mac80211: introduce refcount for queue_stop_reasons
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 if (likely(skb->len > FCS_LEN))
45 __pskb_trim(skb, skb->len - FCS_LEN);
46 else {
47 /* driver bug */
48 WARN_ON(1);
49 dev_kfree_skb(skb);
50 return NULL;
51 }
52 }
53
54 return skb;
55 }
56
57 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len)
58 {
59 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
60 struct ieee80211_hdr *hdr = (void *)skb->data;
61
62 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
63 RX_FLAG_FAILED_PLCP_CRC |
64 RX_FLAG_AMPDU_IS_ZEROLEN))
65 return true;
66
67 if (unlikely(skb->len < 16 + present_fcs_len))
68 return true;
69
70 if (ieee80211_is_ctl(hdr->frame_control) &&
71 !ieee80211_is_pspoll(hdr->frame_control) &&
72 !ieee80211_is_back_req(hdr->frame_control))
73 return true;
74
75 return false;
76 }
77
78 static int
79 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
80 struct ieee80211_rx_status *status)
81 {
82 int len;
83
84 /* always present fields */
85 len = sizeof(struct ieee80211_radiotap_header) + 8;
86
87 /* allocate extra bitmaps */
88 if (status->chains)
89 len += 4 * hweight8(status->chains);
90
91 if (ieee80211_have_rx_timestamp(status)) {
92 len = ALIGN(len, 8);
93 len += 8;
94 }
95 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
96 len += 1;
97
98 /* antenna field, if we don't have per-chain info */
99 if (!status->chains)
100 len += 1;
101
102 /* padding for RX_FLAGS if necessary */
103 len = ALIGN(len, 2);
104
105 if (status->flag & RX_FLAG_HT) /* HT info */
106 len += 3;
107
108 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
109 len = ALIGN(len, 4);
110 len += 8;
111 }
112
113 if (status->flag & RX_FLAG_VHT) {
114 len = ALIGN(len, 2);
115 len += 12;
116 }
117
118 if (status->chains) {
119 /* antenna and antenna signal fields */
120 len += 2 * hweight8(status->chains);
121 }
122
123 return len;
124 }
125
126 /*
127 * ieee80211_add_rx_radiotap_header - add radiotap header
128 *
129 * add a radiotap header containing all the fields which the hardware provided.
130 */
131 static void
132 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
133 struct sk_buff *skb,
134 struct ieee80211_rate *rate,
135 int rtap_len, bool has_fcs)
136 {
137 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
138 struct ieee80211_radiotap_header *rthdr;
139 unsigned char *pos;
140 __le32 *it_present;
141 u32 it_present_val;
142 u16 rx_flags = 0;
143 u16 channel_flags = 0;
144 int mpdulen, chain;
145 unsigned long chains = status->chains;
146
147 mpdulen = skb->len;
148 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
149 mpdulen += FCS_LEN;
150
151 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
152 memset(rthdr, 0, rtap_len);
153 it_present = &rthdr->it_present;
154
155 /* radiotap header, set always present flags */
156 rthdr->it_len = cpu_to_le16(rtap_len);
157 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
158 BIT(IEEE80211_RADIOTAP_CHANNEL) |
159 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
160
161 if (!status->chains)
162 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
163
164 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
165 it_present_val |=
166 BIT(IEEE80211_RADIOTAP_EXT) |
167 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
168 put_unaligned_le32(it_present_val, it_present);
169 it_present++;
170 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
171 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
172 }
173
174 put_unaligned_le32(it_present_val, it_present);
175
176 pos = (void *)(it_present + 1);
177
178 /* the order of the following fields is important */
179
180 /* IEEE80211_RADIOTAP_TSFT */
181 if (ieee80211_have_rx_timestamp(status)) {
182 /* padding */
183 while ((pos - (u8 *)rthdr) & 7)
184 *pos++ = 0;
185 put_unaligned_le64(
186 ieee80211_calculate_rx_timestamp(local, status,
187 mpdulen, 0),
188 pos);
189 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
190 pos += 8;
191 }
192
193 /* IEEE80211_RADIOTAP_FLAGS */
194 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
195 *pos |= IEEE80211_RADIOTAP_F_FCS;
196 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
197 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
198 if (status->flag & RX_FLAG_SHORTPRE)
199 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
200 pos++;
201
202 /* IEEE80211_RADIOTAP_RATE */
203 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
204 /*
205 * Without rate information don't add it. If we have,
206 * MCS information is a separate field in radiotap,
207 * added below. The byte here is needed as padding
208 * for the channel though, so initialise it to 0.
209 */
210 *pos = 0;
211 } else {
212 int shift = 0;
213 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
214 if (status->flag & RX_FLAG_10MHZ)
215 shift = 1;
216 else if (status->flag & RX_FLAG_5MHZ)
217 shift = 2;
218 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
219 }
220 pos++;
221
222 /* IEEE80211_RADIOTAP_CHANNEL */
223 put_unaligned_le16(status->freq, pos);
224 pos += 2;
225 if (status->flag & RX_FLAG_10MHZ)
226 channel_flags |= IEEE80211_CHAN_HALF;
227 else if (status->flag & RX_FLAG_5MHZ)
228 channel_flags |= IEEE80211_CHAN_QUARTER;
229
230 if (status->band == IEEE80211_BAND_5GHZ)
231 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
232 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
233 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
234 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
235 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
236 else if (rate)
237 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
238 else
239 channel_flags |= IEEE80211_CHAN_2GHZ;
240 put_unaligned_le16(channel_flags, pos);
241 pos += 2;
242
243 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
244 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
245 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
246 *pos = status->signal;
247 rthdr->it_present |=
248 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
249 pos++;
250 }
251
252 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
253
254 if (!status->chains) {
255 /* IEEE80211_RADIOTAP_ANTENNA */
256 *pos = status->antenna;
257 pos++;
258 }
259
260 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
261
262 /* IEEE80211_RADIOTAP_RX_FLAGS */
263 /* ensure 2 byte alignment for the 2 byte field as required */
264 if ((pos - (u8 *)rthdr) & 1)
265 *pos++ = 0;
266 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
267 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
268 put_unaligned_le16(rx_flags, pos);
269 pos += 2;
270
271 if (status->flag & RX_FLAG_HT) {
272 unsigned int stbc;
273
274 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
275 *pos++ = local->hw.radiotap_mcs_details;
276 *pos = 0;
277 if (status->flag & RX_FLAG_SHORT_GI)
278 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
279 if (status->flag & RX_FLAG_40MHZ)
280 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
281 if (status->flag & RX_FLAG_HT_GF)
282 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
283 if (status->flag & RX_FLAG_LDPC)
284 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
285 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
286 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
287 pos++;
288 *pos++ = status->rate_idx;
289 }
290
291 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
292 u16 flags = 0;
293
294 /* ensure 4 byte alignment */
295 while ((pos - (u8 *)rthdr) & 3)
296 pos++;
297 rthdr->it_present |=
298 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
299 put_unaligned_le32(status->ampdu_reference, pos);
300 pos += 4;
301 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
302 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
303 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
304 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
305 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
306 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
307 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
308 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
309 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
310 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
311 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
312 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
313 put_unaligned_le16(flags, pos);
314 pos += 2;
315 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
316 *pos++ = status->ampdu_delimiter_crc;
317 else
318 *pos++ = 0;
319 *pos++ = 0;
320 }
321
322 if (status->flag & RX_FLAG_VHT) {
323 u16 known = local->hw.radiotap_vht_details;
324
325 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
326 /* known field - how to handle 80+80? */
327 if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
328 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
329 put_unaligned_le16(known, pos);
330 pos += 2;
331 /* flags */
332 if (status->flag & RX_FLAG_SHORT_GI)
333 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
334 /* in VHT, STBC is binary */
335 if (status->flag & RX_FLAG_STBC_MASK)
336 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
337 if (status->vht_flag & RX_VHT_FLAG_BF)
338 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
339 pos++;
340 /* bandwidth */
341 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
342 *pos++ = 4;
343 else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
344 *pos++ = 0; /* marked not known above */
345 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
346 *pos++ = 11;
347 else if (status->flag & RX_FLAG_40MHZ)
348 *pos++ = 1;
349 else /* 20 MHz */
350 *pos++ = 0;
351 /* MCS/NSS */
352 *pos = (status->rate_idx << 4) | status->vht_nss;
353 pos += 4;
354 /* coding field */
355 if (status->flag & RX_FLAG_LDPC)
356 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
357 pos++;
358 /* group ID */
359 pos++;
360 /* partial_aid */
361 pos += 2;
362 }
363
364 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
365 *pos++ = status->chain_signal[chain];
366 *pos++ = chain;
367 }
368 }
369
370 /*
371 * This function copies a received frame to all monitor interfaces and
372 * returns a cleaned-up SKB that no longer includes the FCS nor the
373 * radiotap header the driver might have added.
374 */
375 static struct sk_buff *
376 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
377 struct ieee80211_rate *rate)
378 {
379 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
380 struct ieee80211_sub_if_data *sdata;
381 int needed_headroom;
382 struct sk_buff *skb, *skb2;
383 struct net_device *prev_dev = NULL;
384 int present_fcs_len = 0;
385
386 /*
387 * First, we may need to make a copy of the skb because
388 * (1) we need to modify it for radiotap (if not present), and
389 * (2) the other RX handlers will modify the skb we got.
390 *
391 * We don't need to, of course, if we aren't going to return
392 * the SKB because it has a bad FCS/PLCP checksum.
393 */
394
395 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
396 present_fcs_len = FCS_LEN;
397
398 /* ensure hdr->frame_control is in skb head */
399 if (!pskb_may_pull(origskb, 2)) {
400 dev_kfree_skb(origskb);
401 return NULL;
402 }
403
404 if (!local->monitors) {
405 if (should_drop_frame(origskb, present_fcs_len)) {
406 dev_kfree_skb(origskb);
407 return NULL;
408 }
409
410 return remove_monitor_info(local, origskb);
411 }
412
413 /* room for the radiotap header based on driver features */
414 needed_headroom = ieee80211_rx_radiotap_space(local, status);
415
416 if (should_drop_frame(origskb, present_fcs_len)) {
417 /* only need to expand headroom if necessary */
418 skb = origskb;
419 origskb = NULL;
420
421 /*
422 * This shouldn't trigger often because most devices have an
423 * RX header they pull before we get here, and that should
424 * be big enough for our radiotap information. We should
425 * probably export the length to drivers so that we can have
426 * them allocate enough headroom to start with.
427 */
428 if (skb_headroom(skb) < needed_headroom &&
429 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
430 dev_kfree_skb(skb);
431 return NULL;
432 }
433 } else {
434 /*
435 * Need to make a copy and possibly remove radiotap header
436 * and FCS from the original.
437 */
438 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
439
440 origskb = remove_monitor_info(local, origskb);
441
442 if (!skb)
443 return origskb;
444 }
445
446 /* prepend radiotap information */
447 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
448 true);
449
450 skb_reset_mac_header(skb);
451 skb->ip_summed = CHECKSUM_UNNECESSARY;
452 skb->pkt_type = PACKET_OTHERHOST;
453 skb->protocol = htons(ETH_P_802_2);
454
455 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
456 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
457 continue;
458
459 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
460 continue;
461
462 if (!ieee80211_sdata_running(sdata))
463 continue;
464
465 if (prev_dev) {
466 skb2 = skb_clone(skb, GFP_ATOMIC);
467 if (skb2) {
468 skb2->dev = prev_dev;
469 netif_receive_skb(skb2);
470 }
471 }
472
473 prev_dev = sdata->dev;
474 sdata->dev->stats.rx_packets++;
475 sdata->dev->stats.rx_bytes += skb->len;
476 }
477
478 if (prev_dev) {
479 skb->dev = prev_dev;
480 netif_receive_skb(skb);
481 } else
482 dev_kfree_skb(skb);
483
484 return origskb;
485 }
486
487 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
488 {
489 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
490 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
491 int tid, seqno_idx, security_idx;
492
493 /* does the frame have a qos control field? */
494 if (ieee80211_is_data_qos(hdr->frame_control)) {
495 u8 *qc = ieee80211_get_qos_ctl(hdr);
496 /* frame has qos control */
497 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
498 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
499 status->rx_flags |= IEEE80211_RX_AMSDU;
500
501 seqno_idx = tid;
502 security_idx = tid;
503 } else {
504 /*
505 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
506 *
507 * Sequence numbers for management frames, QoS data
508 * frames with a broadcast/multicast address in the
509 * Address 1 field, and all non-QoS data frames sent
510 * by QoS STAs are assigned using an additional single
511 * modulo-4096 counter, [...]
512 *
513 * We also use that counter for non-QoS STAs.
514 */
515 seqno_idx = IEEE80211_NUM_TIDS;
516 security_idx = 0;
517 if (ieee80211_is_mgmt(hdr->frame_control))
518 security_idx = IEEE80211_NUM_TIDS;
519 tid = 0;
520 }
521
522 rx->seqno_idx = seqno_idx;
523 rx->security_idx = security_idx;
524 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
525 * For now, set skb->priority to 0 for other cases. */
526 rx->skb->priority = (tid > 7) ? 0 : tid;
527 }
528
529 /**
530 * DOC: Packet alignment
531 *
532 * Drivers always need to pass packets that are aligned to two-byte boundaries
533 * to the stack.
534 *
535 * Additionally, should, if possible, align the payload data in a way that
536 * guarantees that the contained IP header is aligned to a four-byte
537 * boundary. In the case of regular frames, this simply means aligning the
538 * payload to a four-byte boundary (because either the IP header is directly
539 * contained, or IV/RFC1042 headers that have a length divisible by four are
540 * in front of it). If the payload data is not properly aligned and the
541 * architecture doesn't support efficient unaligned operations, mac80211
542 * will align the data.
543 *
544 * With A-MSDU frames, however, the payload data address must yield two modulo
545 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
546 * push the IP header further back to a multiple of four again. Thankfully, the
547 * specs were sane enough this time around to require padding each A-MSDU
548 * subframe to a length that is a multiple of four.
549 *
550 * Padding like Atheros hardware adds which is between the 802.11 header and
551 * the payload is not supported, the driver is required to move the 802.11
552 * header to be directly in front of the payload in that case.
553 */
554 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
555 {
556 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
557 WARN_ONCE((unsigned long)rx->skb->data & 1,
558 "unaligned packet at 0x%p\n", rx->skb->data);
559 #endif
560 }
561
562
563 /* rx handlers */
564
565 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
566 {
567 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
568
569 if (is_multicast_ether_addr(hdr->addr1))
570 return 0;
571
572 return ieee80211_is_robust_mgmt_frame(skb);
573 }
574
575
576 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
577 {
578 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
579
580 if (!is_multicast_ether_addr(hdr->addr1))
581 return 0;
582
583 return ieee80211_is_robust_mgmt_frame(skb);
584 }
585
586
587 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
588 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
589 {
590 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
591 struct ieee80211_mmie *mmie;
592
593 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
594 return -1;
595
596 if (!ieee80211_is_robust_mgmt_frame(skb))
597 return -1; /* not a robust management frame */
598
599 mmie = (struct ieee80211_mmie *)
600 (skb->data + skb->len - sizeof(*mmie));
601 if (mmie->element_id != WLAN_EID_MMIE ||
602 mmie->length != sizeof(*mmie) - 2)
603 return -1;
604
605 return le16_to_cpu(mmie->key_id);
606 }
607
608 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
609 struct sk_buff *skb)
610 {
611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
612 __le16 fc;
613 int hdrlen;
614 u8 keyid;
615
616 fc = hdr->frame_control;
617 hdrlen = ieee80211_hdrlen(fc);
618
619 if (skb->len < hdrlen + cs->hdr_len)
620 return -EINVAL;
621
622 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
623 keyid &= cs->key_idx_mask;
624 keyid >>= cs->key_idx_shift;
625
626 return keyid;
627 }
628
629 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
630 {
631 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
632 char *dev_addr = rx->sdata->vif.addr;
633
634 if (ieee80211_is_data(hdr->frame_control)) {
635 if (is_multicast_ether_addr(hdr->addr1)) {
636 if (ieee80211_has_tods(hdr->frame_control) ||
637 !ieee80211_has_fromds(hdr->frame_control))
638 return RX_DROP_MONITOR;
639 if (ether_addr_equal(hdr->addr3, dev_addr))
640 return RX_DROP_MONITOR;
641 } else {
642 if (!ieee80211_has_a4(hdr->frame_control))
643 return RX_DROP_MONITOR;
644 if (ether_addr_equal(hdr->addr4, dev_addr))
645 return RX_DROP_MONITOR;
646 }
647 }
648
649 /* If there is not an established peer link and this is not a peer link
650 * establisment frame, beacon or probe, drop the frame.
651 */
652
653 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
654 struct ieee80211_mgmt *mgmt;
655
656 if (!ieee80211_is_mgmt(hdr->frame_control))
657 return RX_DROP_MONITOR;
658
659 if (ieee80211_is_action(hdr->frame_control)) {
660 u8 category;
661
662 /* make sure category field is present */
663 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
664 return RX_DROP_MONITOR;
665
666 mgmt = (struct ieee80211_mgmt *)hdr;
667 category = mgmt->u.action.category;
668 if (category != WLAN_CATEGORY_MESH_ACTION &&
669 category != WLAN_CATEGORY_SELF_PROTECTED)
670 return RX_DROP_MONITOR;
671 return RX_CONTINUE;
672 }
673
674 if (ieee80211_is_probe_req(hdr->frame_control) ||
675 ieee80211_is_probe_resp(hdr->frame_control) ||
676 ieee80211_is_beacon(hdr->frame_control) ||
677 ieee80211_is_auth(hdr->frame_control))
678 return RX_CONTINUE;
679
680 return RX_DROP_MONITOR;
681 }
682
683 return RX_CONTINUE;
684 }
685
686 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
687 struct tid_ampdu_rx *tid_agg_rx,
688 int index,
689 struct sk_buff_head *frames)
690 {
691 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
692 struct ieee80211_rx_status *status;
693
694 lockdep_assert_held(&tid_agg_rx->reorder_lock);
695
696 if (!skb)
697 goto no_frame;
698
699 /* release the frame from the reorder ring buffer */
700 tid_agg_rx->stored_mpdu_num--;
701 tid_agg_rx->reorder_buf[index] = NULL;
702 status = IEEE80211_SKB_RXCB(skb);
703 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
704 __skb_queue_tail(frames, skb);
705
706 no_frame:
707 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
708 }
709
710 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
711 struct tid_ampdu_rx *tid_agg_rx,
712 u16 head_seq_num,
713 struct sk_buff_head *frames)
714 {
715 int index;
716
717 lockdep_assert_held(&tid_agg_rx->reorder_lock);
718
719 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
720 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
721 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
722 frames);
723 }
724 }
725
726 /*
727 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
728 * the skb was added to the buffer longer than this time ago, the earlier
729 * frames that have not yet been received are assumed to be lost and the skb
730 * can be released for processing. This may also release other skb's from the
731 * reorder buffer if there are no additional gaps between the frames.
732 *
733 * Callers must hold tid_agg_rx->reorder_lock.
734 */
735 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
736
737 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
738 struct tid_ampdu_rx *tid_agg_rx,
739 struct sk_buff_head *frames)
740 {
741 int index, j;
742
743 lockdep_assert_held(&tid_agg_rx->reorder_lock);
744
745 /* release the buffer until next missing frame */
746 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
747 if (!tid_agg_rx->reorder_buf[index] &&
748 tid_agg_rx->stored_mpdu_num) {
749 /*
750 * No buffers ready to be released, but check whether any
751 * frames in the reorder buffer have timed out.
752 */
753 int skipped = 1;
754 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
755 j = (j + 1) % tid_agg_rx->buf_size) {
756 if (!tid_agg_rx->reorder_buf[j]) {
757 skipped++;
758 continue;
759 }
760 if (skipped &&
761 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
762 HT_RX_REORDER_BUF_TIMEOUT))
763 goto set_release_timer;
764
765 ht_dbg_ratelimited(sdata,
766 "release an RX reorder frame due to timeout on earlier frames\n");
767 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
768 frames);
769
770 /*
771 * Increment the head seq# also for the skipped slots.
772 */
773 tid_agg_rx->head_seq_num =
774 (tid_agg_rx->head_seq_num +
775 skipped) & IEEE80211_SN_MASK;
776 skipped = 0;
777 }
778 } else while (tid_agg_rx->reorder_buf[index]) {
779 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
780 frames);
781 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
782 }
783
784 if (tid_agg_rx->stored_mpdu_num) {
785 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
786
787 for (; j != (index - 1) % tid_agg_rx->buf_size;
788 j = (j + 1) % tid_agg_rx->buf_size) {
789 if (tid_agg_rx->reorder_buf[j])
790 break;
791 }
792
793 set_release_timer:
794
795 mod_timer(&tid_agg_rx->reorder_timer,
796 tid_agg_rx->reorder_time[j] + 1 +
797 HT_RX_REORDER_BUF_TIMEOUT);
798 } else {
799 del_timer(&tid_agg_rx->reorder_timer);
800 }
801 }
802
803 /*
804 * As this function belongs to the RX path it must be under
805 * rcu_read_lock protection. It returns false if the frame
806 * can be processed immediately, true if it was consumed.
807 */
808 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
809 struct tid_ampdu_rx *tid_agg_rx,
810 struct sk_buff *skb,
811 struct sk_buff_head *frames)
812 {
813 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
814 u16 sc = le16_to_cpu(hdr->seq_ctrl);
815 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
816 u16 head_seq_num, buf_size;
817 int index;
818 bool ret = true;
819
820 spin_lock(&tid_agg_rx->reorder_lock);
821
822 buf_size = tid_agg_rx->buf_size;
823 head_seq_num = tid_agg_rx->head_seq_num;
824
825 /* frame with out of date sequence number */
826 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
827 dev_kfree_skb(skb);
828 goto out;
829 }
830
831 /*
832 * If frame the sequence number exceeds our buffering window
833 * size release some previous frames to make room for this one.
834 */
835 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
836 head_seq_num = ieee80211_sn_inc(
837 ieee80211_sn_sub(mpdu_seq_num, buf_size));
838 /* release stored frames up to new head to stack */
839 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
840 head_seq_num, frames);
841 }
842
843 /* Now the new frame is always in the range of the reordering buffer */
844
845 index = mpdu_seq_num % tid_agg_rx->buf_size;
846
847 /* check if we already stored this frame */
848 if (tid_agg_rx->reorder_buf[index]) {
849 dev_kfree_skb(skb);
850 goto out;
851 }
852
853 /*
854 * If the current MPDU is in the right order and nothing else
855 * is stored we can process it directly, no need to buffer it.
856 * If it is first but there's something stored, we may be able
857 * to release frames after this one.
858 */
859 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
860 tid_agg_rx->stored_mpdu_num == 0) {
861 tid_agg_rx->head_seq_num =
862 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
863 ret = false;
864 goto out;
865 }
866
867 /* put the frame in the reordering buffer */
868 tid_agg_rx->reorder_buf[index] = skb;
869 tid_agg_rx->reorder_time[index] = jiffies;
870 tid_agg_rx->stored_mpdu_num++;
871 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
872
873 out:
874 spin_unlock(&tid_agg_rx->reorder_lock);
875 return ret;
876 }
877
878 /*
879 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
880 * true if the MPDU was buffered, false if it should be processed.
881 */
882 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
883 struct sk_buff_head *frames)
884 {
885 struct sk_buff *skb = rx->skb;
886 struct ieee80211_local *local = rx->local;
887 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
888 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
889 struct sta_info *sta = rx->sta;
890 struct tid_ampdu_rx *tid_agg_rx;
891 u16 sc;
892 u8 tid, ack_policy;
893
894 if (!ieee80211_is_data_qos(hdr->frame_control) ||
895 is_multicast_ether_addr(hdr->addr1))
896 goto dont_reorder;
897
898 /*
899 * filter the QoS data rx stream according to
900 * STA/TID and check if this STA/TID is on aggregation
901 */
902
903 if (!sta)
904 goto dont_reorder;
905
906 ack_policy = *ieee80211_get_qos_ctl(hdr) &
907 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
908 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
909
910 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
911 if (!tid_agg_rx)
912 goto dont_reorder;
913
914 /* qos null data frames are excluded */
915 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
916 goto dont_reorder;
917
918 /* not part of a BA session */
919 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
920 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
921 goto dont_reorder;
922
923 /* not actually part of this BA session */
924 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
925 goto dont_reorder;
926
927 /* new, potentially un-ordered, ampdu frame - process it */
928
929 /* reset session timer */
930 if (tid_agg_rx->timeout)
931 tid_agg_rx->last_rx = jiffies;
932
933 /* if this mpdu is fragmented - terminate rx aggregation session */
934 sc = le16_to_cpu(hdr->seq_ctrl);
935 if (sc & IEEE80211_SCTL_FRAG) {
936 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
937 skb_queue_tail(&rx->sdata->skb_queue, skb);
938 ieee80211_queue_work(&local->hw, &rx->sdata->work);
939 return;
940 }
941
942 /*
943 * No locking needed -- we will only ever process one
944 * RX packet at a time, and thus own tid_agg_rx. All
945 * other code manipulating it needs to (and does) make
946 * sure that we cannot get to it any more before doing
947 * anything with it.
948 */
949 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
950 frames))
951 return;
952
953 dont_reorder:
954 __skb_queue_tail(frames, skb);
955 }
956
957 static ieee80211_rx_result debug_noinline
958 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
959 {
960 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
961 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
962
963 /*
964 * Drop duplicate 802.11 retransmissions
965 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
966 */
967 if (rx->skb->len >= 24 && rx->sta &&
968 !ieee80211_is_ctl(hdr->frame_control) &&
969 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
970 !is_multicast_ether_addr(hdr->addr1)) {
971 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
972 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
973 hdr->seq_ctrl)) {
974 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
975 rx->local->dot11FrameDuplicateCount++;
976 rx->sta->num_duplicates++;
977 }
978 return RX_DROP_UNUSABLE;
979 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
980 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
981 }
982 }
983
984 if (unlikely(rx->skb->len < 16)) {
985 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
986 return RX_DROP_MONITOR;
987 }
988
989 /* Drop disallowed frame classes based on STA auth/assoc state;
990 * IEEE 802.11, Chap 5.5.
991 *
992 * mac80211 filters only based on association state, i.e. it drops
993 * Class 3 frames from not associated stations. hostapd sends
994 * deauth/disassoc frames when needed. In addition, hostapd is
995 * responsible for filtering on both auth and assoc states.
996 */
997
998 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
999 return ieee80211_rx_mesh_check(rx);
1000
1001 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1002 ieee80211_is_pspoll(hdr->frame_control)) &&
1003 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1004 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1005 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1006 /*
1007 * accept port control frames from the AP even when it's not
1008 * yet marked ASSOC to prevent a race where we don't set the
1009 * assoc bit quickly enough before it sends the first frame
1010 */
1011 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1012 ieee80211_is_data_present(hdr->frame_control)) {
1013 unsigned int hdrlen;
1014 __be16 ethertype;
1015
1016 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1017
1018 if (rx->skb->len < hdrlen + 8)
1019 return RX_DROP_MONITOR;
1020
1021 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1022 if (ethertype == rx->sdata->control_port_protocol)
1023 return RX_CONTINUE;
1024 }
1025
1026 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1027 cfg80211_rx_spurious_frame(rx->sdata->dev,
1028 hdr->addr2,
1029 GFP_ATOMIC))
1030 return RX_DROP_UNUSABLE;
1031
1032 return RX_DROP_MONITOR;
1033 }
1034
1035 return RX_CONTINUE;
1036 }
1037
1038
1039 static ieee80211_rx_result debug_noinline
1040 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1041 {
1042 struct ieee80211_local *local;
1043 struct ieee80211_hdr *hdr;
1044 struct sk_buff *skb;
1045
1046 local = rx->local;
1047 skb = rx->skb;
1048 hdr = (struct ieee80211_hdr *) skb->data;
1049
1050 if (!local->pspolling)
1051 return RX_CONTINUE;
1052
1053 if (!ieee80211_has_fromds(hdr->frame_control))
1054 /* this is not from AP */
1055 return RX_CONTINUE;
1056
1057 if (!ieee80211_is_data(hdr->frame_control))
1058 return RX_CONTINUE;
1059
1060 if (!ieee80211_has_moredata(hdr->frame_control)) {
1061 /* AP has no more frames buffered for us */
1062 local->pspolling = false;
1063 return RX_CONTINUE;
1064 }
1065
1066 /* more data bit is set, let's request a new frame from the AP */
1067 ieee80211_send_pspoll(local, rx->sdata);
1068
1069 return RX_CONTINUE;
1070 }
1071
1072 static void sta_ps_start(struct sta_info *sta)
1073 {
1074 struct ieee80211_sub_if_data *sdata = sta->sdata;
1075 struct ieee80211_local *local = sdata->local;
1076 struct ps_data *ps;
1077
1078 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1079 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1080 ps = &sdata->bss->ps;
1081 else
1082 return;
1083
1084 atomic_inc(&ps->num_sta_ps);
1085 set_sta_flag(sta, WLAN_STA_PS_STA);
1086 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1087 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1088 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1089 sta->sta.addr, sta->sta.aid);
1090 }
1091
1092 static void sta_ps_end(struct sta_info *sta)
1093 {
1094 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1095 sta->sta.addr, sta->sta.aid);
1096
1097 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1098 /*
1099 * Clear the flag only if the other one is still set
1100 * so that the TX path won't start TX'ing new frames
1101 * directly ... In the case that the driver flag isn't
1102 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1103 */
1104 clear_sta_flag(sta, WLAN_STA_PS_STA);
1105 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1106 sta->sta.addr, sta->sta.aid);
1107 return;
1108 }
1109
1110 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1111 clear_sta_flag(sta, WLAN_STA_PS_STA);
1112 ieee80211_sta_ps_deliver_wakeup(sta);
1113 }
1114
1115 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1116 {
1117 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1118 bool in_ps;
1119
1120 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1121
1122 /* Don't let the same PS state be set twice */
1123 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1124 if ((start && in_ps) || (!start && !in_ps))
1125 return -EINVAL;
1126
1127 if (start)
1128 sta_ps_start(sta_inf);
1129 else
1130 sta_ps_end(sta_inf);
1131
1132 return 0;
1133 }
1134 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1135
1136 static ieee80211_rx_result debug_noinline
1137 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1138 {
1139 struct ieee80211_sub_if_data *sdata = rx->sdata;
1140 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1141 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1142 int tid, ac;
1143
1144 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1145 return RX_CONTINUE;
1146
1147 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1148 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1149 return RX_CONTINUE;
1150
1151 /*
1152 * The device handles station powersave, so don't do anything about
1153 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1154 * it to mac80211 since they're handled.)
1155 */
1156 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1157 return RX_CONTINUE;
1158
1159 /*
1160 * Don't do anything if the station isn't already asleep. In
1161 * the uAPSD case, the station will probably be marked asleep,
1162 * in the PS-Poll case the station must be confused ...
1163 */
1164 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1165 return RX_CONTINUE;
1166
1167 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1168 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1169 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1170 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1171 else
1172 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1173 }
1174
1175 /* Free PS Poll skb here instead of returning RX_DROP that would
1176 * count as an dropped frame. */
1177 dev_kfree_skb(rx->skb);
1178
1179 return RX_QUEUED;
1180 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1181 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1182 ieee80211_has_pm(hdr->frame_control) &&
1183 (ieee80211_is_data_qos(hdr->frame_control) ||
1184 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1185 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1186 ac = ieee802_1d_to_ac[tid & 7];
1187
1188 /*
1189 * If this AC is not trigger-enabled do nothing.
1190 *
1191 * NB: This could/should check a separate bitmap of trigger-
1192 * enabled queues, but for now we only implement uAPSD w/o
1193 * TSPEC changes to the ACs, so they're always the same.
1194 */
1195 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1196 return RX_CONTINUE;
1197
1198 /* if we are in a service period, do nothing */
1199 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1200 return RX_CONTINUE;
1201
1202 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1203 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1204 else
1205 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1206 }
1207
1208 return RX_CONTINUE;
1209 }
1210
1211 static ieee80211_rx_result debug_noinline
1212 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1213 {
1214 struct sta_info *sta = rx->sta;
1215 struct sk_buff *skb = rx->skb;
1216 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1217 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1218 int i;
1219
1220 if (!sta)
1221 return RX_CONTINUE;
1222
1223 /*
1224 * Update last_rx only for IBSS packets which are for the current
1225 * BSSID and for station already AUTHORIZED to avoid keeping the
1226 * current IBSS network alive in cases where other STAs start
1227 * using different BSSID. This will also give the station another
1228 * chance to restart the authentication/authorization in case
1229 * something went wrong the first time.
1230 */
1231 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1232 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1233 NL80211_IFTYPE_ADHOC);
1234 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1235 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1236 sta->last_rx = jiffies;
1237 if (ieee80211_is_data(hdr->frame_control) &&
1238 !is_multicast_ether_addr(hdr->addr1)) {
1239 sta->last_rx_rate_idx = status->rate_idx;
1240 sta->last_rx_rate_flag = status->flag;
1241 sta->last_rx_rate_vht_flag = status->vht_flag;
1242 sta->last_rx_rate_vht_nss = status->vht_nss;
1243 }
1244 }
1245 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1246 /*
1247 * Mesh beacons will update last_rx when if they are found to
1248 * match the current local configuration when processed.
1249 */
1250 sta->last_rx = jiffies;
1251 if (ieee80211_is_data(hdr->frame_control)) {
1252 sta->last_rx_rate_idx = status->rate_idx;
1253 sta->last_rx_rate_flag = status->flag;
1254 sta->last_rx_rate_vht_flag = status->vht_flag;
1255 sta->last_rx_rate_vht_nss = status->vht_nss;
1256 }
1257 }
1258
1259 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1260 return RX_CONTINUE;
1261
1262 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1263 ieee80211_sta_rx_notify(rx->sdata, hdr);
1264
1265 sta->rx_fragments++;
1266 sta->rx_bytes += rx->skb->len;
1267 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1268 sta->last_signal = status->signal;
1269 ewma_add(&sta->avg_signal, -status->signal);
1270 }
1271
1272 if (status->chains) {
1273 sta->chains = status->chains;
1274 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1275 int signal = status->chain_signal[i];
1276
1277 if (!(status->chains & BIT(i)))
1278 continue;
1279
1280 sta->chain_signal_last[i] = signal;
1281 ewma_add(&sta->chain_signal_avg[i], -signal);
1282 }
1283 }
1284
1285 /*
1286 * Change STA power saving mode only at the end of a frame
1287 * exchange sequence.
1288 */
1289 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1290 !ieee80211_has_morefrags(hdr->frame_control) &&
1291 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1292 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1293 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1294 /* PM bit is only checked in frames where it isn't reserved,
1295 * in AP mode it's reserved in non-bufferable management frames
1296 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1297 */
1298 (!ieee80211_is_mgmt(hdr->frame_control) ||
1299 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1300 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1301 if (!ieee80211_has_pm(hdr->frame_control))
1302 sta_ps_end(sta);
1303 } else {
1304 if (ieee80211_has_pm(hdr->frame_control))
1305 sta_ps_start(sta);
1306 }
1307 }
1308
1309 /* mesh power save support */
1310 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1311 ieee80211_mps_rx_h_sta_process(sta, hdr);
1312
1313 /*
1314 * Drop (qos-)data::nullfunc frames silently, since they
1315 * are used only to control station power saving mode.
1316 */
1317 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1318 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1319 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1320
1321 /*
1322 * If we receive a 4-addr nullfunc frame from a STA
1323 * that was not moved to a 4-addr STA vlan yet send
1324 * the event to userspace and for older hostapd drop
1325 * the frame to the monitor interface.
1326 */
1327 if (ieee80211_has_a4(hdr->frame_control) &&
1328 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1329 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1330 !rx->sdata->u.vlan.sta))) {
1331 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1332 cfg80211_rx_unexpected_4addr_frame(
1333 rx->sdata->dev, sta->sta.addr,
1334 GFP_ATOMIC);
1335 return RX_DROP_MONITOR;
1336 }
1337 /*
1338 * Update counter and free packet here to avoid
1339 * counting this as a dropped packed.
1340 */
1341 sta->rx_packets++;
1342 dev_kfree_skb(rx->skb);
1343 return RX_QUEUED;
1344 }
1345
1346 return RX_CONTINUE;
1347 } /* ieee80211_rx_h_sta_process */
1348
1349 static ieee80211_rx_result debug_noinline
1350 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1351 {
1352 struct sk_buff *skb = rx->skb;
1353 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1354 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1355 int keyidx;
1356 int hdrlen;
1357 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1358 struct ieee80211_key *sta_ptk = NULL;
1359 int mmie_keyidx = -1;
1360 __le16 fc;
1361 const struct ieee80211_cipher_scheme *cs = NULL;
1362
1363 /*
1364 * Key selection 101
1365 *
1366 * There are four types of keys:
1367 * - GTK (group keys)
1368 * - IGTK (group keys for management frames)
1369 * - PTK (pairwise keys)
1370 * - STK (station-to-station pairwise keys)
1371 *
1372 * When selecting a key, we have to distinguish between multicast
1373 * (including broadcast) and unicast frames, the latter can only
1374 * use PTKs and STKs while the former always use GTKs and IGTKs.
1375 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1376 * unicast frames can also use key indices like GTKs. Hence, if we
1377 * don't have a PTK/STK we check the key index for a WEP key.
1378 *
1379 * Note that in a regular BSS, multicast frames are sent by the
1380 * AP only, associated stations unicast the frame to the AP first
1381 * which then multicasts it on their behalf.
1382 *
1383 * There is also a slight problem in IBSS mode: GTKs are negotiated
1384 * with each station, that is something we don't currently handle.
1385 * The spec seems to expect that one negotiates the same key with
1386 * every station but there's no such requirement; VLANs could be
1387 * possible.
1388 */
1389
1390 /*
1391 * No point in finding a key and decrypting if the frame is neither
1392 * addressed to us nor a multicast frame.
1393 */
1394 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1395 return RX_CONTINUE;
1396
1397 /* start without a key */
1398 rx->key = NULL;
1399 fc = hdr->frame_control;
1400
1401 if (rx->sta) {
1402 int keyid = rx->sta->ptk_idx;
1403
1404 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1405 cs = rx->sta->cipher_scheme;
1406 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1407 if (unlikely(keyid < 0))
1408 return RX_DROP_UNUSABLE;
1409 }
1410 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1411 }
1412
1413 if (!ieee80211_has_protected(fc))
1414 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1415
1416 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1417 rx->key = sta_ptk;
1418 if ((status->flag & RX_FLAG_DECRYPTED) &&
1419 (status->flag & RX_FLAG_IV_STRIPPED))
1420 return RX_CONTINUE;
1421 /* Skip decryption if the frame is not protected. */
1422 if (!ieee80211_has_protected(fc))
1423 return RX_CONTINUE;
1424 } else if (mmie_keyidx >= 0) {
1425 /* Broadcast/multicast robust management frame / BIP */
1426 if ((status->flag & RX_FLAG_DECRYPTED) &&
1427 (status->flag & RX_FLAG_IV_STRIPPED))
1428 return RX_CONTINUE;
1429
1430 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1431 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1432 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1433 if (rx->sta)
1434 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1435 if (!rx->key)
1436 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1437 } else if (!ieee80211_has_protected(fc)) {
1438 /*
1439 * The frame was not protected, so skip decryption. However, we
1440 * need to set rx->key if there is a key that could have been
1441 * used so that the frame may be dropped if encryption would
1442 * have been expected.
1443 */
1444 struct ieee80211_key *key = NULL;
1445 struct ieee80211_sub_if_data *sdata = rx->sdata;
1446 int i;
1447
1448 if (ieee80211_is_mgmt(fc) &&
1449 is_multicast_ether_addr(hdr->addr1) &&
1450 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1451 rx->key = key;
1452 else {
1453 if (rx->sta) {
1454 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1455 key = rcu_dereference(rx->sta->gtk[i]);
1456 if (key)
1457 break;
1458 }
1459 }
1460 if (!key) {
1461 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1462 key = rcu_dereference(sdata->keys[i]);
1463 if (key)
1464 break;
1465 }
1466 }
1467 if (key)
1468 rx->key = key;
1469 }
1470 return RX_CONTINUE;
1471 } else {
1472 u8 keyid;
1473
1474 /*
1475 * The device doesn't give us the IV so we won't be
1476 * able to look up the key. That's ok though, we
1477 * don't need to decrypt the frame, we just won't
1478 * be able to keep statistics accurate.
1479 * Except for key threshold notifications, should
1480 * we somehow allow the driver to tell us which key
1481 * the hardware used if this flag is set?
1482 */
1483 if ((status->flag & RX_FLAG_DECRYPTED) &&
1484 (status->flag & RX_FLAG_IV_STRIPPED))
1485 return RX_CONTINUE;
1486
1487 hdrlen = ieee80211_hdrlen(fc);
1488
1489 if (cs) {
1490 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1491
1492 if (unlikely(keyidx < 0))
1493 return RX_DROP_UNUSABLE;
1494 } else {
1495 if (rx->skb->len < 8 + hdrlen)
1496 return RX_DROP_UNUSABLE; /* TODO: count this? */
1497 /*
1498 * no need to call ieee80211_wep_get_keyidx,
1499 * it verifies a bunch of things we've done already
1500 */
1501 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1502 keyidx = keyid >> 6;
1503 }
1504
1505 /* check per-station GTK first, if multicast packet */
1506 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1507 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1508
1509 /* if not found, try default key */
1510 if (!rx->key) {
1511 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1512
1513 /*
1514 * RSNA-protected unicast frames should always be
1515 * sent with pairwise or station-to-station keys,
1516 * but for WEP we allow using a key index as well.
1517 */
1518 if (rx->key &&
1519 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1520 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1521 !is_multicast_ether_addr(hdr->addr1))
1522 rx->key = NULL;
1523 }
1524 }
1525
1526 if (rx->key) {
1527 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1528 return RX_DROP_MONITOR;
1529
1530 rx->key->tx_rx_count++;
1531 /* TODO: add threshold stuff again */
1532 } else {
1533 return RX_DROP_MONITOR;
1534 }
1535
1536 switch (rx->key->conf.cipher) {
1537 case WLAN_CIPHER_SUITE_WEP40:
1538 case WLAN_CIPHER_SUITE_WEP104:
1539 result = ieee80211_crypto_wep_decrypt(rx);
1540 break;
1541 case WLAN_CIPHER_SUITE_TKIP:
1542 result = ieee80211_crypto_tkip_decrypt(rx);
1543 break;
1544 case WLAN_CIPHER_SUITE_CCMP:
1545 result = ieee80211_crypto_ccmp_decrypt(rx);
1546 break;
1547 case WLAN_CIPHER_SUITE_AES_CMAC:
1548 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1549 break;
1550 default:
1551 result = ieee80211_crypto_hw_decrypt(rx);
1552 }
1553
1554 /* the hdr variable is invalid after the decrypt handlers */
1555
1556 /* either the frame has been decrypted or will be dropped */
1557 status->flag |= RX_FLAG_DECRYPTED;
1558
1559 return result;
1560 }
1561
1562 static inline struct ieee80211_fragment_entry *
1563 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1564 unsigned int frag, unsigned int seq, int rx_queue,
1565 struct sk_buff **skb)
1566 {
1567 struct ieee80211_fragment_entry *entry;
1568
1569 entry = &sdata->fragments[sdata->fragment_next++];
1570 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1571 sdata->fragment_next = 0;
1572
1573 if (!skb_queue_empty(&entry->skb_list))
1574 __skb_queue_purge(&entry->skb_list);
1575
1576 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1577 *skb = NULL;
1578 entry->first_frag_time = jiffies;
1579 entry->seq = seq;
1580 entry->rx_queue = rx_queue;
1581 entry->last_frag = frag;
1582 entry->ccmp = 0;
1583 entry->extra_len = 0;
1584
1585 return entry;
1586 }
1587
1588 static inline struct ieee80211_fragment_entry *
1589 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1590 unsigned int frag, unsigned int seq,
1591 int rx_queue, struct ieee80211_hdr *hdr)
1592 {
1593 struct ieee80211_fragment_entry *entry;
1594 int i, idx;
1595
1596 idx = sdata->fragment_next;
1597 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1598 struct ieee80211_hdr *f_hdr;
1599
1600 idx--;
1601 if (idx < 0)
1602 idx = IEEE80211_FRAGMENT_MAX - 1;
1603
1604 entry = &sdata->fragments[idx];
1605 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1606 entry->rx_queue != rx_queue ||
1607 entry->last_frag + 1 != frag)
1608 continue;
1609
1610 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1611
1612 /*
1613 * Check ftype and addresses are equal, else check next fragment
1614 */
1615 if (((hdr->frame_control ^ f_hdr->frame_control) &
1616 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1617 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1618 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1619 continue;
1620
1621 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1622 __skb_queue_purge(&entry->skb_list);
1623 continue;
1624 }
1625 return entry;
1626 }
1627
1628 return NULL;
1629 }
1630
1631 static ieee80211_rx_result debug_noinline
1632 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1633 {
1634 struct ieee80211_hdr *hdr;
1635 u16 sc;
1636 __le16 fc;
1637 unsigned int frag, seq;
1638 struct ieee80211_fragment_entry *entry;
1639 struct sk_buff *skb;
1640 struct ieee80211_rx_status *status;
1641
1642 hdr = (struct ieee80211_hdr *)rx->skb->data;
1643 fc = hdr->frame_control;
1644
1645 if (ieee80211_is_ctl(fc))
1646 return RX_CONTINUE;
1647
1648 sc = le16_to_cpu(hdr->seq_ctrl);
1649 frag = sc & IEEE80211_SCTL_FRAG;
1650
1651 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1652 is_multicast_ether_addr(hdr->addr1))) {
1653 /* not fragmented */
1654 goto out;
1655 }
1656 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1657
1658 if (skb_linearize(rx->skb))
1659 return RX_DROP_UNUSABLE;
1660
1661 /*
1662 * skb_linearize() might change the skb->data and
1663 * previously cached variables (in this case, hdr) need to
1664 * be refreshed with the new data.
1665 */
1666 hdr = (struct ieee80211_hdr *)rx->skb->data;
1667 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1668
1669 if (frag == 0) {
1670 /* This is the first fragment of a new frame. */
1671 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1672 rx->seqno_idx, &(rx->skb));
1673 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1674 ieee80211_has_protected(fc)) {
1675 int queue = rx->security_idx;
1676 /* Store CCMP PN so that we can verify that the next
1677 * fragment has a sequential PN value. */
1678 entry->ccmp = 1;
1679 memcpy(entry->last_pn,
1680 rx->key->u.ccmp.rx_pn[queue],
1681 IEEE80211_CCMP_PN_LEN);
1682 }
1683 return RX_QUEUED;
1684 }
1685
1686 /* This is a fragment for a frame that should already be pending in
1687 * fragment cache. Add this fragment to the end of the pending entry.
1688 */
1689 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1690 rx->seqno_idx, hdr);
1691 if (!entry) {
1692 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1693 return RX_DROP_MONITOR;
1694 }
1695
1696 /* Verify that MPDUs within one MSDU have sequential PN values.
1697 * (IEEE 802.11i, 8.3.3.4.5) */
1698 if (entry->ccmp) {
1699 int i;
1700 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1701 int queue;
1702 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1703 return RX_DROP_UNUSABLE;
1704 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1705 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1706 pn[i]++;
1707 if (pn[i])
1708 break;
1709 }
1710 queue = rx->security_idx;
1711 rpn = rx->key->u.ccmp.rx_pn[queue];
1712 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1713 return RX_DROP_UNUSABLE;
1714 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1715 }
1716
1717 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1718 __skb_queue_tail(&entry->skb_list, rx->skb);
1719 entry->last_frag = frag;
1720 entry->extra_len += rx->skb->len;
1721 if (ieee80211_has_morefrags(fc)) {
1722 rx->skb = NULL;
1723 return RX_QUEUED;
1724 }
1725
1726 rx->skb = __skb_dequeue(&entry->skb_list);
1727 if (skb_tailroom(rx->skb) < entry->extra_len) {
1728 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1729 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1730 GFP_ATOMIC))) {
1731 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1732 __skb_queue_purge(&entry->skb_list);
1733 return RX_DROP_UNUSABLE;
1734 }
1735 }
1736 while ((skb = __skb_dequeue(&entry->skb_list))) {
1737 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1738 dev_kfree_skb(skb);
1739 }
1740
1741 /* Complete frame has been reassembled - process it now */
1742 status = IEEE80211_SKB_RXCB(rx->skb);
1743 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1744
1745 out:
1746 if (rx->sta)
1747 rx->sta->rx_packets++;
1748 if (is_multicast_ether_addr(hdr->addr1))
1749 rx->local->dot11MulticastReceivedFrameCount++;
1750 else
1751 ieee80211_led_rx(rx->local);
1752 return RX_CONTINUE;
1753 }
1754
1755 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1756 {
1757 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1758 return -EACCES;
1759
1760 return 0;
1761 }
1762
1763 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1764 {
1765 struct sk_buff *skb = rx->skb;
1766 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1767
1768 /*
1769 * Pass through unencrypted frames if the hardware has
1770 * decrypted them already.
1771 */
1772 if (status->flag & RX_FLAG_DECRYPTED)
1773 return 0;
1774
1775 /* Drop unencrypted frames if key is set. */
1776 if (unlikely(!ieee80211_has_protected(fc) &&
1777 !ieee80211_is_nullfunc(fc) &&
1778 ieee80211_is_data(fc) &&
1779 (rx->key || rx->sdata->drop_unencrypted)))
1780 return -EACCES;
1781
1782 return 0;
1783 }
1784
1785 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1786 {
1787 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1788 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1789 __le16 fc = hdr->frame_control;
1790
1791 /*
1792 * Pass through unencrypted frames if the hardware has
1793 * decrypted them already.
1794 */
1795 if (status->flag & RX_FLAG_DECRYPTED)
1796 return 0;
1797
1798 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1799 if (unlikely(!ieee80211_has_protected(fc) &&
1800 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1801 rx->key)) {
1802 if (ieee80211_is_deauth(fc) ||
1803 ieee80211_is_disassoc(fc))
1804 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1805 rx->skb->data,
1806 rx->skb->len);
1807 return -EACCES;
1808 }
1809 /* BIP does not use Protected field, so need to check MMIE */
1810 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1811 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1812 if (ieee80211_is_deauth(fc) ||
1813 ieee80211_is_disassoc(fc))
1814 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1815 rx->skb->data,
1816 rx->skb->len);
1817 return -EACCES;
1818 }
1819 /*
1820 * When using MFP, Action frames are not allowed prior to
1821 * having configured keys.
1822 */
1823 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1824 ieee80211_is_robust_mgmt_frame(rx->skb)))
1825 return -EACCES;
1826 }
1827
1828 return 0;
1829 }
1830
1831 static int
1832 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1833 {
1834 struct ieee80211_sub_if_data *sdata = rx->sdata;
1835 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1836 bool check_port_control = false;
1837 struct ethhdr *ehdr;
1838 int ret;
1839
1840 *port_control = false;
1841 if (ieee80211_has_a4(hdr->frame_control) &&
1842 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1843 return -1;
1844
1845 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1846 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1847
1848 if (!sdata->u.mgd.use_4addr)
1849 return -1;
1850 else
1851 check_port_control = true;
1852 }
1853
1854 if (is_multicast_ether_addr(hdr->addr1) &&
1855 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1856 return -1;
1857
1858 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1859 if (ret < 0)
1860 return ret;
1861
1862 ehdr = (struct ethhdr *) rx->skb->data;
1863 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1864 *port_control = true;
1865 else if (check_port_control)
1866 return -1;
1867
1868 return 0;
1869 }
1870
1871 /*
1872 * requires that rx->skb is a frame with ethernet header
1873 */
1874 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1875 {
1876 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1877 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1878 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1879
1880 /*
1881 * Allow EAPOL frames to us/the PAE group address regardless
1882 * of whether the frame was encrypted or not.
1883 */
1884 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1885 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1886 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1887 return true;
1888
1889 if (ieee80211_802_1x_port_control(rx) ||
1890 ieee80211_drop_unencrypted(rx, fc))
1891 return false;
1892
1893 return true;
1894 }
1895
1896 /*
1897 * requires that rx->skb is a frame with ethernet header
1898 */
1899 static void
1900 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1901 {
1902 struct ieee80211_sub_if_data *sdata = rx->sdata;
1903 struct net_device *dev = sdata->dev;
1904 struct sk_buff *skb, *xmit_skb;
1905 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1906 struct sta_info *dsta;
1907 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1908
1909 skb = rx->skb;
1910 xmit_skb = NULL;
1911
1912 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1913 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1914 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1915 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1916 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1917 if (is_multicast_ether_addr(ehdr->h_dest)) {
1918 /*
1919 * send multicast frames both to higher layers in
1920 * local net stack and back to the wireless medium
1921 */
1922 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1923 if (!xmit_skb)
1924 net_info_ratelimited("%s: failed to clone multicast frame\n",
1925 dev->name);
1926 } else {
1927 dsta = sta_info_get(sdata, skb->data);
1928 if (dsta) {
1929 /*
1930 * The destination station is associated to
1931 * this AP (in this VLAN), so send the frame
1932 * directly to it and do not pass it to local
1933 * net stack.
1934 */
1935 xmit_skb = skb;
1936 skb = NULL;
1937 }
1938 }
1939 }
1940
1941 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1942 if (skb) {
1943 /* 'align' will only take the values 0 or 2 here since all
1944 * frames are required to be aligned to 2-byte boundaries
1945 * when being passed to mac80211; the code here works just
1946 * as well if that isn't true, but mac80211 assumes it can
1947 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
1948 */
1949 int align;
1950
1951 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
1952 if (align) {
1953 if (WARN_ON(skb_headroom(skb) < 3)) {
1954 dev_kfree_skb(skb);
1955 skb = NULL;
1956 } else {
1957 u8 *data = skb->data;
1958 size_t len = skb_headlen(skb);
1959 skb->data -= align;
1960 memmove(skb->data, data, len);
1961 skb_set_tail_pointer(skb, len);
1962 }
1963 }
1964 }
1965 #endif
1966
1967 if (skb) {
1968 /* deliver to local stack */
1969 skb->protocol = eth_type_trans(skb, dev);
1970 memset(skb->cb, 0, sizeof(skb->cb));
1971 if (rx->local->napi)
1972 napi_gro_receive(rx->local->napi, skb);
1973 else
1974 netif_receive_skb(skb);
1975 }
1976
1977 if (xmit_skb) {
1978 /*
1979 * Send to wireless media and increase priority by 256 to
1980 * keep the received priority instead of reclassifying
1981 * the frame (see cfg80211_classify8021d).
1982 */
1983 xmit_skb->priority += 256;
1984 xmit_skb->protocol = htons(ETH_P_802_3);
1985 skb_reset_network_header(xmit_skb);
1986 skb_reset_mac_header(xmit_skb);
1987 dev_queue_xmit(xmit_skb);
1988 }
1989 }
1990
1991 static ieee80211_rx_result debug_noinline
1992 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1993 {
1994 struct net_device *dev = rx->sdata->dev;
1995 struct sk_buff *skb = rx->skb;
1996 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1997 __le16 fc = hdr->frame_control;
1998 struct sk_buff_head frame_list;
1999 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2000
2001 if (unlikely(!ieee80211_is_data(fc)))
2002 return RX_CONTINUE;
2003
2004 if (unlikely(!ieee80211_is_data_present(fc)))
2005 return RX_DROP_MONITOR;
2006
2007 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2008 return RX_CONTINUE;
2009
2010 if (ieee80211_has_a4(hdr->frame_control) &&
2011 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2012 !rx->sdata->u.vlan.sta)
2013 return RX_DROP_UNUSABLE;
2014
2015 if (is_multicast_ether_addr(hdr->addr1) &&
2016 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2017 rx->sdata->u.vlan.sta) ||
2018 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2019 rx->sdata->u.mgd.use_4addr)))
2020 return RX_DROP_UNUSABLE;
2021
2022 skb->dev = dev;
2023 __skb_queue_head_init(&frame_list);
2024
2025 if (skb_linearize(skb))
2026 return RX_DROP_UNUSABLE;
2027
2028 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2029 rx->sdata->vif.type,
2030 rx->local->hw.extra_tx_headroom, true);
2031
2032 while (!skb_queue_empty(&frame_list)) {
2033 rx->skb = __skb_dequeue(&frame_list);
2034
2035 if (!ieee80211_frame_allowed(rx, fc)) {
2036 dev_kfree_skb(rx->skb);
2037 continue;
2038 }
2039 dev->stats.rx_packets++;
2040 dev->stats.rx_bytes += rx->skb->len;
2041
2042 ieee80211_deliver_skb(rx);
2043 }
2044
2045 return RX_QUEUED;
2046 }
2047
2048 #ifdef CONFIG_MAC80211_MESH
2049 static ieee80211_rx_result
2050 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2051 {
2052 struct ieee80211_hdr *fwd_hdr, *hdr;
2053 struct ieee80211_tx_info *info;
2054 struct ieee80211s_hdr *mesh_hdr;
2055 struct sk_buff *skb = rx->skb, *fwd_skb;
2056 struct ieee80211_local *local = rx->local;
2057 struct ieee80211_sub_if_data *sdata = rx->sdata;
2058 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2059 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2060 u16 q, hdrlen;
2061
2062 hdr = (struct ieee80211_hdr *) skb->data;
2063 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2064
2065 /* make sure fixed part of mesh header is there, also checks skb len */
2066 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2067 return RX_DROP_MONITOR;
2068
2069 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2070
2071 /* make sure full mesh header is there, also checks skb len */
2072 if (!pskb_may_pull(rx->skb,
2073 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2074 return RX_DROP_MONITOR;
2075
2076 /* reload pointers */
2077 hdr = (struct ieee80211_hdr *) skb->data;
2078 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2079
2080 /* frame is in RMC, don't forward */
2081 if (ieee80211_is_data(hdr->frame_control) &&
2082 is_multicast_ether_addr(hdr->addr1) &&
2083 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2084 return RX_DROP_MONITOR;
2085
2086 if (!ieee80211_is_data(hdr->frame_control) ||
2087 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2088 return RX_CONTINUE;
2089
2090 if (!mesh_hdr->ttl)
2091 return RX_DROP_MONITOR;
2092
2093 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2094 struct mesh_path *mppath;
2095 char *proxied_addr;
2096 char *mpp_addr;
2097
2098 if (is_multicast_ether_addr(hdr->addr1)) {
2099 mpp_addr = hdr->addr3;
2100 proxied_addr = mesh_hdr->eaddr1;
2101 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2102 /* has_a4 already checked in ieee80211_rx_mesh_check */
2103 mpp_addr = hdr->addr4;
2104 proxied_addr = mesh_hdr->eaddr2;
2105 } else {
2106 return RX_DROP_MONITOR;
2107 }
2108
2109 rcu_read_lock();
2110 mppath = mpp_path_lookup(sdata, proxied_addr);
2111 if (!mppath) {
2112 mpp_path_add(sdata, proxied_addr, mpp_addr);
2113 } else {
2114 spin_lock_bh(&mppath->state_lock);
2115 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2116 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2117 spin_unlock_bh(&mppath->state_lock);
2118 }
2119 rcu_read_unlock();
2120 }
2121
2122 /* Frame has reached destination. Don't forward */
2123 if (!is_multicast_ether_addr(hdr->addr1) &&
2124 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2125 return RX_CONTINUE;
2126
2127 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2128 if (ieee80211_queue_stopped(&local->hw, q)) {
2129 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2130 return RX_DROP_MONITOR;
2131 }
2132 skb_set_queue_mapping(skb, q);
2133
2134 if (!--mesh_hdr->ttl) {
2135 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2136 goto out;
2137 }
2138
2139 if (!ifmsh->mshcfg.dot11MeshForwarding)
2140 goto out;
2141
2142 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2143 if (!fwd_skb) {
2144 net_info_ratelimited("%s: failed to clone mesh frame\n",
2145 sdata->name);
2146 goto out;
2147 }
2148
2149 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2150 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2151 info = IEEE80211_SKB_CB(fwd_skb);
2152 memset(info, 0, sizeof(*info));
2153 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2154 info->control.vif = &rx->sdata->vif;
2155 info->control.jiffies = jiffies;
2156 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2157 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2158 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2159 /* update power mode indication when forwarding */
2160 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2161 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2162 /* mesh power mode flags updated in mesh_nexthop_lookup */
2163 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2164 } else {
2165 /* unable to resolve next hop */
2166 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2167 fwd_hdr->addr3, 0,
2168 WLAN_REASON_MESH_PATH_NOFORWARD,
2169 fwd_hdr->addr2);
2170 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2171 kfree_skb(fwd_skb);
2172 return RX_DROP_MONITOR;
2173 }
2174
2175 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2176 ieee80211_add_pending_skb(local, fwd_skb);
2177 out:
2178 if (is_multicast_ether_addr(hdr->addr1) ||
2179 sdata->dev->flags & IFF_PROMISC)
2180 return RX_CONTINUE;
2181 else
2182 return RX_DROP_MONITOR;
2183 }
2184 #endif
2185
2186 static ieee80211_rx_result debug_noinline
2187 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2188 {
2189 struct ieee80211_sub_if_data *sdata = rx->sdata;
2190 struct ieee80211_local *local = rx->local;
2191 struct net_device *dev = sdata->dev;
2192 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2193 __le16 fc = hdr->frame_control;
2194 bool port_control;
2195 int err;
2196
2197 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2198 return RX_CONTINUE;
2199
2200 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2201 return RX_DROP_MONITOR;
2202
2203 /*
2204 * Send unexpected-4addr-frame event to hostapd. For older versions,
2205 * also drop the frame to cooked monitor interfaces.
2206 */
2207 if (ieee80211_has_a4(hdr->frame_control) &&
2208 sdata->vif.type == NL80211_IFTYPE_AP) {
2209 if (rx->sta &&
2210 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2211 cfg80211_rx_unexpected_4addr_frame(
2212 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2213 return RX_DROP_MONITOR;
2214 }
2215
2216 err = __ieee80211_data_to_8023(rx, &port_control);
2217 if (unlikely(err))
2218 return RX_DROP_UNUSABLE;
2219
2220 if (!ieee80211_frame_allowed(rx, fc))
2221 return RX_DROP_MONITOR;
2222
2223 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2224 unlikely(port_control) && sdata->bss) {
2225 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2226 u.ap);
2227 dev = sdata->dev;
2228 rx->sdata = sdata;
2229 }
2230
2231 rx->skb->dev = dev;
2232
2233 dev->stats.rx_packets++;
2234 dev->stats.rx_bytes += rx->skb->len;
2235
2236 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2237 !is_multicast_ether_addr(
2238 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2239 (!local->scanning &&
2240 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2241 mod_timer(&local->dynamic_ps_timer, jiffies +
2242 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2243 }
2244
2245 ieee80211_deliver_skb(rx);
2246
2247 return RX_QUEUED;
2248 }
2249
2250 static ieee80211_rx_result debug_noinline
2251 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2252 {
2253 struct sk_buff *skb = rx->skb;
2254 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2255 struct tid_ampdu_rx *tid_agg_rx;
2256 u16 start_seq_num;
2257 u16 tid;
2258
2259 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2260 return RX_CONTINUE;
2261
2262 if (ieee80211_is_back_req(bar->frame_control)) {
2263 struct {
2264 __le16 control, start_seq_num;
2265 } __packed bar_data;
2266
2267 if (!rx->sta)
2268 return RX_DROP_MONITOR;
2269
2270 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2271 &bar_data, sizeof(bar_data)))
2272 return RX_DROP_MONITOR;
2273
2274 tid = le16_to_cpu(bar_data.control) >> 12;
2275
2276 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2277 if (!tid_agg_rx)
2278 return RX_DROP_MONITOR;
2279
2280 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2281
2282 /* reset session timer */
2283 if (tid_agg_rx->timeout)
2284 mod_timer(&tid_agg_rx->session_timer,
2285 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2286
2287 spin_lock(&tid_agg_rx->reorder_lock);
2288 /* release stored frames up to start of BAR */
2289 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2290 start_seq_num, frames);
2291 spin_unlock(&tid_agg_rx->reorder_lock);
2292
2293 kfree_skb(skb);
2294 return RX_QUEUED;
2295 }
2296
2297 /*
2298 * After this point, we only want management frames,
2299 * so we can drop all remaining control frames to
2300 * cooked monitor interfaces.
2301 */
2302 return RX_DROP_MONITOR;
2303 }
2304
2305 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2306 struct ieee80211_mgmt *mgmt,
2307 size_t len)
2308 {
2309 struct ieee80211_local *local = sdata->local;
2310 struct sk_buff *skb;
2311 struct ieee80211_mgmt *resp;
2312
2313 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2314 /* Not to own unicast address */
2315 return;
2316 }
2317
2318 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2319 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2320 /* Not from the current AP or not associated yet. */
2321 return;
2322 }
2323
2324 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2325 /* Too short SA Query request frame */
2326 return;
2327 }
2328
2329 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2330 if (skb == NULL)
2331 return;
2332
2333 skb_reserve(skb, local->hw.extra_tx_headroom);
2334 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2335 memset(resp, 0, 24);
2336 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2337 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2338 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2339 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2340 IEEE80211_STYPE_ACTION);
2341 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2342 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2343 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2344 memcpy(resp->u.action.u.sa_query.trans_id,
2345 mgmt->u.action.u.sa_query.trans_id,
2346 WLAN_SA_QUERY_TR_ID_LEN);
2347
2348 ieee80211_tx_skb(sdata, skb);
2349 }
2350
2351 static ieee80211_rx_result debug_noinline
2352 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2353 {
2354 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2355 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2356
2357 /*
2358 * From here on, look only at management frames.
2359 * Data and control frames are already handled,
2360 * and unknown (reserved) frames are useless.
2361 */
2362 if (rx->skb->len < 24)
2363 return RX_DROP_MONITOR;
2364
2365 if (!ieee80211_is_mgmt(mgmt->frame_control))
2366 return RX_DROP_MONITOR;
2367
2368 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2369 ieee80211_is_beacon(mgmt->frame_control) &&
2370 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2371 int sig = 0;
2372
2373 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2374 sig = status->signal;
2375
2376 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2377 rx->skb->data, rx->skb->len,
2378 status->freq, sig);
2379 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2380 }
2381
2382 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2383 return RX_DROP_MONITOR;
2384
2385 if (ieee80211_drop_unencrypted_mgmt(rx))
2386 return RX_DROP_UNUSABLE;
2387
2388 return RX_CONTINUE;
2389 }
2390
2391 static ieee80211_rx_result debug_noinline
2392 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2393 {
2394 struct ieee80211_local *local = rx->local;
2395 struct ieee80211_sub_if_data *sdata = rx->sdata;
2396 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2397 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2398 int len = rx->skb->len;
2399
2400 if (!ieee80211_is_action(mgmt->frame_control))
2401 return RX_CONTINUE;
2402
2403 /* drop too small frames */
2404 if (len < IEEE80211_MIN_ACTION_SIZE)
2405 return RX_DROP_UNUSABLE;
2406
2407 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2408 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2409 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2410 return RX_DROP_UNUSABLE;
2411
2412 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2413 return RX_DROP_UNUSABLE;
2414
2415 switch (mgmt->u.action.category) {
2416 case WLAN_CATEGORY_HT:
2417 /* reject HT action frames from stations not supporting HT */
2418 if (!rx->sta->sta.ht_cap.ht_supported)
2419 goto invalid;
2420
2421 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2422 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2423 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2424 sdata->vif.type != NL80211_IFTYPE_AP &&
2425 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2426 break;
2427
2428 /* verify action & smps_control/chanwidth are present */
2429 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2430 goto invalid;
2431
2432 switch (mgmt->u.action.u.ht_smps.action) {
2433 case WLAN_HT_ACTION_SMPS: {
2434 struct ieee80211_supported_band *sband;
2435 enum ieee80211_smps_mode smps_mode;
2436
2437 /* convert to HT capability */
2438 switch (mgmt->u.action.u.ht_smps.smps_control) {
2439 case WLAN_HT_SMPS_CONTROL_DISABLED:
2440 smps_mode = IEEE80211_SMPS_OFF;
2441 break;
2442 case WLAN_HT_SMPS_CONTROL_STATIC:
2443 smps_mode = IEEE80211_SMPS_STATIC;
2444 break;
2445 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2446 smps_mode = IEEE80211_SMPS_DYNAMIC;
2447 break;
2448 default:
2449 goto invalid;
2450 }
2451
2452 /* if no change do nothing */
2453 if (rx->sta->sta.smps_mode == smps_mode)
2454 goto handled;
2455 rx->sta->sta.smps_mode = smps_mode;
2456
2457 sband = rx->local->hw.wiphy->bands[status->band];
2458
2459 rate_control_rate_update(local, sband, rx->sta,
2460 IEEE80211_RC_SMPS_CHANGED);
2461 goto handled;
2462 }
2463 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2464 struct ieee80211_supported_band *sband;
2465 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2466 enum ieee80211_sta_rx_bandwidth new_bw;
2467
2468 /* If it doesn't support 40 MHz it can't change ... */
2469 if (!(rx->sta->sta.ht_cap.cap &
2470 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2471 goto handled;
2472
2473 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2474 new_bw = IEEE80211_STA_RX_BW_20;
2475 else
2476 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2477
2478 if (rx->sta->sta.bandwidth == new_bw)
2479 goto handled;
2480
2481 sband = rx->local->hw.wiphy->bands[status->band];
2482
2483 rate_control_rate_update(local, sband, rx->sta,
2484 IEEE80211_RC_BW_CHANGED);
2485 goto handled;
2486 }
2487 default:
2488 goto invalid;
2489 }
2490
2491 break;
2492 case WLAN_CATEGORY_PUBLIC:
2493 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2494 goto invalid;
2495 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2496 break;
2497 if (!rx->sta)
2498 break;
2499 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2500 break;
2501 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2502 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2503 break;
2504 if (len < offsetof(struct ieee80211_mgmt,
2505 u.action.u.ext_chan_switch.variable))
2506 goto invalid;
2507 goto queue;
2508 case WLAN_CATEGORY_VHT:
2509 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2510 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2511 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2512 sdata->vif.type != NL80211_IFTYPE_AP &&
2513 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2514 break;
2515
2516 /* verify action code is present */
2517 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2518 goto invalid;
2519
2520 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2521 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2522 u8 opmode;
2523
2524 /* verify opmode is present */
2525 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2526 goto invalid;
2527
2528 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2529
2530 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2531 opmode, status->band,
2532 false);
2533 goto handled;
2534 }
2535 default:
2536 break;
2537 }
2538 break;
2539 case WLAN_CATEGORY_BACK:
2540 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2541 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2542 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2543 sdata->vif.type != NL80211_IFTYPE_AP &&
2544 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2545 break;
2546
2547 /* verify action_code is present */
2548 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2549 break;
2550
2551 switch (mgmt->u.action.u.addba_req.action_code) {
2552 case WLAN_ACTION_ADDBA_REQ:
2553 if (len < (IEEE80211_MIN_ACTION_SIZE +
2554 sizeof(mgmt->u.action.u.addba_req)))
2555 goto invalid;
2556 break;
2557 case WLAN_ACTION_ADDBA_RESP:
2558 if (len < (IEEE80211_MIN_ACTION_SIZE +
2559 sizeof(mgmt->u.action.u.addba_resp)))
2560 goto invalid;
2561 break;
2562 case WLAN_ACTION_DELBA:
2563 if (len < (IEEE80211_MIN_ACTION_SIZE +
2564 sizeof(mgmt->u.action.u.delba)))
2565 goto invalid;
2566 break;
2567 default:
2568 goto invalid;
2569 }
2570
2571 goto queue;
2572 case WLAN_CATEGORY_SPECTRUM_MGMT:
2573 /* verify action_code is present */
2574 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2575 break;
2576
2577 switch (mgmt->u.action.u.measurement.action_code) {
2578 case WLAN_ACTION_SPCT_MSR_REQ:
2579 if (status->band != IEEE80211_BAND_5GHZ)
2580 break;
2581
2582 if (len < (IEEE80211_MIN_ACTION_SIZE +
2583 sizeof(mgmt->u.action.u.measurement)))
2584 break;
2585
2586 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2587 break;
2588
2589 ieee80211_process_measurement_req(sdata, mgmt, len);
2590 goto handled;
2591 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2592 u8 *bssid;
2593 if (len < (IEEE80211_MIN_ACTION_SIZE +
2594 sizeof(mgmt->u.action.u.chan_switch)))
2595 break;
2596
2597 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2598 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2599 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2600 break;
2601
2602 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2603 bssid = sdata->u.mgd.bssid;
2604 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2605 bssid = sdata->u.ibss.bssid;
2606 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2607 bssid = mgmt->sa;
2608 else
2609 break;
2610
2611 if (!ether_addr_equal(mgmt->bssid, bssid))
2612 break;
2613
2614 goto queue;
2615 }
2616 }
2617 break;
2618 case WLAN_CATEGORY_SA_QUERY:
2619 if (len < (IEEE80211_MIN_ACTION_SIZE +
2620 sizeof(mgmt->u.action.u.sa_query)))
2621 break;
2622
2623 switch (mgmt->u.action.u.sa_query.action) {
2624 case WLAN_ACTION_SA_QUERY_REQUEST:
2625 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2626 break;
2627 ieee80211_process_sa_query_req(sdata, mgmt, len);
2628 goto handled;
2629 }
2630 break;
2631 case WLAN_CATEGORY_SELF_PROTECTED:
2632 if (len < (IEEE80211_MIN_ACTION_SIZE +
2633 sizeof(mgmt->u.action.u.self_prot.action_code)))
2634 break;
2635
2636 switch (mgmt->u.action.u.self_prot.action_code) {
2637 case WLAN_SP_MESH_PEERING_OPEN:
2638 case WLAN_SP_MESH_PEERING_CLOSE:
2639 case WLAN_SP_MESH_PEERING_CONFIRM:
2640 if (!ieee80211_vif_is_mesh(&sdata->vif))
2641 goto invalid;
2642 if (sdata->u.mesh.user_mpm)
2643 /* userspace handles this frame */
2644 break;
2645 goto queue;
2646 case WLAN_SP_MGK_INFORM:
2647 case WLAN_SP_MGK_ACK:
2648 if (!ieee80211_vif_is_mesh(&sdata->vif))
2649 goto invalid;
2650 break;
2651 }
2652 break;
2653 case WLAN_CATEGORY_MESH_ACTION:
2654 if (len < (IEEE80211_MIN_ACTION_SIZE +
2655 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2656 break;
2657
2658 if (!ieee80211_vif_is_mesh(&sdata->vif))
2659 break;
2660 if (mesh_action_is_path_sel(mgmt) &&
2661 !mesh_path_sel_is_hwmp(sdata))
2662 break;
2663 goto queue;
2664 }
2665
2666 return RX_CONTINUE;
2667
2668 invalid:
2669 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2670 /* will return in the next handlers */
2671 return RX_CONTINUE;
2672
2673 handled:
2674 if (rx->sta)
2675 rx->sta->rx_packets++;
2676 dev_kfree_skb(rx->skb);
2677 return RX_QUEUED;
2678
2679 queue:
2680 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2681 skb_queue_tail(&sdata->skb_queue, rx->skb);
2682 ieee80211_queue_work(&local->hw, &sdata->work);
2683 if (rx->sta)
2684 rx->sta->rx_packets++;
2685 return RX_QUEUED;
2686 }
2687
2688 static ieee80211_rx_result debug_noinline
2689 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2690 {
2691 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2692 int sig = 0;
2693
2694 /* skip known-bad action frames and return them in the next handler */
2695 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2696 return RX_CONTINUE;
2697
2698 /*
2699 * Getting here means the kernel doesn't know how to handle
2700 * it, but maybe userspace does ... include returned frames
2701 * so userspace can register for those to know whether ones
2702 * it transmitted were processed or returned.
2703 */
2704
2705 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2706 sig = status->signal;
2707
2708 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2709 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2710 if (rx->sta)
2711 rx->sta->rx_packets++;
2712 dev_kfree_skb(rx->skb);
2713 return RX_QUEUED;
2714 }
2715
2716 return RX_CONTINUE;
2717 }
2718
2719 static ieee80211_rx_result debug_noinline
2720 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2721 {
2722 struct ieee80211_local *local = rx->local;
2723 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2724 struct sk_buff *nskb;
2725 struct ieee80211_sub_if_data *sdata = rx->sdata;
2726 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2727
2728 if (!ieee80211_is_action(mgmt->frame_control))
2729 return RX_CONTINUE;
2730
2731 /*
2732 * For AP mode, hostapd is responsible for handling any action
2733 * frames that we didn't handle, including returning unknown
2734 * ones. For all other modes we will return them to the sender,
2735 * setting the 0x80 bit in the action category, as required by
2736 * 802.11-2012 9.24.4.
2737 * Newer versions of hostapd shall also use the management frame
2738 * registration mechanisms, but older ones still use cooked
2739 * monitor interfaces so push all frames there.
2740 */
2741 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2742 (sdata->vif.type == NL80211_IFTYPE_AP ||
2743 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2744 return RX_DROP_MONITOR;
2745
2746 if (is_multicast_ether_addr(mgmt->da))
2747 return RX_DROP_MONITOR;
2748
2749 /* do not return rejected action frames */
2750 if (mgmt->u.action.category & 0x80)
2751 return RX_DROP_UNUSABLE;
2752
2753 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2754 GFP_ATOMIC);
2755 if (nskb) {
2756 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2757
2758 nmgmt->u.action.category |= 0x80;
2759 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2760 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2761
2762 memset(nskb->cb, 0, sizeof(nskb->cb));
2763
2764 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2765 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2766
2767 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2768 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2769 IEEE80211_TX_CTL_NO_CCK_RATE;
2770 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2771 info->hw_queue =
2772 local->hw.offchannel_tx_hw_queue;
2773 }
2774
2775 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2776 status->band);
2777 }
2778 dev_kfree_skb(rx->skb);
2779 return RX_QUEUED;
2780 }
2781
2782 static ieee80211_rx_result debug_noinline
2783 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2784 {
2785 struct ieee80211_sub_if_data *sdata = rx->sdata;
2786 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2787 __le16 stype;
2788
2789 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2790
2791 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2792 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2793 sdata->vif.type != NL80211_IFTYPE_STATION)
2794 return RX_DROP_MONITOR;
2795
2796 switch (stype) {
2797 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2798 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2799 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2800 /* process for all: mesh, mlme, ibss */
2801 break;
2802 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2803 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2804 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2805 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2806 if (is_multicast_ether_addr(mgmt->da) &&
2807 !is_broadcast_ether_addr(mgmt->da))
2808 return RX_DROP_MONITOR;
2809
2810 /* process only for station */
2811 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2812 return RX_DROP_MONITOR;
2813 break;
2814 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2815 /* process only for ibss and mesh */
2816 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2817 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2818 return RX_DROP_MONITOR;
2819 break;
2820 default:
2821 return RX_DROP_MONITOR;
2822 }
2823
2824 /* queue up frame and kick off work to process it */
2825 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2826 skb_queue_tail(&sdata->skb_queue, rx->skb);
2827 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2828 if (rx->sta)
2829 rx->sta->rx_packets++;
2830
2831 return RX_QUEUED;
2832 }
2833
2834 /* TODO: use IEEE80211_RX_FRAGMENTED */
2835 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2836 struct ieee80211_rate *rate)
2837 {
2838 struct ieee80211_sub_if_data *sdata;
2839 struct ieee80211_local *local = rx->local;
2840 struct sk_buff *skb = rx->skb, *skb2;
2841 struct net_device *prev_dev = NULL;
2842 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2843 int needed_headroom;
2844
2845 /*
2846 * If cooked monitor has been processed already, then
2847 * don't do it again. If not, set the flag.
2848 */
2849 if (rx->flags & IEEE80211_RX_CMNTR)
2850 goto out_free_skb;
2851 rx->flags |= IEEE80211_RX_CMNTR;
2852
2853 /* If there are no cooked monitor interfaces, just free the SKB */
2854 if (!local->cooked_mntrs)
2855 goto out_free_skb;
2856
2857 /* room for the radiotap header based on driver features */
2858 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2859
2860 if (skb_headroom(skb) < needed_headroom &&
2861 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2862 goto out_free_skb;
2863
2864 /* prepend radiotap information */
2865 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2866 false);
2867
2868 skb_set_mac_header(skb, 0);
2869 skb->ip_summed = CHECKSUM_UNNECESSARY;
2870 skb->pkt_type = PACKET_OTHERHOST;
2871 skb->protocol = htons(ETH_P_802_2);
2872
2873 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2874 if (!ieee80211_sdata_running(sdata))
2875 continue;
2876
2877 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2878 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2879 continue;
2880
2881 if (prev_dev) {
2882 skb2 = skb_clone(skb, GFP_ATOMIC);
2883 if (skb2) {
2884 skb2->dev = prev_dev;
2885 netif_receive_skb(skb2);
2886 }
2887 }
2888
2889 prev_dev = sdata->dev;
2890 sdata->dev->stats.rx_packets++;
2891 sdata->dev->stats.rx_bytes += skb->len;
2892 }
2893
2894 if (prev_dev) {
2895 skb->dev = prev_dev;
2896 netif_receive_skb(skb);
2897 return;
2898 }
2899
2900 out_free_skb:
2901 dev_kfree_skb(skb);
2902 }
2903
2904 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2905 ieee80211_rx_result res)
2906 {
2907 switch (res) {
2908 case RX_DROP_MONITOR:
2909 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2910 if (rx->sta)
2911 rx->sta->rx_dropped++;
2912 /* fall through */
2913 case RX_CONTINUE: {
2914 struct ieee80211_rate *rate = NULL;
2915 struct ieee80211_supported_band *sband;
2916 struct ieee80211_rx_status *status;
2917
2918 status = IEEE80211_SKB_RXCB((rx->skb));
2919
2920 sband = rx->local->hw.wiphy->bands[status->band];
2921 if (!(status->flag & RX_FLAG_HT) &&
2922 !(status->flag & RX_FLAG_VHT))
2923 rate = &sband->bitrates[status->rate_idx];
2924
2925 ieee80211_rx_cooked_monitor(rx, rate);
2926 break;
2927 }
2928 case RX_DROP_UNUSABLE:
2929 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2930 if (rx->sta)
2931 rx->sta->rx_dropped++;
2932 dev_kfree_skb(rx->skb);
2933 break;
2934 case RX_QUEUED:
2935 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2936 break;
2937 }
2938 }
2939
2940 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2941 struct sk_buff_head *frames)
2942 {
2943 ieee80211_rx_result res = RX_DROP_MONITOR;
2944 struct sk_buff *skb;
2945
2946 #define CALL_RXH(rxh) \
2947 do { \
2948 res = rxh(rx); \
2949 if (res != RX_CONTINUE) \
2950 goto rxh_next; \
2951 } while (0);
2952
2953 spin_lock_bh(&rx->local->rx_path_lock);
2954
2955 while ((skb = __skb_dequeue(frames))) {
2956 /*
2957 * all the other fields are valid across frames
2958 * that belong to an aMPDU since they are on the
2959 * same TID from the same station
2960 */
2961 rx->skb = skb;
2962
2963 CALL_RXH(ieee80211_rx_h_check_more_data)
2964 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2965 CALL_RXH(ieee80211_rx_h_sta_process)
2966 CALL_RXH(ieee80211_rx_h_decrypt)
2967 CALL_RXH(ieee80211_rx_h_defragment)
2968 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2969 /* must be after MMIC verify so header is counted in MPDU mic */
2970 #ifdef CONFIG_MAC80211_MESH
2971 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2972 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2973 #endif
2974 CALL_RXH(ieee80211_rx_h_amsdu)
2975 CALL_RXH(ieee80211_rx_h_data)
2976
2977 /* special treatment -- needs the queue */
2978 res = ieee80211_rx_h_ctrl(rx, frames);
2979 if (res != RX_CONTINUE)
2980 goto rxh_next;
2981
2982 CALL_RXH(ieee80211_rx_h_mgmt_check)
2983 CALL_RXH(ieee80211_rx_h_action)
2984 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2985 CALL_RXH(ieee80211_rx_h_action_return)
2986 CALL_RXH(ieee80211_rx_h_mgmt)
2987
2988 rxh_next:
2989 ieee80211_rx_handlers_result(rx, res);
2990
2991 #undef CALL_RXH
2992 }
2993
2994 spin_unlock_bh(&rx->local->rx_path_lock);
2995 }
2996
2997 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2998 {
2999 struct sk_buff_head reorder_release;
3000 ieee80211_rx_result res = RX_DROP_MONITOR;
3001
3002 __skb_queue_head_init(&reorder_release);
3003
3004 #define CALL_RXH(rxh) \
3005 do { \
3006 res = rxh(rx); \
3007 if (res != RX_CONTINUE) \
3008 goto rxh_next; \
3009 } while (0);
3010
3011 CALL_RXH(ieee80211_rx_h_check)
3012
3013 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3014
3015 ieee80211_rx_handlers(rx, &reorder_release);
3016 return;
3017
3018 rxh_next:
3019 ieee80211_rx_handlers_result(rx, res);
3020
3021 #undef CALL_RXH
3022 }
3023
3024 /*
3025 * This function makes calls into the RX path, therefore
3026 * it has to be invoked under RCU read lock.
3027 */
3028 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3029 {
3030 struct sk_buff_head frames;
3031 struct ieee80211_rx_data rx = {
3032 .sta = sta,
3033 .sdata = sta->sdata,
3034 .local = sta->local,
3035 /* This is OK -- must be QoS data frame */
3036 .security_idx = tid,
3037 .seqno_idx = tid,
3038 .flags = 0,
3039 };
3040 struct tid_ampdu_rx *tid_agg_rx;
3041
3042 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3043 if (!tid_agg_rx)
3044 return;
3045
3046 __skb_queue_head_init(&frames);
3047
3048 spin_lock(&tid_agg_rx->reorder_lock);
3049 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3050 spin_unlock(&tid_agg_rx->reorder_lock);
3051
3052 ieee80211_rx_handlers(&rx, &frames);
3053 }
3054
3055 /* main receive path */
3056
3057 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3058 struct ieee80211_hdr *hdr)
3059 {
3060 struct ieee80211_sub_if_data *sdata = rx->sdata;
3061 struct sk_buff *skb = rx->skb;
3062 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3063 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3064 int multicast = is_multicast_ether_addr(hdr->addr1);
3065
3066 switch (sdata->vif.type) {
3067 case NL80211_IFTYPE_STATION:
3068 if (!bssid && !sdata->u.mgd.use_4addr)
3069 return false;
3070 if (!multicast &&
3071 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3072 if (!(sdata->dev->flags & IFF_PROMISC) ||
3073 sdata->u.mgd.use_4addr)
3074 return false;
3075 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3076 }
3077 break;
3078 case NL80211_IFTYPE_ADHOC:
3079 if (!bssid)
3080 return false;
3081 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3082 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3083 return false;
3084 if (ieee80211_is_beacon(hdr->frame_control)) {
3085 return true;
3086 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3087 return false;
3088 } else if (!multicast &&
3089 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3090 if (!(sdata->dev->flags & IFF_PROMISC))
3091 return false;
3092 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3093 } else if (!rx->sta) {
3094 int rate_idx;
3095 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3096 rate_idx = 0; /* TODO: HT/VHT rates */
3097 else
3098 rate_idx = status->rate_idx;
3099 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3100 BIT(rate_idx));
3101 }
3102 break;
3103 case NL80211_IFTYPE_MESH_POINT:
3104 if (!multicast &&
3105 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3106 if (!(sdata->dev->flags & IFF_PROMISC))
3107 return false;
3108
3109 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3110 }
3111 break;
3112 case NL80211_IFTYPE_AP_VLAN:
3113 case NL80211_IFTYPE_AP:
3114 if (!bssid) {
3115 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3116 return false;
3117 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3118 /*
3119 * Accept public action frames even when the
3120 * BSSID doesn't match, this is used for P2P
3121 * and location updates. Note that mac80211
3122 * itself never looks at these frames.
3123 */
3124 if (!multicast &&
3125 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3126 return false;
3127 if (ieee80211_is_public_action(hdr, skb->len))
3128 return true;
3129 if (!ieee80211_is_beacon(hdr->frame_control))
3130 return false;
3131 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3132 }
3133 break;
3134 case NL80211_IFTYPE_WDS:
3135 if (bssid || !ieee80211_is_data(hdr->frame_control))
3136 return false;
3137 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3138 return false;
3139 break;
3140 case NL80211_IFTYPE_P2P_DEVICE:
3141 if (!ieee80211_is_public_action(hdr, skb->len) &&
3142 !ieee80211_is_probe_req(hdr->frame_control) &&
3143 !ieee80211_is_probe_resp(hdr->frame_control) &&
3144 !ieee80211_is_beacon(hdr->frame_control))
3145 return false;
3146 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3147 !multicast)
3148 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3149 break;
3150 default:
3151 /* should never get here */
3152 WARN_ON_ONCE(1);
3153 break;
3154 }
3155
3156 return true;
3157 }
3158
3159 /*
3160 * This function returns whether or not the SKB
3161 * was destined for RX processing or not, which,
3162 * if consume is true, is equivalent to whether
3163 * or not the skb was consumed.
3164 */
3165 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3166 struct sk_buff *skb, bool consume)
3167 {
3168 struct ieee80211_local *local = rx->local;
3169 struct ieee80211_sub_if_data *sdata = rx->sdata;
3170 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3171 struct ieee80211_hdr *hdr = (void *)skb->data;
3172
3173 rx->skb = skb;
3174 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3175
3176 if (!prepare_for_handlers(rx, hdr))
3177 return false;
3178
3179 if (!consume) {
3180 skb = skb_copy(skb, GFP_ATOMIC);
3181 if (!skb) {
3182 if (net_ratelimit())
3183 wiphy_debug(local->hw.wiphy,
3184 "failed to copy skb for %s\n",
3185 sdata->name);
3186 return true;
3187 }
3188
3189 rx->skb = skb;
3190 }
3191
3192 ieee80211_invoke_rx_handlers(rx);
3193 return true;
3194 }
3195
3196 /*
3197 * This is the actual Rx frames handler. as it belongs to Rx path it must
3198 * be called with rcu_read_lock protection.
3199 */
3200 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3201 struct sk_buff *skb)
3202 {
3203 struct ieee80211_local *local = hw_to_local(hw);
3204 struct ieee80211_sub_if_data *sdata;
3205 struct ieee80211_hdr *hdr;
3206 __le16 fc;
3207 struct ieee80211_rx_data rx;
3208 struct ieee80211_sub_if_data *prev;
3209 struct sta_info *sta, *tmp, *prev_sta;
3210 int err = 0;
3211
3212 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3213 memset(&rx, 0, sizeof(rx));
3214 rx.skb = skb;
3215 rx.local = local;
3216
3217 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3218 local->dot11ReceivedFragmentCount++;
3219
3220 if (ieee80211_is_mgmt(fc)) {
3221 /* drop frame if too short for header */
3222 if (skb->len < ieee80211_hdrlen(fc))
3223 err = -ENOBUFS;
3224 else
3225 err = skb_linearize(skb);
3226 } else {
3227 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3228 }
3229
3230 if (err) {
3231 dev_kfree_skb(skb);
3232 return;
3233 }
3234
3235 hdr = (struct ieee80211_hdr *)skb->data;
3236 ieee80211_parse_qos(&rx);
3237 ieee80211_verify_alignment(&rx);
3238
3239 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3240 ieee80211_is_beacon(hdr->frame_control)))
3241 ieee80211_scan_rx(local, skb);
3242
3243 if (ieee80211_is_data(fc)) {
3244 prev_sta = NULL;
3245
3246 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3247 if (!prev_sta) {
3248 prev_sta = sta;
3249 continue;
3250 }
3251
3252 rx.sta = prev_sta;
3253 rx.sdata = prev_sta->sdata;
3254 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3255
3256 prev_sta = sta;
3257 }
3258
3259 if (prev_sta) {
3260 rx.sta = prev_sta;
3261 rx.sdata = prev_sta->sdata;
3262
3263 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3264 return;
3265 goto out;
3266 }
3267 }
3268
3269 prev = NULL;
3270
3271 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3272 if (!ieee80211_sdata_running(sdata))
3273 continue;
3274
3275 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3276 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3277 continue;
3278
3279 /*
3280 * frame is destined for this interface, but if it's
3281 * not also for the previous one we handle that after
3282 * the loop to avoid copying the SKB once too much
3283 */
3284
3285 if (!prev) {
3286 prev = sdata;
3287 continue;
3288 }
3289
3290 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3291 rx.sdata = prev;
3292 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3293
3294 prev = sdata;
3295 }
3296
3297 if (prev) {
3298 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3299 rx.sdata = prev;
3300
3301 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3302 return;
3303 }
3304
3305 out:
3306 dev_kfree_skb(skb);
3307 }
3308
3309 /*
3310 * This is the receive path handler. It is called by a low level driver when an
3311 * 802.11 MPDU is received from the hardware.
3312 */
3313 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3314 {
3315 struct ieee80211_local *local = hw_to_local(hw);
3316 struct ieee80211_rate *rate = NULL;
3317 struct ieee80211_supported_band *sband;
3318 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3319
3320 WARN_ON_ONCE(softirq_count() == 0);
3321
3322 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3323 goto drop;
3324
3325 sband = local->hw.wiphy->bands[status->band];
3326 if (WARN_ON(!sband))
3327 goto drop;
3328
3329 /*
3330 * If we're suspending, it is possible although not too likely
3331 * that we'd be receiving frames after having already partially
3332 * quiesced the stack. We can't process such frames then since
3333 * that might, for example, cause stations to be added or other
3334 * driver callbacks be invoked.
3335 */
3336 if (unlikely(local->quiescing || local->suspended))
3337 goto drop;
3338
3339 /* We might be during a HW reconfig, prevent Rx for the same reason */
3340 if (unlikely(local->in_reconfig))
3341 goto drop;
3342
3343 /*
3344 * The same happens when we're not even started,
3345 * but that's worth a warning.
3346 */
3347 if (WARN_ON(!local->started))
3348 goto drop;
3349
3350 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3351 /*
3352 * Validate the rate, unless a PLCP error means that
3353 * we probably can't have a valid rate here anyway.
3354 */
3355
3356 if (status->flag & RX_FLAG_HT) {
3357 /*
3358 * rate_idx is MCS index, which can be [0-76]
3359 * as documented on:
3360 *
3361 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3362 *
3363 * Anything else would be some sort of driver or
3364 * hardware error. The driver should catch hardware
3365 * errors.
3366 */
3367 if (WARN(status->rate_idx > 76,
3368 "Rate marked as an HT rate but passed "
3369 "status->rate_idx is not "
3370 "an MCS index [0-76]: %d (0x%02x)\n",
3371 status->rate_idx,
3372 status->rate_idx))
3373 goto drop;
3374 } else if (status->flag & RX_FLAG_VHT) {
3375 if (WARN_ONCE(status->rate_idx > 9 ||
3376 !status->vht_nss ||
3377 status->vht_nss > 8,
3378 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3379 status->rate_idx, status->vht_nss))
3380 goto drop;
3381 } else {
3382 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3383 goto drop;
3384 rate = &sband->bitrates[status->rate_idx];
3385 }
3386 }
3387
3388 status->rx_flags = 0;
3389
3390 /*
3391 * key references and virtual interfaces are protected using RCU
3392 * and this requires that we are in a read-side RCU section during
3393 * receive processing
3394 */
3395 rcu_read_lock();
3396
3397 /*
3398 * Frames with failed FCS/PLCP checksum are not returned,
3399 * all other frames are returned without radiotap header
3400 * if it was previously present.
3401 * Also, frames with less than 16 bytes are dropped.
3402 */
3403 skb = ieee80211_rx_monitor(local, skb, rate);
3404 if (!skb) {
3405 rcu_read_unlock();
3406 return;
3407 }
3408
3409 ieee80211_tpt_led_trig_rx(local,
3410 ((struct ieee80211_hdr *)skb->data)->frame_control,
3411 skb->len);
3412 __ieee80211_rx_handle_packet(hw, skb);
3413
3414 rcu_read_unlock();
3415
3416 return;
3417 drop:
3418 kfree_skb(skb);
3419 }
3420 EXPORT_SYMBOL(ieee80211_rx);
3421
3422 /* This is a version of the rx handler that can be called from hard irq
3423 * context. Post the skb on the queue and schedule the tasklet */
3424 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3425 {
3426 struct ieee80211_local *local = hw_to_local(hw);
3427
3428 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3429
3430 skb->pkt_type = IEEE80211_RX_MSG;
3431 skb_queue_tail(&local->skb_queue, skb);
3432 tasklet_schedule(&local->tasklet);
3433 }
3434 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.211386 seconds and 5 git commands to generate.