /* the hdr variable is invalid after the decrypt handlers */
1553
1554 /* either the frame has been decrypted or will be dropped */
1555 status->flag |= RX_FLAG_DECRYPTED;
1556
1557 return result;
1558 }
1559
1560 static inline struct ieee80211_fragment_entry *
1561 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1562 unsigned int frag, unsigned int seq, int rx_queue,
1563 struct sk_buff **skb)
1564 {
1565 struct ieee80211_fragment_entry *entry;
1566
1567 entry = &sdata->fragments[sdata->fragment_next++];
1568 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1569 sdata->fragment_next = 0;
1570
1571 if (!skb_queue_empty(&entry->skb_list))
1572 __skb_queue_purge(&entry->skb_list);
1573
1574 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1575 *skb = NULL;
1576 entry->first_frag_time = jiffies;
1577 entry->seq = seq;
1578 entry->rx_queue = rx_queue;
1579 entry->last_frag = frag;
1580 entry->ccmp = 0;
1581 entry->extra_len = 0;
1582
1583 return entry;
1584 }
1585
1586 static inline struct ieee80211_fragment_entry *
1587 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1588 unsigned int frag, unsigned int seq,
1589 int rx_queue, struct ieee80211_hdr *hdr)
1590 {
1591 struct ieee80211_fragment_entry *entry;
1592 int i, idx;
1593
1594 idx = sdata->fragment_next;
1595 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1596 struct ieee80211_hdr *f_hdr;
1597
1598 idx--;
1599 if (idx < 0)
1600 idx = IEEE80211_FRAGMENT_MAX - 1;
1601
1602 entry = &sdata->fragments[idx];
1603 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1604 entry->rx_queue != rx_queue ||
1605 entry->last_frag + 1 != frag)
1606 continue;
1607
1608 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1609
1610 /*
1611 * Check ftype and addresses are equal, else check next fragment
1612 */
1613 if (((hdr->frame_control ^ f_hdr->frame_control) &
1614 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1615 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1616 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1617 continue;
1618
1619 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1620 __skb_queue_purge(&entry->skb_list);
1621 continue;
1622 }
1623 return entry;
1624 }
1625
1626 return NULL;
1627 }
1628
1629 static ieee80211_rx_result debug_noinline
1630 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1631 {
1632 struct ieee80211_hdr *hdr;
1633 u16 sc;
1634 __le16 fc;
1635 unsigned int frag, seq;
1636 struct ieee80211_fragment_entry *entry;
1637 struct sk_buff *skb;
1638 struct ieee80211_rx_status *status;
1639
1640 hdr = (struct ieee80211_hdr *)rx->skb->data;
1641 fc = hdr->frame_control;
1642
1643 if (ieee80211_is_ctl(fc))
1644 return RX_CONTINUE;
1645
1646 sc = le16_to_cpu(hdr->seq_ctrl);
1647 frag = sc & IEEE80211_SCTL_FRAG;
1648
1649 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1650 is_multicast_ether_addr(hdr->addr1))) {
1651 /* not fragmented */
1652 goto out;
1653 }
1654 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1655
1656 if (skb_linearize(rx->skb))
1657 return RX_DROP_UNUSABLE;
1658
1659 /*
1660 * skb_linearize() might change the skb->data and
1661 * previously cached variables (in this case, hdr) need to
1662 * be refreshed with the new data.
1663 */
1664 hdr = (struct ieee80211_hdr *)rx->skb->data;
1665 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1666
1667 if (frag == 0) {
1668 /* This is the first fragment of a new frame. */
1669 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1670 rx->seqno_idx, &(rx->skb));
1671 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1672 ieee80211_has_protected(fc)) {
1673 int queue = rx->security_idx;
1674 /* Store CCMP PN so that we can verify that the next
1675 * fragment has a sequential PN value. */
1676 entry->ccmp = 1;
1677 memcpy(entry->last_pn,
1678 rx->key->u.ccmp.rx_pn[queue],
1679 IEEE80211_CCMP_PN_LEN);
1680 }
1681 return RX_QUEUED;
1682 }
1683
1684 /* This is a fragment for a frame that should already be pending in
1685 * fragment cache. Add this fragment to the end of the pending entry.
1686 */
1687 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1688 rx->seqno_idx, hdr);
1689 if (!entry) {
1690 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1691 return RX_DROP_MONITOR;
1692 }
1693
1694 /* Verify that MPDUs within one MSDU have sequential PN values.
1695 * (IEEE 802.11i, 8.3.3.4.5) */
1696 if (entry->ccmp) {
1697 int i;
1698 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1699 int queue;
1700 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1701 return RX_DROP_UNUSABLE;
1702 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1703 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1704 pn[i]++;
1705 if (pn[i])
1706 break;
1707 }
1708 queue = rx->security_idx;
1709 rpn = rx->key->u.ccmp.rx_pn[queue];
1710 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1711 return RX_DROP_UNUSABLE;
1712 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1713 }
1714
1715 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1716 __skb_queue_tail(&entry->skb_list, rx->skb);
1717 entry->last_frag = frag;
1718 entry->extra_len += rx->skb->len;
1719 if (ieee80211_has_morefrags(fc)) {
1720 rx->skb = NULL;
1721 return RX_QUEUED;
1722 }
1723
1724 rx->skb = __skb_dequeue(&entry->skb_list);
1725 if (skb_tailroom(rx->skb) < entry->extra_len) {
1726 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1727 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1728 GFP_ATOMIC))) {
1729 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1730 __skb_queue_purge(&entry->skb_list);
1731 return RX_DROP_UNUSABLE;
1732 }
1733 }
1734 while ((skb = __skb_dequeue(&entry->skb_list))) {
1735 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1736 dev_kfree_skb(skb);
1737 }
1738
1739 /* Complete frame has been reassembled - process it now */
1740 status = IEEE80211_SKB_RXCB(rx->skb);
1741 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1742
1743 out:
1744 if (rx->sta)
1745 rx->sta->rx_packets++;
1746 if (is_multicast_ether_addr(hdr->addr1))
1747 rx->local->dot11MulticastReceivedFrameCount++;
1748 else
1749 ieee80211_led_rx(rx->local);
1750 return RX_CONTINUE;
1751 }
1752
1753 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1754 {
1755 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1756 return -EACCES;
1757
1758 return 0;
1759 }
1760
1761 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1762 {
1763 struct sk_buff *skb = rx->skb;
1764 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1765
1766 /*
1767 * Pass through unencrypted frames if the hardware has
1768 * decrypted them already.
1769 */
1770 if (status->flag & RX_FLAG_DECRYPTED)
1771 return 0;
1772
1773 /* Drop unencrypted frames if key is set. */
1774 if (unlikely(!ieee80211_has_protected(fc) &&
1775 !ieee80211_is_nullfunc(fc) &&
1776 ieee80211_is_data(fc) &&
1777 (rx->key || rx->sdata->drop_unencrypted)))
1778 return -EACCES;
1779
1780 return 0;
1781 }
1782
1783 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1784 {
1785 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1786 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1787 __le16 fc = hdr->frame_control;
1788
1789 /*
1790 * Pass through unencrypted frames if the hardware has
1791 * decrypted them already.
1792 */
1793 if (status->flag & RX_FLAG_DECRYPTED)
1794 return 0;
1795
1796 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1797 if (unlikely(!ieee80211_has_protected(fc) &&
1798 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1799 rx->key)) {
1800 if (ieee80211_is_deauth(fc) ||
1801 ieee80211_is_disassoc(fc))
1802 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1803 rx->skb->data,
1804 rx->skb->len);
1805 return -EACCES;
1806 }
1807 /* BIP does not use Protected field, so need to check MMIE */
1808 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1809 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1810 if (ieee80211_is_deauth(fc) ||
1811 ieee80211_is_disassoc(fc))
1812 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1813 rx->skb->data,
1814 rx->skb->len);
1815 return -EACCES;
1816 }
1817 /*
1818 * When using MFP, Action frames are not allowed prior to
1819 * having configured keys.
1820 */
1821 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1822 ieee80211_is_robust_mgmt_frame(rx->skb)))
1823 return -EACCES;
1824 }
1825
1826 return 0;
1827 }
1828
1829 static int
1830 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1831 {
1832 struct ieee80211_sub_if_data *sdata = rx->sdata;
1833 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1834 bool check_port_control = false;
1835 struct ethhdr *ehdr;
1836 int ret;
1837
1838 *port_control = false;
1839 if (ieee80211_has_a4(hdr->frame_control) &&
1840 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1841 return -1;
1842
1843 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1844 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1845
1846 if (!sdata->u.mgd.use_4addr)
1847 return -1;
1848 else
1849 check_port_control = true;
1850 }
1851
1852 if (is_multicast_ether_addr(hdr->addr1) &&
1853 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1854 return -1;
1855
1856 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1857 if (ret < 0)
1858 return ret;
1859
1860 ehdr = (struct ethhdr *) rx->skb->data;
1861 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1862 *port_control = true;
1863 else if (check_port_control)
1864 return -1;
1865
1866 return 0;
1867 }
1868
1869 /*
1870 * requires that rx->skb is a frame with ethernet header
1871 */
1872 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1873 {
1874 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1875 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1876 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1877
1878 /*
1879 * Allow EAPOL frames to us/the PAE group address regardless
1880 * of whether the frame was encrypted or not.
1881 */
1882 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1883 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1884 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1885 return true;
1886
1887 if (ieee80211_802_1x_port_control(rx) ||
1888 ieee80211_drop_unencrypted(rx, fc))
1889 return false;
1890
1891 return true;
1892 }
1893
1894 /*
1895 * requires that rx->skb is a frame with ethernet header
1896 */
1897 static void
1898 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1899 {
1900 struct ieee80211_sub_if_data *sdata = rx->sdata;
1901 struct net_device *dev = sdata->dev;
1902 struct sk_buff *skb, *xmit_skb;
1903 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1904 struct sta_info *dsta;
1905 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1906
1907 skb = rx->skb;
1908 xmit_skb = NULL;
1909
1910 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1911 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1912 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1913 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1914 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1915 if (is_multicast_ether_addr(ehdr->h_dest)) {
1916 /*
1917 * send multicast frames both to higher layers in
1918 * local net stack and back to the wireless medium
1919 */
1920 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1921 if (!xmit_skb)
1922 net_info_ratelimited("%s: failed to clone multicast frame\n",
1923 dev->name);
1924 } else {
1925 dsta = sta_info_get(sdata, skb->data);
1926 if (dsta) {
1927 /*
1928 * The destination station is associated to
1929 * this AP (in this VLAN), so send the frame
1930 * directly to it and do not pass it to local
1931 * net stack.
1932 */
1933 xmit_skb = skb;
1934 skb = NULL;
1935 }
1936 }
1937 }
1938
1939 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1940 if (skb) {
1941 /* 'align' will only take the values 0 or 2 here since all
1942 * frames are required to be aligned to 2-byte boundaries
1943 * when being passed to mac80211; the code here works just
1944 * as well if that isn't true, but mac80211 assumes it can
1945 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
1946 */
1947 int align;
1948
1949 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
1950 if (align) {
1951 if (WARN_ON(skb_headroom(skb) < 3)) {
1952 dev_kfree_skb(skb);
1953 skb = NULL;
1954 } else {
1955 u8 *data = skb->data;
1956 size_t len = skb_headlen(skb);
1957 skb->data -= align;
1958 memmove(skb->data, data, len);
1959 skb_set_tail_pointer(skb, len);
1960 }
1961 }
1962 }
1963 #endif
1964
1965 if (skb) {
1966 /* deliver to local stack */
1967 skb->protocol = eth_type_trans(skb, dev);
1968 memset(skb->cb, 0, sizeof(skb->cb));
1969 if (rx->local->napi)
1970 napi_gro_receive(rx->local->napi, skb);
1971 else
1972 netif_receive_skb(skb);
1973 }
1974
1975 if (xmit_skb) {
1976 /*
1977 * Send to wireless media and increase priority by 256 to
1978 * keep the received priority instead of reclassifying
1979 * the frame (see cfg80211_classify8021d).
1980 */
1981 xmit_skb->priority += 256;
1982 xmit_skb->protocol = htons(ETH_P_802_3);
1983 skb_reset_network_header(xmit_skb);
1984 skb_reset_mac_header(xmit_skb);
1985 dev_queue_xmit(xmit_skb);
1986 }
1987 }
1988
1989 static ieee80211_rx_result debug_noinline
1990 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1991 {
1992 struct net_device *dev = rx->sdata->dev;
1993 struct sk_buff *skb = rx->skb;
1994 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1995 __le16 fc = hdr->frame_control;
1996 struct sk_buff_head frame_list;
1997 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1998
1999 if (unlikely(!ieee80211_is_data(fc)))
2000 return RX_CONTINUE;
2001
2002 if (unlikely(!ieee80211_is_data_present(fc)))
2003 return RX_DROP_MONITOR;
2004
2005 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2006 return RX_CONTINUE;
2007
2008 if (ieee80211_has_a4(hdr->frame_control) &&
2009 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2010 !rx->sdata->u.vlan.sta)
2011 return RX_DROP_UNUSABLE;
2012
2013 if (is_multicast_ether_addr(hdr->addr1) &&
2014 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2015 rx->sdata->u.vlan.sta) ||
2016 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2017 rx->sdata->u.mgd.use_4addr)))
2018 return RX_DROP_UNUSABLE;
2019
2020 skb->dev = dev;
2021 __skb_queue_head_init(&frame_list);
2022
2023 if (skb_linearize(skb))
2024 return RX_DROP_UNUSABLE;
2025
2026 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2027 rx->sdata->vif.type,
2028 rx->local->hw.extra_tx_headroom, true);
2029
2030 while (!skb_queue_empty(&frame_list)) {
2031 rx->skb = __skb_dequeue(&frame_list);
2032
2033 if (!ieee80211_frame_allowed(rx, fc)) {
2034 dev_kfree_skb(rx->skb);
2035 continue;
2036 }
2037 dev->stats.rx_packets++;
2038 dev->stats.rx_bytes += rx->skb->len;
2039
2040 ieee80211_deliver_skb(rx);
2041 }
2042
2043 return RX_QUEUED;
2044 }
2045
2046 #ifdef CONFIG_MAC80211_MESH
2047 static ieee80211_rx_result
2048 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2049 {
2050 struct ieee80211_hdr *fwd_hdr, *hdr;
2051 struct ieee80211_tx_info *info;
2052 struct ieee80211s_hdr *mesh_hdr;
2053 struct sk_buff *skb = rx->skb, *fwd_skb;
2054 struct ieee80211_local *local = rx->local;
2055 struct ieee80211_sub_if_data *sdata = rx->sdata;
2056 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2057 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2058 u16 q, hdrlen;
2059
2060 hdr = (struct ieee80211_hdr *) skb->data;
2061 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2062
2063 /* make sure fixed part of mesh header is there, also checks skb len */
2064 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2065 return RX_DROP_MONITOR;
2066
2067 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2068
2069 /* make sure full mesh header is there, also checks skb len */
2070 if (!pskb_may_pull(rx->skb,
2071 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2072 return RX_DROP_MONITOR;
2073
2074 /* reload pointers */
2075 hdr = (struct ieee80211_hdr *) skb->data;
2076 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2077
2078 /* frame is in RMC, don't forward */
2079 if (ieee80211_is_data(hdr->frame_control) &&
2080 is_multicast_ether_addr(hdr->addr1) &&
2081 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2082 return RX_DROP_MONITOR;
2083
2084 if (!ieee80211_is_data(hdr->frame_control) ||
2085 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2086 return RX_CONTINUE;
2087
2088 if (!mesh_hdr->ttl)
2089 return RX_DROP_MONITOR;
2090
2091 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2092 struct mesh_path *mppath;
2093 char *proxied_addr;
2094 char *mpp_addr;
2095
2096 if (is_multicast_ether_addr(hdr->addr1)) {
2097 mpp_addr = hdr->addr3;
2098 proxied_addr = mesh_hdr->eaddr1;
2099 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2100 /* has_a4 already checked in ieee80211_rx_mesh_check */
2101 mpp_addr = hdr->addr4;
2102 proxied_addr = mesh_hdr->eaddr2;
2103 } else {
2104 return RX_DROP_MONITOR;
2105 }
2106
2107 rcu_read_lock();
2108 mppath = mpp_path_lookup(sdata, proxied_addr);
2109 if (!mppath) {
2110 mpp_path_add(sdata, proxied_addr, mpp_addr);
2111 } else {
2112 spin_lock_bh(&mppath->state_lock);
2113 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2114 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2115 spin_unlock_bh(&mppath->state_lock);
2116 }
2117 rcu_read_unlock();
2118 }
2119
2120 /* Frame has reached destination. Don't forward */
2121 if (!is_multicast_ether_addr(hdr->addr1) &&
2122 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2123 return RX_CONTINUE;
2124
2125 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2126 if (ieee80211_queue_stopped(&local->hw, q)) {
2127 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2128 return RX_DROP_MONITOR;
2129 }
2130 skb_set_queue_mapping(skb, q);
2131
2132 if (!--mesh_hdr->ttl) {
2133 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2134 goto out;
2135 }
2136
2137 if (!ifmsh->mshcfg.dot11MeshForwarding)
2138 goto out;
2139
2140 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2141 if (!fwd_skb) {
2142 net_info_ratelimited("%s: failed to clone mesh frame\n",
2143 sdata->name);
2144 goto out;
2145 }
2146
2147 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2148 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2149 info = IEEE80211_SKB_CB(fwd_skb);
2150 memset(info, 0, sizeof(*info));
2151 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2152 info->control.vif = &rx->sdata->vif;
2153 info->control.jiffies = jiffies;
2154 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2155 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2156 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2157 /* update power mode indication when forwarding */
2158 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2159 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2160 /* mesh power mode flags updated in mesh_nexthop_lookup */
2161 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2162 } else {
2163 /* unable to resolve next hop */
2164 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2165 fwd_hdr->addr3, 0,
2166 WLAN_REASON_MESH_PATH_NOFORWARD,
2167 fwd_hdr->addr2);
2168 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2169 kfree_skb(fwd_skb);
2170 return RX_DROP_MONITOR;
2171 }
2172
2173 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2174 ieee80211_add_pending_skb(local, fwd_skb);
2175 out:
2176 if (is_multicast_ether_addr(hdr->addr1) ||
2177 sdata->dev->flags & IFF_PROMISC)
2178 return RX_CONTINUE;
2179 else
2180 return RX_DROP_MONITOR;
2181 }
2182 #endif
2183
2184 static ieee80211_rx_result debug_noinline
2185 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2186 {
2187 struct ieee80211_sub_if_data *sdata = rx->sdata;
2188 struct ieee80211_local *local = rx->local;
2189 struct net_device *dev = sdata->dev;
2190 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2191 __le16 fc = hdr->frame_control;
2192 bool port_control;
2193 int err;
2194
2195 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2196 return RX_CONTINUE;
2197
2198 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2199 return RX_DROP_MONITOR;
2200
2201 /*
2202 * Send unexpected-4addr-frame event to hostapd. For older versions,
2203 * also drop the frame to cooked monitor interfaces.
2204 */
2205 if (ieee80211_has_a4(hdr->frame_control) &&
2206 sdata->vif.type == NL80211_IFTYPE_AP) {
2207 if (rx->sta &&
2208 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2209 cfg80211_rx_unexpected_4addr_frame(
2210 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2211 return RX_DROP_MONITOR;
2212 }
2213
2214 err = __ieee80211_data_to_8023(rx, &port_control);
2215 if (unlikely(err))
2216 return RX_DROP_UNUSABLE;
2217
2218 if (!ieee80211_frame_allowed(rx, fc))
2219 return RX_DROP_MONITOR;
2220
2221 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2222 unlikely(port_control) && sdata->bss) {
2223 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2224 u.ap);
2225 dev = sdata->dev;
2226 rx->sdata = sdata;
2227 }
2228
2229 rx->skb->dev = dev;
2230
2231 dev->stats.rx_packets++;
2232 dev->stats.rx_bytes += rx->skb->len;
2233
2234 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2235 !is_multicast_ether_addr(
2236 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2237 (!local->scanning &&
2238 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2239 mod_timer(&local->dynamic_ps_timer, jiffies +
2240 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2241 }
2242
2243 ieee80211_deliver_skb(rx);
2244
2245 return RX_QUEUED;
2246 }
2247
2248 static ieee80211_rx_result debug_noinline
2249 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2250 {
2251 struct sk_buff *skb = rx->skb;
2252 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2253 struct tid_ampdu_rx *tid_agg_rx;
2254 u16 start_seq_num;
2255 u16 tid;
2256
2257 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2258 return RX_CONTINUE;
2259
2260 if (ieee80211_is_back_req(bar->frame_control)) {
2261 struct {
2262 __le16 control, start_seq_num;
2263 } __packed bar_data;
2264
2265 if (!rx->sta)
2266 return RX_DROP_MONITOR;
2267
2268 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2269 &bar_data, sizeof(bar_data)))
2270 return RX_DROP_MONITOR;
2271
2272 tid = le16_to_cpu(bar_data.control) >> 12;
2273
2274 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2275 if (!tid_agg_rx)
2276 return RX_DROP_MONITOR;
2277
2278 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2279
2280 /* reset session timer */
2281 if (tid_agg_rx->timeout)
2282 mod_timer(&tid_agg_rx->session_timer,
2283 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2284
2285 spin_lock(&tid_agg_rx->reorder_lock);
2286 /* release stored frames up to start of BAR */
2287 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2288 start_seq_num, frames);
2289 spin_unlock(&tid_agg_rx->reorder_lock);
2290
2291 kfree_skb(skb);
2292 return RX_QUEUED;
2293 }
2294
2295 /*
2296 * After this point, we only want management frames,
2297 * so we can drop all remaining control frames to
2298 * cooked monitor interfaces.
2299 */
2300 return RX_DROP_MONITOR;
2301 }
2302
2303 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2304 struct ieee80211_mgmt *mgmt,
2305 size_t len)
2306 {
2307 struct ieee80211_local *local = sdata->local;
2308 struct sk_buff *skb;
2309 struct ieee80211_mgmt *resp;
2310
2311 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2312 /* Not to own unicast address */
2313 return;
2314 }
2315
2316 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2317 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2318 /* Not from the current AP or not associated yet. */
2319 return;
2320 }
2321
2322 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2323 /* Too short SA Query request frame */
2324 return;
2325 }
2326
2327 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2328 if (skb == NULL)
2329 return;
2330
2331 skb_reserve(skb, local->hw.extra_tx_headroom);
2332 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2333 memset(resp, 0, 24);
2334 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2335 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2336 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2337 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2338 IEEE80211_STYPE_ACTION);
2339 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2340 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2341 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2342 memcpy(resp->u.action.u.sa_query.trans_id,
2343 mgmt->u.action.u.sa_query.trans_id,
2344 WLAN_SA_QUERY_TR_ID_LEN);
2345
2346 ieee80211_tx_skb(sdata, skb);
2347 }
2348
2349 static ieee80211_rx_result debug_noinline
2350 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2351 {
2352 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2353 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2354
2355 /*
2356 * From here on, look only at management frames.
2357 * Data and control frames are already handled,
2358 * and unknown (reserved) frames are useless.
2359 */
2360 if (rx->skb->len < 24)
2361 return RX_DROP_MONITOR;
2362
2363 if (!ieee80211_is_mgmt(mgmt->frame_control))
2364 return RX_DROP_MONITOR;
2365
2366 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2367 ieee80211_is_beacon(mgmt->frame_control) &&
2368 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2369 int sig = 0;
2370
2371 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2372 sig = status->signal;
2373
2374 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2375 rx->skb->data, rx->skb->len,
2376 status->freq, sig);
2377 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2378 }
2379
2380 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2381 return RX_DROP_MONITOR;
2382
2383 if (ieee80211_drop_unencrypted_mgmt(rx))
2384 return RX_DROP_UNUSABLE;
2385
2386 return RX_CONTINUE;
2387 }
2388
2389 static ieee80211_rx_result debug_noinline
2390 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2391 {
2392 struct ieee80211_local *local = rx->local;
2393 struct ieee80211_sub_if_data *sdata = rx->sdata;
2394 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2395 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2396 int len = rx->skb->len;
2397
2398 if (!ieee80211_is_action(mgmt->frame_control))
2399 return RX_CONTINUE;
2400
2401 /* drop too small frames */
2402 if (len < IEEE80211_MIN_ACTION_SIZE)
2403 return RX_DROP_UNUSABLE;
2404
2405 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2406 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2407 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2408 return RX_DROP_UNUSABLE;
2409
2410 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2411 return RX_DROP_UNUSABLE;
2412
2413 switch (mgmt->u.action.category) {
2414 case WLAN_CATEGORY_HT:
2415 /* reject HT action frames from stations not supporting HT */
2416 if (!rx->sta->sta.ht_cap.ht_supported)
2417 goto invalid;
2418
2419 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2420 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2421 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2422 sdata->vif.type != NL80211_IFTYPE_AP &&
2423 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2424 break;
2425
2426 /* verify action & smps_control/chanwidth are present */
2427 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2428 goto invalid;
2429
2430 switch (mgmt->u.action.u.ht_smps.action) {
2431 case WLAN_HT_ACTION_SMPS: {
2432 struct ieee80211_supported_band *sband;
2433 enum ieee80211_smps_mode smps_mode;
2434
2435 /* convert to HT capability */
2436 switch (mgmt->u.action.u.ht_smps.smps_control) {
2437 case WLAN_HT_SMPS_CONTROL_DISABLED:
2438 smps_mode = IEEE80211_SMPS_OFF;
2439 break;
2440 case WLAN_HT_SMPS_CONTROL_STATIC:
2441 smps_mode = IEEE80211_SMPS_STATIC;
2442 break;
2443 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2444 smps_mode = IEEE80211_SMPS_DYNAMIC;
2445 break;
2446 default:
2447 goto invalid;
2448 }
2449
2450 /* if no change do nothing */
2451 if (rx->sta->sta.smps_mode == smps_mode)
2452 goto handled;
2453 rx->sta->sta.smps_mode = smps_mode;
2454
2455 sband = rx->local->hw.wiphy->bands[status->band];
2456
2457 rate_control_rate_update(local, sband, rx->sta,
2458 IEEE80211_RC_SMPS_CHANGED);
2459 goto handled;
2460 }
2461 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2462 struct ieee80211_supported_band *sband;
2463 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2464 enum ieee80211_sta_rx_bandwidth new_bw;
2465
2466 /* If it doesn't support 40 MHz it can't change ... */
2467 if (!(rx->sta->sta.ht_cap.cap &
2468 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2469 goto handled;
2470
2471 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2472 new_bw = IEEE80211_STA_RX_BW_20;
2473 else
2474 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2475
2476 if (rx->sta->sta.bandwidth == new_bw)
2477 goto handled;
2478
2479 sband = rx->local->hw.wiphy->bands[status->band];
2480
2481 rate_control_rate_update(local, sband, rx->sta,
2482 IEEE80211_RC_BW_CHANGED);
2483 goto handled;
2484 }
2485 default:
2486 goto invalid;
2487 }
2488
2489 break;
2490 case WLAN_CATEGORY_PUBLIC:
2491 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2492 goto invalid;
2493 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2494 break;
2495 if (!rx->sta)
2496 break;
2497 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2498 break;
2499 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2500 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2501 break;
2502 if (len < offsetof(struct ieee80211_mgmt,
2503 u.action.u.ext_chan_switch.variable))
2504 goto invalid;
2505 goto queue;
2506 case WLAN_CATEGORY_VHT:
2507 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2508 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2509 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2510 sdata->vif.type != NL80211_IFTYPE_AP &&
2511 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2512 break;
2513
2514 /* verify action code is present */
2515 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2516 goto invalid;
2517
2518 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2519 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2520 u8 opmode;
2521
2522 /* verify opmode is present */
2523 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2524 goto invalid;
2525
2526 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2527
2528 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2529 opmode, status->band,
2530 false);
2531 goto handled;
2532 }
2533 default:
2534 break;
2535 }
2536 break;
2537 case WLAN_CATEGORY_BACK:
2538 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2539 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2540 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2541 sdata->vif.type != NL80211_IFTYPE_AP &&
2542 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2543 break;
2544
2545 /* verify action_code is present */
2546 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2547 break;
2548
2549 switch (mgmt->u.action.u.addba_req.action_code) {
2550 case WLAN_ACTION_ADDBA_REQ:
2551 if (len < (IEEE80211_MIN_ACTION_SIZE +
2552 sizeof(mgmt->u.action.u.addba_req)))
2553 goto invalid;
2554 break;
2555 case WLAN_ACTION_ADDBA_RESP:
2556 if (len < (IEEE80211_MIN_ACTION_SIZE +
2557 sizeof(mgmt->u.action.u.addba_resp)))
2558 goto invalid;
2559 break;
2560 case WLAN_ACTION_DELBA:
2561 if (len < (IEEE80211_MIN_ACTION_SIZE +
2562 sizeof(mgmt->u.action.u.delba)))
2563 goto invalid;
2564 break;
2565 default:
2566 goto invalid;
2567 }
2568
2569 goto queue;
2570 case WLAN_CATEGORY_SPECTRUM_MGMT:
2571 /* verify action_code is present */
2572 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2573 break;
2574
2575 switch (mgmt->u.action.u.measurement.action_code) {
2576 case WLAN_ACTION_SPCT_MSR_REQ:
2577 if (status->band != IEEE80211_BAND_5GHZ)
2578 break;
2579
2580 if (len < (IEEE80211_MIN_ACTION_SIZE +
2581 sizeof(mgmt->u.action.u.measurement)))
2582 break;
2583
2584 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2585 break;
2586
2587 ieee80211_process_measurement_req(sdata, mgmt, len);
2588 goto handled;
2589 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2590 u8 *bssid;
2591 if (len < (IEEE80211_MIN_ACTION_SIZE +
2592 sizeof(mgmt->u.action.u.chan_switch)))
2593 break;
2594
2595 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2596 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2597 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2598 break;
2599
2600 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2601 bssid = sdata->u.mgd.bssid;
2602 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2603 bssid = sdata->u.ibss.bssid;
2604 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2605 bssid = mgmt->sa;
2606 else
2607 break;
2608
2609 if (!ether_addr_equal(mgmt->bssid, bssid))
2610 break;
2611
2612 goto queue;
2613 }
2614 }
2615 break;
2616 case WLAN_CATEGORY_SA_QUERY:
2617 if (len < (IEEE80211_MIN_ACTION_SIZE +
2618 sizeof(mgmt->u.action.u.sa_query)))
2619 break;
2620
2621 switch (mgmt->u.action.u.sa_query.action) {
2622 case WLAN_ACTION_SA_QUERY_REQUEST:
2623 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2624 break;
2625 ieee80211_process_sa_query_req(sdata, mgmt, len);
2626 goto handled;
2627 }
2628 break;
2629 case WLAN_CATEGORY_SELF_PROTECTED:
2630 if (len < (IEEE80211_MIN_ACTION_SIZE +
2631 sizeof(mgmt->u.action.u.self_prot.action_code)))
2632 break;
2633
2634 switch (mgmt->u.action.u.self_prot.action_code) {
2635 case WLAN_SP_MESH_PEERING_OPEN:
2636 case WLAN_SP_MESH_PEERING_CLOSE:
2637 case WLAN_SP_MESH_PEERING_CONFIRM:
2638 if (!ieee80211_vif_is_mesh(&sdata->vif))
2639 goto invalid;
2640 if (sdata->u.mesh.user_mpm)
2641 /* userspace handles this frame */
2642 break;
2643 goto queue;
2644 case WLAN_SP_MGK_INFORM:
2645 case WLAN_SP_MGK_ACK:
2646 if (!ieee80211_vif_is_mesh(&sdata->vif))
2647 goto invalid;
2648 break;
2649 }
2650 break;
2651 case WLAN_CATEGORY_MESH_ACTION:
2652 if (len < (IEEE80211_MIN_ACTION_SIZE +
2653 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2654 break;
2655
2656 if (!ieee80211_vif_is_mesh(&sdata->vif))
2657 break;
2658 if (mesh_action_is_path_sel(mgmt) &&
2659 !mesh_path_sel_is_hwmp(sdata))
2660 break;
2661 goto queue;
2662 }
2663
2664 return RX_CONTINUE;
2665
2666 invalid:
2667 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2668 /* will return in the next handlers */
2669 return RX_CONTINUE;
2670
2671 handled:
2672 if (rx->sta)
2673 rx->sta->rx_packets++;
2674 dev_kfree_skb(rx->skb);
2675 return RX_QUEUED;
2676
2677 queue:
2678 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2679 skb_queue_tail(&sdata->skb_queue, rx->skb);
2680 ieee80211_queue_work(&local->hw, &sdata->work);
2681 if (rx->sta)
2682 rx->sta->rx_packets++;
2683 return RX_QUEUED;
2684 }
2685
2686 static ieee80211_rx_result debug_noinline
2687 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2688 {
2689 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2690 int sig = 0;
2691
2692 /* skip known-bad action frames and return them in the next handler */
2693 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2694 return RX_CONTINUE;
2695
2696 /*
2697 * Getting here means the kernel doesn't know how to handle
2698 * it, but maybe userspace does ... include returned frames
2699 * so userspace can register for those to know whether ones
2700 * it transmitted were processed or returned.
2701 */
2702
2703 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2704 sig = status->signal;
2705
2706 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2707 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2708 if (rx->sta)
2709 rx->sta->rx_packets++;
2710 dev_kfree_skb(rx->skb);
2711 return RX_QUEUED;
2712 }
2713
2714 return RX_CONTINUE;
2715 }
2716
2717 static ieee80211_rx_result debug_noinline
2718 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2719 {
2720 struct ieee80211_local *local = rx->local;
2721 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2722 struct sk_buff *nskb;
2723 struct ieee80211_sub_if_data *sdata = rx->sdata;
2724 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2725
2726 if (!ieee80211_is_action(mgmt->frame_control))
2727 return RX_CONTINUE;
2728
2729 /*
2730 * For AP mode, hostapd is responsible for handling any action
2731 * frames that we didn't handle, including returning unknown
2732 * ones. For all other modes we will return them to the sender,
2733 * setting the 0x80 bit in the action category, as required by
2734 * 802.11-2012 9.24.4.
2735 * Newer versions of hostapd shall also use the management frame
2736 * registration mechanisms, but older ones still use cooked
2737 * monitor interfaces so push all frames there.
2738 */
2739 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2740 (sdata->vif.type == NL80211_IFTYPE_AP ||
2741 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2742 return RX_DROP_MONITOR;
2743
2744 if (is_multicast_ether_addr(mgmt->da))
2745 return RX_DROP_MONITOR;
2746
2747 /* do not return rejected action frames */
2748 if (mgmt->u.action.category & 0x80)
2749 return RX_DROP_UNUSABLE;
2750
2751 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2752 GFP_ATOMIC);
2753 if (nskb) {
2754 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2755
2756 nmgmt->u.action.category |= 0x80;
2757 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2758 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2759
2760 memset(nskb->cb, 0, sizeof(nskb->cb));
2761
2762 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2763 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2764
2765 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2766 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2767 IEEE80211_TX_CTL_NO_CCK_RATE;
2768 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2769 info->hw_queue =
2770 local->hw.offchannel_tx_hw_queue;
2771 }
2772
2773 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2774 status->band);
2775 }
2776 dev_kfree_skb(rx->skb);
2777 return RX_QUEUED;
2778 }
2779
2780 static ieee80211_rx_result debug_noinline
2781 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2782 {
2783 struct ieee80211_sub_if_data *sdata = rx->sdata;
2784 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2785 __le16 stype;
2786
2787 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2788
2789 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2790 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2791 sdata->vif.type != NL80211_IFTYPE_STATION)
2792 return RX_DROP_MONITOR;
2793
2794 switch (stype) {
2795 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2796 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2797 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2798 /* process for all: mesh, mlme, ibss */
2799 break;
2800 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2801 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2802 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2803 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2804 if (is_multicast_ether_addr(mgmt->da) &&
2805 !is_broadcast_ether_addr(mgmt->da))
2806 return RX_DROP_MONITOR;
2807
2808 /* process only for station */
2809 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2810 return RX_DROP_MONITOR;
2811 break;
2812 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2813 /* process only for ibss and mesh */
2814 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2815 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2816 return RX_DROP_MONITOR;
2817 break;
2818 default:
2819 return RX_DROP_MONITOR;
2820 }
2821
2822 /* queue up frame and kick off work to process it */
2823 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2824 skb_queue_tail(&sdata->skb_queue, rx->skb);
2825 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2826 if (rx->sta)
2827 rx->sta->rx_packets++;
2828
2829 return RX_QUEUED;
2830 }
2831
2832 /* TODO: use IEEE80211_RX_FRAGMENTED */
2833 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2834 struct ieee80211_rate *rate)
2835 {
2836 struct ieee80211_sub_if_data *sdata;
2837 struct ieee80211_local *local = rx->local;
2838 struct sk_buff *skb = rx->skb, *skb2;
2839 struct net_device *prev_dev = NULL;
2840 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2841 int needed_headroom;
2842
2843 /*
2844 * If cooked monitor has been processed already, then
2845 * don't do it again. If not, set the flag.
2846 */
2847 if (rx->flags & IEEE80211_RX_CMNTR)
2848 goto out_free_skb;
2849 rx->flags |= IEEE80211_RX_CMNTR;
2850
2851 /* If there are no cooked monitor interfaces, just free the SKB */
2852 if (!local->cooked_mntrs)
2853 goto out_free_skb;
2854
2855 /* room for the radiotap header based on driver features */
2856 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2857
2858 if (skb_headroom(skb) < needed_headroom &&
2859 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2860 goto out_free_skb;
2861
2862 /* prepend radiotap information */
2863 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2864 false);
2865
2866 skb_set_mac_header(skb, 0);
2867 skb->ip_summed = CHECKSUM_UNNECESSARY;
2868 skb->pkt_type = PACKET_OTHERHOST;
2869 skb->protocol = htons(ETH_P_802_2);
2870
2871 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2872 if (!ieee80211_sdata_running(sdata))
2873 continue;
2874
2875 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2876 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2877 continue;
2878
2879 if (prev_dev) {
2880 skb2 = skb_clone(skb, GFP_ATOMIC);
2881 if (skb2) {
2882 skb2->dev = prev_dev;
2883 netif_receive_skb(skb2);
2884 }
2885 }
2886
2887 prev_dev = sdata->dev;
2888 sdata->dev->stats.rx_packets++;
2889 sdata->dev->stats.rx_bytes += skb->len;
2890 }
2891
2892 if (prev_dev) {
2893 skb->dev = prev_dev;
2894 netif_receive_skb(skb);
2895 return;
2896 }
2897
2898 out_free_skb:
2899 dev_kfree_skb(skb);
2900 }
2901
2902 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2903 ieee80211_rx_result res)
2904 {
2905 switch (res) {
2906 case RX_DROP_MONITOR:
2907 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2908 if (rx->sta)
2909 rx->sta->rx_dropped++;
2910 /* fall through */
2911 case RX_CONTINUE: {
2912 struct ieee80211_rate *rate = NULL;
2913 struct ieee80211_supported_band *sband;
2914 struct ieee80211_rx_status *status;
2915
2916 status = IEEE80211_SKB_RXCB((rx->skb));
2917
2918 sband = rx->local->hw.wiphy->bands[status->band];
2919 if (!(status->flag & RX_FLAG_HT) &&
2920 !(status->flag & RX_FLAG_VHT))
2921 rate = &sband->bitrates[status->rate_idx];
2922
2923 ieee80211_rx_cooked_monitor(rx, rate);
2924 break;
2925 }
2926 case RX_DROP_UNUSABLE:
2927 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2928 if (rx->sta)
2929 rx->sta->rx_dropped++;
2930 dev_kfree_skb(rx->skb);
2931 break;
2932 case RX_QUEUED:
2933 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2934 break;
2935 }
2936 }
2937
2938 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2939 struct sk_buff_head *frames)
2940 {
2941 ieee80211_rx_result res = RX_DROP_MONITOR;
2942 struct sk_buff *skb;
2943
2944 #define CALL_RXH(rxh) \
2945 do { \
2946 res = rxh(rx); \
2947 if (res != RX_CONTINUE) \
2948 goto rxh_next; \
2949 } while (0);
2950
2951 spin_lock_bh(&rx->local->rx_path_lock);
2952
2953 while ((skb = __skb_dequeue(frames))) {
2954 /*
2955 * all the other fields are valid across frames
2956 * that belong to an aMPDU since they are on the
2957 * same TID from the same station
2958 */
2959 rx->skb = skb;
2960
2961 CALL_RXH(ieee80211_rx_h_check_more_data)
2962 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2963 CALL_RXH(ieee80211_rx_h_sta_process)
2964 CALL_RXH(ieee80211_rx_h_decrypt)
2965 CALL_RXH(ieee80211_rx_h_defragment)
2966 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2967 /* must be after MMIC verify so header is counted in MPDU mic */
2968 #ifdef CONFIG_MAC80211_MESH
2969 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2970 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2971 #endif
2972 CALL_RXH(ieee80211_rx_h_amsdu)
2973 CALL_RXH(ieee80211_rx_h_data)
2974
2975 /* special treatment -- needs the queue */
2976 res = ieee80211_rx_h_ctrl(rx, frames);
2977 if (res != RX_CONTINUE)
2978 goto rxh_next;
2979
2980 CALL_RXH(ieee80211_rx_h_mgmt_check)
2981 CALL_RXH(ieee80211_rx_h_action)
2982 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2983 CALL_RXH(ieee80211_rx_h_action_return)
2984 CALL_RXH(ieee80211_rx_h_mgmt)
2985
2986 rxh_next:
2987 ieee80211_rx_handlers_result(rx, res);
2988
2989 #undef CALL_RXH
2990 }
2991
2992 spin_unlock_bh(&rx->local->rx_path_lock);
2993 }
2994
2995 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2996 {
2997 struct sk_buff_head reorder_release;
2998 ieee80211_rx_result res = RX_DROP_MONITOR;
2999
3000 __skb_queue_head_init(&reorder_release);
3001
3002 #define CALL_RXH(rxh) \
3003 do { \
3004 res = rxh(rx); \
3005 if (res != RX_CONTINUE) \
3006 goto rxh_next; \
3007 } while (0);
3008
3009 CALL_RXH(ieee80211_rx_h_check)
3010
3011 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3012
3013 ieee80211_rx_handlers(rx, &reorder_release);
3014 return;
3015
3016 rxh_next:
3017 ieee80211_rx_handlers_result(rx, res);
3018
3019 #undef CALL_RXH
3020 }
3021
3022 /*
3023 * This function makes calls into the RX path, therefore
3024 * it has to be invoked under RCU read lock.
3025 */
3026 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3027 {
3028 struct sk_buff_head frames;
3029 struct ieee80211_rx_data rx = {
3030 .sta = sta,
3031 .sdata = sta->sdata,
3032 .local = sta->local,
3033 /* This is OK -- must be QoS data frame */
3034 .security_idx = tid,
3035 .seqno_idx = tid,
3036 .flags = 0,
3037 };
3038 struct tid_ampdu_rx *tid_agg_rx;
3039
3040 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3041 if (!tid_agg_rx)
3042 return;
3043
3044 __skb_queue_head_init(&frames);
3045
3046 spin_lock(&tid_agg_rx->reorder_lock);
3047 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3048 spin_unlock(&tid_agg_rx->reorder_lock);
3049
3050 ieee80211_rx_handlers(&rx, &frames);
3051 }
3052
3053 /* main receive path */
3054
3055 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3056 struct ieee80211_hdr *hdr)
3057 {
3058 struct ieee80211_sub_if_data *sdata = rx->sdata;
3059 struct sk_buff *skb = rx->skb;
3060 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3061 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3062 int multicast = is_multicast_ether_addr(hdr->addr1);
3063
3064 switch (sdata->vif.type) {
3065 case NL80211_IFTYPE_STATION:
3066 if (!bssid && !sdata->u.mgd.use_4addr)
3067 return false;
3068 if (!multicast &&
3069 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3070 if (!(sdata->dev->flags & IFF_PROMISC) ||
3071 sdata->u.mgd.use_4addr)
3072 return false;
3073 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3074 }
3075 break;
3076 case NL80211_IFTYPE_ADHOC:
3077 if (!bssid)
3078 return false;
3079 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3080 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3081 return false;
3082 if (ieee80211_is_beacon(hdr->frame_control)) {
3083 return true;
3084 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3085 return false;
3086 } else if (!multicast &&
3087 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3088 if (!(sdata->dev->flags & IFF_PROMISC))
3089 return false;
3090 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3091 } else if (!rx->sta) {
3092 int rate_idx;
3093 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3094 rate_idx = 0; /* TODO: HT/VHT rates */
3095 else
3096 rate_idx = status->rate_idx;
3097 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3098 BIT(rate_idx));
3099 }
3100 break;
3101 case NL80211_IFTYPE_MESH_POINT:
3102 if (!multicast &&
3103 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3104 if (!(sdata->dev->flags & IFF_PROMISC))
3105 return false;
3106
3107 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3108 }
3109 break;
3110 case NL80211_IFTYPE_AP_VLAN:
3111 case NL80211_IFTYPE_AP:
3112 if (!bssid) {
3113 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3114 return false;
3115 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3116 /*
3117 * Accept public action frames even when the
3118 * BSSID doesn't match, this is used for P2P
3119 * and location updates. Note that mac80211
3120 * itself never looks at these frames.
3121 */
3122 if (!multicast &&
3123 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3124 return false;
3125 if (ieee80211_is_public_action(hdr, skb->len))
3126 return true;
3127 if (!ieee80211_is_beacon(hdr->frame_control))
3128 return false;
3129 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3130 }
3131 break;
3132 case NL80211_IFTYPE_WDS:
3133 if (bssid || !ieee80211_is_data(hdr->frame_control))
3134 return false;
3135 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3136 return false;
3137 break;
3138 case NL80211_IFTYPE_P2P_DEVICE:
3139 if (!ieee80211_is_public_action(hdr, skb->len) &&
3140 !ieee80211_is_probe_req(hdr->frame_control) &&
3141 !ieee80211_is_probe_resp(hdr->frame_control) &&
3142 !ieee80211_is_beacon(hdr->frame_control))
3143 return false;
3144 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3145 !multicast)
3146 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3147 break;
3148 default:
3149 /* should never get here */
3150 WARN_ON_ONCE(1);
3151 break;
3152 }
3153
3154 return true;
3155 }
3156
3157 /*
3158 * This function returns whether or not the SKB
3159 * was destined for RX processing or not, which,
3160 * if consume is true, is equivalent to whether
3161 * or not the skb was consumed.
3162 */
3163 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3164 struct sk_buff *skb, bool consume)
3165 {
3166 struct ieee80211_local *local = rx->local;
3167 struct ieee80211_sub_if_data *sdata = rx->sdata;
3168 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3169 struct ieee80211_hdr *hdr = (void *)skb->data;
3170
3171 rx->skb = skb;
3172 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3173
3174 if (!prepare_for_handlers(rx, hdr))
3175 return false;
3176
3177 if (!consume) {
3178 skb = skb_copy(skb, GFP_ATOMIC);
3179 if (!skb) {
3180 if (net_ratelimit())
3181 wiphy_debug(local->hw.wiphy,
3182 "failed to copy skb for %s\n",
3183 sdata->name);
3184 return true;
3185 }
3186
3187 rx->skb = skb;
3188 }
3189
3190 ieee80211_invoke_rx_handlers(rx);
3191 return true;
3192 }
3193
3194 /*
3195 * This is the actual Rx frames handler. as it belongs to Rx path it must
3196 * be called with rcu_read_lock protection.
3197 */
3198 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3199 struct sk_buff *skb)
3200 {
3201 struct ieee80211_local *local = hw_to_local(hw);
3202 struct ieee80211_sub_if_data *sdata;
3203 struct ieee80211_hdr *hdr;
3204 __le16 fc;
3205 struct ieee80211_rx_data rx;
3206 struct ieee80211_sub_if_data *prev;
3207 struct sta_info *sta, *tmp, *prev_sta;
3208 int err = 0;
3209
3210 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3211 memset(&rx, 0, sizeof(rx));
3212 rx.skb = skb;
3213 rx.local = local;
3214
3215 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3216 local->dot11ReceivedFragmentCount++;
3217
3218 if (ieee80211_is_mgmt(fc)) {
3219 /* drop frame if too short for header */
3220 if (skb->len < ieee80211_hdrlen(fc))
3221 err = -ENOBUFS;
3222 else
3223 err = skb_linearize(skb);
3224 } else {
3225 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3226 }
3227
3228 if (err) {
3229 dev_kfree_skb(skb);
3230 return;
3231 }
3232
3233 hdr = (struct ieee80211_hdr *)skb->data;
3234 ieee80211_parse_qos(&rx);
3235 ieee80211_verify_alignment(&rx);
3236
3237 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3238 ieee80211_is_beacon(hdr->frame_control)))
3239 ieee80211_scan_rx(local, skb);
3240
3241 if (ieee80211_is_data(fc)) {
3242 prev_sta = NULL;
3243
3244 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3245 if (!prev_sta) {
3246 prev_sta = sta;
3247 continue;
3248 }
3249
3250 rx.sta = prev_sta;
3251 rx.sdata = prev_sta->sdata;
3252 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3253
3254 prev_sta = sta;
3255 }
3256
3257 if (prev_sta) {
3258 rx.sta = prev_sta;
3259 rx.sdata = prev_sta->sdata;
3260
3261 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3262 return;
3263 goto out;
3264 }
3265 }
3266
3267 prev = NULL;
3268
3269 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3270 if (!ieee80211_sdata_running(sdata))
3271 continue;
3272
3273 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3274 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3275 continue;
3276
3277 /*
3278 * frame is destined for this interface, but if it's
3279 * not also for the previous one we handle that after
3280 * the loop to avoid copying the SKB once too much
3281 */
3282
3283 if (!prev) {
3284 prev = sdata;
3285 continue;
3286 }
3287
3288 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3289 rx.sdata = prev;
3290 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3291
3292 prev = sdata;
3293 }
3294
3295 if (prev) {
3296 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3297 rx.sdata = prev;
3298
3299 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3300 return;
3301 }
3302
3303 out:
3304 dev_kfree_skb(skb);
3305 }
3306
3307 /*
3308 * This is the receive path handler. It is called by a low level driver when an
3309 * 802.11 MPDU is received from the hardware.
3310 */
3311 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3312 {
3313 struct ieee80211_local *local = hw_to_local(hw);
3314 struct ieee80211_rate *rate = NULL;
3315 struct ieee80211_supported_band *sband;
3316 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3317
3318 WARN_ON_ONCE(softirq_count() == 0);
3319
3320 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3321 goto drop;
3322
3323 sband = local->hw.wiphy->bands[status->band];
3324 if (WARN_ON(!sband))
3325 goto drop;
3326
3327 /*
3328 * If we're suspending, it is possible although not too likely
3329 * that we'd be receiving frames after having already partially
3330 * quiesced the stack. We can't process such frames then since
3331 * that might, for example, cause stations to be added or other
3332 * driver callbacks be invoked.
3333 */
3334 if (unlikely(local->quiescing || local->suspended))
3335 goto drop;
3336
3337 /* We might be during a HW reconfig, prevent Rx for the same reason */
3338 if (unlikely(local->in_reconfig))
3339 goto drop;
3340
3341 /*
3342 * The same happens when we're not even started,
3343 * but that's worth a warning.
3344 */
3345 if (WARN_ON(!local->started))
3346 goto drop;
3347
3348 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3349 /*
3350 * Validate the rate, unless a PLCP error means that
3351 * we probably can't have a valid rate here anyway.
3352 */
3353
3354 if (status->flag & RX_FLAG_HT) {
3355 /*
3356 * rate_idx is MCS index, which can be [0-76]
3357 * as documented on:
3358 *
3359 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3360 *
3361 * Anything else would be some sort of driver or
3362 * hardware error. The driver should catch hardware
3363 * errors.
3364 */
3365 if (WARN(status->rate_idx > 76,
3366 "Rate marked as an HT rate but passed "
3367 "status->rate_idx is not "
3368 "an MCS index [0-76]: %d (0x%02x)\n",
3369 status->rate_idx,
3370 status->rate_idx))
3371 goto drop;
3372 } else if (status->flag & RX_FLAG_VHT) {
3373 if (WARN_ONCE(status->rate_idx > 9 ||
3374 !status->vht_nss ||
3375 status->vht_nss > 8,
3376 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3377 status->rate_idx, status->vht_nss))
3378 goto drop;
3379 } else {
3380 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3381 goto drop;
3382 rate = &sband->bitrates[status->rate_idx];
3383 }
3384 }
3385
3386 status->rx_flags = 0;
3387
3388 /*
3389 * key references and virtual interfaces are protected using RCU
3390 * and this requires that we are in a read-side RCU section during
3391 * receive processing
3392 */
3393 rcu_read_lock();
3394
3395 /*
3396 * Frames with failed FCS/PLCP checksum are not returned,
3397 * all other frames are returned without radiotap header
3398 * if it was previously present.
3399 * Also, frames with less than 16 bytes are dropped.
3400 */
3401 skb = ieee80211_rx_monitor(local, skb, rate);
3402 if (!skb) {
3403 rcu_read_unlock();
3404 return;
3405 }
3406
3407 ieee80211_tpt_led_trig_rx(local,
3408 ((struct ieee80211_hdr *)skb->data)->frame_control,
3409 skb->len);
3410 __ieee80211_rx_handle_packet(hw, skb);
3411
3412 rcu_read_unlock();
3413
3414 return;
3415 drop:
3416 kfree_skb(skb);
3417 }
3418 EXPORT_SYMBOL(ieee80211_rx);
3419
3420 /* This is a version of the rx handler that can be called from hard irq
3421 * context. Post the skb on the queue and schedule the tasklet */
3422 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3423 {
3424 struct ieee80211_local *local = hw_to_local(hw);
3425
3426 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3427
3428 skb->pkt_type = IEEE80211_RX_MSG;
3429 skb_queue_tail(&local->skb_queue, skb);
3430 tasklet_schedule(&local->tasklet);
3431 }
3432 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.134156 seconds and 5 git commands to generate.