netfilter: nft_payload: work around vlan header stripping
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38
39 u64_stats_update_begin(&tstats->syncp);
40 tstats->rx_packets++;
41 tstats->rx_bytes += len;
42 u64_stats_update_end(&tstats->syncp);
43 }
44
45 /*
46 * monitor mode reception
47 *
48 * This function cleans up the SKB, i.e. it removes all the stuff
49 * only useful for monitoring.
50 */
51 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
52 struct sk_buff *skb,
53 unsigned int rtap_vendor_space)
54 {
55 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
56 if (likely(skb->len > FCS_LEN))
57 __pskb_trim(skb, skb->len - FCS_LEN);
58 else {
59 /* driver bug */
60 WARN_ON(1);
61 dev_kfree_skb(skb);
62 return NULL;
63 }
64 }
65
66 __pskb_pull(skb, rtap_vendor_space);
67
68 return skb;
69 }
70
71 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
72 unsigned int rtap_vendor_space)
73 {
74 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
75 struct ieee80211_hdr *hdr;
76
77 hdr = (void *)(skb->data + rtap_vendor_space);
78
79 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
80 RX_FLAG_FAILED_PLCP_CRC |
81 RX_FLAG_AMPDU_IS_ZEROLEN))
82 return true;
83
84 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
85 return true;
86
87 if (ieee80211_is_ctl(hdr->frame_control) &&
88 !ieee80211_is_pspoll(hdr->frame_control) &&
89 !ieee80211_is_back_req(hdr->frame_control))
90 return true;
91
92 return false;
93 }
94
95 static int
96 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
97 struct ieee80211_rx_status *status,
98 struct sk_buff *skb)
99 {
100 int len;
101
102 /* always present fields */
103 len = sizeof(struct ieee80211_radiotap_header) + 8;
104
105 /* allocate extra bitmaps */
106 if (status->chains)
107 len += 4 * hweight8(status->chains);
108
109 if (ieee80211_have_rx_timestamp(status)) {
110 len = ALIGN(len, 8);
111 len += 8;
112 }
113 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
114 len += 1;
115
116 /* antenna field, if we don't have per-chain info */
117 if (!status->chains)
118 len += 1;
119
120 /* padding for RX_FLAGS if necessary */
121 len = ALIGN(len, 2);
122
123 if (status->flag & RX_FLAG_HT) /* HT info */
124 len += 3;
125
126 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
127 len = ALIGN(len, 4);
128 len += 8;
129 }
130
131 if (status->flag & RX_FLAG_VHT) {
132 len = ALIGN(len, 2);
133 len += 12;
134 }
135
136 if (status->chains) {
137 /* antenna and antenna signal fields */
138 len += 2 * hweight8(status->chains);
139 }
140
141 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
142 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
143
144 /* vendor presence bitmap */
145 len += 4;
146 /* alignment for fixed 6-byte vendor data header */
147 len = ALIGN(len, 2);
148 /* vendor data header */
149 len += 6;
150 if (WARN_ON(rtap->align == 0))
151 rtap->align = 1;
152 len = ALIGN(len, rtap->align);
153 len += rtap->len + rtap->pad;
154 }
155
156 return len;
157 }
158
159 /*
160 * ieee80211_add_rx_radiotap_header - add radiotap header
161 *
162 * add a radiotap header containing all the fields which the hardware provided.
163 */
164 static void
165 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
166 struct sk_buff *skb,
167 struct ieee80211_rate *rate,
168 int rtap_len, bool has_fcs)
169 {
170 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
171 struct ieee80211_radiotap_header *rthdr;
172 unsigned char *pos;
173 __le32 *it_present;
174 u32 it_present_val;
175 u16 rx_flags = 0;
176 u16 channel_flags = 0;
177 int mpdulen, chain;
178 unsigned long chains = status->chains;
179 struct ieee80211_vendor_radiotap rtap = {};
180
181 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
182 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
183 /* rtap.len and rtap.pad are undone immediately */
184 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
185 }
186
187 mpdulen = skb->len;
188 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
189 mpdulen += FCS_LEN;
190
191 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
192 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
193 it_present = &rthdr->it_present;
194
195 /* radiotap header, set always present flags */
196 rthdr->it_len = cpu_to_le16(rtap_len);
197 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
198 BIT(IEEE80211_RADIOTAP_CHANNEL) |
199 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
200
201 if (!status->chains)
202 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
203
204 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
205 it_present_val |=
206 BIT(IEEE80211_RADIOTAP_EXT) |
207 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
208 put_unaligned_le32(it_present_val, it_present);
209 it_present++;
210 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
211 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
212 }
213
214 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
215 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
216 BIT(IEEE80211_RADIOTAP_EXT);
217 put_unaligned_le32(it_present_val, it_present);
218 it_present++;
219 it_present_val = rtap.present;
220 }
221
222 put_unaligned_le32(it_present_val, it_present);
223
224 pos = (void *)(it_present + 1);
225
226 /* the order of the following fields is important */
227
228 /* IEEE80211_RADIOTAP_TSFT */
229 if (ieee80211_have_rx_timestamp(status)) {
230 /* padding */
231 while ((pos - (u8 *)rthdr) & 7)
232 *pos++ = 0;
233 put_unaligned_le64(
234 ieee80211_calculate_rx_timestamp(local, status,
235 mpdulen, 0),
236 pos);
237 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
238 pos += 8;
239 }
240
241 /* IEEE80211_RADIOTAP_FLAGS */
242 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
243 *pos |= IEEE80211_RADIOTAP_F_FCS;
244 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
245 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
246 if (status->flag & RX_FLAG_SHORTPRE)
247 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
248 pos++;
249
250 /* IEEE80211_RADIOTAP_RATE */
251 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
252 /*
253 * Without rate information don't add it. If we have,
254 * MCS information is a separate field in radiotap,
255 * added below. The byte here is needed as padding
256 * for the channel though, so initialise it to 0.
257 */
258 *pos = 0;
259 } else {
260 int shift = 0;
261 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
262 if (status->flag & RX_FLAG_10MHZ)
263 shift = 1;
264 else if (status->flag & RX_FLAG_5MHZ)
265 shift = 2;
266 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
267 }
268 pos++;
269
270 /* IEEE80211_RADIOTAP_CHANNEL */
271 put_unaligned_le16(status->freq, pos);
272 pos += 2;
273 if (status->flag & RX_FLAG_10MHZ)
274 channel_flags |= IEEE80211_CHAN_HALF;
275 else if (status->flag & RX_FLAG_5MHZ)
276 channel_flags |= IEEE80211_CHAN_QUARTER;
277
278 if (status->band == IEEE80211_BAND_5GHZ)
279 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
280 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
281 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
282 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
283 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
284 else if (rate)
285 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
286 else
287 channel_flags |= IEEE80211_CHAN_2GHZ;
288 put_unaligned_le16(channel_flags, pos);
289 pos += 2;
290
291 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
292 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
293 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
294 *pos = status->signal;
295 rthdr->it_present |=
296 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
297 pos++;
298 }
299
300 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
301
302 if (!status->chains) {
303 /* IEEE80211_RADIOTAP_ANTENNA */
304 *pos = status->antenna;
305 pos++;
306 }
307
308 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
309
310 /* IEEE80211_RADIOTAP_RX_FLAGS */
311 /* ensure 2 byte alignment for the 2 byte field as required */
312 if ((pos - (u8 *)rthdr) & 1)
313 *pos++ = 0;
314 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
315 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
316 put_unaligned_le16(rx_flags, pos);
317 pos += 2;
318
319 if (status->flag & RX_FLAG_HT) {
320 unsigned int stbc;
321
322 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
323 *pos++ = local->hw.radiotap_mcs_details;
324 *pos = 0;
325 if (status->flag & RX_FLAG_SHORT_GI)
326 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
327 if (status->flag & RX_FLAG_40MHZ)
328 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
329 if (status->flag & RX_FLAG_HT_GF)
330 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
331 if (status->flag & RX_FLAG_LDPC)
332 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
333 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
334 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
335 pos++;
336 *pos++ = status->rate_idx;
337 }
338
339 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
340 u16 flags = 0;
341
342 /* ensure 4 byte alignment */
343 while ((pos - (u8 *)rthdr) & 3)
344 pos++;
345 rthdr->it_present |=
346 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
347 put_unaligned_le32(status->ampdu_reference, pos);
348 pos += 4;
349 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
350 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
351 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
352 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
353 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
354 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
355 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
356 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
357 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
358 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
359 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
360 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
361 put_unaligned_le16(flags, pos);
362 pos += 2;
363 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
364 *pos++ = status->ampdu_delimiter_crc;
365 else
366 *pos++ = 0;
367 *pos++ = 0;
368 }
369
370 if (status->flag & RX_FLAG_VHT) {
371 u16 known = local->hw.radiotap_vht_details;
372
373 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
374 put_unaligned_le16(known, pos);
375 pos += 2;
376 /* flags */
377 if (status->flag & RX_FLAG_SHORT_GI)
378 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
379 /* in VHT, STBC is binary */
380 if (status->flag & RX_FLAG_STBC_MASK)
381 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
382 if (status->vht_flag & RX_VHT_FLAG_BF)
383 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
384 pos++;
385 /* bandwidth */
386 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
387 *pos++ = 4;
388 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
389 *pos++ = 11;
390 else if (status->flag & RX_FLAG_40MHZ)
391 *pos++ = 1;
392 else /* 20 MHz */
393 *pos++ = 0;
394 /* MCS/NSS */
395 *pos = (status->rate_idx << 4) | status->vht_nss;
396 pos += 4;
397 /* coding field */
398 if (status->flag & RX_FLAG_LDPC)
399 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
400 pos++;
401 /* group ID */
402 pos++;
403 /* partial_aid */
404 pos += 2;
405 }
406
407 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
408 *pos++ = status->chain_signal[chain];
409 *pos++ = chain;
410 }
411
412 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
413 /* ensure 2 byte alignment for the vendor field as required */
414 if ((pos - (u8 *)rthdr) & 1)
415 *pos++ = 0;
416 *pos++ = rtap.oui[0];
417 *pos++ = rtap.oui[1];
418 *pos++ = rtap.oui[2];
419 *pos++ = rtap.subns;
420 put_unaligned_le16(rtap.len, pos);
421 pos += 2;
422 /* align the actual payload as requested */
423 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
424 *pos++ = 0;
425 /* data (and possible padding) already follows */
426 }
427 }
428
429 /*
430 * This function copies a received frame to all monitor interfaces and
431 * returns a cleaned-up SKB that no longer includes the FCS nor the
432 * radiotap header the driver might have added.
433 */
434 static struct sk_buff *
435 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
436 struct ieee80211_rate *rate)
437 {
438 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
439 struct ieee80211_sub_if_data *sdata;
440 int rt_hdrlen, needed_headroom;
441 struct sk_buff *skb, *skb2;
442 struct net_device *prev_dev = NULL;
443 int present_fcs_len = 0;
444 unsigned int rtap_vendor_space = 0;
445
446 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
447 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
448
449 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
450 }
451
452 /*
453 * First, we may need to make a copy of the skb because
454 * (1) we need to modify it for radiotap (if not present), and
455 * (2) the other RX handlers will modify the skb we got.
456 *
457 * We don't need to, of course, if we aren't going to return
458 * the SKB because it has a bad FCS/PLCP checksum.
459 */
460
461 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
462 present_fcs_len = FCS_LEN;
463
464 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
465 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
466 dev_kfree_skb(origskb);
467 return NULL;
468 }
469
470 if (!local->monitors) {
471 if (should_drop_frame(origskb, present_fcs_len,
472 rtap_vendor_space)) {
473 dev_kfree_skb(origskb);
474 return NULL;
475 }
476
477 return remove_monitor_info(local, origskb, rtap_vendor_space);
478 }
479
480 /* room for the radiotap header based on driver features */
481 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
482 needed_headroom = rt_hdrlen - rtap_vendor_space;
483
484 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
485 /* only need to expand headroom if necessary */
486 skb = origskb;
487 origskb = NULL;
488
489 /*
490 * This shouldn't trigger often because most devices have an
491 * RX header they pull before we get here, and that should
492 * be big enough for our radiotap information. We should
493 * probably export the length to drivers so that we can have
494 * them allocate enough headroom to start with.
495 */
496 if (skb_headroom(skb) < needed_headroom &&
497 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
498 dev_kfree_skb(skb);
499 return NULL;
500 }
501 } else {
502 /*
503 * Need to make a copy and possibly remove radiotap header
504 * and FCS from the original.
505 */
506 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
507
508 origskb = remove_monitor_info(local, origskb,
509 rtap_vendor_space);
510
511 if (!skb)
512 return origskb;
513 }
514
515 /* prepend radiotap information */
516 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
517
518 skb_reset_mac_header(skb);
519 skb->ip_summed = CHECKSUM_UNNECESSARY;
520 skb->pkt_type = PACKET_OTHERHOST;
521 skb->protocol = htons(ETH_P_802_2);
522
523 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
524 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
525 continue;
526
527 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
528 continue;
529
530 if (!ieee80211_sdata_running(sdata))
531 continue;
532
533 if (prev_dev) {
534 skb2 = skb_clone(skb, GFP_ATOMIC);
535 if (skb2) {
536 skb2->dev = prev_dev;
537 netif_receive_skb(skb2);
538 }
539 }
540
541 prev_dev = sdata->dev;
542 ieee80211_rx_stats(sdata->dev, skb->len);
543 }
544
545 if (prev_dev) {
546 skb->dev = prev_dev;
547 netif_receive_skb(skb);
548 } else
549 dev_kfree_skb(skb);
550
551 return origskb;
552 }
553
554 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
555 {
556 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
557 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
558 int tid, seqno_idx, security_idx;
559
560 /* does the frame have a qos control field? */
561 if (ieee80211_is_data_qos(hdr->frame_control)) {
562 u8 *qc = ieee80211_get_qos_ctl(hdr);
563 /* frame has qos control */
564 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
565 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
566 status->rx_flags |= IEEE80211_RX_AMSDU;
567
568 seqno_idx = tid;
569 security_idx = tid;
570 } else {
571 /*
572 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
573 *
574 * Sequence numbers for management frames, QoS data
575 * frames with a broadcast/multicast address in the
576 * Address 1 field, and all non-QoS data frames sent
577 * by QoS STAs are assigned using an additional single
578 * modulo-4096 counter, [...]
579 *
580 * We also use that counter for non-QoS STAs.
581 */
582 seqno_idx = IEEE80211_NUM_TIDS;
583 security_idx = 0;
584 if (ieee80211_is_mgmt(hdr->frame_control))
585 security_idx = IEEE80211_NUM_TIDS;
586 tid = 0;
587 }
588
589 rx->seqno_idx = seqno_idx;
590 rx->security_idx = security_idx;
591 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
592 * For now, set skb->priority to 0 for other cases. */
593 rx->skb->priority = (tid > 7) ? 0 : tid;
594 }
595
596 /**
597 * DOC: Packet alignment
598 *
599 * Drivers always need to pass packets that are aligned to two-byte boundaries
600 * to the stack.
601 *
602 * Additionally, should, if possible, align the payload data in a way that
603 * guarantees that the contained IP header is aligned to a four-byte
604 * boundary. In the case of regular frames, this simply means aligning the
605 * payload to a four-byte boundary (because either the IP header is directly
606 * contained, or IV/RFC1042 headers that have a length divisible by four are
607 * in front of it). If the payload data is not properly aligned and the
608 * architecture doesn't support efficient unaligned operations, mac80211
609 * will align the data.
610 *
611 * With A-MSDU frames, however, the payload data address must yield two modulo
612 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
613 * push the IP header further back to a multiple of four again. Thankfully, the
614 * specs were sane enough this time around to require padding each A-MSDU
615 * subframe to a length that is a multiple of four.
616 *
617 * Padding like Atheros hardware adds which is between the 802.11 header and
618 * the payload is not supported, the driver is required to move the 802.11
619 * header to be directly in front of the payload in that case.
620 */
621 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
622 {
623 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
624 WARN_ONCE((unsigned long)rx->skb->data & 1,
625 "unaligned packet at 0x%p\n", rx->skb->data);
626 #endif
627 }
628
629
630 /* rx handlers */
631
632 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
633 {
634 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
635
636 if (is_multicast_ether_addr(hdr->addr1))
637 return 0;
638
639 return ieee80211_is_robust_mgmt_frame(skb);
640 }
641
642
643 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
644 {
645 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
646
647 if (!is_multicast_ether_addr(hdr->addr1))
648 return 0;
649
650 return ieee80211_is_robust_mgmt_frame(skb);
651 }
652
653
654 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
655 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
656 {
657 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
658 struct ieee80211_mmie *mmie;
659 struct ieee80211_mmie_16 *mmie16;
660
661 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
662 return -1;
663
664 if (!ieee80211_is_robust_mgmt_frame(skb))
665 return -1; /* not a robust management frame */
666
667 mmie = (struct ieee80211_mmie *)
668 (skb->data + skb->len - sizeof(*mmie));
669 if (mmie->element_id == WLAN_EID_MMIE &&
670 mmie->length == sizeof(*mmie) - 2)
671 return le16_to_cpu(mmie->key_id);
672
673 mmie16 = (struct ieee80211_mmie_16 *)
674 (skb->data + skb->len - sizeof(*mmie16));
675 if (skb->len >= 24 + sizeof(*mmie16) &&
676 mmie16->element_id == WLAN_EID_MMIE &&
677 mmie16->length == sizeof(*mmie16) - 2)
678 return le16_to_cpu(mmie16->key_id);
679
680 return -1;
681 }
682
683 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
684 struct sk_buff *skb)
685 {
686 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
687 __le16 fc;
688 int hdrlen;
689 u8 keyid;
690
691 fc = hdr->frame_control;
692 hdrlen = ieee80211_hdrlen(fc);
693
694 if (skb->len < hdrlen + cs->hdr_len)
695 return -EINVAL;
696
697 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
698 keyid &= cs->key_idx_mask;
699 keyid >>= cs->key_idx_shift;
700
701 return keyid;
702 }
703
704 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
705 {
706 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
707 char *dev_addr = rx->sdata->vif.addr;
708
709 if (ieee80211_is_data(hdr->frame_control)) {
710 if (is_multicast_ether_addr(hdr->addr1)) {
711 if (ieee80211_has_tods(hdr->frame_control) ||
712 !ieee80211_has_fromds(hdr->frame_control))
713 return RX_DROP_MONITOR;
714 if (ether_addr_equal(hdr->addr3, dev_addr))
715 return RX_DROP_MONITOR;
716 } else {
717 if (!ieee80211_has_a4(hdr->frame_control))
718 return RX_DROP_MONITOR;
719 if (ether_addr_equal(hdr->addr4, dev_addr))
720 return RX_DROP_MONITOR;
721 }
722 }
723
724 /* If there is not an established peer link and this is not a peer link
725 * establisment frame, beacon or probe, drop the frame.
726 */
727
728 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
729 struct ieee80211_mgmt *mgmt;
730
731 if (!ieee80211_is_mgmt(hdr->frame_control))
732 return RX_DROP_MONITOR;
733
734 if (ieee80211_is_action(hdr->frame_control)) {
735 u8 category;
736
737 /* make sure category field is present */
738 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
739 return RX_DROP_MONITOR;
740
741 mgmt = (struct ieee80211_mgmt *)hdr;
742 category = mgmt->u.action.category;
743 if (category != WLAN_CATEGORY_MESH_ACTION &&
744 category != WLAN_CATEGORY_SELF_PROTECTED)
745 return RX_DROP_MONITOR;
746 return RX_CONTINUE;
747 }
748
749 if (ieee80211_is_probe_req(hdr->frame_control) ||
750 ieee80211_is_probe_resp(hdr->frame_control) ||
751 ieee80211_is_beacon(hdr->frame_control) ||
752 ieee80211_is_auth(hdr->frame_control))
753 return RX_CONTINUE;
754
755 return RX_DROP_MONITOR;
756 }
757
758 return RX_CONTINUE;
759 }
760
761 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
762 struct tid_ampdu_rx *tid_agg_rx,
763 int index,
764 struct sk_buff_head *frames)
765 {
766 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
767 struct sk_buff *skb;
768 struct ieee80211_rx_status *status;
769
770 lockdep_assert_held(&tid_agg_rx->reorder_lock);
771
772 if (skb_queue_empty(skb_list))
773 goto no_frame;
774
775 if (!ieee80211_rx_reorder_ready(skb_list)) {
776 __skb_queue_purge(skb_list);
777 goto no_frame;
778 }
779
780 /* release frames from the reorder ring buffer */
781 tid_agg_rx->stored_mpdu_num--;
782 while ((skb = __skb_dequeue(skb_list))) {
783 status = IEEE80211_SKB_RXCB(skb);
784 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
785 __skb_queue_tail(frames, skb);
786 }
787
788 no_frame:
789 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
790 }
791
792 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
793 struct tid_ampdu_rx *tid_agg_rx,
794 u16 head_seq_num,
795 struct sk_buff_head *frames)
796 {
797 int index;
798
799 lockdep_assert_held(&tid_agg_rx->reorder_lock);
800
801 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
802 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
803 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
804 frames);
805 }
806 }
807
808 /*
809 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
810 * the skb was added to the buffer longer than this time ago, the earlier
811 * frames that have not yet been received are assumed to be lost and the skb
812 * can be released for processing. This may also release other skb's from the
813 * reorder buffer if there are no additional gaps between the frames.
814 *
815 * Callers must hold tid_agg_rx->reorder_lock.
816 */
817 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
818
819 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
820 struct tid_ampdu_rx *tid_agg_rx,
821 struct sk_buff_head *frames)
822 {
823 int index, i, j;
824
825 lockdep_assert_held(&tid_agg_rx->reorder_lock);
826
827 /* release the buffer until next missing frame */
828 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
829 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
830 tid_agg_rx->stored_mpdu_num) {
831 /*
832 * No buffers ready to be released, but check whether any
833 * frames in the reorder buffer have timed out.
834 */
835 int skipped = 1;
836 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
837 j = (j + 1) % tid_agg_rx->buf_size) {
838 if (!ieee80211_rx_reorder_ready(
839 &tid_agg_rx->reorder_buf[j])) {
840 skipped++;
841 continue;
842 }
843 if (skipped &&
844 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
845 HT_RX_REORDER_BUF_TIMEOUT))
846 goto set_release_timer;
847
848 /* don't leave incomplete A-MSDUs around */
849 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
850 i = (i + 1) % tid_agg_rx->buf_size)
851 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
852
853 ht_dbg_ratelimited(sdata,
854 "release an RX reorder frame due to timeout on earlier frames\n");
855 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
856 frames);
857
858 /*
859 * Increment the head seq# also for the skipped slots.
860 */
861 tid_agg_rx->head_seq_num =
862 (tid_agg_rx->head_seq_num +
863 skipped) & IEEE80211_SN_MASK;
864 skipped = 0;
865 }
866 } else while (ieee80211_rx_reorder_ready(
867 &tid_agg_rx->reorder_buf[index])) {
868 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
869 frames);
870 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
871 }
872
873 if (tid_agg_rx->stored_mpdu_num) {
874 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
875
876 for (; j != (index - 1) % tid_agg_rx->buf_size;
877 j = (j + 1) % tid_agg_rx->buf_size) {
878 if (ieee80211_rx_reorder_ready(
879 &tid_agg_rx->reorder_buf[j]))
880 break;
881 }
882
883 set_release_timer:
884
885 if (!tid_agg_rx->removed)
886 mod_timer(&tid_agg_rx->reorder_timer,
887 tid_agg_rx->reorder_time[j] + 1 +
888 HT_RX_REORDER_BUF_TIMEOUT);
889 } else {
890 del_timer(&tid_agg_rx->reorder_timer);
891 }
892 }
893
894 /*
895 * As this function belongs to the RX path it must be under
896 * rcu_read_lock protection. It returns false if the frame
897 * can be processed immediately, true if it was consumed.
898 */
899 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
900 struct tid_ampdu_rx *tid_agg_rx,
901 struct sk_buff *skb,
902 struct sk_buff_head *frames)
903 {
904 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
905 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
906 u16 sc = le16_to_cpu(hdr->seq_ctrl);
907 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
908 u16 head_seq_num, buf_size;
909 int index;
910 bool ret = true;
911
912 spin_lock(&tid_agg_rx->reorder_lock);
913
914 /*
915 * Offloaded BA sessions have no known starting sequence number so pick
916 * one from first Rxed frame for this tid after BA was started.
917 */
918 if (unlikely(tid_agg_rx->auto_seq)) {
919 tid_agg_rx->auto_seq = false;
920 tid_agg_rx->ssn = mpdu_seq_num;
921 tid_agg_rx->head_seq_num = mpdu_seq_num;
922 }
923
924 buf_size = tid_agg_rx->buf_size;
925 head_seq_num = tid_agg_rx->head_seq_num;
926
927 /* frame with out of date sequence number */
928 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
929 dev_kfree_skb(skb);
930 goto out;
931 }
932
933 /*
934 * If frame the sequence number exceeds our buffering window
935 * size release some previous frames to make room for this one.
936 */
937 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
938 head_seq_num = ieee80211_sn_inc(
939 ieee80211_sn_sub(mpdu_seq_num, buf_size));
940 /* release stored frames up to new head to stack */
941 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
942 head_seq_num, frames);
943 }
944
945 /* Now the new frame is always in the range of the reordering buffer */
946
947 index = mpdu_seq_num % tid_agg_rx->buf_size;
948
949 /* check if we already stored this frame */
950 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
951 dev_kfree_skb(skb);
952 goto out;
953 }
954
955 /*
956 * If the current MPDU is in the right order and nothing else
957 * is stored we can process it directly, no need to buffer it.
958 * If it is first but there's something stored, we may be able
959 * to release frames after this one.
960 */
961 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
962 tid_agg_rx->stored_mpdu_num == 0) {
963 if (!(status->flag & RX_FLAG_AMSDU_MORE))
964 tid_agg_rx->head_seq_num =
965 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
966 ret = false;
967 goto out;
968 }
969
970 /* put the frame in the reordering buffer */
971 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
972 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
973 tid_agg_rx->reorder_time[index] = jiffies;
974 tid_agg_rx->stored_mpdu_num++;
975 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
976 }
977
978 out:
979 spin_unlock(&tid_agg_rx->reorder_lock);
980 return ret;
981 }
982
983 /*
984 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
985 * true if the MPDU was buffered, false if it should be processed.
986 */
987 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
988 struct sk_buff_head *frames)
989 {
990 struct sk_buff *skb = rx->skb;
991 struct ieee80211_local *local = rx->local;
992 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
993 struct sta_info *sta = rx->sta;
994 struct tid_ampdu_rx *tid_agg_rx;
995 u16 sc;
996 u8 tid, ack_policy;
997
998 if (!ieee80211_is_data_qos(hdr->frame_control) ||
999 is_multicast_ether_addr(hdr->addr1))
1000 goto dont_reorder;
1001
1002 /*
1003 * filter the QoS data rx stream according to
1004 * STA/TID and check if this STA/TID is on aggregation
1005 */
1006
1007 if (!sta)
1008 goto dont_reorder;
1009
1010 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1011 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1012 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1013
1014 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1015 if (!tid_agg_rx)
1016 goto dont_reorder;
1017
1018 /* qos null data frames are excluded */
1019 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1020 goto dont_reorder;
1021
1022 /* not part of a BA session */
1023 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1024 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1025 goto dont_reorder;
1026
1027 /* new, potentially un-ordered, ampdu frame - process it */
1028
1029 /* reset session timer */
1030 if (tid_agg_rx->timeout)
1031 tid_agg_rx->last_rx = jiffies;
1032
1033 /* if this mpdu is fragmented - terminate rx aggregation session */
1034 sc = le16_to_cpu(hdr->seq_ctrl);
1035 if (sc & IEEE80211_SCTL_FRAG) {
1036 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1037 skb_queue_tail(&rx->sdata->skb_queue, skb);
1038 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1039 return;
1040 }
1041
1042 /*
1043 * No locking needed -- we will only ever process one
1044 * RX packet at a time, and thus own tid_agg_rx. All
1045 * other code manipulating it needs to (and does) make
1046 * sure that we cannot get to it any more before doing
1047 * anything with it.
1048 */
1049 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1050 frames))
1051 return;
1052
1053 dont_reorder:
1054 __skb_queue_tail(frames, skb);
1055 }
1056
1057 static ieee80211_rx_result debug_noinline
1058 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1059 {
1060 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1061 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1062
1063 /*
1064 * Drop duplicate 802.11 retransmissions
1065 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1066 */
1067
1068 if (rx->skb->len < 24)
1069 return RX_CONTINUE;
1070
1071 if (ieee80211_is_ctl(hdr->frame_control) ||
1072 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1073 is_multicast_ether_addr(hdr->addr1))
1074 return RX_CONTINUE;
1075
1076 if (rx->sta) {
1077 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1078 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1079 hdr->seq_ctrl)) {
1080 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1081 rx->sta->num_duplicates++;
1082 return RX_DROP_UNUSABLE;
1083 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1084 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1085 }
1086 }
1087
1088 return RX_CONTINUE;
1089 }
1090
1091 static ieee80211_rx_result debug_noinline
1092 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1093 {
1094 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1095
1096 if (unlikely(rx->skb->len < 16)) {
1097 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1098 return RX_DROP_MONITOR;
1099 }
1100
1101 /* Drop disallowed frame classes based on STA auth/assoc state;
1102 * IEEE 802.11, Chap 5.5.
1103 *
1104 * mac80211 filters only based on association state, i.e. it drops
1105 * Class 3 frames from not associated stations. hostapd sends
1106 * deauth/disassoc frames when needed. In addition, hostapd is
1107 * responsible for filtering on both auth and assoc states.
1108 */
1109
1110 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1111 return ieee80211_rx_mesh_check(rx);
1112
1113 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1114 ieee80211_is_pspoll(hdr->frame_control)) &&
1115 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1116 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1117 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1118 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1119 /*
1120 * accept port control frames from the AP even when it's not
1121 * yet marked ASSOC to prevent a race where we don't set the
1122 * assoc bit quickly enough before it sends the first frame
1123 */
1124 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1125 ieee80211_is_data_present(hdr->frame_control)) {
1126 unsigned int hdrlen;
1127 __be16 ethertype;
1128
1129 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1130
1131 if (rx->skb->len < hdrlen + 8)
1132 return RX_DROP_MONITOR;
1133
1134 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1135 if (ethertype == rx->sdata->control_port_protocol)
1136 return RX_CONTINUE;
1137 }
1138
1139 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1140 cfg80211_rx_spurious_frame(rx->sdata->dev,
1141 hdr->addr2,
1142 GFP_ATOMIC))
1143 return RX_DROP_UNUSABLE;
1144
1145 return RX_DROP_MONITOR;
1146 }
1147
1148 return RX_CONTINUE;
1149 }
1150
1151
1152 static ieee80211_rx_result debug_noinline
1153 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1154 {
1155 struct ieee80211_local *local;
1156 struct ieee80211_hdr *hdr;
1157 struct sk_buff *skb;
1158
1159 local = rx->local;
1160 skb = rx->skb;
1161 hdr = (struct ieee80211_hdr *) skb->data;
1162
1163 if (!local->pspolling)
1164 return RX_CONTINUE;
1165
1166 if (!ieee80211_has_fromds(hdr->frame_control))
1167 /* this is not from AP */
1168 return RX_CONTINUE;
1169
1170 if (!ieee80211_is_data(hdr->frame_control))
1171 return RX_CONTINUE;
1172
1173 if (!ieee80211_has_moredata(hdr->frame_control)) {
1174 /* AP has no more frames buffered for us */
1175 local->pspolling = false;
1176 return RX_CONTINUE;
1177 }
1178
1179 /* more data bit is set, let's request a new frame from the AP */
1180 ieee80211_send_pspoll(local, rx->sdata);
1181
1182 return RX_CONTINUE;
1183 }
1184
1185 static void sta_ps_start(struct sta_info *sta)
1186 {
1187 struct ieee80211_sub_if_data *sdata = sta->sdata;
1188 struct ieee80211_local *local = sdata->local;
1189 struct ps_data *ps;
1190 int tid;
1191
1192 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1193 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1194 ps = &sdata->bss->ps;
1195 else
1196 return;
1197
1198 atomic_inc(&ps->num_sta_ps);
1199 set_sta_flag(sta, WLAN_STA_PS_STA);
1200 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1201 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1202 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1203 sta->sta.addr, sta->sta.aid);
1204
1205 ieee80211_clear_fast_xmit(sta);
1206
1207 if (!sta->sta.txq[0])
1208 return;
1209
1210 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1211 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1212
1213 if (!skb_queue_len(&txqi->queue))
1214 set_bit(tid, &sta->txq_buffered_tids);
1215 else
1216 clear_bit(tid, &sta->txq_buffered_tids);
1217 }
1218 }
1219
1220 static void sta_ps_end(struct sta_info *sta)
1221 {
1222 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1223 sta->sta.addr, sta->sta.aid);
1224
1225 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1226 /*
1227 * Clear the flag only if the other one is still set
1228 * so that the TX path won't start TX'ing new frames
1229 * directly ... In the case that the driver flag isn't
1230 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1231 */
1232 clear_sta_flag(sta, WLAN_STA_PS_STA);
1233 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1234 sta->sta.addr, sta->sta.aid);
1235 return;
1236 }
1237
1238 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1239 clear_sta_flag(sta, WLAN_STA_PS_STA);
1240 ieee80211_sta_ps_deliver_wakeup(sta);
1241 }
1242
1243 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1244 {
1245 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1246 bool in_ps;
1247
1248 WARN_ON(!ieee80211_hw_check(&sta_inf->local->hw, AP_LINK_PS));
1249
1250 /* Don't let the same PS state be set twice */
1251 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1252 if ((start && in_ps) || (!start && !in_ps))
1253 return -EINVAL;
1254
1255 if (start)
1256 sta_ps_start(sta_inf);
1257 else
1258 sta_ps_end(sta_inf);
1259
1260 return 0;
1261 }
1262 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1263
1264 static ieee80211_rx_result debug_noinline
1265 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1266 {
1267 struct ieee80211_sub_if_data *sdata = rx->sdata;
1268 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1269 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1270 int tid, ac;
1271
1272 if (!rx->sta)
1273 return RX_CONTINUE;
1274
1275 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1276 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1277 return RX_CONTINUE;
1278
1279 /*
1280 * The device handles station powersave, so don't do anything about
1281 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1282 * it to mac80211 since they're handled.)
1283 */
1284 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1285 return RX_CONTINUE;
1286
1287 /*
1288 * Don't do anything if the station isn't already asleep. In
1289 * the uAPSD case, the station will probably be marked asleep,
1290 * in the PS-Poll case the station must be confused ...
1291 */
1292 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1293 return RX_CONTINUE;
1294
1295 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1296 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1297 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1298 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1299 else
1300 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1301 }
1302
1303 /* Free PS Poll skb here instead of returning RX_DROP that would
1304 * count as an dropped frame. */
1305 dev_kfree_skb(rx->skb);
1306
1307 return RX_QUEUED;
1308 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1309 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1310 ieee80211_has_pm(hdr->frame_control) &&
1311 (ieee80211_is_data_qos(hdr->frame_control) ||
1312 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1313 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1314 ac = ieee802_1d_to_ac[tid & 7];
1315
1316 /*
1317 * If this AC is not trigger-enabled do nothing.
1318 *
1319 * NB: This could/should check a separate bitmap of trigger-
1320 * enabled queues, but for now we only implement uAPSD w/o
1321 * TSPEC changes to the ACs, so they're always the same.
1322 */
1323 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1324 return RX_CONTINUE;
1325
1326 /* if we are in a service period, do nothing */
1327 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1328 return RX_CONTINUE;
1329
1330 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1331 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1332 else
1333 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1334 }
1335
1336 return RX_CONTINUE;
1337 }
1338
1339 static ieee80211_rx_result debug_noinline
1340 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1341 {
1342 struct sta_info *sta = rx->sta;
1343 struct sk_buff *skb = rx->skb;
1344 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1345 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1346 int i;
1347
1348 if (!sta)
1349 return RX_CONTINUE;
1350
1351 /*
1352 * Update last_rx only for IBSS packets which are for the current
1353 * BSSID and for station already AUTHORIZED to avoid keeping the
1354 * current IBSS network alive in cases where other STAs start
1355 * using different BSSID. This will also give the station another
1356 * chance to restart the authentication/authorization in case
1357 * something went wrong the first time.
1358 */
1359 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1360 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1361 NL80211_IFTYPE_ADHOC);
1362 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1363 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1364 sta->last_rx = jiffies;
1365 if (ieee80211_is_data(hdr->frame_control) &&
1366 !is_multicast_ether_addr(hdr->addr1)) {
1367 sta->last_rx_rate_idx = status->rate_idx;
1368 sta->last_rx_rate_flag = status->flag;
1369 sta->last_rx_rate_vht_flag = status->vht_flag;
1370 sta->last_rx_rate_vht_nss = status->vht_nss;
1371 }
1372 }
1373 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1374 sta->last_rx = jiffies;
1375 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1376 /*
1377 * Mesh beacons will update last_rx when if they are found to
1378 * match the current local configuration when processed.
1379 */
1380 sta->last_rx = jiffies;
1381 if (ieee80211_is_data(hdr->frame_control)) {
1382 sta->last_rx_rate_idx = status->rate_idx;
1383 sta->last_rx_rate_flag = status->flag;
1384 sta->last_rx_rate_vht_flag = status->vht_flag;
1385 sta->last_rx_rate_vht_nss = status->vht_nss;
1386 }
1387 }
1388
1389 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1390 ieee80211_sta_rx_notify(rx->sdata, hdr);
1391
1392 sta->rx_fragments++;
1393 sta->rx_bytes += rx->skb->len;
1394 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1395 sta->last_signal = status->signal;
1396 ewma_add(&sta->avg_signal, -status->signal);
1397 }
1398
1399 if (status->chains) {
1400 sta->chains = status->chains;
1401 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1402 int signal = status->chain_signal[i];
1403
1404 if (!(status->chains & BIT(i)))
1405 continue;
1406
1407 sta->chain_signal_last[i] = signal;
1408 ewma_add(&sta->chain_signal_avg[i], -signal);
1409 }
1410 }
1411
1412 /*
1413 * Change STA power saving mode only at the end of a frame
1414 * exchange sequence.
1415 */
1416 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1417 !ieee80211_has_morefrags(hdr->frame_control) &&
1418 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1419 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1420 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1421 /* PM bit is only checked in frames where it isn't reserved,
1422 * in AP mode it's reserved in non-bufferable management frames
1423 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1424 */
1425 (!ieee80211_is_mgmt(hdr->frame_control) ||
1426 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1427 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1428 if (!ieee80211_has_pm(hdr->frame_control))
1429 sta_ps_end(sta);
1430 } else {
1431 if (ieee80211_has_pm(hdr->frame_control))
1432 sta_ps_start(sta);
1433 }
1434 }
1435
1436 /* mesh power save support */
1437 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1438 ieee80211_mps_rx_h_sta_process(sta, hdr);
1439
1440 /*
1441 * Drop (qos-)data::nullfunc frames silently, since they
1442 * are used only to control station power saving mode.
1443 */
1444 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1445 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1446 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1447
1448 /*
1449 * If we receive a 4-addr nullfunc frame from a STA
1450 * that was not moved to a 4-addr STA vlan yet send
1451 * the event to userspace and for older hostapd drop
1452 * the frame to the monitor interface.
1453 */
1454 if (ieee80211_has_a4(hdr->frame_control) &&
1455 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1456 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1457 !rx->sdata->u.vlan.sta))) {
1458 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1459 cfg80211_rx_unexpected_4addr_frame(
1460 rx->sdata->dev, sta->sta.addr,
1461 GFP_ATOMIC);
1462 return RX_DROP_MONITOR;
1463 }
1464 /*
1465 * Update counter and free packet here to avoid
1466 * counting this as a dropped packed.
1467 */
1468 sta->rx_packets++;
1469 dev_kfree_skb(rx->skb);
1470 return RX_QUEUED;
1471 }
1472
1473 return RX_CONTINUE;
1474 } /* ieee80211_rx_h_sta_process */
1475
1476 static ieee80211_rx_result debug_noinline
1477 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1478 {
1479 struct sk_buff *skb = rx->skb;
1480 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1481 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1482 int keyidx;
1483 int hdrlen;
1484 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1485 struct ieee80211_key *sta_ptk = NULL;
1486 int mmie_keyidx = -1;
1487 __le16 fc;
1488 const struct ieee80211_cipher_scheme *cs = NULL;
1489
1490 /*
1491 * Key selection 101
1492 *
1493 * There are four types of keys:
1494 * - GTK (group keys)
1495 * - IGTK (group keys for management frames)
1496 * - PTK (pairwise keys)
1497 * - STK (station-to-station pairwise keys)
1498 *
1499 * When selecting a key, we have to distinguish between multicast
1500 * (including broadcast) and unicast frames, the latter can only
1501 * use PTKs and STKs while the former always use GTKs and IGTKs.
1502 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1503 * unicast frames can also use key indices like GTKs. Hence, if we
1504 * don't have a PTK/STK we check the key index for a WEP key.
1505 *
1506 * Note that in a regular BSS, multicast frames are sent by the
1507 * AP only, associated stations unicast the frame to the AP first
1508 * which then multicasts it on their behalf.
1509 *
1510 * There is also a slight problem in IBSS mode: GTKs are negotiated
1511 * with each station, that is something we don't currently handle.
1512 * The spec seems to expect that one negotiates the same key with
1513 * every station but there's no such requirement; VLANs could be
1514 * possible.
1515 */
1516
1517 /* start without a key */
1518 rx->key = NULL;
1519 fc = hdr->frame_control;
1520
1521 if (rx->sta) {
1522 int keyid = rx->sta->ptk_idx;
1523
1524 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1525 cs = rx->sta->cipher_scheme;
1526 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1527 if (unlikely(keyid < 0))
1528 return RX_DROP_UNUSABLE;
1529 }
1530 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1531 }
1532
1533 if (!ieee80211_has_protected(fc))
1534 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1535
1536 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1537 rx->key = sta_ptk;
1538 if ((status->flag & RX_FLAG_DECRYPTED) &&
1539 (status->flag & RX_FLAG_IV_STRIPPED))
1540 return RX_CONTINUE;
1541 /* Skip decryption if the frame is not protected. */
1542 if (!ieee80211_has_protected(fc))
1543 return RX_CONTINUE;
1544 } else if (mmie_keyidx >= 0) {
1545 /* Broadcast/multicast robust management frame / BIP */
1546 if ((status->flag & RX_FLAG_DECRYPTED) &&
1547 (status->flag & RX_FLAG_IV_STRIPPED))
1548 return RX_CONTINUE;
1549
1550 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1551 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1552 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1553 if (rx->sta)
1554 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1555 if (!rx->key)
1556 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1557 } else if (!ieee80211_has_protected(fc)) {
1558 /*
1559 * The frame was not protected, so skip decryption. However, we
1560 * need to set rx->key if there is a key that could have been
1561 * used so that the frame may be dropped if encryption would
1562 * have been expected.
1563 */
1564 struct ieee80211_key *key = NULL;
1565 struct ieee80211_sub_if_data *sdata = rx->sdata;
1566 int i;
1567
1568 if (ieee80211_is_mgmt(fc) &&
1569 is_multicast_ether_addr(hdr->addr1) &&
1570 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1571 rx->key = key;
1572 else {
1573 if (rx->sta) {
1574 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1575 key = rcu_dereference(rx->sta->gtk[i]);
1576 if (key)
1577 break;
1578 }
1579 }
1580 if (!key) {
1581 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1582 key = rcu_dereference(sdata->keys[i]);
1583 if (key)
1584 break;
1585 }
1586 }
1587 if (key)
1588 rx->key = key;
1589 }
1590 return RX_CONTINUE;
1591 } else {
1592 u8 keyid;
1593
1594 /*
1595 * The device doesn't give us the IV so we won't be
1596 * able to look up the key. That's ok though, we
1597 * don't need to decrypt the frame, we just won't
1598 * be able to keep statistics accurate.
1599 * Except for key threshold notifications, should
1600 * we somehow allow the driver to tell us which key
1601 * the hardware used if this flag is set?
1602 */
1603 if ((status->flag & RX_FLAG_DECRYPTED) &&
1604 (status->flag & RX_FLAG_IV_STRIPPED))
1605 return RX_CONTINUE;
1606
1607 hdrlen = ieee80211_hdrlen(fc);
1608
1609 if (cs) {
1610 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1611
1612 if (unlikely(keyidx < 0))
1613 return RX_DROP_UNUSABLE;
1614 } else {
1615 if (rx->skb->len < 8 + hdrlen)
1616 return RX_DROP_UNUSABLE; /* TODO: count this? */
1617 /*
1618 * no need to call ieee80211_wep_get_keyidx,
1619 * it verifies a bunch of things we've done already
1620 */
1621 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1622 keyidx = keyid >> 6;
1623 }
1624
1625 /* check per-station GTK first, if multicast packet */
1626 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1627 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1628
1629 /* if not found, try default key */
1630 if (!rx->key) {
1631 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1632
1633 /*
1634 * RSNA-protected unicast frames should always be
1635 * sent with pairwise or station-to-station keys,
1636 * but for WEP we allow using a key index as well.
1637 */
1638 if (rx->key &&
1639 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1640 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1641 !is_multicast_ether_addr(hdr->addr1))
1642 rx->key = NULL;
1643 }
1644 }
1645
1646 if (rx->key) {
1647 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1648 return RX_DROP_MONITOR;
1649
1650 rx->key->tx_rx_count++;
1651 /* TODO: add threshold stuff again */
1652 } else {
1653 return RX_DROP_MONITOR;
1654 }
1655
1656 switch (rx->key->conf.cipher) {
1657 case WLAN_CIPHER_SUITE_WEP40:
1658 case WLAN_CIPHER_SUITE_WEP104:
1659 result = ieee80211_crypto_wep_decrypt(rx);
1660 break;
1661 case WLAN_CIPHER_SUITE_TKIP:
1662 result = ieee80211_crypto_tkip_decrypt(rx);
1663 break;
1664 case WLAN_CIPHER_SUITE_CCMP:
1665 result = ieee80211_crypto_ccmp_decrypt(
1666 rx, IEEE80211_CCMP_MIC_LEN);
1667 break;
1668 case WLAN_CIPHER_SUITE_CCMP_256:
1669 result = ieee80211_crypto_ccmp_decrypt(
1670 rx, IEEE80211_CCMP_256_MIC_LEN);
1671 break;
1672 case WLAN_CIPHER_SUITE_AES_CMAC:
1673 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1674 break;
1675 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1676 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1677 break;
1678 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1679 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1680 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1681 break;
1682 case WLAN_CIPHER_SUITE_GCMP:
1683 case WLAN_CIPHER_SUITE_GCMP_256:
1684 result = ieee80211_crypto_gcmp_decrypt(rx);
1685 break;
1686 default:
1687 result = ieee80211_crypto_hw_decrypt(rx);
1688 }
1689
1690 /* the hdr variable is invalid after the decrypt handlers */
1691
1692 /* either the frame has been decrypted or will be dropped */
1693 status->flag |= RX_FLAG_DECRYPTED;
1694
1695 return result;
1696 }
1697
1698 static inline struct ieee80211_fragment_entry *
1699 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1700 unsigned int frag, unsigned int seq, int rx_queue,
1701 struct sk_buff **skb)
1702 {
1703 struct ieee80211_fragment_entry *entry;
1704
1705 entry = &sdata->fragments[sdata->fragment_next++];
1706 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1707 sdata->fragment_next = 0;
1708
1709 if (!skb_queue_empty(&entry->skb_list))
1710 __skb_queue_purge(&entry->skb_list);
1711
1712 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1713 *skb = NULL;
1714 entry->first_frag_time = jiffies;
1715 entry->seq = seq;
1716 entry->rx_queue = rx_queue;
1717 entry->last_frag = frag;
1718 entry->ccmp = 0;
1719 entry->extra_len = 0;
1720
1721 return entry;
1722 }
1723
1724 static inline struct ieee80211_fragment_entry *
1725 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1726 unsigned int frag, unsigned int seq,
1727 int rx_queue, struct ieee80211_hdr *hdr)
1728 {
1729 struct ieee80211_fragment_entry *entry;
1730 int i, idx;
1731
1732 idx = sdata->fragment_next;
1733 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1734 struct ieee80211_hdr *f_hdr;
1735
1736 idx--;
1737 if (idx < 0)
1738 idx = IEEE80211_FRAGMENT_MAX - 1;
1739
1740 entry = &sdata->fragments[idx];
1741 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1742 entry->rx_queue != rx_queue ||
1743 entry->last_frag + 1 != frag)
1744 continue;
1745
1746 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1747
1748 /*
1749 * Check ftype and addresses are equal, else check next fragment
1750 */
1751 if (((hdr->frame_control ^ f_hdr->frame_control) &
1752 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1753 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1754 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1755 continue;
1756
1757 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1758 __skb_queue_purge(&entry->skb_list);
1759 continue;
1760 }
1761 return entry;
1762 }
1763
1764 return NULL;
1765 }
1766
1767 static ieee80211_rx_result debug_noinline
1768 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1769 {
1770 struct ieee80211_hdr *hdr;
1771 u16 sc;
1772 __le16 fc;
1773 unsigned int frag, seq;
1774 struct ieee80211_fragment_entry *entry;
1775 struct sk_buff *skb;
1776 struct ieee80211_rx_status *status;
1777
1778 hdr = (struct ieee80211_hdr *)rx->skb->data;
1779 fc = hdr->frame_control;
1780
1781 if (ieee80211_is_ctl(fc))
1782 return RX_CONTINUE;
1783
1784 sc = le16_to_cpu(hdr->seq_ctrl);
1785 frag = sc & IEEE80211_SCTL_FRAG;
1786
1787 if (is_multicast_ether_addr(hdr->addr1)) {
1788 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1789 goto out_no_led;
1790 }
1791
1792 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1793 goto out;
1794
1795 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1796
1797 if (skb_linearize(rx->skb))
1798 return RX_DROP_UNUSABLE;
1799
1800 /*
1801 * skb_linearize() might change the skb->data and
1802 * previously cached variables (in this case, hdr) need to
1803 * be refreshed with the new data.
1804 */
1805 hdr = (struct ieee80211_hdr *)rx->skb->data;
1806 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1807
1808 if (frag == 0) {
1809 /* This is the first fragment of a new frame. */
1810 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1811 rx->seqno_idx, &(rx->skb));
1812 if (rx->key &&
1813 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1814 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) &&
1815 ieee80211_has_protected(fc)) {
1816 int queue = rx->security_idx;
1817 /* Store CCMP PN so that we can verify that the next
1818 * fragment has a sequential PN value. */
1819 entry->ccmp = 1;
1820 memcpy(entry->last_pn,
1821 rx->key->u.ccmp.rx_pn[queue],
1822 IEEE80211_CCMP_PN_LEN);
1823 }
1824 return RX_QUEUED;
1825 }
1826
1827 /* This is a fragment for a frame that should already be pending in
1828 * fragment cache. Add this fragment to the end of the pending entry.
1829 */
1830 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1831 rx->seqno_idx, hdr);
1832 if (!entry) {
1833 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1834 return RX_DROP_MONITOR;
1835 }
1836
1837 /* Verify that MPDUs within one MSDU have sequential PN values.
1838 * (IEEE 802.11i, 8.3.3.4.5) */
1839 if (entry->ccmp) {
1840 int i;
1841 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1842 int queue;
1843 if (!rx->key ||
1844 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1845 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256))
1846 return RX_DROP_UNUSABLE;
1847 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1848 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1849 pn[i]++;
1850 if (pn[i])
1851 break;
1852 }
1853 queue = rx->security_idx;
1854 rpn = rx->key->u.ccmp.rx_pn[queue];
1855 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1856 return RX_DROP_UNUSABLE;
1857 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1858 }
1859
1860 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1861 __skb_queue_tail(&entry->skb_list, rx->skb);
1862 entry->last_frag = frag;
1863 entry->extra_len += rx->skb->len;
1864 if (ieee80211_has_morefrags(fc)) {
1865 rx->skb = NULL;
1866 return RX_QUEUED;
1867 }
1868
1869 rx->skb = __skb_dequeue(&entry->skb_list);
1870 if (skb_tailroom(rx->skb) < entry->extra_len) {
1871 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1872 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1873 GFP_ATOMIC))) {
1874 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1875 __skb_queue_purge(&entry->skb_list);
1876 return RX_DROP_UNUSABLE;
1877 }
1878 }
1879 while ((skb = __skb_dequeue(&entry->skb_list))) {
1880 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1881 dev_kfree_skb(skb);
1882 }
1883
1884 /* Complete frame has been reassembled - process it now */
1885 status = IEEE80211_SKB_RXCB(rx->skb);
1886 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1887
1888 out:
1889 ieee80211_led_rx(rx->local);
1890 out_no_led:
1891 if (rx->sta)
1892 rx->sta->rx_packets++;
1893 return RX_CONTINUE;
1894 }
1895
1896 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1897 {
1898 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1899 return -EACCES;
1900
1901 return 0;
1902 }
1903
1904 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1905 {
1906 struct sk_buff *skb = rx->skb;
1907 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1908
1909 /*
1910 * Pass through unencrypted frames if the hardware has
1911 * decrypted them already.
1912 */
1913 if (status->flag & RX_FLAG_DECRYPTED)
1914 return 0;
1915
1916 /* Drop unencrypted frames if key is set. */
1917 if (unlikely(!ieee80211_has_protected(fc) &&
1918 !ieee80211_is_nullfunc(fc) &&
1919 ieee80211_is_data(fc) && rx->key))
1920 return -EACCES;
1921
1922 return 0;
1923 }
1924
1925 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1926 {
1927 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1928 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1929 __le16 fc = hdr->frame_control;
1930
1931 /*
1932 * Pass through unencrypted frames if the hardware has
1933 * decrypted them already.
1934 */
1935 if (status->flag & RX_FLAG_DECRYPTED)
1936 return 0;
1937
1938 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1939 if (unlikely(!ieee80211_has_protected(fc) &&
1940 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1941 rx->key)) {
1942 if (ieee80211_is_deauth(fc) ||
1943 ieee80211_is_disassoc(fc))
1944 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1945 rx->skb->data,
1946 rx->skb->len);
1947 return -EACCES;
1948 }
1949 /* BIP does not use Protected field, so need to check MMIE */
1950 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1951 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1952 if (ieee80211_is_deauth(fc) ||
1953 ieee80211_is_disassoc(fc))
1954 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1955 rx->skb->data,
1956 rx->skb->len);
1957 return -EACCES;
1958 }
1959 /*
1960 * When using MFP, Action frames are not allowed prior to
1961 * having configured keys.
1962 */
1963 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1964 ieee80211_is_robust_mgmt_frame(rx->skb)))
1965 return -EACCES;
1966 }
1967
1968 return 0;
1969 }
1970
1971 static int
1972 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1973 {
1974 struct ieee80211_sub_if_data *sdata = rx->sdata;
1975 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1976 bool check_port_control = false;
1977 struct ethhdr *ehdr;
1978 int ret;
1979
1980 *port_control = false;
1981 if (ieee80211_has_a4(hdr->frame_control) &&
1982 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1983 return -1;
1984
1985 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1986 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1987
1988 if (!sdata->u.mgd.use_4addr)
1989 return -1;
1990 else
1991 check_port_control = true;
1992 }
1993
1994 if (is_multicast_ether_addr(hdr->addr1) &&
1995 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1996 return -1;
1997
1998 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1999 if (ret < 0)
2000 return ret;
2001
2002 ehdr = (struct ethhdr *) rx->skb->data;
2003 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2004 *port_control = true;
2005 else if (check_port_control)
2006 return -1;
2007
2008 return 0;
2009 }
2010
2011 /*
2012 * requires that rx->skb is a frame with ethernet header
2013 */
2014 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2015 {
2016 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2017 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2018 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2019
2020 /*
2021 * Allow EAPOL frames to us/the PAE group address regardless
2022 * of whether the frame was encrypted or not.
2023 */
2024 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2025 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2026 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2027 return true;
2028
2029 if (ieee80211_802_1x_port_control(rx) ||
2030 ieee80211_drop_unencrypted(rx, fc))
2031 return false;
2032
2033 return true;
2034 }
2035
2036 /*
2037 * requires that rx->skb is a frame with ethernet header
2038 */
2039 static void
2040 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2041 {
2042 struct ieee80211_sub_if_data *sdata = rx->sdata;
2043 struct net_device *dev = sdata->dev;
2044 struct sk_buff *skb, *xmit_skb;
2045 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2046 struct sta_info *dsta;
2047
2048 skb = rx->skb;
2049 xmit_skb = NULL;
2050
2051 ieee80211_rx_stats(dev, skb->len);
2052
2053 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2054 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2055 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2056 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2057 if (is_multicast_ether_addr(ehdr->h_dest)) {
2058 /*
2059 * send multicast frames both to higher layers in
2060 * local net stack and back to the wireless medium
2061 */
2062 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2063 if (!xmit_skb)
2064 net_info_ratelimited("%s: failed to clone multicast frame\n",
2065 dev->name);
2066 } else {
2067 dsta = sta_info_get(sdata, skb->data);
2068 if (dsta) {
2069 /*
2070 * The destination station is associated to
2071 * this AP (in this VLAN), so send the frame
2072 * directly to it and do not pass it to local
2073 * net stack.
2074 */
2075 xmit_skb = skb;
2076 skb = NULL;
2077 }
2078 }
2079 }
2080
2081 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2082 if (skb) {
2083 /* 'align' will only take the values 0 or 2 here since all
2084 * frames are required to be aligned to 2-byte boundaries
2085 * when being passed to mac80211; the code here works just
2086 * as well if that isn't true, but mac80211 assumes it can
2087 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2088 */
2089 int align;
2090
2091 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2092 if (align) {
2093 if (WARN_ON(skb_headroom(skb) < 3)) {
2094 dev_kfree_skb(skb);
2095 skb = NULL;
2096 } else {
2097 u8 *data = skb->data;
2098 size_t len = skb_headlen(skb);
2099 skb->data -= align;
2100 memmove(skb->data, data, len);
2101 skb_set_tail_pointer(skb, len);
2102 }
2103 }
2104 }
2105 #endif
2106
2107 if (skb) {
2108 /* deliver to local stack */
2109 skb->protocol = eth_type_trans(skb, dev);
2110 memset(skb->cb, 0, sizeof(skb->cb));
2111 if (!(rx->flags & IEEE80211_RX_REORDER_TIMER) &&
2112 rx->local->napi)
2113 napi_gro_receive(rx->local->napi, skb);
2114 else
2115 netif_receive_skb(skb);
2116 }
2117
2118 if (xmit_skb) {
2119 /*
2120 * Send to wireless media and increase priority by 256 to
2121 * keep the received priority instead of reclassifying
2122 * the frame (see cfg80211_classify8021d).
2123 */
2124 xmit_skb->priority += 256;
2125 xmit_skb->protocol = htons(ETH_P_802_3);
2126 skb_reset_network_header(xmit_skb);
2127 skb_reset_mac_header(xmit_skb);
2128 dev_queue_xmit(xmit_skb);
2129 }
2130 }
2131
2132 static ieee80211_rx_result debug_noinline
2133 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2134 {
2135 struct net_device *dev = rx->sdata->dev;
2136 struct sk_buff *skb = rx->skb;
2137 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2138 __le16 fc = hdr->frame_control;
2139 struct sk_buff_head frame_list;
2140 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2141
2142 if (unlikely(!ieee80211_is_data(fc)))
2143 return RX_CONTINUE;
2144
2145 if (unlikely(!ieee80211_is_data_present(fc)))
2146 return RX_DROP_MONITOR;
2147
2148 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2149 return RX_CONTINUE;
2150
2151 if (ieee80211_has_a4(hdr->frame_control) &&
2152 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2153 !rx->sdata->u.vlan.sta)
2154 return RX_DROP_UNUSABLE;
2155
2156 if (is_multicast_ether_addr(hdr->addr1) &&
2157 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2158 rx->sdata->u.vlan.sta) ||
2159 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2160 rx->sdata->u.mgd.use_4addr)))
2161 return RX_DROP_UNUSABLE;
2162
2163 skb->dev = dev;
2164 __skb_queue_head_init(&frame_list);
2165
2166 if (skb_linearize(skb))
2167 return RX_DROP_UNUSABLE;
2168
2169 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2170 rx->sdata->vif.type,
2171 rx->local->hw.extra_tx_headroom, true);
2172
2173 while (!skb_queue_empty(&frame_list)) {
2174 rx->skb = __skb_dequeue(&frame_list);
2175
2176 if (!ieee80211_frame_allowed(rx, fc)) {
2177 dev_kfree_skb(rx->skb);
2178 continue;
2179 }
2180
2181 ieee80211_deliver_skb(rx);
2182 }
2183
2184 return RX_QUEUED;
2185 }
2186
2187 #ifdef CONFIG_MAC80211_MESH
2188 static ieee80211_rx_result
2189 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2190 {
2191 struct ieee80211_hdr *fwd_hdr, *hdr;
2192 struct ieee80211_tx_info *info;
2193 struct ieee80211s_hdr *mesh_hdr;
2194 struct sk_buff *skb = rx->skb, *fwd_skb;
2195 struct ieee80211_local *local = rx->local;
2196 struct ieee80211_sub_if_data *sdata = rx->sdata;
2197 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2198 u16 q, hdrlen;
2199
2200 hdr = (struct ieee80211_hdr *) skb->data;
2201 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2202
2203 /* make sure fixed part of mesh header is there, also checks skb len */
2204 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2205 return RX_DROP_MONITOR;
2206
2207 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2208
2209 /* make sure full mesh header is there, also checks skb len */
2210 if (!pskb_may_pull(rx->skb,
2211 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2212 return RX_DROP_MONITOR;
2213
2214 /* reload pointers */
2215 hdr = (struct ieee80211_hdr *) skb->data;
2216 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2217
2218 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2219 return RX_DROP_MONITOR;
2220
2221 /* frame is in RMC, don't forward */
2222 if (ieee80211_is_data(hdr->frame_control) &&
2223 is_multicast_ether_addr(hdr->addr1) &&
2224 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2225 return RX_DROP_MONITOR;
2226
2227 if (!ieee80211_is_data(hdr->frame_control))
2228 return RX_CONTINUE;
2229
2230 if (!mesh_hdr->ttl)
2231 return RX_DROP_MONITOR;
2232
2233 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2234 struct mesh_path *mppath;
2235 char *proxied_addr;
2236 char *mpp_addr;
2237
2238 if (is_multicast_ether_addr(hdr->addr1)) {
2239 mpp_addr = hdr->addr3;
2240 proxied_addr = mesh_hdr->eaddr1;
2241 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2242 /* has_a4 already checked in ieee80211_rx_mesh_check */
2243 mpp_addr = hdr->addr4;
2244 proxied_addr = mesh_hdr->eaddr2;
2245 } else {
2246 return RX_DROP_MONITOR;
2247 }
2248
2249 rcu_read_lock();
2250 mppath = mpp_path_lookup(sdata, proxied_addr);
2251 if (!mppath) {
2252 mpp_path_add(sdata, proxied_addr, mpp_addr);
2253 } else {
2254 spin_lock_bh(&mppath->state_lock);
2255 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2256 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2257 spin_unlock_bh(&mppath->state_lock);
2258 }
2259 rcu_read_unlock();
2260 }
2261
2262 /* Frame has reached destination. Don't forward */
2263 if (!is_multicast_ether_addr(hdr->addr1) &&
2264 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2265 return RX_CONTINUE;
2266
2267 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2268 if (ieee80211_queue_stopped(&local->hw, q)) {
2269 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2270 return RX_DROP_MONITOR;
2271 }
2272 skb_set_queue_mapping(skb, q);
2273
2274 if (!--mesh_hdr->ttl) {
2275 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2276 goto out;
2277 }
2278
2279 if (!ifmsh->mshcfg.dot11MeshForwarding)
2280 goto out;
2281
2282 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2283 if (!fwd_skb) {
2284 net_info_ratelimited("%s: failed to clone mesh frame\n",
2285 sdata->name);
2286 goto out;
2287 }
2288
2289 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2290 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2291 info = IEEE80211_SKB_CB(fwd_skb);
2292 memset(info, 0, sizeof(*info));
2293 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2294 info->control.vif = &rx->sdata->vif;
2295 info->control.jiffies = jiffies;
2296 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2297 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2298 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2299 /* update power mode indication when forwarding */
2300 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2301 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2302 /* mesh power mode flags updated in mesh_nexthop_lookup */
2303 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2304 } else {
2305 /* unable to resolve next hop */
2306 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2307 fwd_hdr->addr3, 0,
2308 WLAN_REASON_MESH_PATH_NOFORWARD,
2309 fwd_hdr->addr2);
2310 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2311 kfree_skb(fwd_skb);
2312 return RX_DROP_MONITOR;
2313 }
2314
2315 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2316 ieee80211_add_pending_skb(local, fwd_skb);
2317 out:
2318 if (is_multicast_ether_addr(hdr->addr1))
2319 return RX_CONTINUE;
2320 return RX_DROP_MONITOR;
2321 }
2322 #endif
2323
2324 static ieee80211_rx_result debug_noinline
2325 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2326 {
2327 struct ieee80211_sub_if_data *sdata = rx->sdata;
2328 struct ieee80211_local *local = rx->local;
2329 struct net_device *dev = sdata->dev;
2330 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2331 __le16 fc = hdr->frame_control;
2332 bool port_control;
2333 int err;
2334
2335 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2336 return RX_CONTINUE;
2337
2338 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2339 return RX_DROP_MONITOR;
2340
2341 if (rx->sta) {
2342 /* The seqno index has the same property as needed
2343 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2344 * for non-QoS-data frames. Here we know it's a data
2345 * frame, so count MSDUs.
2346 */
2347 rx->sta->rx_msdu[rx->seqno_idx]++;
2348 }
2349
2350 /*
2351 * Send unexpected-4addr-frame event to hostapd. For older versions,
2352 * also drop the frame to cooked monitor interfaces.
2353 */
2354 if (ieee80211_has_a4(hdr->frame_control) &&
2355 sdata->vif.type == NL80211_IFTYPE_AP) {
2356 if (rx->sta &&
2357 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2358 cfg80211_rx_unexpected_4addr_frame(
2359 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2360 return RX_DROP_MONITOR;
2361 }
2362
2363 err = __ieee80211_data_to_8023(rx, &port_control);
2364 if (unlikely(err))
2365 return RX_DROP_UNUSABLE;
2366
2367 if (!ieee80211_frame_allowed(rx, fc))
2368 return RX_DROP_MONITOR;
2369
2370 /* directly handle TDLS channel switch requests/responses */
2371 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2372 cpu_to_be16(ETH_P_TDLS))) {
2373 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2374
2375 if (pskb_may_pull(rx->skb,
2376 offsetof(struct ieee80211_tdls_data, u)) &&
2377 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2378 tf->category == WLAN_CATEGORY_TDLS &&
2379 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2380 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2381 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW;
2382 skb_queue_tail(&sdata->skb_queue, rx->skb);
2383 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2384 if (rx->sta)
2385 rx->sta->rx_packets++;
2386
2387 return RX_QUEUED;
2388 }
2389 }
2390
2391 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2392 unlikely(port_control) && sdata->bss) {
2393 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2394 u.ap);
2395 dev = sdata->dev;
2396 rx->sdata = sdata;
2397 }
2398
2399 rx->skb->dev = dev;
2400
2401 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2402 !is_multicast_ether_addr(
2403 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2404 (!local->scanning &&
2405 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2406 mod_timer(&local->dynamic_ps_timer, jiffies +
2407 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2408 }
2409
2410 ieee80211_deliver_skb(rx);
2411
2412 return RX_QUEUED;
2413 }
2414
2415 static ieee80211_rx_result debug_noinline
2416 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2417 {
2418 struct sk_buff *skb = rx->skb;
2419 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2420 struct tid_ampdu_rx *tid_agg_rx;
2421 u16 start_seq_num;
2422 u16 tid;
2423
2424 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2425 return RX_CONTINUE;
2426
2427 if (ieee80211_is_back_req(bar->frame_control)) {
2428 struct {
2429 __le16 control, start_seq_num;
2430 } __packed bar_data;
2431 struct ieee80211_event event = {
2432 .type = BAR_RX_EVENT,
2433 };
2434
2435 if (!rx->sta)
2436 return RX_DROP_MONITOR;
2437
2438 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2439 &bar_data, sizeof(bar_data)))
2440 return RX_DROP_MONITOR;
2441
2442 tid = le16_to_cpu(bar_data.control) >> 12;
2443
2444 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2445 if (!tid_agg_rx)
2446 return RX_DROP_MONITOR;
2447
2448 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2449 event.u.ba.tid = tid;
2450 event.u.ba.ssn = start_seq_num;
2451 event.u.ba.sta = &rx->sta->sta;
2452
2453 /* reset session timer */
2454 if (tid_agg_rx->timeout)
2455 mod_timer(&tid_agg_rx->session_timer,
2456 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2457
2458 spin_lock(&tid_agg_rx->reorder_lock);
2459 /* release stored frames up to start of BAR */
2460 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2461 start_seq_num, frames);
2462 spin_unlock(&tid_agg_rx->reorder_lock);
2463
2464 drv_event_callback(rx->local, rx->sdata, &event);
2465
2466 kfree_skb(skb);
2467 return RX_QUEUED;
2468 }
2469
2470 /*
2471 * After this point, we only want management frames,
2472 * so we can drop all remaining control frames to
2473 * cooked monitor interfaces.
2474 */
2475 return RX_DROP_MONITOR;
2476 }
2477
2478 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2479 struct ieee80211_mgmt *mgmt,
2480 size_t len)
2481 {
2482 struct ieee80211_local *local = sdata->local;
2483 struct sk_buff *skb;
2484 struct ieee80211_mgmt *resp;
2485
2486 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2487 /* Not to own unicast address */
2488 return;
2489 }
2490
2491 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2492 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2493 /* Not from the current AP or not associated yet. */
2494 return;
2495 }
2496
2497 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2498 /* Too short SA Query request frame */
2499 return;
2500 }
2501
2502 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2503 if (skb == NULL)
2504 return;
2505
2506 skb_reserve(skb, local->hw.extra_tx_headroom);
2507 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2508 memset(resp, 0, 24);
2509 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2510 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2511 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2512 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2513 IEEE80211_STYPE_ACTION);
2514 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2515 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2516 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2517 memcpy(resp->u.action.u.sa_query.trans_id,
2518 mgmt->u.action.u.sa_query.trans_id,
2519 WLAN_SA_QUERY_TR_ID_LEN);
2520
2521 ieee80211_tx_skb(sdata, skb);
2522 }
2523
2524 static ieee80211_rx_result debug_noinline
2525 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2526 {
2527 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2528 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2529
2530 /*
2531 * From here on, look only at management frames.
2532 * Data and control frames are already handled,
2533 * and unknown (reserved) frames are useless.
2534 */
2535 if (rx->skb->len < 24)
2536 return RX_DROP_MONITOR;
2537
2538 if (!ieee80211_is_mgmt(mgmt->frame_control))
2539 return RX_DROP_MONITOR;
2540
2541 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2542 ieee80211_is_beacon(mgmt->frame_control) &&
2543 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2544 int sig = 0;
2545
2546 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2547 sig = status->signal;
2548
2549 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2550 rx->skb->data, rx->skb->len,
2551 status->freq, sig);
2552 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2553 }
2554
2555 if (ieee80211_drop_unencrypted_mgmt(rx))
2556 return RX_DROP_UNUSABLE;
2557
2558 return RX_CONTINUE;
2559 }
2560
2561 static ieee80211_rx_result debug_noinline
2562 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2563 {
2564 struct ieee80211_local *local = rx->local;
2565 struct ieee80211_sub_if_data *sdata = rx->sdata;
2566 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2567 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2568 int len = rx->skb->len;
2569
2570 if (!ieee80211_is_action(mgmt->frame_control))
2571 return RX_CONTINUE;
2572
2573 /* drop too small frames */
2574 if (len < IEEE80211_MIN_ACTION_SIZE)
2575 return RX_DROP_UNUSABLE;
2576
2577 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2578 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2579 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2580 return RX_DROP_UNUSABLE;
2581
2582 switch (mgmt->u.action.category) {
2583 case WLAN_CATEGORY_HT:
2584 /* reject HT action frames from stations not supporting HT */
2585 if (!rx->sta->sta.ht_cap.ht_supported)
2586 goto invalid;
2587
2588 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2589 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2590 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2591 sdata->vif.type != NL80211_IFTYPE_AP &&
2592 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2593 break;
2594
2595 /* verify action & smps_control/chanwidth are present */
2596 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2597 goto invalid;
2598
2599 switch (mgmt->u.action.u.ht_smps.action) {
2600 case WLAN_HT_ACTION_SMPS: {
2601 struct ieee80211_supported_band *sband;
2602 enum ieee80211_smps_mode smps_mode;
2603
2604 /* convert to HT capability */
2605 switch (mgmt->u.action.u.ht_smps.smps_control) {
2606 case WLAN_HT_SMPS_CONTROL_DISABLED:
2607 smps_mode = IEEE80211_SMPS_OFF;
2608 break;
2609 case WLAN_HT_SMPS_CONTROL_STATIC:
2610 smps_mode = IEEE80211_SMPS_STATIC;
2611 break;
2612 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2613 smps_mode = IEEE80211_SMPS_DYNAMIC;
2614 break;
2615 default:
2616 goto invalid;
2617 }
2618
2619 /* if no change do nothing */
2620 if (rx->sta->sta.smps_mode == smps_mode)
2621 goto handled;
2622 rx->sta->sta.smps_mode = smps_mode;
2623
2624 sband = rx->local->hw.wiphy->bands[status->band];
2625
2626 rate_control_rate_update(local, sband, rx->sta,
2627 IEEE80211_RC_SMPS_CHANGED);
2628 goto handled;
2629 }
2630 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2631 struct ieee80211_supported_band *sband;
2632 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2633 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2634
2635 /* If it doesn't support 40 MHz it can't change ... */
2636 if (!(rx->sta->sta.ht_cap.cap &
2637 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2638 goto handled;
2639
2640 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2641 max_bw = IEEE80211_STA_RX_BW_20;
2642 else
2643 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2644
2645 /* set cur_max_bandwidth and recalc sta bw */
2646 rx->sta->cur_max_bandwidth = max_bw;
2647 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2648
2649 if (rx->sta->sta.bandwidth == new_bw)
2650 goto handled;
2651
2652 rx->sta->sta.bandwidth = new_bw;
2653 sband = rx->local->hw.wiphy->bands[status->band];
2654
2655 rate_control_rate_update(local, sband, rx->sta,
2656 IEEE80211_RC_BW_CHANGED);
2657 goto handled;
2658 }
2659 default:
2660 goto invalid;
2661 }
2662
2663 break;
2664 case WLAN_CATEGORY_PUBLIC:
2665 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2666 goto invalid;
2667 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2668 break;
2669 if (!rx->sta)
2670 break;
2671 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2672 break;
2673 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2674 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2675 break;
2676 if (len < offsetof(struct ieee80211_mgmt,
2677 u.action.u.ext_chan_switch.variable))
2678 goto invalid;
2679 goto queue;
2680 case WLAN_CATEGORY_VHT:
2681 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2682 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2683 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2684 sdata->vif.type != NL80211_IFTYPE_AP &&
2685 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2686 break;
2687
2688 /* verify action code is present */
2689 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2690 goto invalid;
2691
2692 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2693 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2694 u8 opmode;
2695
2696 /* verify opmode is present */
2697 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2698 goto invalid;
2699
2700 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2701
2702 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2703 opmode, status->band,
2704 false);
2705 goto handled;
2706 }
2707 default:
2708 break;
2709 }
2710 break;
2711 case WLAN_CATEGORY_BACK:
2712 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2713 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2714 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2715 sdata->vif.type != NL80211_IFTYPE_AP &&
2716 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2717 break;
2718
2719 /* verify action_code is present */
2720 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2721 break;
2722
2723 switch (mgmt->u.action.u.addba_req.action_code) {
2724 case WLAN_ACTION_ADDBA_REQ:
2725 if (len < (IEEE80211_MIN_ACTION_SIZE +
2726 sizeof(mgmt->u.action.u.addba_req)))
2727 goto invalid;
2728 break;
2729 case WLAN_ACTION_ADDBA_RESP:
2730 if (len < (IEEE80211_MIN_ACTION_SIZE +
2731 sizeof(mgmt->u.action.u.addba_resp)))
2732 goto invalid;
2733 break;
2734 case WLAN_ACTION_DELBA:
2735 if (len < (IEEE80211_MIN_ACTION_SIZE +
2736 sizeof(mgmt->u.action.u.delba)))
2737 goto invalid;
2738 break;
2739 default:
2740 goto invalid;
2741 }
2742
2743 goto queue;
2744 case WLAN_CATEGORY_SPECTRUM_MGMT:
2745 /* verify action_code is present */
2746 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2747 break;
2748
2749 switch (mgmt->u.action.u.measurement.action_code) {
2750 case WLAN_ACTION_SPCT_MSR_REQ:
2751 if (status->band != IEEE80211_BAND_5GHZ)
2752 break;
2753
2754 if (len < (IEEE80211_MIN_ACTION_SIZE +
2755 sizeof(mgmt->u.action.u.measurement)))
2756 break;
2757
2758 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2759 break;
2760
2761 ieee80211_process_measurement_req(sdata, mgmt, len);
2762 goto handled;
2763 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2764 u8 *bssid;
2765 if (len < (IEEE80211_MIN_ACTION_SIZE +
2766 sizeof(mgmt->u.action.u.chan_switch)))
2767 break;
2768
2769 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2770 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2771 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2772 break;
2773
2774 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2775 bssid = sdata->u.mgd.bssid;
2776 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2777 bssid = sdata->u.ibss.bssid;
2778 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2779 bssid = mgmt->sa;
2780 else
2781 break;
2782
2783 if (!ether_addr_equal(mgmt->bssid, bssid))
2784 break;
2785
2786 goto queue;
2787 }
2788 }
2789 break;
2790 case WLAN_CATEGORY_SA_QUERY:
2791 if (len < (IEEE80211_MIN_ACTION_SIZE +
2792 sizeof(mgmt->u.action.u.sa_query)))
2793 break;
2794
2795 switch (mgmt->u.action.u.sa_query.action) {
2796 case WLAN_ACTION_SA_QUERY_REQUEST:
2797 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2798 break;
2799 ieee80211_process_sa_query_req(sdata, mgmt, len);
2800 goto handled;
2801 }
2802 break;
2803 case WLAN_CATEGORY_SELF_PROTECTED:
2804 if (len < (IEEE80211_MIN_ACTION_SIZE +
2805 sizeof(mgmt->u.action.u.self_prot.action_code)))
2806 break;
2807
2808 switch (mgmt->u.action.u.self_prot.action_code) {
2809 case WLAN_SP_MESH_PEERING_OPEN:
2810 case WLAN_SP_MESH_PEERING_CLOSE:
2811 case WLAN_SP_MESH_PEERING_CONFIRM:
2812 if (!ieee80211_vif_is_mesh(&sdata->vif))
2813 goto invalid;
2814 if (sdata->u.mesh.user_mpm)
2815 /* userspace handles this frame */
2816 break;
2817 goto queue;
2818 case WLAN_SP_MGK_INFORM:
2819 case WLAN_SP_MGK_ACK:
2820 if (!ieee80211_vif_is_mesh(&sdata->vif))
2821 goto invalid;
2822 break;
2823 }
2824 break;
2825 case WLAN_CATEGORY_MESH_ACTION:
2826 if (len < (IEEE80211_MIN_ACTION_SIZE +
2827 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2828 break;
2829
2830 if (!ieee80211_vif_is_mesh(&sdata->vif))
2831 break;
2832 if (mesh_action_is_path_sel(mgmt) &&
2833 !mesh_path_sel_is_hwmp(sdata))
2834 break;
2835 goto queue;
2836 }
2837
2838 return RX_CONTINUE;
2839
2840 invalid:
2841 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2842 /* will return in the next handlers */
2843 return RX_CONTINUE;
2844
2845 handled:
2846 if (rx->sta)
2847 rx->sta->rx_packets++;
2848 dev_kfree_skb(rx->skb);
2849 return RX_QUEUED;
2850
2851 queue:
2852 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2853 skb_queue_tail(&sdata->skb_queue, rx->skb);
2854 ieee80211_queue_work(&local->hw, &sdata->work);
2855 if (rx->sta)
2856 rx->sta->rx_packets++;
2857 return RX_QUEUED;
2858 }
2859
2860 static ieee80211_rx_result debug_noinline
2861 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2862 {
2863 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2864 int sig = 0;
2865
2866 /* skip known-bad action frames and return them in the next handler */
2867 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2868 return RX_CONTINUE;
2869
2870 /*
2871 * Getting here means the kernel doesn't know how to handle
2872 * it, but maybe userspace does ... include returned frames
2873 * so userspace can register for those to know whether ones
2874 * it transmitted were processed or returned.
2875 */
2876
2877 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2878 sig = status->signal;
2879
2880 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2881 rx->skb->data, rx->skb->len, 0)) {
2882 if (rx->sta)
2883 rx->sta->rx_packets++;
2884 dev_kfree_skb(rx->skb);
2885 return RX_QUEUED;
2886 }
2887
2888 return RX_CONTINUE;
2889 }
2890
2891 static ieee80211_rx_result debug_noinline
2892 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2893 {
2894 struct ieee80211_local *local = rx->local;
2895 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2896 struct sk_buff *nskb;
2897 struct ieee80211_sub_if_data *sdata = rx->sdata;
2898 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2899
2900 if (!ieee80211_is_action(mgmt->frame_control))
2901 return RX_CONTINUE;
2902
2903 /*
2904 * For AP mode, hostapd is responsible for handling any action
2905 * frames that we didn't handle, including returning unknown
2906 * ones. For all other modes we will return them to the sender,
2907 * setting the 0x80 bit in the action category, as required by
2908 * 802.11-2012 9.24.4.
2909 * Newer versions of hostapd shall also use the management frame
2910 * registration mechanisms, but older ones still use cooked
2911 * monitor interfaces so push all frames there.
2912 */
2913 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2914 (sdata->vif.type == NL80211_IFTYPE_AP ||
2915 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2916 return RX_DROP_MONITOR;
2917
2918 if (is_multicast_ether_addr(mgmt->da))
2919 return RX_DROP_MONITOR;
2920
2921 /* do not return rejected action frames */
2922 if (mgmt->u.action.category & 0x80)
2923 return RX_DROP_UNUSABLE;
2924
2925 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2926 GFP_ATOMIC);
2927 if (nskb) {
2928 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2929
2930 nmgmt->u.action.category |= 0x80;
2931 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2932 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2933
2934 memset(nskb->cb, 0, sizeof(nskb->cb));
2935
2936 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2937 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2938
2939 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2940 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2941 IEEE80211_TX_CTL_NO_CCK_RATE;
2942 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
2943 info->hw_queue =
2944 local->hw.offchannel_tx_hw_queue;
2945 }
2946
2947 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2948 status->band);
2949 }
2950 dev_kfree_skb(rx->skb);
2951 return RX_QUEUED;
2952 }
2953
2954 static ieee80211_rx_result debug_noinline
2955 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2956 {
2957 struct ieee80211_sub_if_data *sdata = rx->sdata;
2958 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2959 __le16 stype;
2960
2961 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2962
2963 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2964 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2965 sdata->vif.type != NL80211_IFTYPE_OCB &&
2966 sdata->vif.type != NL80211_IFTYPE_STATION)
2967 return RX_DROP_MONITOR;
2968
2969 switch (stype) {
2970 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2971 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2972 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2973 /* process for all: mesh, mlme, ibss */
2974 break;
2975 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2976 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2977 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2978 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2979 if (is_multicast_ether_addr(mgmt->da) &&
2980 !is_broadcast_ether_addr(mgmt->da))
2981 return RX_DROP_MONITOR;
2982
2983 /* process only for station */
2984 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2985 return RX_DROP_MONITOR;
2986 break;
2987 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2988 /* process only for ibss and mesh */
2989 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2990 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2991 return RX_DROP_MONITOR;
2992 break;
2993 default:
2994 return RX_DROP_MONITOR;
2995 }
2996
2997 /* queue up frame and kick off work to process it */
2998 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2999 skb_queue_tail(&sdata->skb_queue, rx->skb);
3000 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3001 if (rx->sta)
3002 rx->sta->rx_packets++;
3003
3004 return RX_QUEUED;
3005 }
3006
3007 /* TODO: use IEEE80211_RX_FRAGMENTED */
3008 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3009 struct ieee80211_rate *rate)
3010 {
3011 struct ieee80211_sub_if_data *sdata;
3012 struct ieee80211_local *local = rx->local;
3013 struct sk_buff *skb = rx->skb, *skb2;
3014 struct net_device *prev_dev = NULL;
3015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3016 int needed_headroom;
3017
3018 /*
3019 * If cooked monitor has been processed already, then
3020 * don't do it again. If not, set the flag.
3021 */
3022 if (rx->flags & IEEE80211_RX_CMNTR)
3023 goto out_free_skb;
3024 rx->flags |= IEEE80211_RX_CMNTR;
3025
3026 /* If there are no cooked monitor interfaces, just free the SKB */
3027 if (!local->cooked_mntrs)
3028 goto out_free_skb;
3029
3030 /* vendor data is long removed here */
3031 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3032 /* room for the radiotap header based on driver features */
3033 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3034
3035 if (skb_headroom(skb) < needed_headroom &&
3036 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3037 goto out_free_skb;
3038
3039 /* prepend radiotap information */
3040 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3041 false);
3042
3043 skb_set_mac_header(skb, 0);
3044 skb->ip_summed = CHECKSUM_UNNECESSARY;
3045 skb->pkt_type = PACKET_OTHERHOST;
3046 skb->protocol = htons(ETH_P_802_2);
3047
3048 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3049 if (!ieee80211_sdata_running(sdata))
3050 continue;
3051
3052 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3053 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3054 continue;
3055
3056 if (prev_dev) {
3057 skb2 = skb_clone(skb, GFP_ATOMIC);
3058 if (skb2) {
3059 skb2->dev = prev_dev;
3060 netif_receive_skb(skb2);
3061 }
3062 }
3063
3064 prev_dev = sdata->dev;
3065 ieee80211_rx_stats(sdata->dev, skb->len);
3066 }
3067
3068 if (prev_dev) {
3069 skb->dev = prev_dev;
3070 netif_receive_skb(skb);
3071 return;
3072 }
3073
3074 out_free_skb:
3075 dev_kfree_skb(skb);
3076 }
3077
3078 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3079 ieee80211_rx_result res)
3080 {
3081 switch (res) {
3082 case RX_DROP_MONITOR:
3083 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3084 if (rx->sta)
3085 rx->sta->rx_dropped++;
3086 /* fall through */
3087 case RX_CONTINUE: {
3088 struct ieee80211_rate *rate = NULL;
3089 struct ieee80211_supported_band *sband;
3090 struct ieee80211_rx_status *status;
3091
3092 status = IEEE80211_SKB_RXCB((rx->skb));
3093
3094 sband = rx->local->hw.wiphy->bands[status->band];
3095 if (!(status->flag & RX_FLAG_HT) &&
3096 !(status->flag & RX_FLAG_VHT))
3097 rate = &sband->bitrates[status->rate_idx];
3098
3099 ieee80211_rx_cooked_monitor(rx, rate);
3100 break;
3101 }
3102 case RX_DROP_UNUSABLE:
3103 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3104 if (rx->sta)
3105 rx->sta->rx_dropped++;
3106 dev_kfree_skb(rx->skb);
3107 break;
3108 case RX_QUEUED:
3109 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3110 break;
3111 }
3112 }
3113
3114 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3115 struct sk_buff_head *frames)
3116 {
3117 ieee80211_rx_result res = RX_DROP_MONITOR;
3118 struct sk_buff *skb;
3119
3120 #define CALL_RXH(rxh) \
3121 do { \
3122 res = rxh(rx); \
3123 if (res != RX_CONTINUE) \
3124 goto rxh_next; \
3125 } while (0);
3126
3127 /* Lock here to avoid hitting all of the data used in the RX
3128 * path (e.g. key data, station data, ...) concurrently when
3129 * a frame is released from the reorder buffer due to timeout
3130 * from the timer, potentially concurrently with RX from the
3131 * driver.
3132 */
3133 spin_lock_bh(&rx->local->rx_path_lock);
3134
3135 while ((skb = __skb_dequeue(frames))) {
3136 /*
3137 * all the other fields are valid across frames
3138 * that belong to an aMPDU since they are on the
3139 * same TID from the same station
3140 */
3141 rx->skb = skb;
3142
3143 CALL_RXH(ieee80211_rx_h_check_more_data)
3144 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3145 CALL_RXH(ieee80211_rx_h_sta_process)
3146 CALL_RXH(ieee80211_rx_h_decrypt)
3147 CALL_RXH(ieee80211_rx_h_defragment)
3148 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3149 /* must be after MMIC verify so header is counted in MPDU mic */
3150 #ifdef CONFIG_MAC80211_MESH
3151 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3152 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3153 #endif
3154 CALL_RXH(ieee80211_rx_h_amsdu)
3155 CALL_RXH(ieee80211_rx_h_data)
3156
3157 /* special treatment -- needs the queue */
3158 res = ieee80211_rx_h_ctrl(rx, frames);
3159 if (res != RX_CONTINUE)
3160 goto rxh_next;
3161
3162 CALL_RXH(ieee80211_rx_h_mgmt_check)
3163 CALL_RXH(ieee80211_rx_h_action)
3164 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3165 CALL_RXH(ieee80211_rx_h_action_return)
3166 CALL_RXH(ieee80211_rx_h_mgmt)
3167
3168 rxh_next:
3169 ieee80211_rx_handlers_result(rx, res);
3170
3171 #undef CALL_RXH
3172 }
3173
3174 spin_unlock_bh(&rx->local->rx_path_lock);
3175 }
3176
3177 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3178 {
3179 struct sk_buff_head reorder_release;
3180 ieee80211_rx_result res = RX_DROP_MONITOR;
3181
3182 __skb_queue_head_init(&reorder_release);
3183
3184 #define CALL_RXH(rxh) \
3185 do { \
3186 res = rxh(rx); \
3187 if (res != RX_CONTINUE) \
3188 goto rxh_next; \
3189 } while (0);
3190
3191 CALL_RXH(ieee80211_rx_h_check_dup)
3192 CALL_RXH(ieee80211_rx_h_check)
3193
3194 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3195
3196 ieee80211_rx_handlers(rx, &reorder_release);
3197 return;
3198
3199 rxh_next:
3200 ieee80211_rx_handlers_result(rx, res);
3201
3202 #undef CALL_RXH
3203 }
3204
3205 /*
3206 * This function makes calls into the RX path, therefore
3207 * it has to be invoked under RCU read lock.
3208 */
3209 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3210 {
3211 struct sk_buff_head frames;
3212 struct ieee80211_rx_data rx = {
3213 .sta = sta,
3214 .sdata = sta->sdata,
3215 .local = sta->local,
3216 /* This is OK -- must be QoS data frame */
3217 .security_idx = tid,
3218 .seqno_idx = tid,
3219 .flags = IEEE80211_RX_REORDER_TIMER,
3220 };
3221 struct tid_ampdu_rx *tid_agg_rx;
3222
3223 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3224 if (!tid_agg_rx)
3225 return;
3226
3227 __skb_queue_head_init(&frames);
3228
3229 spin_lock(&tid_agg_rx->reorder_lock);
3230 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3231 spin_unlock(&tid_agg_rx->reorder_lock);
3232
3233 if (!skb_queue_empty(&frames)) {
3234 struct ieee80211_event event = {
3235 .type = BA_FRAME_TIMEOUT,
3236 .u.ba.tid = tid,
3237 .u.ba.sta = &sta->sta,
3238 };
3239 drv_event_callback(rx.local, rx.sdata, &event);
3240 }
3241
3242 ieee80211_rx_handlers(&rx, &frames);
3243 }
3244
3245 /* main receive path */
3246
3247 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3248 {
3249 struct ieee80211_sub_if_data *sdata = rx->sdata;
3250 struct sk_buff *skb = rx->skb;
3251 struct ieee80211_hdr *hdr = (void *)skb->data;
3252 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3253 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3254 int multicast = is_multicast_ether_addr(hdr->addr1);
3255
3256 switch (sdata->vif.type) {
3257 case NL80211_IFTYPE_STATION:
3258 if (!bssid && !sdata->u.mgd.use_4addr)
3259 return false;
3260 if (multicast)
3261 return true;
3262 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3263 case NL80211_IFTYPE_ADHOC:
3264 if (!bssid)
3265 return false;
3266 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3267 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3268 return false;
3269 if (ieee80211_is_beacon(hdr->frame_control))
3270 return true;
3271 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3272 return false;
3273 if (!multicast &&
3274 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3275 return false;
3276 if (!rx->sta) {
3277 int rate_idx;
3278 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3279 rate_idx = 0; /* TODO: HT/VHT rates */
3280 else
3281 rate_idx = status->rate_idx;
3282 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3283 BIT(rate_idx));
3284 }
3285 return true;
3286 case NL80211_IFTYPE_OCB:
3287 if (!bssid)
3288 return false;
3289 if (ieee80211_is_beacon(hdr->frame_control))
3290 return false;
3291 if (!is_broadcast_ether_addr(bssid))
3292 return false;
3293 if (!multicast &&
3294 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3295 return false;
3296 if (!rx->sta) {
3297 int rate_idx;
3298 if (status->flag & RX_FLAG_HT)
3299 rate_idx = 0; /* TODO: HT rates */
3300 else
3301 rate_idx = status->rate_idx;
3302 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3303 BIT(rate_idx));
3304 }
3305 return true;
3306 case NL80211_IFTYPE_MESH_POINT:
3307 if (multicast)
3308 return true;
3309 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3310 case NL80211_IFTYPE_AP_VLAN:
3311 case NL80211_IFTYPE_AP:
3312 if (!bssid)
3313 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3314
3315 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3316 /*
3317 * Accept public action frames even when the
3318 * BSSID doesn't match, this is used for P2P
3319 * and location updates. Note that mac80211
3320 * itself never looks at these frames.
3321 */
3322 if (!multicast &&
3323 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3324 return false;
3325 if (ieee80211_is_public_action(hdr, skb->len))
3326 return true;
3327 return ieee80211_is_beacon(hdr->frame_control);
3328 }
3329
3330 if (!ieee80211_has_tods(hdr->frame_control)) {
3331 /* ignore data frames to TDLS-peers */
3332 if (ieee80211_is_data(hdr->frame_control))
3333 return false;
3334 /* ignore action frames to TDLS-peers */
3335 if (ieee80211_is_action(hdr->frame_control) &&
3336 !ether_addr_equal(bssid, hdr->addr1))
3337 return false;
3338 }
3339 return true;
3340 case NL80211_IFTYPE_WDS:
3341 if (bssid || !ieee80211_is_data(hdr->frame_control))
3342 return false;
3343 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3344 case NL80211_IFTYPE_P2P_DEVICE:
3345 return ieee80211_is_public_action(hdr, skb->len) ||
3346 ieee80211_is_probe_req(hdr->frame_control) ||
3347 ieee80211_is_probe_resp(hdr->frame_control) ||
3348 ieee80211_is_beacon(hdr->frame_control);
3349 default:
3350 break;
3351 }
3352
3353 WARN_ON_ONCE(1);
3354 return false;
3355 }
3356
3357 /*
3358 * This function returns whether or not the SKB
3359 * was destined for RX processing or not, which,
3360 * if consume is true, is equivalent to whether
3361 * or not the skb was consumed.
3362 */
3363 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3364 struct sk_buff *skb, bool consume)
3365 {
3366 struct ieee80211_local *local = rx->local;
3367 struct ieee80211_sub_if_data *sdata = rx->sdata;
3368
3369 rx->skb = skb;
3370
3371 if (!ieee80211_accept_frame(rx))
3372 return false;
3373
3374 if (!consume) {
3375 skb = skb_copy(skb, GFP_ATOMIC);
3376 if (!skb) {
3377 if (net_ratelimit())
3378 wiphy_debug(local->hw.wiphy,
3379 "failed to copy skb for %s\n",
3380 sdata->name);
3381 return true;
3382 }
3383
3384 rx->skb = skb;
3385 }
3386
3387 ieee80211_invoke_rx_handlers(rx);
3388 return true;
3389 }
3390
3391 /*
3392 * This is the actual Rx frames handler. as it belongs to Rx path it must
3393 * be called with rcu_read_lock protection.
3394 */
3395 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3396 struct sk_buff *skb)
3397 {
3398 struct ieee80211_local *local = hw_to_local(hw);
3399 struct ieee80211_sub_if_data *sdata;
3400 struct ieee80211_hdr *hdr;
3401 __le16 fc;
3402 struct ieee80211_rx_data rx;
3403 struct ieee80211_sub_if_data *prev;
3404 struct sta_info *sta, *prev_sta;
3405 struct rhash_head *tmp;
3406 int err = 0;
3407
3408 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3409 memset(&rx, 0, sizeof(rx));
3410 rx.skb = skb;
3411 rx.local = local;
3412
3413 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3414 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3415
3416 if (ieee80211_is_mgmt(fc)) {
3417 /* drop frame if too short for header */
3418 if (skb->len < ieee80211_hdrlen(fc))
3419 err = -ENOBUFS;
3420 else
3421 err = skb_linearize(skb);
3422 } else {
3423 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3424 }
3425
3426 if (err) {
3427 dev_kfree_skb(skb);
3428 return;
3429 }
3430
3431 hdr = (struct ieee80211_hdr *)skb->data;
3432 ieee80211_parse_qos(&rx);
3433 ieee80211_verify_alignment(&rx);
3434
3435 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3436 ieee80211_is_beacon(hdr->frame_control)))
3437 ieee80211_scan_rx(local, skb);
3438
3439 if (ieee80211_is_data(fc)) {
3440 const struct bucket_table *tbl;
3441
3442 prev_sta = NULL;
3443
3444 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3445
3446 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3447 if (!prev_sta) {
3448 prev_sta = sta;
3449 continue;
3450 }
3451
3452 rx.sta = prev_sta;
3453 rx.sdata = prev_sta->sdata;
3454 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3455
3456 prev_sta = sta;
3457 }
3458
3459 if (prev_sta) {
3460 rx.sta = prev_sta;
3461 rx.sdata = prev_sta->sdata;
3462
3463 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3464 return;
3465 goto out;
3466 }
3467 }
3468
3469 prev = NULL;
3470
3471 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3472 if (!ieee80211_sdata_running(sdata))
3473 continue;
3474
3475 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3476 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3477 continue;
3478
3479 /*
3480 * frame is destined for this interface, but if it's
3481 * not also for the previous one we handle that after
3482 * the loop to avoid copying the SKB once too much
3483 */
3484
3485 if (!prev) {
3486 prev = sdata;
3487 continue;
3488 }
3489
3490 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3491 rx.sdata = prev;
3492 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3493
3494 prev = sdata;
3495 }
3496
3497 if (prev) {
3498 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3499 rx.sdata = prev;
3500
3501 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3502 return;
3503 }
3504
3505 out:
3506 dev_kfree_skb(skb);
3507 }
3508
3509 /*
3510 * This is the receive path handler. It is called by a low level driver when an
3511 * 802.11 MPDU is received from the hardware.
3512 */
3513 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3514 {
3515 struct ieee80211_local *local = hw_to_local(hw);
3516 struct ieee80211_rate *rate = NULL;
3517 struct ieee80211_supported_band *sband;
3518 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3519
3520 WARN_ON_ONCE(softirq_count() == 0);
3521
3522 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3523 goto drop;
3524
3525 sband = local->hw.wiphy->bands[status->band];
3526 if (WARN_ON(!sband))
3527 goto drop;
3528
3529 /*
3530 * If we're suspending, it is possible although not too likely
3531 * that we'd be receiving frames after having already partially
3532 * quiesced the stack. We can't process such frames then since
3533 * that might, for example, cause stations to be added or other
3534 * driver callbacks be invoked.
3535 */
3536 if (unlikely(local->quiescing || local->suspended))
3537 goto drop;
3538
3539 /* We might be during a HW reconfig, prevent Rx for the same reason */
3540 if (unlikely(local->in_reconfig))
3541 goto drop;
3542
3543 /*
3544 * The same happens when we're not even started,
3545 * but that's worth a warning.
3546 */
3547 if (WARN_ON(!local->started))
3548 goto drop;
3549
3550 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3551 /*
3552 * Validate the rate, unless a PLCP error means that
3553 * we probably can't have a valid rate here anyway.
3554 */
3555
3556 if (status->flag & RX_FLAG_HT) {
3557 /*
3558 * rate_idx is MCS index, which can be [0-76]
3559 * as documented on:
3560 *
3561 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3562 *
3563 * Anything else would be some sort of driver or
3564 * hardware error. The driver should catch hardware
3565 * errors.
3566 */
3567 if (WARN(status->rate_idx > 76,
3568 "Rate marked as an HT rate but passed "
3569 "status->rate_idx is not "
3570 "an MCS index [0-76]: %d (0x%02x)\n",
3571 status->rate_idx,
3572 status->rate_idx))
3573 goto drop;
3574 } else if (status->flag & RX_FLAG_VHT) {
3575 if (WARN_ONCE(status->rate_idx > 9 ||
3576 !status->vht_nss ||
3577 status->vht_nss > 8,
3578 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3579 status->rate_idx, status->vht_nss))
3580 goto drop;
3581 } else {
3582 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3583 goto drop;
3584 rate = &sband->bitrates[status->rate_idx];
3585 }
3586 }
3587
3588 status->rx_flags = 0;
3589
3590 /*
3591 * key references and virtual interfaces are protected using RCU
3592 * and this requires that we are in a read-side RCU section during
3593 * receive processing
3594 */
3595 rcu_read_lock();
3596
3597 /*
3598 * Frames with failed FCS/PLCP checksum are not returned,
3599 * all other frames are returned without radiotap header
3600 * if it was previously present.
3601 * Also, frames with less than 16 bytes are dropped.
3602 */
3603 skb = ieee80211_rx_monitor(local, skb, rate);
3604 if (!skb) {
3605 rcu_read_unlock();
3606 return;
3607 }
3608
3609 ieee80211_tpt_led_trig_rx(local,
3610 ((struct ieee80211_hdr *)skb->data)->frame_control,
3611 skb->len);
3612 __ieee80211_rx_handle_packet(hw, skb);
3613
3614 rcu_read_unlock();
3615
3616 return;
3617 drop:
3618 kfree_skb(skb);
3619 }
3620 EXPORT_SYMBOL(ieee80211_rx);
3621
3622 /* This is a version of the rx handler that can be called from hard irq
3623 * context. Post the skb on the queue and schedule the tasklet */
3624 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3625 {
3626 struct ieee80211_local *local = hw_to_local(hw);
3627
3628 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3629
3630 skb->pkt_type = IEEE80211_RX_MSG;
3631 skb_queue_tail(&local->skb_queue, skb);
3632 tasklet_schedule(&local->tasklet);
3633 }
3634 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.138472 seconds and 5 git commands to generate.