mac80211: always process blockack action from workqueue
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_TSFT)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 return len;
89 }
90
91 /*
92 * ieee80211_add_rx_radiotap_header - add radiotap header
93 *
94 * add a radiotap header containing all the fields which the hardware provided.
95 */
96 static void
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
98 struct sk_buff *skb,
99 struct ieee80211_rate *rate,
100 int rtap_len)
101 {
102 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
103 struct ieee80211_radiotap_header *rthdr;
104 unsigned char *pos;
105 u16 rx_flags = 0;
106
107 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
108 memset(rthdr, 0, rtap_len);
109
110 /* radiotap header, set always present flags */
111 rthdr->it_present =
112 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
113 (1 << IEEE80211_RADIOTAP_CHANNEL) |
114 (1 << IEEE80211_RADIOTAP_ANTENNA) |
115 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
116 rthdr->it_len = cpu_to_le16(rtap_len);
117
118 pos = (unsigned char *)(rthdr+1);
119
120 /* the order of the following fields is important */
121
122 /* IEEE80211_RADIOTAP_TSFT */
123 if (status->flag & RX_FLAG_TSFT) {
124 put_unaligned_le64(status->mactime, pos);
125 rthdr->it_present |=
126 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
127 pos += 8;
128 }
129
130 /* IEEE80211_RADIOTAP_FLAGS */
131 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
132 *pos |= IEEE80211_RADIOTAP_F_FCS;
133 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
134 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
135 if (status->flag & RX_FLAG_SHORTPRE)
136 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
137 pos++;
138
139 /* IEEE80211_RADIOTAP_RATE */
140 if (status->flag & RX_FLAG_HT) {
141 /*
142 * TODO: add following information into radiotap header once
143 * suitable fields are defined for it:
144 * - MCS index (status->rate_idx)
145 * - HT40 (status->flag & RX_FLAG_40MHZ)
146 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
147 */
148 *pos = 0;
149 } else {
150 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 *pos = rate->bitrate / 5;
152 }
153 pos++;
154
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status->freq, pos);
157 pos += 2;
158 if (status->band == IEEE80211_BAND_5GHZ)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 pos);
161 else if (status->flag & RX_FLAG_HT)
162 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 pos);
164 else if (rate->flags & IEEE80211_RATE_ERP_G)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 pos);
167 else
168 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 pos);
170 pos += 2;
171
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 *pos = status->signal;
175 rthdr->it_present |=
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 pos++;
178 }
179
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos = status->antenna;
184 pos++;
185
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos - (u8 *)rthdr) & 1)
191 pos++;
192 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 put_unaligned_le16(rx_flags, pos);
195 pos += 2;
196 }
197
198 /*
199 * This function copies a received frame to all monitor interfaces and
200 * returns a cleaned-up SKB that no longer includes the FCS nor the
201 * radiotap header the driver might have added.
202 */
203 static struct sk_buff *
204 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
205 struct ieee80211_rate *rate)
206 {
207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
208 struct ieee80211_sub_if_data *sdata;
209 int needed_headroom = 0;
210 struct sk_buff *skb, *skb2;
211 struct net_device *prev_dev = NULL;
212 int present_fcs_len = 0;
213
214 /*
215 * First, we may need to make a copy of the skb because
216 * (1) we need to modify it for radiotap (if not present), and
217 * (2) the other RX handlers will modify the skb we got.
218 *
219 * We don't need to, of course, if we aren't going to return
220 * the SKB because it has a bad FCS/PLCP checksum.
221 */
222
223 /* room for the radiotap header based on driver features */
224 needed_headroom = ieee80211_rx_radiotap_len(local, status);
225
226 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
227 present_fcs_len = FCS_LEN;
228
229 /* make sure hdr->frame_control is on the linear part */
230 if (!pskb_may_pull(origskb, 2)) {
231 dev_kfree_skb(origskb);
232 return NULL;
233 }
234
235 if (!local->monitors) {
236 if (should_drop_frame(origskb, present_fcs_len)) {
237 dev_kfree_skb(origskb);
238 return NULL;
239 }
240
241 return remove_monitor_info(local, origskb);
242 }
243
244 if (should_drop_frame(origskb, present_fcs_len)) {
245 /* only need to expand headroom if necessary */
246 skb = origskb;
247 origskb = NULL;
248
249 /*
250 * This shouldn't trigger often because most devices have an
251 * RX header they pull before we get here, and that should
252 * be big enough for our radiotap information. We should
253 * probably export the length to drivers so that we can have
254 * them allocate enough headroom to start with.
255 */
256 if (skb_headroom(skb) < needed_headroom &&
257 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
258 dev_kfree_skb(skb);
259 return NULL;
260 }
261 } else {
262 /*
263 * Need to make a copy and possibly remove radiotap header
264 * and FCS from the original.
265 */
266 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
267
268 origskb = remove_monitor_info(local, origskb);
269
270 if (!skb)
271 return origskb;
272 }
273
274 /* prepend radiotap information */
275 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
276
277 skb_reset_mac_header(skb);
278 skb->ip_summed = CHECKSUM_UNNECESSARY;
279 skb->pkt_type = PACKET_OTHERHOST;
280 skb->protocol = htons(ETH_P_802_2);
281
282 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
283 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
284 continue;
285
286 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
287 continue;
288
289 if (!ieee80211_sdata_running(sdata))
290 continue;
291
292 if (prev_dev) {
293 skb2 = skb_clone(skb, GFP_ATOMIC);
294 if (skb2) {
295 skb2->dev = prev_dev;
296 netif_rx(skb2);
297 }
298 }
299
300 prev_dev = sdata->dev;
301 sdata->dev->stats.rx_packets++;
302 sdata->dev->stats.rx_bytes += skb->len;
303 }
304
305 if (prev_dev) {
306 skb->dev = prev_dev;
307 netif_rx(skb);
308 } else
309 dev_kfree_skb(skb);
310
311 return origskb;
312 }
313
314
315 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
316 {
317 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
318 int tid;
319
320 /* does the frame have a qos control field? */
321 if (ieee80211_is_data_qos(hdr->frame_control)) {
322 u8 *qc = ieee80211_get_qos_ctl(hdr);
323 /* frame has qos control */
324 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
325 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
326 rx->flags |= IEEE80211_RX_AMSDU;
327 else
328 rx->flags &= ~IEEE80211_RX_AMSDU;
329 } else {
330 /*
331 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
332 *
333 * Sequence numbers for management frames, QoS data
334 * frames with a broadcast/multicast address in the
335 * Address 1 field, and all non-QoS data frames sent
336 * by QoS STAs are assigned using an additional single
337 * modulo-4096 counter, [...]
338 *
339 * We also use that counter for non-QoS STAs.
340 */
341 tid = NUM_RX_DATA_QUEUES - 1;
342 }
343
344 rx->queue = tid;
345 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
346 * For now, set skb->priority to 0 for other cases. */
347 rx->skb->priority = (tid > 7) ? 0 : tid;
348 }
349
350 /**
351 * DOC: Packet alignment
352 *
353 * Drivers always need to pass packets that are aligned to two-byte boundaries
354 * to the stack.
355 *
356 * Additionally, should, if possible, align the payload data in a way that
357 * guarantees that the contained IP header is aligned to a four-byte
358 * boundary. In the case of regular frames, this simply means aligning the
359 * payload to a four-byte boundary (because either the IP header is directly
360 * contained, or IV/RFC1042 headers that have a length divisible by four are
361 * in front of it). If the payload data is not properly aligned and the
362 * architecture doesn't support efficient unaligned operations, mac80211
363 * will align the data.
364 *
365 * With A-MSDU frames, however, the payload data address must yield two modulo
366 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
367 * push the IP header further back to a multiple of four again. Thankfully, the
368 * specs were sane enough this time around to require padding each A-MSDU
369 * subframe to a length that is a multiple of four.
370 *
371 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
372 * the payload is not supported, the driver is required to move the 802.11
373 * header to be directly in front of the payload in that case.
374 */
375 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
376 {
377 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
378 WARN_ONCE((unsigned long)rx->skb->data & 1,
379 "unaligned packet at 0x%p\n", rx->skb->data);
380 #endif
381 }
382
383
384 /* rx handlers */
385
386 static ieee80211_rx_result debug_noinline
387 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
388 {
389 struct ieee80211_local *local = rx->local;
390 struct sk_buff *skb = rx->skb;
391
392 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning)))
393 return ieee80211_scan_rx(rx->sdata, skb);
394
395 if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning) &&
396 (rx->flags & IEEE80211_RX_IN_SCAN))) {
397 /* drop all the other packets during a software scan anyway */
398 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
399 dev_kfree_skb(skb);
400 return RX_QUEUED;
401 }
402
403 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
404 /* scanning finished during invoking of handlers */
405 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
406 return RX_DROP_UNUSABLE;
407 }
408
409 return RX_CONTINUE;
410 }
411
412
413 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
414 {
415 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
416
417 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
418 return 0;
419
420 return ieee80211_is_robust_mgmt_frame(hdr);
421 }
422
423
424 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
425 {
426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427
428 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
429 return 0;
430
431 return ieee80211_is_robust_mgmt_frame(hdr);
432 }
433
434
435 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
436 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
437 {
438 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
439 struct ieee80211_mmie *mmie;
440
441 if (skb->len < 24 + sizeof(*mmie) ||
442 !is_multicast_ether_addr(hdr->da))
443 return -1;
444
445 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
446 return -1; /* not a robust management frame */
447
448 mmie = (struct ieee80211_mmie *)
449 (skb->data + skb->len - sizeof(*mmie));
450 if (mmie->element_id != WLAN_EID_MMIE ||
451 mmie->length != sizeof(*mmie) - 2)
452 return -1;
453
454 return le16_to_cpu(mmie->key_id);
455 }
456
457
458 static ieee80211_rx_result
459 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
460 {
461 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
462 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
463 char *dev_addr = rx->sdata->vif.addr;
464
465 if (ieee80211_is_data(hdr->frame_control)) {
466 if (is_multicast_ether_addr(hdr->addr1)) {
467 if (ieee80211_has_tods(hdr->frame_control) ||
468 !ieee80211_has_fromds(hdr->frame_control))
469 return RX_DROP_MONITOR;
470 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
471 return RX_DROP_MONITOR;
472 } else {
473 if (!ieee80211_has_a4(hdr->frame_control))
474 return RX_DROP_MONITOR;
475 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
476 return RX_DROP_MONITOR;
477 }
478 }
479
480 /* If there is not an established peer link and this is not a peer link
481 * establisment frame, beacon or probe, drop the frame.
482 */
483
484 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
485 struct ieee80211_mgmt *mgmt;
486
487 if (!ieee80211_is_mgmt(hdr->frame_control))
488 return RX_DROP_MONITOR;
489
490 if (ieee80211_is_action(hdr->frame_control)) {
491 mgmt = (struct ieee80211_mgmt *)hdr;
492 if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
493 return RX_DROP_MONITOR;
494 return RX_CONTINUE;
495 }
496
497 if (ieee80211_is_probe_req(hdr->frame_control) ||
498 ieee80211_is_probe_resp(hdr->frame_control) ||
499 ieee80211_is_beacon(hdr->frame_control))
500 return RX_CONTINUE;
501
502 return RX_DROP_MONITOR;
503
504 }
505
506 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
507
508 if (ieee80211_is_data(hdr->frame_control) &&
509 is_multicast_ether_addr(hdr->addr1) &&
510 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
511 return RX_DROP_MONITOR;
512 #undef msh_h_get
513
514 return RX_CONTINUE;
515 }
516
517 #define SEQ_MODULO 0x1000
518 #define SEQ_MASK 0xfff
519
520 static inline int seq_less(u16 sq1, u16 sq2)
521 {
522 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
523 }
524
525 static inline u16 seq_inc(u16 sq)
526 {
527 return (sq + 1) & SEQ_MASK;
528 }
529
530 static inline u16 seq_sub(u16 sq1, u16 sq2)
531 {
532 return (sq1 - sq2) & SEQ_MASK;
533 }
534
535
536 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
537 struct tid_ampdu_rx *tid_agg_rx,
538 int index,
539 struct sk_buff_head *frames)
540 {
541 struct ieee80211_supported_band *sband;
542 struct ieee80211_rate *rate = NULL;
543 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
544 struct ieee80211_rx_status *status;
545
546 if (!skb)
547 goto no_frame;
548
549 status = IEEE80211_SKB_RXCB(skb);
550
551 /* release the reordered frames to stack */
552 sband = hw->wiphy->bands[status->band];
553 if (!(status->flag & RX_FLAG_HT))
554 rate = &sband->bitrates[status->rate_idx];
555 tid_agg_rx->stored_mpdu_num--;
556 tid_agg_rx->reorder_buf[index] = NULL;
557 __skb_queue_tail(frames, skb);
558
559 no_frame:
560 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
561 }
562
563 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
564 struct tid_ampdu_rx *tid_agg_rx,
565 u16 head_seq_num,
566 struct sk_buff_head *frames)
567 {
568 int index;
569
570 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
571 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
572 tid_agg_rx->buf_size;
573 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
574 }
575 }
576
577 /*
578 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
579 * the skb was added to the buffer longer than this time ago, the earlier
580 * frames that have not yet been received are assumed to be lost and the skb
581 * can be released for processing. This may also release other skb's from the
582 * reorder buffer if there are no additional gaps between the frames.
583 */
584 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
585
586 /*
587 * As this function belongs to the RX path it must be under
588 * rcu_read_lock protection. It returns false if the frame
589 * can be processed immediately, true if it was consumed.
590 */
591 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
592 struct tid_ampdu_rx *tid_agg_rx,
593 struct sk_buff *skb,
594 struct sk_buff_head *frames)
595 {
596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
597 u16 sc = le16_to_cpu(hdr->seq_ctrl);
598 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
599 u16 head_seq_num, buf_size;
600 int index;
601
602 buf_size = tid_agg_rx->buf_size;
603 head_seq_num = tid_agg_rx->head_seq_num;
604
605 /* frame with out of date sequence number */
606 if (seq_less(mpdu_seq_num, head_seq_num)) {
607 dev_kfree_skb(skb);
608 return true;
609 }
610
611 /*
612 * If frame the sequence number exceeds our buffering window
613 * size release some previous frames to make room for this one.
614 */
615 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
616 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
617 /* release stored frames up to new head to stack */
618 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
619 frames);
620 }
621
622 /* Now the new frame is always in the range of the reordering buffer */
623
624 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
625
626 /* check if we already stored this frame */
627 if (tid_agg_rx->reorder_buf[index]) {
628 dev_kfree_skb(skb);
629 return true;
630 }
631
632 /*
633 * If the current MPDU is in the right order and nothing else
634 * is stored we can process it directly, no need to buffer it.
635 */
636 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
637 tid_agg_rx->stored_mpdu_num == 0) {
638 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
639 return false;
640 }
641
642 /* put the frame in the reordering buffer */
643 tid_agg_rx->reorder_buf[index] = skb;
644 tid_agg_rx->reorder_time[index] = jiffies;
645 tid_agg_rx->stored_mpdu_num++;
646 /* release the buffer until next missing frame */
647 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
648 tid_agg_rx->buf_size;
649 if (!tid_agg_rx->reorder_buf[index] &&
650 tid_agg_rx->stored_mpdu_num > 1) {
651 /*
652 * No buffers ready to be released, but check whether any
653 * frames in the reorder buffer have timed out.
654 */
655 int j;
656 int skipped = 1;
657 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
658 j = (j + 1) % tid_agg_rx->buf_size) {
659 if (!tid_agg_rx->reorder_buf[j]) {
660 skipped++;
661 continue;
662 }
663 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
664 HT_RX_REORDER_BUF_TIMEOUT))
665 break;
666
667 #ifdef CONFIG_MAC80211_HT_DEBUG
668 if (net_ratelimit())
669 printk(KERN_DEBUG "%s: release an RX reorder "
670 "frame due to timeout on earlier "
671 "frames\n",
672 wiphy_name(hw->wiphy));
673 #endif
674 ieee80211_release_reorder_frame(hw, tid_agg_rx,
675 j, frames);
676
677 /*
678 * Increment the head seq# also for the skipped slots.
679 */
680 tid_agg_rx->head_seq_num =
681 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
682 skipped = 0;
683 }
684 } else while (tid_agg_rx->reorder_buf[index]) {
685 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
686 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
687 tid_agg_rx->buf_size;
688 }
689
690 return true;
691 }
692
693 /*
694 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
695 * true if the MPDU was buffered, false if it should be processed.
696 */
697 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
698 struct sk_buff_head *frames)
699 {
700 struct sk_buff *skb = rx->skb;
701 struct ieee80211_local *local = rx->local;
702 struct ieee80211_hw *hw = &local->hw;
703 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
704 struct sta_info *sta = rx->sta;
705 struct tid_ampdu_rx *tid_agg_rx;
706 u16 sc;
707 int tid;
708
709 if (!ieee80211_is_data_qos(hdr->frame_control))
710 goto dont_reorder;
711
712 /*
713 * filter the QoS data rx stream according to
714 * STA/TID and check if this STA/TID is on aggregation
715 */
716
717 if (!sta)
718 goto dont_reorder;
719
720 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
721
722 spin_lock(&sta->lock);
723
724 if (!sta->ampdu_mlme.tid_active_rx[tid])
725 goto dont_reorder_unlock;
726
727 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
728
729 /* qos null data frames are excluded */
730 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
731 goto dont_reorder_unlock;
732
733 /* new, potentially un-ordered, ampdu frame - process it */
734
735 /* reset session timer */
736 if (tid_agg_rx->timeout)
737 mod_timer(&tid_agg_rx->session_timer,
738 TU_TO_EXP_TIME(tid_agg_rx->timeout));
739
740 /* if this mpdu is fragmented - terminate rx aggregation session */
741 sc = le16_to_cpu(hdr->seq_ctrl);
742 if (sc & IEEE80211_SCTL_FRAG) {
743 spin_unlock(&sta->lock);
744 __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT,
745 WLAN_REASON_QSTA_REQUIRE_SETUP);
746 dev_kfree_skb(skb);
747 return;
748 }
749
750 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames)) {
751 spin_unlock(&sta->lock);
752 return;
753 }
754
755 dont_reorder_unlock:
756 spin_unlock(&sta->lock);
757 dont_reorder:
758 __skb_queue_tail(frames, skb);
759 }
760
761 static ieee80211_rx_result debug_noinline
762 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
763 {
764 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
765
766 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
767 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
768 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
769 rx->sta->last_seq_ctrl[rx->queue] ==
770 hdr->seq_ctrl)) {
771 if (rx->flags & IEEE80211_RX_RA_MATCH) {
772 rx->local->dot11FrameDuplicateCount++;
773 rx->sta->num_duplicates++;
774 }
775 return RX_DROP_MONITOR;
776 } else
777 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
778 }
779
780 if (unlikely(rx->skb->len < 16)) {
781 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
782 return RX_DROP_MONITOR;
783 }
784
785 /* Drop disallowed frame classes based on STA auth/assoc state;
786 * IEEE 802.11, Chap 5.5.
787 *
788 * mac80211 filters only based on association state, i.e. it drops
789 * Class 3 frames from not associated stations. hostapd sends
790 * deauth/disassoc frames when needed. In addition, hostapd is
791 * responsible for filtering on both auth and assoc states.
792 */
793
794 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
795 return ieee80211_rx_mesh_check(rx);
796
797 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
798 ieee80211_is_pspoll(hdr->frame_control)) &&
799 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
800 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
801 if ((!ieee80211_has_fromds(hdr->frame_control) &&
802 !ieee80211_has_tods(hdr->frame_control) &&
803 ieee80211_is_data(hdr->frame_control)) ||
804 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
805 /* Drop IBSS frames and frames for other hosts
806 * silently. */
807 return RX_DROP_MONITOR;
808 }
809
810 return RX_DROP_MONITOR;
811 }
812
813 return RX_CONTINUE;
814 }
815
816
817 static ieee80211_rx_result debug_noinline
818 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
819 {
820 struct sk_buff *skb = rx->skb;
821 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
822 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
823 int keyidx;
824 int hdrlen;
825 ieee80211_rx_result result = RX_DROP_UNUSABLE;
826 struct ieee80211_key *stakey = NULL;
827 int mmie_keyidx = -1;
828 __le16 fc;
829
830 /*
831 * Key selection 101
832 *
833 * There are four types of keys:
834 * - GTK (group keys)
835 * - IGTK (group keys for management frames)
836 * - PTK (pairwise keys)
837 * - STK (station-to-station pairwise keys)
838 *
839 * When selecting a key, we have to distinguish between multicast
840 * (including broadcast) and unicast frames, the latter can only
841 * use PTKs and STKs while the former always use GTKs and IGTKs.
842 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
843 * unicast frames can also use key indices like GTKs. Hence, if we
844 * don't have a PTK/STK we check the key index for a WEP key.
845 *
846 * Note that in a regular BSS, multicast frames are sent by the
847 * AP only, associated stations unicast the frame to the AP first
848 * which then multicasts it on their behalf.
849 *
850 * There is also a slight problem in IBSS mode: GTKs are negotiated
851 * with each station, that is something we don't currently handle.
852 * The spec seems to expect that one negotiates the same key with
853 * every station but there's no such requirement; VLANs could be
854 * possible.
855 */
856
857 /*
858 * No point in finding a key and decrypting if the frame is neither
859 * addressed to us nor a multicast frame.
860 */
861 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
862 return RX_CONTINUE;
863
864 /* start without a key */
865 rx->key = NULL;
866
867 if (rx->sta)
868 stakey = rcu_dereference(rx->sta->key);
869
870 fc = hdr->frame_control;
871
872 if (!ieee80211_has_protected(fc))
873 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
874
875 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
876 rx->key = stakey;
877 /* Skip decryption if the frame is not protected. */
878 if (!ieee80211_has_protected(fc))
879 return RX_CONTINUE;
880 } else if (mmie_keyidx >= 0) {
881 /* Broadcast/multicast robust management frame / BIP */
882 if ((status->flag & RX_FLAG_DECRYPTED) &&
883 (status->flag & RX_FLAG_IV_STRIPPED))
884 return RX_CONTINUE;
885
886 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
887 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
888 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
889 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
890 } else if (!ieee80211_has_protected(fc)) {
891 /*
892 * The frame was not protected, so skip decryption. However, we
893 * need to set rx->key if there is a key that could have been
894 * used so that the frame may be dropped if encryption would
895 * have been expected.
896 */
897 struct ieee80211_key *key = NULL;
898 if (ieee80211_is_mgmt(fc) &&
899 is_multicast_ether_addr(hdr->addr1) &&
900 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
901 rx->key = key;
902 else if ((key = rcu_dereference(rx->sdata->default_key)))
903 rx->key = key;
904 return RX_CONTINUE;
905 } else {
906 u8 keyid;
907 /*
908 * The device doesn't give us the IV so we won't be
909 * able to look up the key. That's ok though, we
910 * don't need to decrypt the frame, we just won't
911 * be able to keep statistics accurate.
912 * Except for key threshold notifications, should
913 * we somehow allow the driver to tell us which key
914 * the hardware used if this flag is set?
915 */
916 if ((status->flag & RX_FLAG_DECRYPTED) &&
917 (status->flag & RX_FLAG_IV_STRIPPED))
918 return RX_CONTINUE;
919
920 hdrlen = ieee80211_hdrlen(fc);
921
922 if (rx->skb->len < 8 + hdrlen)
923 return RX_DROP_UNUSABLE; /* TODO: count this? */
924
925 /*
926 * no need to call ieee80211_wep_get_keyidx,
927 * it verifies a bunch of things we've done already
928 */
929 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
930 keyidx = keyid >> 6;
931
932 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
933
934 /*
935 * RSNA-protected unicast frames should always be sent with
936 * pairwise or station-to-station keys, but for WEP we allow
937 * using a key index as well.
938 */
939 if (rx->key && rx->key->conf.alg != ALG_WEP &&
940 !is_multicast_ether_addr(hdr->addr1))
941 rx->key = NULL;
942 }
943
944 if (rx->key) {
945 rx->key->tx_rx_count++;
946 /* TODO: add threshold stuff again */
947 } else {
948 return RX_DROP_MONITOR;
949 }
950
951 if (skb_linearize(rx->skb))
952 return RX_DROP_UNUSABLE;
953 /* the hdr variable is invalid now! */
954
955 switch (rx->key->conf.alg) {
956 case ALG_WEP:
957 /* Check for weak IVs if possible */
958 if (rx->sta && ieee80211_is_data(fc) &&
959 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
960 !(status->flag & RX_FLAG_DECRYPTED)) &&
961 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
962 rx->sta->wep_weak_iv_count++;
963
964 result = ieee80211_crypto_wep_decrypt(rx);
965 break;
966 case ALG_TKIP:
967 result = ieee80211_crypto_tkip_decrypt(rx);
968 break;
969 case ALG_CCMP:
970 result = ieee80211_crypto_ccmp_decrypt(rx);
971 break;
972 case ALG_AES_CMAC:
973 result = ieee80211_crypto_aes_cmac_decrypt(rx);
974 break;
975 }
976
977 /* either the frame has been decrypted or will be dropped */
978 status->flag |= RX_FLAG_DECRYPTED;
979
980 return result;
981 }
982
983 static ieee80211_rx_result debug_noinline
984 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
985 {
986 struct ieee80211_local *local;
987 struct ieee80211_hdr *hdr;
988 struct sk_buff *skb;
989
990 local = rx->local;
991 skb = rx->skb;
992 hdr = (struct ieee80211_hdr *) skb->data;
993
994 if (!local->pspolling)
995 return RX_CONTINUE;
996
997 if (!ieee80211_has_fromds(hdr->frame_control))
998 /* this is not from AP */
999 return RX_CONTINUE;
1000
1001 if (!ieee80211_is_data(hdr->frame_control))
1002 return RX_CONTINUE;
1003
1004 if (!ieee80211_has_moredata(hdr->frame_control)) {
1005 /* AP has no more frames buffered for us */
1006 local->pspolling = false;
1007 return RX_CONTINUE;
1008 }
1009
1010 /* more data bit is set, let's request a new frame from the AP */
1011 ieee80211_send_pspoll(local, rx->sdata);
1012
1013 return RX_CONTINUE;
1014 }
1015
1016 static void ap_sta_ps_start(struct sta_info *sta)
1017 {
1018 struct ieee80211_sub_if_data *sdata = sta->sdata;
1019 struct ieee80211_local *local = sdata->local;
1020
1021 atomic_inc(&sdata->bss->num_sta_ps);
1022 set_sta_flags(sta, WLAN_STA_PS_STA);
1023 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1024 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1025 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1026 sdata->name, sta->sta.addr, sta->sta.aid);
1027 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1028 }
1029
1030 static void ap_sta_ps_end(struct sta_info *sta)
1031 {
1032 struct ieee80211_sub_if_data *sdata = sta->sdata;
1033
1034 atomic_dec(&sdata->bss->num_sta_ps);
1035
1036 clear_sta_flags(sta, WLAN_STA_PS_STA);
1037
1038 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1039 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1040 sdata->name, sta->sta.addr, sta->sta.aid);
1041 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1042
1043 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1044 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1045 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1046 sdata->name, sta->sta.addr, sta->sta.aid);
1047 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1048 return;
1049 }
1050
1051 ieee80211_sta_ps_deliver_wakeup(sta);
1052 }
1053
1054 static ieee80211_rx_result debug_noinline
1055 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1056 {
1057 struct sta_info *sta = rx->sta;
1058 struct sk_buff *skb = rx->skb;
1059 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1060 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1061
1062 if (!sta)
1063 return RX_CONTINUE;
1064
1065 /*
1066 * Update last_rx only for IBSS packets which are for the current
1067 * BSSID to avoid keeping the current IBSS network alive in cases
1068 * where other STAs start using different BSSID.
1069 */
1070 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1071 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1072 NL80211_IFTYPE_ADHOC);
1073 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1074 sta->last_rx = jiffies;
1075 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1076 /*
1077 * Mesh beacons will update last_rx when if they are found to
1078 * match the current local configuration when processed.
1079 */
1080 sta->last_rx = jiffies;
1081 }
1082
1083 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1084 return RX_CONTINUE;
1085
1086 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1087 ieee80211_sta_rx_notify(rx->sdata, hdr);
1088
1089 sta->rx_fragments++;
1090 sta->rx_bytes += rx->skb->len;
1091 sta->last_signal = status->signal;
1092
1093 /*
1094 * Change STA power saving mode only at the end of a frame
1095 * exchange sequence.
1096 */
1097 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1098 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1099 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1100 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1101 /*
1102 * Ignore doze->wake transitions that are
1103 * indicated by non-data frames, the standard
1104 * is unclear here, but for example going to
1105 * PS mode and then scanning would cause a
1106 * doze->wake transition for the probe request,
1107 * and that is clearly undesirable.
1108 */
1109 if (ieee80211_is_data(hdr->frame_control) &&
1110 !ieee80211_has_pm(hdr->frame_control))
1111 ap_sta_ps_end(sta);
1112 } else {
1113 if (ieee80211_has_pm(hdr->frame_control))
1114 ap_sta_ps_start(sta);
1115 }
1116 }
1117
1118 /*
1119 * Drop (qos-)data::nullfunc frames silently, since they
1120 * are used only to control station power saving mode.
1121 */
1122 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1123 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1124 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1125
1126 /*
1127 * If we receive a 4-addr nullfunc frame from a STA
1128 * that was not moved to a 4-addr STA vlan yet, drop
1129 * the frame to the monitor interface, to make sure
1130 * that hostapd sees it
1131 */
1132 if (ieee80211_has_a4(hdr->frame_control) &&
1133 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1134 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1135 !rx->sdata->u.vlan.sta)))
1136 return RX_DROP_MONITOR;
1137 /*
1138 * Update counter and free packet here to avoid
1139 * counting this as a dropped packed.
1140 */
1141 sta->rx_packets++;
1142 dev_kfree_skb(rx->skb);
1143 return RX_QUEUED;
1144 }
1145
1146 return RX_CONTINUE;
1147 } /* ieee80211_rx_h_sta_process */
1148
1149 static inline struct ieee80211_fragment_entry *
1150 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1151 unsigned int frag, unsigned int seq, int rx_queue,
1152 struct sk_buff **skb)
1153 {
1154 struct ieee80211_fragment_entry *entry;
1155 int idx;
1156
1157 idx = sdata->fragment_next;
1158 entry = &sdata->fragments[sdata->fragment_next++];
1159 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1160 sdata->fragment_next = 0;
1161
1162 if (!skb_queue_empty(&entry->skb_list)) {
1163 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1164 struct ieee80211_hdr *hdr =
1165 (struct ieee80211_hdr *) entry->skb_list.next->data;
1166 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1167 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1168 "addr1=%pM addr2=%pM\n",
1169 sdata->name, idx,
1170 jiffies - entry->first_frag_time, entry->seq,
1171 entry->last_frag, hdr->addr1, hdr->addr2);
1172 #endif
1173 __skb_queue_purge(&entry->skb_list);
1174 }
1175
1176 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1177 *skb = NULL;
1178 entry->first_frag_time = jiffies;
1179 entry->seq = seq;
1180 entry->rx_queue = rx_queue;
1181 entry->last_frag = frag;
1182 entry->ccmp = 0;
1183 entry->extra_len = 0;
1184
1185 return entry;
1186 }
1187
1188 static inline struct ieee80211_fragment_entry *
1189 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1190 unsigned int frag, unsigned int seq,
1191 int rx_queue, struct ieee80211_hdr *hdr)
1192 {
1193 struct ieee80211_fragment_entry *entry;
1194 int i, idx;
1195
1196 idx = sdata->fragment_next;
1197 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1198 struct ieee80211_hdr *f_hdr;
1199
1200 idx--;
1201 if (idx < 0)
1202 idx = IEEE80211_FRAGMENT_MAX - 1;
1203
1204 entry = &sdata->fragments[idx];
1205 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1206 entry->rx_queue != rx_queue ||
1207 entry->last_frag + 1 != frag)
1208 continue;
1209
1210 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1211
1212 /*
1213 * Check ftype and addresses are equal, else check next fragment
1214 */
1215 if (((hdr->frame_control ^ f_hdr->frame_control) &
1216 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1217 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1218 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1219 continue;
1220
1221 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1222 __skb_queue_purge(&entry->skb_list);
1223 continue;
1224 }
1225 return entry;
1226 }
1227
1228 return NULL;
1229 }
1230
1231 static ieee80211_rx_result debug_noinline
1232 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1233 {
1234 struct ieee80211_hdr *hdr;
1235 u16 sc;
1236 __le16 fc;
1237 unsigned int frag, seq;
1238 struct ieee80211_fragment_entry *entry;
1239 struct sk_buff *skb;
1240
1241 hdr = (struct ieee80211_hdr *)rx->skb->data;
1242 fc = hdr->frame_control;
1243 sc = le16_to_cpu(hdr->seq_ctrl);
1244 frag = sc & IEEE80211_SCTL_FRAG;
1245
1246 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1247 (rx->skb)->len < 24 ||
1248 is_multicast_ether_addr(hdr->addr1))) {
1249 /* not fragmented */
1250 goto out;
1251 }
1252 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1253
1254 if (skb_linearize(rx->skb))
1255 return RX_DROP_UNUSABLE;
1256
1257 /*
1258 * skb_linearize() might change the skb->data and
1259 * previously cached variables (in this case, hdr) need to
1260 * be refreshed with the new data.
1261 */
1262 hdr = (struct ieee80211_hdr *)rx->skb->data;
1263 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1264
1265 if (frag == 0) {
1266 /* This is the first fragment of a new frame. */
1267 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1268 rx->queue, &(rx->skb));
1269 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
1270 ieee80211_has_protected(fc)) {
1271 /* Store CCMP PN so that we can verify that the next
1272 * fragment has a sequential PN value. */
1273 entry->ccmp = 1;
1274 memcpy(entry->last_pn,
1275 rx->key->u.ccmp.rx_pn[rx->queue],
1276 CCMP_PN_LEN);
1277 }
1278 return RX_QUEUED;
1279 }
1280
1281 /* This is a fragment for a frame that should already be pending in
1282 * fragment cache. Add this fragment to the end of the pending entry.
1283 */
1284 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1285 if (!entry) {
1286 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1287 return RX_DROP_MONITOR;
1288 }
1289
1290 /* Verify that MPDUs within one MSDU have sequential PN values.
1291 * (IEEE 802.11i, 8.3.3.4.5) */
1292 if (entry->ccmp) {
1293 int i;
1294 u8 pn[CCMP_PN_LEN], *rpn;
1295 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
1296 return RX_DROP_UNUSABLE;
1297 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1298 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1299 pn[i]++;
1300 if (pn[i])
1301 break;
1302 }
1303 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
1304 if (memcmp(pn, rpn, CCMP_PN_LEN))
1305 return RX_DROP_UNUSABLE;
1306 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1307 }
1308
1309 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1310 __skb_queue_tail(&entry->skb_list, rx->skb);
1311 entry->last_frag = frag;
1312 entry->extra_len += rx->skb->len;
1313 if (ieee80211_has_morefrags(fc)) {
1314 rx->skb = NULL;
1315 return RX_QUEUED;
1316 }
1317
1318 rx->skb = __skb_dequeue(&entry->skb_list);
1319 if (skb_tailroom(rx->skb) < entry->extra_len) {
1320 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1321 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1322 GFP_ATOMIC))) {
1323 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1324 __skb_queue_purge(&entry->skb_list);
1325 return RX_DROP_UNUSABLE;
1326 }
1327 }
1328 while ((skb = __skb_dequeue(&entry->skb_list))) {
1329 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1330 dev_kfree_skb(skb);
1331 }
1332
1333 /* Complete frame has been reassembled - process it now */
1334 rx->flags |= IEEE80211_RX_FRAGMENTED;
1335
1336 out:
1337 if (rx->sta)
1338 rx->sta->rx_packets++;
1339 if (is_multicast_ether_addr(hdr->addr1))
1340 rx->local->dot11MulticastReceivedFrameCount++;
1341 else
1342 ieee80211_led_rx(rx->local);
1343 return RX_CONTINUE;
1344 }
1345
1346 static ieee80211_rx_result debug_noinline
1347 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1348 {
1349 struct ieee80211_sub_if_data *sdata = rx->sdata;
1350 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1351
1352 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1353 !(rx->flags & IEEE80211_RX_RA_MATCH)))
1354 return RX_CONTINUE;
1355
1356 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1357 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1358 return RX_DROP_UNUSABLE;
1359
1360 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1361 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1362 else
1363 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1364
1365 /* Free PS Poll skb here instead of returning RX_DROP that would
1366 * count as an dropped frame. */
1367 dev_kfree_skb(rx->skb);
1368
1369 return RX_QUEUED;
1370 }
1371
1372 static ieee80211_rx_result debug_noinline
1373 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1374 {
1375 u8 *data = rx->skb->data;
1376 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1377
1378 if (!ieee80211_is_data_qos(hdr->frame_control))
1379 return RX_CONTINUE;
1380
1381 /* remove the qos control field, update frame type and meta-data */
1382 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1383 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1384 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1385 /* change frame type to non QOS */
1386 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1387
1388 return RX_CONTINUE;
1389 }
1390
1391 static int
1392 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1393 {
1394 if (unlikely(!rx->sta ||
1395 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1396 return -EACCES;
1397
1398 return 0;
1399 }
1400
1401 static int
1402 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1403 {
1404 struct sk_buff *skb = rx->skb;
1405 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1406
1407 /*
1408 * Pass through unencrypted frames if the hardware has
1409 * decrypted them already.
1410 */
1411 if (status->flag & RX_FLAG_DECRYPTED)
1412 return 0;
1413
1414 /* Drop unencrypted frames if key is set. */
1415 if (unlikely(!ieee80211_has_protected(fc) &&
1416 !ieee80211_is_nullfunc(fc) &&
1417 ieee80211_is_data(fc) &&
1418 (rx->key || rx->sdata->drop_unencrypted)))
1419 return -EACCES;
1420
1421 return 0;
1422 }
1423
1424 static int
1425 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1426 {
1427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1429 __le16 fc = hdr->frame_control;
1430
1431 /*
1432 * Pass through unencrypted frames if the hardware has
1433 * decrypted them already.
1434 */
1435 if (status->flag & RX_FLAG_DECRYPTED)
1436 return 0;
1437
1438 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1439 if (unlikely(!ieee80211_has_protected(fc) &&
1440 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1441 rx->key))
1442 return -EACCES;
1443 /* BIP does not use Protected field, so need to check MMIE */
1444 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1445 ieee80211_get_mmie_keyidx(rx->skb) < 0))
1446 return -EACCES;
1447 /*
1448 * When using MFP, Action frames are not allowed prior to
1449 * having configured keys.
1450 */
1451 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1452 ieee80211_is_robust_mgmt_frame(
1453 (struct ieee80211_hdr *) rx->skb->data)))
1454 return -EACCES;
1455 }
1456
1457 return 0;
1458 }
1459
1460 static int
1461 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1462 {
1463 struct ieee80211_sub_if_data *sdata = rx->sdata;
1464 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1465
1466 if (ieee80211_has_a4(hdr->frame_control) &&
1467 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1468 return -1;
1469
1470 if (is_multicast_ether_addr(hdr->addr1) &&
1471 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1472 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1473 return -1;
1474
1475 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1476 }
1477
1478 /*
1479 * requires that rx->skb is a frame with ethernet header
1480 */
1481 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1482 {
1483 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1484 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1485 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1486
1487 /*
1488 * Allow EAPOL frames to us/the PAE group address regardless
1489 * of whether the frame was encrypted or not.
1490 */
1491 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1492 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1493 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1494 return true;
1495
1496 if (ieee80211_802_1x_port_control(rx) ||
1497 ieee80211_drop_unencrypted(rx, fc))
1498 return false;
1499
1500 return true;
1501 }
1502
1503 /*
1504 * requires that rx->skb is a frame with ethernet header
1505 */
1506 static void
1507 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1508 {
1509 struct ieee80211_sub_if_data *sdata = rx->sdata;
1510 struct net_device *dev = sdata->dev;
1511 struct sk_buff *skb, *xmit_skb;
1512 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1513 struct sta_info *dsta;
1514
1515 skb = rx->skb;
1516 xmit_skb = NULL;
1517
1518 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1519 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1520 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1521 (rx->flags & IEEE80211_RX_RA_MATCH) &&
1522 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1523 if (is_multicast_ether_addr(ehdr->h_dest)) {
1524 /*
1525 * send multicast frames both to higher layers in
1526 * local net stack and back to the wireless medium
1527 */
1528 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1529 if (!xmit_skb && net_ratelimit())
1530 printk(KERN_DEBUG "%s: failed to clone "
1531 "multicast frame\n", dev->name);
1532 } else {
1533 dsta = sta_info_get(sdata, skb->data);
1534 if (dsta) {
1535 /*
1536 * The destination station is associated to
1537 * this AP (in this VLAN), so send the frame
1538 * directly to it and do not pass it to local
1539 * net stack.
1540 */
1541 xmit_skb = skb;
1542 skb = NULL;
1543 }
1544 }
1545 }
1546
1547 if (skb) {
1548 int align __maybe_unused;
1549
1550 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1551 /*
1552 * 'align' will only take the values 0 or 2 here
1553 * since all frames are required to be aligned
1554 * to 2-byte boundaries when being passed to
1555 * mac80211. That also explains the __skb_push()
1556 * below.
1557 */
1558 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1559 if (align) {
1560 if (WARN_ON(skb_headroom(skb) < 3)) {
1561 dev_kfree_skb(skb);
1562 skb = NULL;
1563 } else {
1564 u8 *data = skb->data;
1565 size_t len = skb_headlen(skb);
1566 skb->data -= align;
1567 memmove(skb->data, data, len);
1568 skb_set_tail_pointer(skb, len);
1569 }
1570 }
1571 #endif
1572
1573 if (skb) {
1574 /* deliver to local stack */
1575 skb->protocol = eth_type_trans(skb, dev);
1576 memset(skb->cb, 0, sizeof(skb->cb));
1577 netif_rx(skb);
1578 }
1579 }
1580
1581 if (xmit_skb) {
1582 /* send to wireless media */
1583 xmit_skb->protocol = htons(ETH_P_802_3);
1584 skb_reset_network_header(xmit_skb);
1585 skb_reset_mac_header(xmit_skb);
1586 dev_queue_xmit(xmit_skb);
1587 }
1588 }
1589
1590 static ieee80211_rx_result debug_noinline
1591 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1592 {
1593 struct net_device *dev = rx->sdata->dev;
1594 struct sk_buff *skb = rx->skb;
1595 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1596 __le16 fc = hdr->frame_control;
1597 struct sk_buff_head frame_list;
1598
1599 if (unlikely(!ieee80211_is_data(fc)))
1600 return RX_CONTINUE;
1601
1602 if (unlikely(!ieee80211_is_data_present(fc)))
1603 return RX_DROP_MONITOR;
1604
1605 if (!(rx->flags & IEEE80211_RX_AMSDU))
1606 return RX_CONTINUE;
1607
1608 if (ieee80211_has_a4(hdr->frame_control) &&
1609 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1610 !rx->sdata->u.vlan.sta)
1611 return RX_DROP_UNUSABLE;
1612
1613 if (is_multicast_ether_addr(hdr->addr1) &&
1614 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1615 rx->sdata->u.vlan.sta) ||
1616 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1617 rx->sdata->u.mgd.use_4addr)))
1618 return RX_DROP_UNUSABLE;
1619
1620 skb->dev = dev;
1621 __skb_queue_head_init(&frame_list);
1622
1623 if (skb_linearize(skb))
1624 return RX_DROP_UNUSABLE;
1625
1626 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1627 rx->sdata->vif.type,
1628 rx->local->hw.extra_tx_headroom);
1629
1630 while (!skb_queue_empty(&frame_list)) {
1631 rx->skb = __skb_dequeue(&frame_list);
1632
1633 if (!ieee80211_frame_allowed(rx, fc)) {
1634 dev_kfree_skb(rx->skb);
1635 continue;
1636 }
1637 dev->stats.rx_packets++;
1638 dev->stats.rx_bytes += rx->skb->len;
1639
1640 ieee80211_deliver_skb(rx);
1641 }
1642
1643 return RX_QUEUED;
1644 }
1645
1646 #ifdef CONFIG_MAC80211_MESH
1647 static ieee80211_rx_result
1648 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1649 {
1650 struct ieee80211_hdr *hdr;
1651 struct ieee80211s_hdr *mesh_hdr;
1652 unsigned int hdrlen;
1653 struct sk_buff *skb = rx->skb, *fwd_skb;
1654 struct ieee80211_local *local = rx->local;
1655 struct ieee80211_sub_if_data *sdata = rx->sdata;
1656
1657 hdr = (struct ieee80211_hdr *) skb->data;
1658 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1659 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1660
1661 if (!ieee80211_is_data(hdr->frame_control))
1662 return RX_CONTINUE;
1663
1664 if (!mesh_hdr->ttl)
1665 /* illegal frame */
1666 return RX_DROP_MONITOR;
1667
1668 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1669 struct mesh_path *mppath;
1670 char *proxied_addr;
1671 char *mpp_addr;
1672
1673 if (is_multicast_ether_addr(hdr->addr1)) {
1674 mpp_addr = hdr->addr3;
1675 proxied_addr = mesh_hdr->eaddr1;
1676 } else {
1677 mpp_addr = hdr->addr4;
1678 proxied_addr = mesh_hdr->eaddr2;
1679 }
1680
1681 rcu_read_lock();
1682 mppath = mpp_path_lookup(proxied_addr, sdata);
1683 if (!mppath) {
1684 mpp_path_add(proxied_addr, mpp_addr, sdata);
1685 } else {
1686 spin_lock_bh(&mppath->state_lock);
1687 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1688 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1689 spin_unlock_bh(&mppath->state_lock);
1690 }
1691 rcu_read_unlock();
1692 }
1693
1694 /* Frame has reached destination. Don't forward */
1695 if (!is_multicast_ether_addr(hdr->addr1) &&
1696 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1697 return RX_CONTINUE;
1698
1699 mesh_hdr->ttl--;
1700
1701 if (rx->flags & IEEE80211_RX_RA_MATCH) {
1702 if (!mesh_hdr->ttl)
1703 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1704 dropped_frames_ttl);
1705 else {
1706 struct ieee80211_hdr *fwd_hdr;
1707 struct ieee80211_tx_info *info;
1708
1709 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1710
1711 if (!fwd_skb && net_ratelimit())
1712 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1713 sdata->name);
1714
1715 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1716 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1717 info = IEEE80211_SKB_CB(fwd_skb);
1718 memset(info, 0, sizeof(*info));
1719 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1720 info->control.vif = &rx->sdata->vif;
1721 skb_set_queue_mapping(skb,
1722 ieee80211_select_queue(rx->sdata, fwd_skb));
1723 ieee80211_set_qos_hdr(local, skb);
1724 if (is_multicast_ether_addr(fwd_hdr->addr1))
1725 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1726 fwded_mcast);
1727 else {
1728 int err;
1729 /*
1730 * Save TA to addr1 to send TA a path error if a
1731 * suitable next hop is not found
1732 */
1733 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1734 ETH_ALEN);
1735 err = mesh_nexthop_lookup(fwd_skb, sdata);
1736 /* Failed to immediately resolve next hop:
1737 * fwded frame was dropped or will be added
1738 * later to the pending skb queue. */
1739 if (err)
1740 return RX_DROP_MONITOR;
1741
1742 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1743 fwded_unicast);
1744 }
1745 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1746 fwded_frames);
1747 ieee80211_add_pending_skb(local, fwd_skb);
1748 }
1749 }
1750
1751 if (is_multicast_ether_addr(hdr->addr1) ||
1752 sdata->dev->flags & IFF_PROMISC)
1753 return RX_CONTINUE;
1754 else
1755 return RX_DROP_MONITOR;
1756 }
1757 #endif
1758
1759 static ieee80211_rx_result debug_noinline
1760 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1761 {
1762 struct ieee80211_sub_if_data *sdata = rx->sdata;
1763 struct ieee80211_local *local = rx->local;
1764 struct net_device *dev = sdata->dev;
1765 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1766 __le16 fc = hdr->frame_control;
1767 int err;
1768
1769 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1770 return RX_CONTINUE;
1771
1772 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1773 return RX_DROP_MONITOR;
1774
1775 /*
1776 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1777 * that a 4-addr station can be detected and moved into a separate VLAN
1778 */
1779 if (ieee80211_has_a4(hdr->frame_control) &&
1780 sdata->vif.type == NL80211_IFTYPE_AP)
1781 return RX_DROP_MONITOR;
1782
1783 err = __ieee80211_data_to_8023(rx);
1784 if (unlikely(err))
1785 return RX_DROP_UNUSABLE;
1786
1787 if (!ieee80211_frame_allowed(rx, fc))
1788 return RX_DROP_MONITOR;
1789
1790 rx->skb->dev = dev;
1791
1792 dev->stats.rx_packets++;
1793 dev->stats.rx_bytes += rx->skb->len;
1794
1795 if (ieee80211_is_data(hdr->frame_control) &&
1796 !is_multicast_ether_addr(hdr->addr1) &&
1797 local->hw.conf.dynamic_ps_timeout > 0 && local->ps_sdata) {
1798 mod_timer(&local->dynamic_ps_timer, jiffies +
1799 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1800 }
1801
1802 ieee80211_deliver_skb(rx);
1803
1804 return RX_QUEUED;
1805 }
1806
1807 static ieee80211_rx_result debug_noinline
1808 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1809 {
1810 struct ieee80211_local *local = rx->local;
1811 struct ieee80211_hw *hw = &local->hw;
1812 struct sk_buff *skb = rx->skb;
1813 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1814 struct tid_ampdu_rx *tid_agg_rx;
1815 u16 start_seq_num;
1816 u16 tid;
1817
1818 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1819 return RX_CONTINUE;
1820
1821 if (ieee80211_is_back_req(bar->frame_control)) {
1822 struct {
1823 __le16 control, start_seq_num;
1824 } __packed bar_data;
1825
1826 if (!rx->sta)
1827 return RX_DROP_MONITOR;
1828
1829 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1830 &bar_data, sizeof(bar_data)))
1831 return RX_DROP_MONITOR;
1832
1833 spin_lock(&rx->sta->lock);
1834 tid = le16_to_cpu(bar_data.control) >> 12;
1835 if (!rx->sta->ampdu_mlme.tid_active_rx[tid]) {
1836 spin_unlock(&rx->sta->lock);
1837 return RX_DROP_MONITOR;
1838 }
1839 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1840
1841 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1842
1843 /* reset session timer */
1844 if (tid_agg_rx->timeout)
1845 mod_timer(&tid_agg_rx->session_timer,
1846 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1847
1848 /* release stored frames up to start of BAR */
1849 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1850 frames);
1851 kfree_skb(skb);
1852 spin_unlock(&rx->sta->lock);
1853 return RX_QUEUED;
1854 }
1855
1856 /*
1857 * After this point, we only want management frames,
1858 * so we can drop all remaining control frames to
1859 * cooked monitor interfaces.
1860 */
1861 return RX_DROP_MONITOR;
1862 }
1863
1864 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1865 struct ieee80211_mgmt *mgmt,
1866 size_t len)
1867 {
1868 struct ieee80211_local *local = sdata->local;
1869 struct sk_buff *skb;
1870 struct ieee80211_mgmt *resp;
1871
1872 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1873 /* Not to own unicast address */
1874 return;
1875 }
1876
1877 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1878 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1879 /* Not from the current AP or not associated yet. */
1880 return;
1881 }
1882
1883 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1884 /* Too short SA Query request frame */
1885 return;
1886 }
1887
1888 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1889 if (skb == NULL)
1890 return;
1891
1892 skb_reserve(skb, local->hw.extra_tx_headroom);
1893 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1894 memset(resp, 0, 24);
1895 memcpy(resp->da, mgmt->sa, ETH_ALEN);
1896 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1897 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1898 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1899 IEEE80211_STYPE_ACTION);
1900 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1901 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1902 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1903 memcpy(resp->u.action.u.sa_query.trans_id,
1904 mgmt->u.action.u.sa_query.trans_id,
1905 WLAN_SA_QUERY_TR_ID_LEN);
1906
1907 ieee80211_tx_skb(sdata, skb);
1908 }
1909
1910 static ieee80211_rx_result debug_noinline
1911 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
1912 {
1913 struct ieee80211_local *local = rx->local;
1914 struct ieee80211_sub_if_data *sdata = rx->sdata;
1915 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1916 struct sk_buff *nskb;
1917 struct ieee80211_rx_status *status;
1918 int len = rx->skb->len;
1919
1920 if (!ieee80211_is_action(mgmt->frame_control))
1921 return RX_CONTINUE;
1922
1923 /* drop too small frames */
1924 if (len < IEEE80211_MIN_ACTION_SIZE)
1925 return RX_DROP_UNUSABLE;
1926
1927 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
1928 return RX_DROP_UNUSABLE;
1929
1930 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1931 return RX_DROP_UNUSABLE;
1932
1933 if (ieee80211_drop_unencrypted_mgmt(rx))
1934 return RX_DROP_UNUSABLE;
1935
1936 switch (mgmt->u.action.category) {
1937 case WLAN_CATEGORY_BACK:
1938 /*
1939 * The aggregation code is not prepared to handle
1940 * anything but STA/AP due to the BSSID handling;
1941 * IBSS could work in the code but isn't supported
1942 * by drivers or the standard.
1943 */
1944 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
1945 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1946 sdata->vif.type != NL80211_IFTYPE_AP)
1947 break;
1948
1949 /* verify action_code is present */
1950 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1951 break;
1952
1953 switch (mgmt->u.action.u.addba_req.action_code) {
1954 case WLAN_ACTION_ADDBA_REQ:
1955 if (len < (IEEE80211_MIN_ACTION_SIZE +
1956 sizeof(mgmt->u.action.u.addba_req)))
1957 goto invalid;
1958 break;
1959 case WLAN_ACTION_ADDBA_RESP:
1960 if (len < (IEEE80211_MIN_ACTION_SIZE +
1961 sizeof(mgmt->u.action.u.addba_resp)))
1962 goto invalid;
1963 break;
1964 case WLAN_ACTION_DELBA:
1965 if (len < (IEEE80211_MIN_ACTION_SIZE +
1966 sizeof(mgmt->u.action.u.delba)))
1967 goto invalid;
1968 break;
1969 default:
1970 goto invalid;
1971 }
1972
1973 skb_queue_tail(&sdata->skb_queue, rx->skb);
1974 ieee80211_queue_work(&local->hw, &sdata->work);
1975 return RX_QUEUED;
1976 case WLAN_CATEGORY_SPECTRUM_MGMT:
1977 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
1978 break;
1979
1980 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1981 break;
1982
1983 /* verify action_code is present */
1984 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1985 break;
1986
1987 switch (mgmt->u.action.u.measurement.action_code) {
1988 case WLAN_ACTION_SPCT_MSR_REQ:
1989 if (len < (IEEE80211_MIN_ACTION_SIZE +
1990 sizeof(mgmt->u.action.u.measurement)))
1991 break;
1992 ieee80211_process_measurement_req(sdata, mgmt, len);
1993 goto handled;
1994 case WLAN_ACTION_SPCT_CHL_SWITCH:
1995 if (len < (IEEE80211_MIN_ACTION_SIZE +
1996 sizeof(mgmt->u.action.u.chan_switch)))
1997 break;
1998
1999 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2000 break;
2001
2002 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2003 break;
2004
2005 skb_queue_tail(&sdata->skb_queue, rx->skb);
2006 ieee80211_queue_work(&local->hw, &sdata->work);
2007 return RX_QUEUED;
2008 }
2009 break;
2010 case WLAN_CATEGORY_SA_QUERY:
2011 if (len < (IEEE80211_MIN_ACTION_SIZE +
2012 sizeof(mgmt->u.action.u.sa_query)))
2013 break;
2014
2015 switch (mgmt->u.action.u.sa_query.action) {
2016 case WLAN_ACTION_SA_QUERY_REQUEST:
2017 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2018 break;
2019 ieee80211_process_sa_query_req(sdata, mgmt, len);
2020 goto handled;
2021 }
2022 break;
2023 case WLAN_CATEGORY_MESH_PLINK:
2024 case WLAN_CATEGORY_MESH_PATH_SEL:
2025 if (!ieee80211_vif_is_mesh(&sdata->vif))
2026 break;
2027 skb_queue_tail(&sdata->skb_queue, rx->skb);
2028 ieee80211_queue_work(&local->hw, &sdata->work);
2029 return RX_QUEUED;
2030 }
2031
2032 invalid:
2033 /*
2034 * For AP mode, hostapd is responsible for handling any action
2035 * frames that we didn't handle, including returning unknown
2036 * ones. For all other modes we will return them to the sender,
2037 * setting the 0x80 bit in the action category, as required by
2038 * 802.11-2007 7.3.1.11.
2039 */
2040 if (sdata->vif.type == NL80211_IFTYPE_AP ||
2041 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2042 return RX_DROP_MONITOR;
2043
2044 /*
2045 * Getting here means the kernel doesn't know how to handle
2046 * it, but maybe userspace does ... include returned frames
2047 * so userspace can register for those to know whether ones
2048 * it transmitted were processed or returned.
2049 */
2050 status = IEEE80211_SKB_RXCB(rx->skb);
2051
2052 if (cfg80211_rx_action(rx->sdata->dev, status->freq,
2053 rx->skb->data, rx->skb->len,
2054 GFP_ATOMIC))
2055 goto handled;
2056
2057 /* do not return rejected action frames */
2058 if (mgmt->u.action.category & 0x80)
2059 return RX_DROP_UNUSABLE;
2060
2061 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2062 GFP_ATOMIC);
2063 if (nskb) {
2064 struct ieee80211_mgmt *mgmt = (void *)nskb->data;
2065
2066 mgmt->u.action.category |= 0x80;
2067 memcpy(mgmt->da, mgmt->sa, ETH_ALEN);
2068 memcpy(mgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2069
2070 memset(nskb->cb, 0, sizeof(nskb->cb));
2071
2072 ieee80211_tx_skb(rx->sdata, nskb);
2073 }
2074
2075 handled:
2076 if (rx->sta)
2077 rx->sta->rx_packets++;
2078 dev_kfree_skb(rx->skb);
2079 return RX_QUEUED;
2080 }
2081
2082 static ieee80211_rx_result debug_noinline
2083 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2084 {
2085 struct ieee80211_sub_if_data *sdata = rx->sdata;
2086 ieee80211_rx_result rxs;
2087 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2088 __le16 stype;
2089
2090 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
2091 return RX_DROP_MONITOR;
2092
2093 if (rx->skb->len < 24)
2094 return RX_DROP_MONITOR;
2095
2096 if (ieee80211_drop_unencrypted_mgmt(rx))
2097 return RX_DROP_UNUSABLE;
2098
2099 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2100 if (rxs != RX_CONTINUE)
2101 return rxs;
2102
2103 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2104
2105 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2106 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2107 sdata->vif.type != NL80211_IFTYPE_STATION)
2108 return RX_DROP_MONITOR;
2109
2110 switch (stype) {
2111 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2112 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2113 /* process for all: mesh, mlme, ibss */
2114 break;
2115 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2116 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2117 /* process only for station */
2118 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2119 return RX_DROP_MONITOR;
2120 break;
2121 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2122 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2123 /* process only for ibss */
2124 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2125 return RX_DROP_MONITOR;
2126 break;
2127 default:
2128 return RX_DROP_MONITOR;
2129 }
2130
2131 /* queue up frame and kick off work to process it */
2132 skb_queue_tail(&sdata->skb_queue, rx->skb);
2133 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2134
2135 return RX_QUEUED;
2136 }
2137
2138 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2139 struct ieee80211_rx_data *rx)
2140 {
2141 int keyidx;
2142 unsigned int hdrlen;
2143
2144 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2145 if (rx->skb->len >= hdrlen + 4)
2146 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2147 else
2148 keyidx = -1;
2149
2150 if (!rx->sta) {
2151 /*
2152 * Some hardware seem to generate incorrect Michael MIC
2153 * reports; ignore them to avoid triggering countermeasures.
2154 */
2155 return;
2156 }
2157
2158 if (!ieee80211_has_protected(hdr->frame_control))
2159 return;
2160
2161 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2162 /*
2163 * APs with pairwise keys should never receive Michael MIC
2164 * errors for non-zero keyidx because these are reserved for
2165 * group keys and only the AP is sending real multicast
2166 * frames in the BSS.
2167 */
2168 return;
2169 }
2170
2171 if (!ieee80211_is_data(hdr->frame_control) &&
2172 !ieee80211_is_auth(hdr->frame_control))
2173 return;
2174
2175 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2176 GFP_ATOMIC);
2177 }
2178
2179 /* TODO: use IEEE80211_RX_FRAGMENTED */
2180 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2181 struct ieee80211_rate *rate)
2182 {
2183 struct ieee80211_sub_if_data *sdata;
2184 struct ieee80211_local *local = rx->local;
2185 struct ieee80211_rtap_hdr {
2186 struct ieee80211_radiotap_header hdr;
2187 u8 flags;
2188 u8 rate_or_pad;
2189 __le16 chan_freq;
2190 __le16 chan_flags;
2191 } __attribute__ ((packed)) *rthdr;
2192 struct sk_buff *skb = rx->skb, *skb2;
2193 struct net_device *prev_dev = NULL;
2194 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2195
2196 if (status->flag & RX_FLAG_INTERNAL_CMTR)
2197 goto out_free_skb;
2198
2199 if (skb_headroom(skb) < sizeof(*rthdr) &&
2200 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2201 goto out_free_skb;
2202
2203 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2204 memset(rthdr, 0, sizeof(*rthdr));
2205 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2206 rthdr->hdr.it_present =
2207 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2208 (1 << IEEE80211_RADIOTAP_CHANNEL));
2209
2210 if (rate) {
2211 rthdr->rate_or_pad = rate->bitrate / 5;
2212 rthdr->hdr.it_present |=
2213 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2214 }
2215 rthdr->chan_freq = cpu_to_le16(status->freq);
2216
2217 if (status->band == IEEE80211_BAND_5GHZ)
2218 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2219 IEEE80211_CHAN_5GHZ);
2220 else
2221 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2222 IEEE80211_CHAN_2GHZ);
2223
2224 skb_set_mac_header(skb, 0);
2225 skb->ip_summed = CHECKSUM_UNNECESSARY;
2226 skb->pkt_type = PACKET_OTHERHOST;
2227 skb->protocol = htons(ETH_P_802_2);
2228
2229 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2230 if (!ieee80211_sdata_running(sdata))
2231 continue;
2232
2233 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2234 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2235 continue;
2236
2237 if (prev_dev) {
2238 skb2 = skb_clone(skb, GFP_ATOMIC);
2239 if (skb2) {
2240 skb2->dev = prev_dev;
2241 netif_rx(skb2);
2242 }
2243 }
2244
2245 prev_dev = sdata->dev;
2246 sdata->dev->stats.rx_packets++;
2247 sdata->dev->stats.rx_bytes += skb->len;
2248 }
2249
2250 if (prev_dev) {
2251 skb->dev = prev_dev;
2252 netif_rx(skb);
2253 skb = NULL;
2254 } else
2255 goto out_free_skb;
2256
2257 status->flag |= RX_FLAG_INTERNAL_CMTR;
2258 return;
2259
2260 out_free_skb:
2261 dev_kfree_skb(skb);
2262 }
2263
2264
2265 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
2266 struct ieee80211_rx_data *rx,
2267 struct sk_buff *skb,
2268 struct ieee80211_rate *rate)
2269 {
2270 struct sk_buff_head reorder_release;
2271 ieee80211_rx_result res = RX_DROP_MONITOR;
2272
2273 __skb_queue_head_init(&reorder_release);
2274
2275 rx->skb = skb;
2276 rx->sdata = sdata;
2277
2278 #define CALL_RXH(rxh) \
2279 do { \
2280 res = rxh(rx); \
2281 if (res != RX_CONTINUE) \
2282 goto rxh_next; \
2283 } while (0);
2284
2285 /*
2286 * NB: the rxh_next label works even if we jump
2287 * to it from here because then the list will
2288 * be empty, which is a trivial check
2289 */
2290 CALL_RXH(ieee80211_rx_h_passive_scan)
2291 CALL_RXH(ieee80211_rx_h_check)
2292
2293 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2294
2295 while ((skb = __skb_dequeue(&reorder_release))) {
2296 /*
2297 * all the other fields are valid across frames
2298 * that belong to an aMPDU since they are on the
2299 * same TID from the same station
2300 */
2301 rx->skb = skb;
2302
2303 CALL_RXH(ieee80211_rx_h_decrypt)
2304 CALL_RXH(ieee80211_rx_h_check_more_data)
2305 CALL_RXH(ieee80211_rx_h_sta_process)
2306 CALL_RXH(ieee80211_rx_h_defragment)
2307 CALL_RXH(ieee80211_rx_h_ps_poll)
2308 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2309 /* must be after MMIC verify so header is counted in MPDU mic */
2310 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2311 CALL_RXH(ieee80211_rx_h_amsdu)
2312 #ifdef CONFIG_MAC80211_MESH
2313 if (ieee80211_vif_is_mesh(&sdata->vif))
2314 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2315 #endif
2316 CALL_RXH(ieee80211_rx_h_data)
2317
2318 /* special treatment -- needs the queue */
2319 res = ieee80211_rx_h_ctrl(rx, &reorder_release);
2320 if (res != RX_CONTINUE)
2321 goto rxh_next;
2322
2323 CALL_RXH(ieee80211_rx_h_action)
2324 CALL_RXH(ieee80211_rx_h_mgmt)
2325
2326 #undef CALL_RXH
2327
2328 rxh_next:
2329 switch (res) {
2330 case RX_DROP_MONITOR:
2331 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2332 if (rx->sta)
2333 rx->sta->rx_dropped++;
2334 /* fall through */
2335 case RX_CONTINUE:
2336 ieee80211_rx_cooked_monitor(rx, rate);
2337 break;
2338 case RX_DROP_UNUSABLE:
2339 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2340 if (rx->sta)
2341 rx->sta->rx_dropped++;
2342 dev_kfree_skb(rx->skb);
2343 break;
2344 case RX_QUEUED:
2345 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
2346 break;
2347 }
2348 }
2349 }
2350
2351 /* main receive path */
2352
2353 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
2354 struct ieee80211_rx_data *rx,
2355 struct ieee80211_hdr *hdr)
2356 {
2357 struct sk_buff *skb = rx->skb;
2358 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2359 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2360 int multicast = is_multicast_ether_addr(hdr->addr1);
2361
2362 switch (sdata->vif.type) {
2363 case NL80211_IFTYPE_STATION:
2364 if (!bssid && !sdata->u.mgd.use_4addr)
2365 return 0;
2366 if (!multicast &&
2367 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2368 if (!(sdata->dev->flags & IFF_PROMISC))
2369 return 0;
2370 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2371 }
2372 break;
2373 case NL80211_IFTYPE_ADHOC:
2374 if (!bssid)
2375 return 0;
2376 if (ieee80211_is_beacon(hdr->frame_control)) {
2377 return 1;
2378 }
2379 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2380 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2381 return 0;
2382 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2383 } else if (!multicast &&
2384 compare_ether_addr(sdata->vif.addr,
2385 hdr->addr1) != 0) {
2386 if (!(sdata->dev->flags & IFF_PROMISC))
2387 return 0;
2388 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2389 } else if (!rx->sta) {
2390 int rate_idx;
2391 if (status->flag & RX_FLAG_HT)
2392 rate_idx = 0; /* TODO: HT rates */
2393 else
2394 rate_idx = status->rate_idx;
2395 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2396 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2397 }
2398 break;
2399 case NL80211_IFTYPE_MESH_POINT:
2400 if (!multicast &&
2401 compare_ether_addr(sdata->vif.addr,
2402 hdr->addr1) != 0) {
2403 if (!(sdata->dev->flags & IFF_PROMISC))
2404 return 0;
2405
2406 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2407 }
2408 break;
2409 case NL80211_IFTYPE_AP_VLAN:
2410 case NL80211_IFTYPE_AP:
2411 if (!bssid) {
2412 if (compare_ether_addr(sdata->vif.addr,
2413 hdr->addr1))
2414 return 0;
2415 } else if (!ieee80211_bssid_match(bssid,
2416 sdata->vif.addr)) {
2417 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2418 return 0;
2419 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2420 }
2421 break;
2422 case NL80211_IFTYPE_WDS:
2423 if (bssid || !ieee80211_is_data(hdr->frame_control))
2424 return 0;
2425 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2426 return 0;
2427 break;
2428 case NL80211_IFTYPE_MONITOR:
2429 case NL80211_IFTYPE_UNSPECIFIED:
2430 case __NL80211_IFTYPE_AFTER_LAST:
2431 /* should never get here */
2432 WARN_ON(1);
2433 break;
2434 }
2435
2436 return 1;
2437 }
2438
2439 /*
2440 * This is the actual Rx frames handler. as it blongs to Rx path it must
2441 * be called with rcu_read_lock protection.
2442 */
2443 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2444 struct sk_buff *skb,
2445 struct ieee80211_rate *rate)
2446 {
2447 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2448 struct ieee80211_local *local = hw_to_local(hw);
2449 struct ieee80211_sub_if_data *sdata;
2450 struct ieee80211_hdr *hdr;
2451 __le16 fc;
2452 struct ieee80211_rx_data rx;
2453 int prepares;
2454 struct ieee80211_sub_if_data *prev = NULL;
2455 struct sk_buff *skb_new;
2456 struct sta_info *sta, *tmp;
2457 bool found_sta = false;
2458 int err = 0;
2459
2460 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2461 memset(&rx, 0, sizeof(rx));
2462 rx.skb = skb;
2463 rx.local = local;
2464
2465 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2466 local->dot11ReceivedFragmentCount++;
2467
2468 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2469 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2470 rx.flags |= IEEE80211_RX_IN_SCAN;
2471
2472 if (ieee80211_is_mgmt(fc))
2473 err = skb_linearize(skb);
2474 else
2475 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2476
2477 if (err) {
2478 dev_kfree_skb(skb);
2479 return;
2480 }
2481
2482 hdr = (struct ieee80211_hdr *)skb->data;
2483 ieee80211_parse_qos(&rx);
2484 ieee80211_verify_alignment(&rx);
2485
2486 if (ieee80211_is_data(fc)) {
2487 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2488 rx.sta = sta;
2489 found_sta = true;
2490 rx.sdata = sta->sdata;
2491
2492 rx.flags |= IEEE80211_RX_RA_MATCH;
2493 prepares = prepare_for_handlers(rx.sdata, &rx, hdr);
2494 if (prepares) {
2495 if (status->flag & RX_FLAG_MMIC_ERROR) {
2496 if (rx.flags & IEEE80211_RX_RA_MATCH)
2497 ieee80211_rx_michael_mic_report(hdr, &rx);
2498 } else
2499 prev = rx.sdata;
2500 }
2501 }
2502 }
2503 if (!found_sta) {
2504 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2505 if (!ieee80211_sdata_running(sdata))
2506 continue;
2507
2508 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2509 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2510 continue;
2511
2512 /*
2513 * frame is destined for this interface, but if it's
2514 * not also for the previous one we handle that after
2515 * the loop to avoid copying the SKB once too much
2516 */
2517
2518 if (!prev) {
2519 prev = sdata;
2520 continue;
2521 }
2522
2523 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2524
2525 rx.flags |= IEEE80211_RX_RA_MATCH;
2526 prepares = prepare_for_handlers(prev, &rx, hdr);
2527
2528 if (!prepares)
2529 goto next;
2530
2531 if (status->flag & RX_FLAG_MMIC_ERROR) {
2532 rx.sdata = prev;
2533 if (rx.flags & IEEE80211_RX_RA_MATCH)
2534 ieee80211_rx_michael_mic_report(hdr,
2535 &rx);
2536 goto next;
2537 }
2538
2539 /*
2540 * frame was destined for the previous interface
2541 * so invoke RX handlers for it
2542 */
2543
2544 skb_new = skb_copy(skb, GFP_ATOMIC);
2545 if (!skb_new) {
2546 if (net_ratelimit())
2547 printk(KERN_DEBUG "%s: failed to copy "
2548 "multicast frame for %s\n",
2549 wiphy_name(local->hw.wiphy),
2550 prev->name);
2551 goto next;
2552 }
2553 ieee80211_invoke_rx_handlers(prev, &rx, skb_new, rate);
2554 next:
2555 prev = sdata;
2556 }
2557
2558 if (prev) {
2559 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2560
2561 rx.flags |= IEEE80211_RX_RA_MATCH;
2562 prepares = prepare_for_handlers(prev, &rx, hdr);
2563
2564 if (!prepares)
2565 prev = NULL;
2566 }
2567 }
2568 if (prev)
2569 ieee80211_invoke_rx_handlers(prev, &rx, skb, rate);
2570 else
2571 dev_kfree_skb(skb);
2572 }
2573
2574 /*
2575 * This is the receive path handler. It is called by a low level driver when an
2576 * 802.11 MPDU is received from the hardware.
2577 */
2578 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2579 {
2580 struct ieee80211_local *local = hw_to_local(hw);
2581 struct ieee80211_rate *rate = NULL;
2582 struct ieee80211_supported_band *sband;
2583 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2584
2585 WARN_ON_ONCE(softirq_count() == 0);
2586
2587 if (WARN_ON(status->band < 0 ||
2588 status->band >= IEEE80211_NUM_BANDS))
2589 goto drop;
2590
2591 sband = local->hw.wiphy->bands[status->band];
2592 if (WARN_ON(!sband))
2593 goto drop;
2594
2595 /*
2596 * If we're suspending, it is possible although not too likely
2597 * that we'd be receiving frames after having already partially
2598 * quiesced the stack. We can't process such frames then since
2599 * that might, for example, cause stations to be added or other
2600 * driver callbacks be invoked.
2601 */
2602 if (unlikely(local->quiescing || local->suspended))
2603 goto drop;
2604
2605 /*
2606 * The same happens when we're not even started,
2607 * but that's worth a warning.
2608 */
2609 if (WARN_ON(!local->started))
2610 goto drop;
2611
2612 if (status->flag & RX_FLAG_HT) {
2613 /*
2614 * rate_idx is MCS index, which can be [0-76] as documented on:
2615 *
2616 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2617 *
2618 * Anything else would be some sort of driver or hardware error.
2619 * The driver should catch hardware errors.
2620 */
2621 if (WARN((status->rate_idx < 0 ||
2622 status->rate_idx > 76),
2623 "Rate marked as an HT rate but passed "
2624 "status->rate_idx is not "
2625 "an MCS index [0-76]: %d (0x%02x)\n",
2626 status->rate_idx,
2627 status->rate_idx))
2628 goto drop;
2629 } else {
2630 if (WARN_ON(status->rate_idx < 0 ||
2631 status->rate_idx >= sband->n_bitrates))
2632 goto drop;
2633 rate = &sband->bitrates[status->rate_idx];
2634 }
2635
2636 /*
2637 * key references and virtual interfaces are protected using RCU
2638 * and this requires that we are in a read-side RCU section during
2639 * receive processing
2640 */
2641 rcu_read_lock();
2642
2643 /*
2644 * Frames with failed FCS/PLCP checksum are not returned,
2645 * all other frames are returned without radiotap header
2646 * if it was previously present.
2647 * Also, frames with less than 16 bytes are dropped.
2648 */
2649 skb = ieee80211_rx_monitor(local, skb, rate);
2650 if (!skb) {
2651 rcu_read_unlock();
2652 return;
2653 }
2654
2655 __ieee80211_rx_handle_packet(hw, skb, rate);
2656
2657 rcu_read_unlock();
2658
2659 return;
2660 drop:
2661 kfree_skb(skb);
2662 }
2663 EXPORT_SYMBOL(ieee80211_rx);
2664
2665 /* This is a version of the rx handler that can be called from hard irq
2666 * context. Post the skb on the queue and schedule the tasklet */
2667 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2668 {
2669 struct ieee80211_local *local = hw_to_local(hw);
2670
2671 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2672
2673 skb->pkt_type = IEEE80211_RX_MSG;
2674 skb_queue_tail(&local->skb_queue, skb);
2675 tasklet_schedule(&local->tasklet);
2676 }
2677 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.120755 seconds and 5 git commands to generate.