mac80211: allow vendor specific cipher suites
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_TSFT)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 return len;
89 }
90
91 /*
92 * ieee80211_add_rx_radiotap_header - add radiotap header
93 *
94 * add a radiotap header containing all the fields which the hardware provided.
95 */
96 static void
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
98 struct sk_buff *skb,
99 struct ieee80211_rate *rate,
100 int rtap_len)
101 {
102 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
103 struct ieee80211_radiotap_header *rthdr;
104 unsigned char *pos;
105 u16 rx_flags = 0;
106
107 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
108 memset(rthdr, 0, rtap_len);
109
110 /* radiotap header, set always present flags */
111 rthdr->it_present =
112 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
113 (1 << IEEE80211_RADIOTAP_CHANNEL) |
114 (1 << IEEE80211_RADIOTAP_ANTENNA) |
115 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
116 rthdr->it_len = cpu_to_le16(rtap_len);
117
118 pos = (unsigned char *)(rthdr+1);
119
120 /* the order of the following fields is important */
121
122 /* IEEE80211_RADIOTAP_TSFT */
123 if (status->flag & RX_FLAG_TSFT) {
124 put_unaligned_le64(status->mactime, pos);
125 rthdr->it_present |=
126 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
127 pos += 8;
128 }
129
130 /* IEEE80211_RADIOTAP_FLAGS */
131 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
132 *pos |= IEEE80211_RADIOTAP_F_FCS;
133 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
134 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
135 if (status->flag & RX_FLAG_SHORTPRE)
136 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
137 pos++;
138
139 /* IEEE80211_RADIOTAP_RATE */
140 if (status->flag & RX_FLAG_HT) {
141 /*
142 * TODO: add following information into radiotap header once
143 * suitable fields are defined for it:
144 * - MCS index (status->rate_idx)
145 * - HT40 (status->flag & RX_FLAG_40MHZ)
146 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
147 */
148 *pos = 0;
149 } else {
150 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 *pos = rate->bitrate / 5;
152 }
153 pos++;
154
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status->freq, pos);
157 pos += 2;
158 if (status->band == IEEE80211_BAND_5GHZ)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 pos);
161 else if (status->flag & RX_FLAG_HT)
162 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 pos);
164 else if (rate->flags & IEEE80211_RATE_ERP_G)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 pos);
167 else
168 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 pos);
170 pos += 2;
171
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 *pos = status->signal;
175 rthdr->it_present |=
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 pos++;
178 }
179
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos = status->antenna;
184 pos++;
185
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos - (u8 *)rthdr) & 1)
191 pos++;
192 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 put_unaligned_le16(rx_flags, pos);
195 pos += 2;
196 }
197
198 /*
199 * This function copies a received frame to all monitor interfaces and
200 * returns a cleaned-up SKB that no longer includes the FCS nor the
201 * radiotap header the driver might have added.
202 */
203 static struct sk_buff *
204 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
205 struct ieee80211_rate *rate)
206 {
207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
208 struct ieee80211_sub_if_data *sdata;
209 int needed_headroom = 0;
210 struct sk_buff *skb, *skb2;
211 struct net_device *prev_dev = NULL;
212 int present_fcs_len = 0;
213
214 /*
215 * First, we may need to make a copy of the skb because
216 * (1) we need to modify it for radiotap (if not present), and
217 * (2) the other RX handlers will modify the skb we got.
218 *
219 * We don't need to, of course, if we aren't going to return
220 * the SKB because it has a bad FCS/PLCP checksum.
221 */
222
223 /* room for the radiotap header based on driver features */
224 needed_headroom = ieee80211_rx_radiotap_len(local, status);
225
226 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
227 present_fcs_len = FCS_LEN;
228
229 /* make sure hdr->frame_control is on the linear part */
230 if (!pskb_may_pull(origskb, 2)) {
231 dev_kfree_skb(origskb);
232 return NULL;
233 }
234
235 if (!local->monitors) {
236 if (should_drop_frame(origskb, present_fcs_len)) {
237 dev_kfree_skb(origskb);
238 return NULL;
239 }
240
241 return remove_monitor_info(local, origskb);
242 }
243
244 if (should_drop_frame(origskb, present_fcs_len)) {
245 /* only need to expand headroom if necessary */
246 skb = origskb;
247 origskb = NULL;
248
249 /*
250 * This shouldn't trigger often because most devices have an
251 * RX header they pull before we get here, and that should
252 * be big enough for our radiotap information. We should
253 * probably export the length to drivers so that we can have
254 * them allocate enough headroom to start with.
255 */
256 if (skb_headroom(skb) < needed_headroom &&
257 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
258 dev_kfree_skb(skb);
259 return NULL;
260 }
261 } else {
262 /*
263 * Need to make a copy and possibly remove radiotap header
264 * and FCS from the original.
265 */
266 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
267
268 origskb = remove_monitor_info(local, origskb);
269
270 if (!skb)
271 return origskb;
272 }
273
274 /* prepend radiotap information */
275 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
276
277 skb_reset_mac_header(skb);
278 skb->ip_summed = CHECKSUM_UNNECESSARY;
279 skb->pkt_type = PACKET_OTHERHOST;
280 skb->protocol = htons(ETH_P_802_2);
281
282 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
283 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
284 continue;
285
286 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
287 continue;
288
289 if (!ieee80211_sdata_running(sdata))
290 continue;
291
292 if (prev_dev) {
293 skb2 = skb_clone(skb, GFP_ATOMIC);
294 if (skb2) {
295 skb2->dev = prev_dev;
296 netif_receive_skb(skb2);
297 }
298 }
299
300 prev_dev = sdata->dev;
301 sdata->dev->stats.rx_packets++;
302 sdata->dev->stats.rx_bytes += skb->len;
303 }
304
305 if (prev_dev) {
306 skb->dev = prev_dev;
307 netif_receive_skb(skb);
308 } else
309 dev_kfree_skb(skb);
310
311 return origskb;
312 }
313
314
315 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
316 {
317 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
318 int tid;
319
320 /* does the frame have a qos control field? */
321 if (ieee80211_is_data_qos(hdr->frame_control)) {
322 u8 *qc = ieee80211_get_qos_ctl(hdr);
323 /* frame has qos control */
324 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
325 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
326 rx->flags |= IEEE80211_RX_AMSDU;
327 else
328 rx->flags &= ~IEEE80211_RX_AMSDU;
329 } else {
330 /*
331 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
332 *
333 * Sequence numbers for management frames, QoS data
334 * frames with a broadcast/multicast address in the
335 * Address 1 field, and all non-QoS data frames sent
336 * by QoS STAs are assigned using an additional single
337 * modulo-4096 counter, [...]
338 *
339 * We also use that counter for non-QoS STAs.
340 */
341 tid = NUM_RX_DATA_QUEUES - 1;
342 }
343
344 rx->queue = tid;
345 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
346 * For now, set skb->priority to 0 for other cases. */
347 rx->skb->priority = (tid > 7) ? 0 : tid;
348 }
349
350 /**
351 * DOC: Packet alignment
352 *
353 * Drivers always need to pass packets that are aligned to two-byte boundaries
354 * to the stack.
355 *
356 * Additionally, should, if possible, align the payload data in a way that
357 * guarantees that the contained IP header is aligned to a four-byte
358 * boundary. In the case of regular frames, this simply means aligning the
359 * payload to a four-byte boundary (because either the IP header is directly
360 * contained, or IV/RFC1042 headers that have a length divisible by four are
361 * in front of it). If the payload data is not properly aligned and the
362 * architecture doesn't support efficient unaligned operations, mac80211
363 * will align the data.
364 *
365 * With A-MSDU frames, however, the payload data address must yield two modulo
366 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
367 * push the IP header further back to a multiple of four again. Thankfully, the
368 * specs were sane enough this time around to require padding each A-MSDU
369 * subframe to a length that is a multiple of four.
370 *
371 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
372 * the payload is not supported, the driver is required to move the 802.11
373 * header to be directly in front of the payload in that case.
374 */
375 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
376 {
377 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
378 WARN_ONCE((unsigned long)rx->skb->data & 1,
379 "unaligned packet at 0x%p\n", rx->skb->data);
380 #endif
381 }
382
383
384 /* rx handlers */
385
386 static ieee80211_rx_result debug_noinline
387 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
388 {
389 struct ieee80211_local *local = rx->local;
390 struct sk_buff *skb = rx->skb;
391
392 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning)))
393 return ieee80211_scan_rx(rx->sdata, skb);
394
395 if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning) &&
396 (rx->flags & IEEE80211_RX_IN_SCAN))) {
397 /* drop all the other packets during a software scan anyway */
398 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
399 dev_kfree_skb(skb);
400 return RX_QUEUED;
401 }
402
403 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
404 /* scanning finished during invoking of handlers */
405 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
406 return RX_DROP_UNUSABLE;
407 }
408
409 return RX_CONTINUE;
410 }
411
412
413 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
414 {
415 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
416
417 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
418 return 0;
419
420 return ieee80211_is_robust_mgmt_frame(hdr);
421 }
422
423
424 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
425 {
426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427
428 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
429 return 0;
430
431 return ieee80211_is_robust_mgmt_frame(hdr);
432 }
433
434
435 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
436 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
437 {
438 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
439 struct ieee80211_mmie *mmie;
440
441 if (skb->len < 24 + sizeof(*mmie) ||
442 !is_multicast_ether_addr(hdr->da))
443 return -1;
444
445 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
446 return -1; /* not a robust management frame */
447
448 mmie = (struct ieee80211_mmie *)
449 (skb->data + skb->len - sizeof(*mmie));
450 if (mmie->element_id != WLAN_EID_MMIE ||
451 mmie->length != sizeof(*mmie) - 2)
452 return -1;
453
454 return le16_to_cpu(mmie->key_id);
455 }
456
457
458 static ieee80211_rx_result
459 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
460 {
461 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
462 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
463 char *dev_addr = rx->sdata->vif.addr;
464
465 if (ieee80211_is_data(hdr->frame_control)) {
466 if (is_multicast_ether_addr(hdr->addr1)) {
467 if (ieee80211_has_tods(hdr->frame_control) ||
468 !ieee80211_has_fromds(hdr->frame_control))
469 return RX_DROP_MONITOR;
470 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
471 return RX_DROP_MONITOR;
472 } else {
473 if (!ieee80211_has_a4(hdr->frame_control))
474 return RX_DROP_MONITOR;
475 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
476 return RX_DROP_MONITOR;
477 }
478 }
479
480 /* If there is not an established peer link and this is not a peer link
481 * establisment frame, beacon or probe, drop the frame.
482 */
483
484 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
485 struct ieee80211_mgmt *mgmt;
486
487 if (!ieee80211_is_mgmt(hdr->frame_control))
488 return RX_DROP_MONITOR;
489
490 if (ieee80211_is_action(hdr->frame_control)) {
491 mgmt = (struct ieee80211_mgmt *)hdr;
492 if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
493 return RX_DROP_MONITOR;
494 return RX_CONTINUE;
495 }
496
497 if (ieee80211_is_probe_req(hdr->frame_control) ||
498 ieee80211_is_probe_resp(hdr->frame_control) ||
499 ieee80211_is_beacon(hdr->frame_control))
500 return RX_CONTINUE;
501
502 return RX_DROP_MONITOR;
503
504 }
505
506 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
507
508 if (ieee80211_is_data(hdr->frame_control) &&
509 is_multicast_ether_addr(hdr->addr1) &&
510 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
511 return RX_DROP_MONITOR;
512 #undef msh_h_get
513
514 return RX_CONTINUE;
515 }
516
517 #define SEQ_MODULO 0x1000
518 #define SEQ_MASK 0xfff
519
520 static inline int seq_less(u16 sq1, u16 sq2)
521 {
522 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
523 }
524
525 static inline u16 seq_inc(u16 sq)
526 {
527 return (sq + 1) & SEQ_MASK;
528 }
529
530 static inline u16 seq_sub(u16 sq1, u16 sq2)
531 {
532 return (sq1 - sq2) & SEQ_MASK;
533 }
534
535
536 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
537 struct tid_ampdu_rx *tid_agg_rx,
538 int index,
539 struct sk_buff_head *frames)
540 {
541 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
542
543 if (!skb)
544 goto no_frame;
545
546 /* release the frame from the reorder ring buffer */
547 tid_agg_rx->stored_mpdu_num--;
548 tid_agg_rx->reorder_buf[index] = NULL;
549 __skb_queue_tail(frames, skb);
550
551 no_frame:
552 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
553 }
554
555 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
556 struct tid_ampdu_rx *tid_agg_rx,
557 u16 head_seq_num,
558 struct sk_buff_head *frames)
559 {
560 int index;
561
562 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
563 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
564 tid_agg_rx->buf_size;
565 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
566 }
567 }
568
569 /*
570 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
571 * the skb was added to the buffer longer than this time ago, the earlier
572 * frames that have not yet been received are assumed to be lost and the skb
573 * can be released for processing. This may also release other skb's from the
574 * reorder buffer if there are no additional gaps between the frames.
575 *
576 * Callers must hold tid_agg_rx->reorder_lock.
577 */
578 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
579
580 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
581 struct tid_ampdu_rx *tid_agg_rx,
582 struct sk_buff_head *frames)
583 {
584 int index, j;
585
586 /* release the buffer until next missing frame */
587 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
588 tid_agg_rx->buf_size;
589 if (!tid_agg_rx->reorder_buf[index] &&
590 tid_agg_rx->stored_mpdu_num > 1) {
591 /*
592 * No buffers ready to be released, but check whether any
593 * frames in the reorder buffer have timed out.
594 */
595 int skipped = 1;
596 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
597 j = (j + 1) % tid_agg_rx->buf_size) {
598 if (!tid_agg_rx->reorder_buf[j]) {
599 skipped++;
600 continue;
601 }
602 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
603 HT_RX_REORDER_BUF_TIMEOUT))
604 goto set_release_timer;
605
606 #ifdef CONFIG_MAC80211_HT_DEBUG
607 if (net_ratelimit())
608 wiphy_debug(hw->wiphy,
609 "release an RX reorder frame due to timeout on earlier frames\n");
610 #endif
611 ieee80211_release_reorder_frame(hw, tid_agg_rx,
612 j, frames);
613
614 /*
615 * Increment the head seq# also for the skipped slots.
616 */
617 tid_agg_rx->head_seq_num =
618 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
619 skipped = 0;
620 }
621 } else while (tid_agg_rx->reorder_buf[index]) {
622 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
623 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
624 tid_agg_rx->buf_size;
625 }
626
627 if (tid_agg_rx->stored_mpdu_num) {
628 j = index = seq_sub(tid_agg_rx->head_seq_num,
629 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
630
631 for (; j != (index - 1) % tid_agg_rx->buf_size;
632 j = (j + 1) % tid_agg_rx->buf_size) {
633 if (tid_agg_rx->reorder_buf[j])
634 break;
635 }
636
637 set_release_timer:
638
639 mod_timer(&tid_agg_rx->reorder_timer,
640 tid_agg_rx->reorder_time[j] +
641 HT_RX_REORDER_BUF_TIMEOUT);
642 } else {
643 del_timer(&tid_agg_rx->reorder_timer);
644 }
645 }
646
647 /*
648 * As this function belongs to the RX path it must be under
649 * rcu_read_lock protection. It returns false if the frame
650 * can be processed immediately, true if it was consumed.
651 */
652 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
653 struct tid_ampdu_rx *tid_agg_rx,
654 struct sk_buff *skb,
655 struct sk_buff_head *frames)
656 {
657 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
658 u16 sc = le16_to_cpu(hdr->seq_ctrl);
659 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
660 u16 head_seq_num, buf_size;
661 int index;
662 bool ret = true;
663
664 buf_size = tid_agg_rx->buf_size;
665 head_seq_num = tid_agg_rx->head_seq_num;
666
667 spin_lock(&tid_agg_rx->reorder_lock);
668 /* frame with out of date sequence number */
669 if (seq_less(mpdu_seq_num, head_seq_num)) {
670 dev_kfree_skb(skb);
671 goto out;
672 }
673
674 /*
675 * If frame the sequence number exceeds our buffering window
676 * size release some previous frames to make room for this one.
677 */
678 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
679 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
680 /* release stored frames up to new head to stack */
681 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
682 frames);
683 }
684
685 /* Now the new frame is always in the range of the reordering buffer */
686
687 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
688
689 /* check if we already stored this frame */
690 if (tid_agg_rx->reorder_buf[index]) {
691 dev_kfree_skb(skb);
692 goto out;
693 }
694
695 /*
696 * If the current MPDU is in the right order and nothing else
697 * is stored we can process it directly, no need to buffer it.
698 */
699 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
700 tid_agg_rx->stored_mpdu_num == 0) {
701 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
702 ret = false;
703 goto out;
704 }
705
706 /* put the frame in the reordering buffer */
707 tid_agg_rx->reorder_buf[index] = skb;
708 tid_agg_rx->reorder_time[index] = jiffies;
709 tid_agg_rx->stored_mpdu_num++;
710 ieee80211_sta_reorder_release(hw, tid_agg_rx, frames);
711
712 out:
713 spin_unlock(&tid_agg_rx->reorder_lock);
714 return ret;
715 }
716
717 /*
718 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
719 * true if the MPDU was buffered, false if it should be processed.
720 */
721 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
722 struct sk_buff_head *frames)
723 {
724 struct sk_buff *skb = rx->skb;
725 struct ieee80211_local *local = rx->local;
726 struct ieee80211_hw *hw = &local->hw;
727 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
728 struct sta_info *sta = rx->sta;
729 struct tid_ampdu_rx *tid_agg_rx;
730 u16 sc;
731 int tid;
732
733 if (!ieee80211_is_data_qos(hdr->frame_control))
734 goto dont_reorder;
735
736 /*
737 * filter the QoS data rx stream according to
738 * STA/TID and check if this STA/TID is on aggregation
739 */
740
741 if (!sta)
742 goto dont_reorder;
743
744 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
745
746 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
747 if (!tid_agg_rx)
748 goto dont_reorder;
749
750 /* qos null data frames are excluded */
751 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
752 goto dont_reorder;
753
754 /* new, potentially un-ordered, ampdu frame - process it */
755
756 /* reset session timer */
757 if (tid_agg_rx->timeout)
758 mod_timer(&tid_agg_rx->session_timer,
759 TU_TO_EXP_TIME(tid_agg_rx->timeout));
760
761 /* if this mpdu is fragmented - terminate rx aggregation session */
762 sc = le16_to_cpu(hdr->seq_ctrl);
763 if (sc & IEEE80211_SCTL_FRAG) {
764 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
765 skb_queue_tail(&rx->sdata->skb_queue, skb);
766 ieee80211_queue_work(&local->hw, &rx->sdata->work);
767 return;
768 }
769
770 /*
771 * No locking needed -- we will only ever process one
772 * RX packet at a time, and thus own tid_agg_rx. All
773 * other code manipulating it needs to (and does) make
774 * sure that we cannot get to it any more before doing
775 * anything with it.
776 */
777 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames))
778 return;
779
780 dont_reorder:
781 __skb_queue_tail(frames, skb);
782 }
783
784 static ieee80211_rx_result debug_noinline
785 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
786 {
787 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
788
789 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
790 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
791 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
792 rx->sta->last_seq_ctrl[rx->queue] ==
793 hdr->seq_ctrl)) {
794 if (rx->flags & IEEE80211_RX_RA_MATCH) {
795 rx->local->dot11FrameDuplicateCount++;
796 rx->sta->num_duplicates++;
797 }
798 return RX_DROP_MONITOR;
799 } else
800 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
801 }
802
803 if (unlikely(rx->skb->len < 16)) {
804 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
805 return RX_DROP_MONITOR;
806 }
807
808 /* Drop disallowed frame classes based on STA auth/assoc state;
809 * IEEE 802.11, Chap 5.5.
810 *
811 * mac80211 filters only based on association state, i.e. it drops
812 * Class 3 frames from not associated stations. hostapd sends
813 * deauth/disassoc frames when needed. In addition, hostapd is
814 * responsible for filtering on both auth and assoc states.
815 */
816
817 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
818 return ieee80211_rx_mesh_check(rx);
819
820 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
821 ieee80211_is_pspoll(hdr->frame_control)) &&
822 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
823 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
824 if ((!ieee80211_has_fromds(hdr->frame_control) &&
825 !ieee80211_has_tods(hdr->frame_control) &&
826 ieee80211_is_data(hdr->frame_control)) ||
827 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
828 /* Drop IBSS frames and frames for other hosts
829 * silently. */
830 return RX_DROP_MONITOR;
831 }
832
833 return RX_DROP_MONITOR;
834 }
835
836 return RX_CONTINUE;
837 }
838
839
840 static ieee80211_rx_result debug_noinline
841 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
842 {
843 struct sk_buff *skb = rx->skb;
844 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
845 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
846 int keyidx;
847 int hdrlen;
848 ieee80211_rx_result result = RX_DROP_UNUSABLE;
849 struct ieee80211_key *stakey = NULL;
850 int mmie_keyidx = -1;
851 __le16 fc;
852
853 /*
854 * Key selection 101
855 *
856 * There are four types of keys:
857 * - GTK (group keys)
858 * - IGTK (group keys for management frames)
859 * - PTK (pairwise keys)
860 * - STK (station-to-station pairwise keys)
861 *
862 * When selecting a key, we have to distinguish between multicast
863 * (including broadcast) and unicast frames, the latter can only
864 * use PTKs and STKs while the former always use GTKs and IGTKs.
865 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
866 * unicast frames can also use key indices like GTKs. Hence, if we
867 * don't have a PTK/STK we check the key index for a WEP key.
868 *
869 * Note that in a regular BSS, multicast frames are sent by the
870 * AP only, associated stations unicast the frame to the AP first
871 * which then multicasts it on their behalf.
872 *
873 * There is also a slight problem in IBSS mode: GTKs are negotiated
874 * with each station, that is something we don't currently handle.
875 * The spec seems to expect that one negotiates the same key with
876 * every station but there's no such requirement; VLANs could be
877 * possible.
878 */
879
880 /*
881 * No point in finding a key and decrypting if the frame is neither
882 * addressed to us nor a multicast frame.
883 */
884 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
885 return RX_CONTINUE;
886
887 /* start without a key */
888 rx->key = NULL;
889
890 if (rx->sta)
891 stakey = rcu_dereference(rx->sta->key);
892
893 fc = hdr->frame_control;
894
895 if (!ieee80211_has_protected(fc))
896 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
897
898 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
899 rx->key = stakey;
900 if ((status->flag & RX_FLAG_DECRYPTED) &&
901 (status->flag & RX_FLAG_IV_STRIPPED))
902 return RX_CONTINUE;
903 /* Skip decryption if the frame is not protected. */
904 if (!ieee80211_has_protected(fc))
905 return RX_CONTINUE;
906 } else if (mmie_keyidx >= 0) {
907 /* Broadcast/multicast robust management frame / BIP */
908 if ((status->flag & RX_FLAG_DECRYPTED) &&
909 (status->flag & RX_FLAG_IV_STRIPPED))
910 return RX_CONTINUE;
911
912 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
913 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
914 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
915 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
916 } else if (!ieee80211_has_protected(fc)) {
917 /*
918 * The frame was not protected, so skip decryption. However, we
919 * need to set rx->key if there is a key that could have been
920 * used so that the frame may be dropped if encryption would
921 * have been expected.
922 */
923 struct ieee80211_key *key = NULL;
924 if (ieee80211_is_mgmt(fc) &&
925 is_multicast_ether_addr(hdr->addr1) &&
926 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
927 rx->key = key;
928 else if ((key = rcu_dereference(rx->sdata->default_key)))
929 rx->key = key;
930 return RX_CONTINUE;
931 } else {
932 u8 keyid;
933 /*
934 * The device doesn't give us the IV so we won't be
935 * able to look up the key. That's ok though, we
936 * don't need to decrypt the frame, we just won't
937 * be able to keep statistics accurate.
938 * Except for key threshold notifications, should
939 * we somehow allow the driver to tell us which key
940 * the hardware used if this flag is set?
941 */
942 if ((status->flag & RX_FLAG_DECRYPTED) &&
943 (status->flag & RX_FLAG_IV_STRIPPED))
944 return RX_CONTINUE;
945
946 hdrlen = ieee80211_hdrlen(fc);
947
948 if (rx->skb->len < 8 + hdrlen)
949 return RX_DROP_UNUSABLE; /* TODO: count this? */
950
951 /*
952 * no need to call ieee80211_wep_get_keyidx,
953 * it verifies a bunch of things we've done already
954 */
955 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
956 keyidx = keyid >> 6;
957
958 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
959
960 /*
961 * RSNA-protected unicast frames should always be sent with
962 * pairwise or station-to-station keys, but for WEP we allow
963 * using a key index as well.
964 */
965 if (rx->key && rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
966 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
967 !is_multicast_ether_addr(hdr->addr1))
968 rx->key = NULL;
969 }
970
971 if (rx->key) {
972 rx->key->tx_rx_count++;
973 /* TODO: add threshold stuff again */
974 } else {
975 return RX_DROP_MONITOR;
976 }
977
978 if (skb_linearize(rx->skb))
979 return RX_DROP_UNUSABLE;
980 /* the hdr variable is invalid now! */
981
982 switch (rx->key->conf.cipher) {
983 case WLAN_CIPHER_SUITE_WEP40:
984 case WLAN_CIPHER_SUITE_WEP104:
985 /* Check for weak IVs if possible */
986 if (rx->sta && ieee80211_is_data(fc) &&
987 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
988 !(status->flag & RX_FLAG_DECRYPTED)) &&
989 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
990 rx->sta->wep_weak_iv_count++;
991
992 result = ieee80211_crypto_wep_decrypt(rx);
993 break;
994 case WLAN_CIPHER_SUITE_TKIP:
995 result = ieee80211_crypto_tkip_decrypt(rx);
996 break;
997 case WLAN_CIPHER_SUITE_CCMP:
998 result = ieee80211_crypto_ccmp_decrypt(rx);
999 break;
1000 case WLAN_CIPHER_SUITE_AES_CMAC:
1001 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1002 break;
1003 default:
1004 /*
1005 * We can reach here only with HW-only algorithms
1006 * but why didn't it decrypt the frame?!
1007 */
1008 return RX_DROP_UNUSABLE;
1009 }
1010
1011 /* either the frame has been decrypted or will be dropped */
1012 status->flag |= RX_FLAG_DECRYPTED;
1013
1014 return result;
1015 }
1016
1017 static ieee80211_rx_result debug_noinline
1018 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1019 {
1020 struct ieee80211_local *local;
1021 struct ieee80211_hdr *hdr;
1022 struct sk_buff *skb;
1023
1024 local = rx->local;
1025 skb = rx->skb;
1026 hdr = (struct ieee80211_hdr *) skb->data;
1027
1028 if (!local->pspolling)
1029 return RX_CONTINUE;
1030
1031 if (!ieee80211_has_fromds(hdr->frame_control))
1032 /* this is not from AP */
1033 return RX_CONTINUE;
1034
1035 if (!ieee80211_is_data(hdr->frame_control))
1036 return RX_CONTINUE;
1037
1038 if (!ieee80211_has_moredata(hdr->frame_control)) {
1039 /* AP has no more frames buffered for us */
1040 local->pspolling = false;
1041 return RX_CONTINUE;
1042 }
1043
1044 /* more data bit is set, let's request a new frame from the AP */
1045 ieee80211_send_pspoll(local, rx->sdata);
1046
1047 return RX_CONTINUE;
1048 }
1049
1050 static void ap_sta_ps_start(struct sta_info *sta)
1051 {
1052 struct ieee80211_sub_if_data *sdata = sta->sdata;
1053 struct ieee80211_local *local = sdata->local;
1054
1055 atomic_inc(&sdata->bss->num_sta_ps);
1056 set_sta_flags(sta, WLAN_STA_PS_STA);
1057 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1058 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1059 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1060 sdata->name, sta->sta.addr, sta->sta.aid);
1061 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1062 }
1063
1064 static void ap_sta_ps_end(struct sta_info *sta)
1065 {
1066 struct ieee80211_sub_if_data *sdata = sta->sdata;
1067
1068 atomic_dec(&sdata->bss->num_sta_ps);
1069
1070 clear_sta_flags(sta, WLAN_STA_PS_STA);
1071
1072 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1073 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1074 sdata->name, sta->sta.addr, sta->sta.aid);
1075 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1076
1077 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1078 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1079 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1080 sdata->name, sta->sta.addr, sta->sta.aid);
1081 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1082 return;
1083 }
1084
1085 ieee80211_sta_ps_deliver_wakeup(sta);
1086 }
1087
1088 static ieee80211_rx_result debug_noinline
1089 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1090 {
1091 struct sta_info *sta = rx->sta;
1092 struct sk_buff *skb = rx->skb;
1093 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1094 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1095
1096 if (!sta)
1097 return RX_CONTINUE;
1098
1099 /*
1100 * Update last_rx only for IBSS packets which are for the current
1101 * BSSID to avoid keeping the current IBSS network alive in cases
1102 * where other STAs start using different BSSID.
1103 */
1104 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1105 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1106 NL80211_IFTYPE_ADHOC);
1107 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1108 sta->last_rx = jiffies;
1109 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1110 /*
1111 * Mesh beacons will update last_rx when if they are found to
1112 * match the current local configuration when processed.
1113 */
1114 sta->last_rx = jiffies;
1115 }
1116
1117 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1118 return RX_CONTINUE;
1119
1120 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1121 ieee80211_sta_rx_notify(rx->sdata, hdr);
1122
1123 sta->rx_fragments++;
1124 sta->rx_bytes += rx->skb->len;
1125 sta->last_signal = status->signal;
1126
1127 /*
1128 * Change STA power saving mode only at the end of a frame
1129 * exchange sequence.
1130 */
1131 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1132 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1133 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1134 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1135 /*
1136 * Ignore doze->wake transitions that are
1137 * indicated by non-data frames, the standard
1138 * is unclear here, but for example going to
1139 * PS mode and then scanning would cause a
1140 * doze->wake transition for the probe request,
1141 * and that is clearly undesirable.
1142 */
1143 if (ieee80211_is_data(hdr->frame_control) &&
1144 !ieee80211_has_pm(hdr->frame_control))
1145 ap_sta_ps_end(sta);
1146 } else {
1147 if (ieee80211_has_pm(hdr->frame_control))
1148 ap_sta_ps_start(sta);
1149 }
1150 }
1151
1152 /*
1153 * Drop (qos-)data::nullfunc frames silently, since they
1154 * are used only to control station power saving mode.
1155 */
1156 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1157 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1158 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1159
1160 /*
1161 * If we receive a 4-addr nullfunc frame from a STA
1162 * that was not moved to a 4-addr STA vlan yet, drop
1163 * the frame to the monitor interface, to make sure
1164 * that hostapd sees it
1165 */
1166 if (ieee80211_has_a4(hdr->frame_control) &&
1167 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1168 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1169 !rx->sdata->u.vlan.sta)))
1170 return RX_DROP_MONITOR;
1171 /*
1172 * Update counter and free packet here to avoid
1173 * counting this as a dropped packed.
1174 */
1175 sta->rx_packets++;
1176 dev_kfree_skb(rx->skb);
1177 return RX_QUEUED;
1178 }
1179
1180 return RX_CONTINUE;
1181 } /* ieee80211_rx_h_sta_process */
1182
1183 static inline struct ieee80211_fragment_entry *
1184 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1185 unsigned int frag, unsigned int seq, int rx_queue,
1186 struct sk_buff **skb)
1187 {
1188 struct ieee80211_fragment_entry *entry;
1189 int idx;
1190
1191 idx = sdata->fragment_next;
1192 entry = &sdata->fragments[sdata->fragment_next++];
1193 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1194 sdata->fragment_next = 0;
1195
1196 if (!skb_queue_empty(&entry->skb_list)) {
1197 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1198 struct ieee80211_hdr *hdr =
1199 (struct ieee80211_hdr *) entry->skb_list.next->data;
1200 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1201 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1202 "addr1=%pM addr2=%pM\n",
1203 sdata->name, idx,
1204 jiffies - entry->first_frag_time, entry->seq,
1205 entry->last_frag, hdr->addr1, hdr->addr2);
1206 #endif
1207 __skb_queue_purge(&entry->skb_list);
1208 }
1209
1210 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1211 *skb = NULL;
1212 entry->first_frag_time = jiffies;
1213 entry->seq = seq;
1214 entry->rx_queue = rx_queue;
1215 entry->last_frag = frag;
1216 entry->ccmp = 0;
1217 entry->extra_len = 0;
1218
1219 return entry;
1220 }
1221
1222 static inline struct ieee80211_fragment_entry *
1223 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1224 unsigned int frag, unsigned int seq,
1225 int rx_queue, struct ieee80211_hdr *hdr)
1226 {
1227 struct ieee80211_fragment_entry *entry;
1228 int i, idx;
1229
1230 idx = sdata->fragment_next;
1231 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1232 struct ieee80211_hdr *f_hdr;
1233
1234 idx--;
1235 if (idx < 0)
1236 idx = IEEE80211_FRAGMENT_MAX - 1;
1237
1238 entry = &sdata->fragments[idx];
1239 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1240 entry->rx_queue != rx_queue ||
1241 entry->last_frag + 1 != frag)
1242 continue;
1243
1244 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1245
1246 /*
1247 * Check ftype and addresses are equal, else check next fragment
1248 */
1249 if (((hdr->frame_control ^ f_hdr->frame_control) &
1250 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1251 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1252 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1253 continue;
1254
1255 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1256 __skb_queue_purge(&entry->skb_list);
1257 continue;
1258 }
1259 return entry;
1260 }
1261
1262 return NULL;
1263 }
1264
1265 static ieee80211_rx_result debug_noinline
1266 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1267 {
1268 struct ieee80211_hdr *hdr;
1269 u16 sc;
1270 __le16 fc;
1271 unsigned int frag, seq;
1272 struct ieee80211_fragment_entry *entry;
1273 struct sk_buff *skb;
1274
1275 hdr = (struct ieee80211_hdr *)rx->skb->data;
1276 fc = hdr->frame_control;
1277 sc = le16_to_cpu(hdr->seq_ctrl);
1278 frag = sc & IEEE80211_SCTL_FRAG;
1279
1280 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1281 (rx->skb)->len < 24 ||
1282 is_multicast_ether_addr(hdr->addr1))) {
1283 /* not fragmented */
1284 goto out;
1285 }
1286 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1287
1288 if (skb_linearize(rx->skb))
1289 return RX_DROP_UNUSABLE;
1290
1291 /*
1292 * skb_linearize() might change the skb->data and
1293 * previously cached variables (in this case, hdr) need to
1294 * be refreshed with the new data.
1295 */
1296 hdr = (struct ieee80211_hdr *)rx->skb->data;
1297 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1298
1299 if (frag == 0) {
1300 /* This is the first fragment of a new frame. */
1301 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1302 rx->queue, &(rx->skb));
1303 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1304 ieee80211_has_protected(fc)) {
1305 int queue = ieee80211_is_mgmt(fc) ?
1306 NUM_RX_DATA_QUEUES : rx->queue;
1307 /* Store CCMP PN so that we can verify that the next
1308 * fragment has a sequential PN value. */
1309 entry->ccmp = 1;
1310 memcpy(entry->last_pn,
1311 rx->key->u.ccmp.rx_pn[queue],
1312 CCMP_PN_LEN);
1313 }
1314 return RX_QUEUED;
1315 }
1316
1317 /* This is a fragment for a frame that should already be pending in
1318 * fragment cache. Add this fragment to the end of the pending entry.
1319 */
1320 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1321 if (!entry) {
1322 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1323 return RX_DROP_MONITOR;
1324 }
1325
1326 /* Verify that MPDUs within one MSDU have sequential PN values.
1327 * (IEEE 802.11i, 8.3.3.4.5) */
1328 if (entry->ccmp) {
1329 int i;
1330 u8 pn[CCMP_PN_LEN], *rpn;
1331 int queue;
1332 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1333 return RX_DROP_UNUSABLE;
1334 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1335 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1336 pn[i]++;
1337 if (pn[i])
1338 break;
1339 }
1340 queue = ieee80211_is_mgmt(fc) ?
1341 NUM_RX_DATA_QUEUES : rx->queue;
1342 rpn = rx->key->u.ccmp.rx_pn[queue];
1343 if (memcmp(pn, rpn, CCMP_PN_LEN))
1344 return RX_DROP_UNUSABLE;
1345 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1346 }
1347
1348 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1349 __skb_queue_tail(&entry->skb_list, rx->skb);
1350 entry->last_frag = frag;
1351 entry->extra_len += rx->skb->len;
1352 if (ieee80211_has_morefrags(fc)) {
1353 rx->skb = NULL;
1354 return RX_QUEUED;
1355 }
1356
1357 rx->skb = __skb_dequeue(&entry->skb_list);
1358 if (skb_tailroom(rx->skb) < entry->extra_len) {
1359 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1360 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1361 GFP_ATOMIC))) {
1362 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1363 __skb_queue_purge(&entry->skb_list);
1364 return RX_DROP_UNUSABLE;
1365 }
1366 }
1367 while ((skb = __skb_dequeue(&entry->skb_list))) {
1368 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1369 dev_kfree_skb(skb);
1370 }
1371
1372 /* Complete frame has been reassembled - process it now */
1373 rx->flags |= IEEE80211_RX_FRAGMENTED;
1374
1375 out:
1376 if (rx->sta)
1377 rx->sta->rx_packets++;
1378 if (is_multicast_ether_addr(hdr->addr1))
1379 rx->local->dot11MulticastReceivedFrameCount++;
1380 else
1381 ieee80211_led_rx(rx->local);
1382 return RX_CONTINUE;
1383 }
1384
1385 static ieee80211_rx_result debug_noinline
1386 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1387 {
1388 struct ieee80211_sub_if_data *sdata = rx->sdata;
1389 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1390
1391 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1392 !(rx->flags & IEEE80211_RX_RA_MATCH)))
1393 return RX_CONTINUE;
1394
1395 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1396 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1397 return RX_DROP_UNUSABLE;
1398
1399 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1400 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1401 else
1402 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1403
1404 /* Free PS Poll skb here instead of returning RX_DROP that would
1405 * count as an dropped frame. */
1406 dev_kfree_skb(rx->skb);
1407
1408 return RX_QUEUED;
1409 }
1410
1411 static ieee80211_rx_result debug_noinline
1412 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1413 {
1414 u8 *data = rx->skb->data;
1415 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1416
1417 if (!ieee80211_is_data_qos(hdr->frame_control))
1418 return RX_CONTINUE;
1419
1420 /* remove the qos control field, update frame type and meta-data */
1421 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1422 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1423 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1424 /* change frame type to non QOS */
1425 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1426
1427 return RX_CONTINUE;
1428 }
1429
1430 static int
1431 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1432 {
1433 if (unlikely(!rx->sta ||
1434 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1435 return -EACCES;
1436
1437 return 0;
1438 }
1439
1440 static int
1441 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1442 {
1443 struct sk_buff *skb = rx->skb;
1444 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1445
1446 /*
1447 * Pass through unencrypted frames if the hardware has
1448 * decrypted them already.
1449 */
1450 if (status->flag & RX_FLAG_DECRYPTED)
1451 return 0;
1452
1453 /* Drop unencrypted frames if key is set. */
1454 if (unlikely(!ieee80211_has_protected(fc) &&
1455 !ieee80211_is_nullfunc(fc) &&
1456 ieee80211_is_data(fc) &&
1457 (rx->key || rx->sdata->drop_unencrypted)))
1458 return -EACCES;
1459
1460 return 0;
1461 }
1462
1463 static int
1464 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1465 {
1466 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1467 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1468 __le16 fc = hdr->frame_control;
1469
1470 /*
1471 * Pass through unencrypted frames if the hardware has
1472 * decrypted them already.
1473 */
1474 if (status->flag & RX_FLAG_DECRYPTED)
1475 return 0;
1476
1477 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1478 if (unlikely(!ieee80211_has_protected(fc) &&
1479 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1480 rx->key))
1481 return -EACCES;
1482 /* BIP does not use Protected field, so need to check MMIE */
1483 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1484 ieee80211_get_mmie_keyidx(rx->skb) < 0))
1485 return -EACCES;
1486 /*
1487 * When using MFP, Action frames are not allowed prior to
1488 * having configured keys.
1489 */
1490 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1491 ieee80211_is_robust_mgmt_frame(
1492 (struct ieee80211_hdr *) rx->skb->data)))
1493 return -EACCES;
1494 }
1495
1496 return 0;
1497 }
1498
1499 static int
1500 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1501 {
1502 struct ieee80211_sub_if_data *sdata = rx->sdata;
1503 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1504
1505 if (ieee80211_has_a4(hdr->frame_control) &&
1506 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1507 return -1;
1508
1509 if (is_multicast_ether_addr(hdr->addr1) &&
1510 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1511 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1512 return -1;
1513
1514 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1515 }
1516
1517 /*
1518 * requires that rx->skb is a frame with ethernet header
1519 */
1520 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1521 {
1522 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1523 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1524 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1525
1526 /*
1527 * Allow EAPOL frames to us/the PAE group address regardless
1528 * of whether the frame was encrypted or not.
1529 */
1530 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1531 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1532 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1533 return true;
1534
1535 if (ieee80211_802_1x_port_control(rx) ||
1536 ieee80211_drop_unencrypted(rx, fc))
1537 return false;
1538
1539 return true;
1540 }
1541
1542 /*
1543 * requires that rx->skb is a frame with ethernet header
1544 */
1545 static void
1546 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1547 {
1548 struct ieee80211_sub_if_data *sdata = rx->sdata;
1549 struct net_device *dev = sdata->dev;
1550 struct sk_buff *skb, *xmit_skb;
1551 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1552 struct sta_info *dsta;
1553
1554 skb = rx->skb;
1555 xmit_skb = NULL;
1556
1557 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1558 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1559 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1560 (rx->flags & IEEE80211_RX_RA_MATCH) &&
1561 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1562 if (is_multicast_ether_addr(ehdr->h_dest)) {
1563 /*
1564 * send multicast frames both to higher layers in
1565 * local net stack and back to the wireless medium
1566 */
1567 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1568 if (!xmit_skb && net_ratelimit())
1569 printk(KERN_DEBUG "%s: failed to clone "
1570 "multicast frame\n", dev->name);
1571 } else {
1572 dsta = sta_info_get(sdata, skb->data);
1573 if (dsta) {
1574 /*
1575 * The destination station is associated to
1576 * this AP (in this VLAN), so send the frame
1577 * directly to it and do not pass it to local
1578 * net stack.
1579 */
1580 xmit_skb = skb;
1581 skb = NULL;
1582 }
1583 }
1584 }
1585
1586 if (skb) {
1587 int align __maybe_unused;
1588
1589 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1590 /*
1591 * 'align' will only take the values 0 or 2 here
1592 * since all frames are required to be aligned
1593 * to 2-byte boundaries when being passed to
1594 * mac80211. That also explains the __skb_push()
1595 * below.
1596 */
1597 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1598 if (align) {
1599 if (WARN_ON(skb_headroom(skb) < 3)) {
1600 dev_kfree_skb(skb);
1601 skb = NULL;
1602 } else {
1603 u8 *data = skb->data;
1604 size_t len = skb_headlen(skb);
1605 skb->data -= align;
1606 memmove(skb->data, data, len);
1607 skb_set_tail_pointer(skb, len);
1608 }
1609 }
1610 #endif
1611
1612 if (skb) {
1613 /* deliver to local stack */
1614 skb->protocol = eth_type_trans(skb, dev);
1615 memset(skb->cb, 0, sizeof(skb->cb));
1616 netif_receive_skb(skb);
1617 }
1618 }
1619
1620 if (xmit_skb) {
1621 /* send to wireless media */
1622 xmit_skb->protocol = htons(ETH_P_802_3);
1623 skb_reset_network_header(xmit_skb);
1624 skb_reset_mac_header(xmit_skb);
1625 dev_queue_xmit(xmit_skb);
1626 }
1627 }
1628
1629 static ieee80211_rx_result debug_noinline
1630 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1631 {
1632 struct net_device *dev = rx->sdata->dev;
1633 struct sk_buff *skb = rx->skb;
1634 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1635 __le16 fc = hdr->frame_control;
1636 struct sk_buff_head frame_list;
1637
1638 if (unlikely(!ieee80211_is_data(fc)))
1639 return RX_CONTINUE;
1640
1641 if (unlikely(!ieee80211_is_data_present(fc)))
1642 return RX_DROP_MONITOR;
1643
1644 if (!(rx->flags & IEEE80211_RX_AMSDU))
1645 return RX_CONTINUE;
1646
1647 if (ieee80211_has_a4(hdr->frame_control) &&
1648 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1649 !rx->sdata->u.vlan.sta)
1650 return RX_DROP_UNUSABLE;
1651
1652 if (is_multicast_ether_addr(hdr->addr1) &&
1653 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1654 rx->sdata->u.vlan.sta) ||
1655 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1656 rx->sdata->u.mgd.use_4addr)))
1657 return RX_DROP_UNUSABLE;
1658
1659 skb->dev = dev;
1660 __skb_queue_head_init(&frame_list);
1661
1662 if (skb_linearize(skb))
1663 return RX_DROP_UNUSABLE;
1664
1665 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1666 rx->sdata->vif.type,
1667 rx->local->hw.extra_tx_headroom);
1668
1669 while (!skb_queue_empty(&frame_list)) {
1670 rx->skb = __skb_dequeue(&frame_list);
1671
1672 if (!ieee80211_frame_allowed(rx, fc)) {
1673 dev_kfree_skb(rx->skb);
1674 continue;
1675 }
1676 dev->stats.rx_packets++;
1677 dev->stats.rx_bytes += rx->skb->len;
1678
1679 ieee80211_deliver_skb(rx);
1680 }
1681
1682 return RX_QUEUED;
1683 }
1684
1685 #ifdef CONFIG_MAC80211_MESH
1686 static ieee80211_rx_result
1687 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1688 {
1689 struct ieee80211_hdr *hdr;
1690 struct ieee80211s_hdr *mesh_hdr;
1691 unsigned int hdrlen;
1692 struct sk_buff *skb = rx->skb, *fwd_skb;
1693 struct ieee80211_local *local = rx->local;
1694 struct ieee80211_sub_if_data *sdata = rx->sdata;
1695
1696 hdr = (struct ieee80211_hdr *) skb->data;
1697 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1698 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1699
1700 if (!ieee80211_is_data(hdr->frame_control))
1701 return RX_CONTINUE;
1702
1703 if (!mesh_hdr->ttl)
1704 /* illegal frame */
1705 return RX_DROP_MONITOR;
1706
1707 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1708 struct mesh_path *mppath;
1709 char *proxied_addr;
1710 char *mpp_addr;
1711
1712 if (is_multicast_ether_addr(hdr->addr1)) {
1713 mpp_addr = hdr->addr3;
1714 proxied_addr = mesh_hdr->eaddr1;
1715 } else {
1716 mpp_addr = hdr->addr4;
1717 proxied_addr = mesh_hdr->eaddr2;
1718 }
1719
1720 rcu_read_lock();
1721 mppath = mpp_path_lookup(proxied_addr, sdata);
1722 if (!mppath) {
1723 mpp_path_add(proxied_addr, mpp_addr, sdata);
1724 } else {
1725 spin_lock_bh(&mppath->state_lock);
1726 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1727 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1728 spin_unlock_bh(&mppath->state_lock);
1729 }
1730 rcu_read_unlock();
1731 }
1732
1733 /* Frame has reached destination. Don't forward */
1734 if (!is_multicast_ether_addr(hdr->addr1) &&
1735 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1736 return RX_CONTINUE;
1737
1738 mesh_hdr->ttl--;
1739
1740 if (rx->flags & IEEE80211_RX_RA_MATCH) {
1741 if (!mesh_hdr->ttl)
1742 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1743 dropped_frames_ttl);
1744 else {
1745 struct ieee80211_hdr *fwd_hdr;
1746 struct ieee80211_tx_info *info;
1747
1748 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1749
1750 if (!fwd_skb && net_ratelimit())
1751 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1752 sdata->name);
1753
1754 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1755 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1756 info = IEEE80211_SKB_CB(fwd_skb);
1757 memset(info, 0, sizeof(*info));
1758 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1759 info->control.vif = &rx->sdata->vif;
1760 skb_set_queue_mapping(skb,
1761 ieee80211_select_queue(rx->sdata, fwd_skb));
1762 ieee80211_set_qos_hdr(local, skb);
1763 if (is_multicast_ether_addr(fwd_hdr->addr1))
1764 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1765 fwded_mcast);
1766 else {
1767 int err;
1768 /*
1769 * Save TA to addr1 to send TA a path error if a
1770 * suitable next hop is not found
1771 */
1772 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1773 ETH_ALEN);
1774 err = mesh_nexthop_lookup(fwd_skb, sdata);
1775 /* Failed to immediately resolve next hop:
1776 * fwded frame was dropped or will be added
1777 * later to the pending skb queue. */
1778 if (err)
1779 return RX_DROP_MONITOR;
1780
1781 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1782 fwded_unicast);
1783 }
1784 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1785 fwded_frames);
1786 ieee80211_add_pending_skb(local, fwd_skb);
1787 }
1788 }
1789
1790 if (is_multicast_ether_addr(hdr->addr1) ||
1791 sdata->dev->flags & IFF_PROMISC)
1792 return RX_CONTINUE;
1793 else
1794 return RX_DROP_MONITOR;
1795 }
1796 #endif
1797
1798 static ieee80211_rx_result debug_noinline
1799 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1800 {
1801 struct ieee80211_sub_if_data *sdata = rx->sdata;
1802 struct ieee80211_local *local = rx->local;
1803 struct net_device *dev = sdata->dev;
1804 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1805 __le16 fc = hdr->frame_control;
1806 int err;
1807
1808 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1809 return RX_CONTINUE;
1810
1811 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1812 return RX_DROP_MONITOR;
1813
1814 /*
1815 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1816 * that a 4-addr station can be detected and moved into a separate VLAN
1817 */
1818 if (ieee80211_has_a4(hdr->frame_control) &&
1819 sdata->vif.type == NL80211_IFTYPE_AP)
1820 return RX_DROP_MONITOR;
1821
1822 err = __ieee80211_data_to_8023(rx);
1823 if (unlikely(err))
1824 return RX_DROP_UNUSABLE;
1825
1826 if (!ieee80211_frame_allowed(rx, fc))
1827 return RX_DROP_MONITOR;
1828
1829 rx->skb->dev = dev;
1830
1831 dev->stats.rx_packets++;
1832 dev->stats.rx_bytes += rx->skb->len;
1833
1834 if (ieee80211_is_data(hdr->frame_control) &&
1835 !is_multicast_ether_addr(hdr->addr1) &&
1836 local->hw.conf.dynamic_ps_timeout > 0 && local->ps_sdata) {
1837 mod_timer(&local->dynamic_ps_timer, jiffies +
1838 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1839 }
1840
1841 ieee80211_deliver_skb(rx);
1842
1843 return RX_QUEUED;
1844 }
1845
1846 static ieee80211_rx_result debug_noinline
1847 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1848 {
1849 struct ieee80211_local *local = rx->local;
1850 struct ieee80211_hw *hw = &local->hw;
1851 struct sk_buff *skb = rx->skb;
1852 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1853 struct tid_ampdu_rx *tid_agg_rx;
1854 u16 start_seq_num;
1855 u16 tid;
1856
1857 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1858 return RX_CONTINUE;
1859
1860 if (ieee80211_is_back_req(bar->frame_control)) {
1861 struct {
1862 __le16 control, start_seq_num;
1863 } __packed bar_data;
1864
1865 if (!rx->sta)
1866 return RX_DROP_MONITOR;
1867
1868 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1869 &bar_data, sizeof(bar_data)))
1870 return RX_DROP_MONITOR;
1871
1872 tid = le16_to_cpu(bar_data.control) >> 12;
1873
1874 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
1875 if (!tid_agg_rx)
1876 return RX_DROP_MONITOR;
1877
1878 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1879
1880 /* reset session timer */
1881 if (tid_agg_rx->timeout)
1882 mod_timer(&tid_agg_rx->session_timer,
1883 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1884
1885 /* release stored frames up to start of BAR */
1886 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1887 frames);
1888 kfree_skb(skb);
1889 return RX_QUEUED;
1890 }
1891
1892 /*
1893 * After this point, we only want management frames,
1894 * so we can drop all remaining control frames to
1895 * cooked monitor interfaces.
1896 */
1897 return RX_DROP_MONITOR;
1898 }
1899
1900 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1901 struct ieee80211_mgmt *mgmt,
1902 size_t len)
1903 {
1904 struct ieee80211_local *local = sdata->local;
1905 struct sk_buff *skb;
1906 struct ieee80211_mgmt *resp;
1907
1908 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1909 /* Not to own unicast address */
1910 return;
1911 }
1912
1913 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1914 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1915 /* Not from the current AP or not associated yet. */
1916 return;
1917 }
1918
1919 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1920 /* Too short SA Query request frame */
1921 return;
1922 }
1923
1924 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1925 if (skb == NULL)
1926 return;
1927
1928 skb_reserve(skb, local->hw.extra_tx_headroom);
1929 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1930 memset(resp, 0, 24);
1931 memcpy(resp->da, mgmt->sa, ETH_ALEN);
1932 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1933 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1934 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1935 IEEE80211_STYPE_ACTION);
1936 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1937 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1938 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1939 memcpy(resp->u.action.u.sa_query.trans_id,
1940 mgmt->u.action.u.sa_query.trans_id,
1941 WLAN_SA_QUERY_TR_ID_LEN);
1942
1943 ieee80211_tx_skb(sdata, skb);
1944 }
1945
1946 static ieee80211_rx_result debug_noinline
1947 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
1948 {
1949 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1950
1951 /*
1952 * From here on, look only at management frames.
1953 * Data and control frames are already handled,
1954 * and unknown (reserved) frames are useless.
1955 */
1956 if (rx->skb->len < 24)
1957 return RX_DROP_MONITOR;
1958
1959 if (!ieee80211_is_mgmt(mgmt->frame_control))
1960 return RX_DROP_MONITOR;
1961
1962 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1963 return RX_DROP_MONITOR;
1964
1965 if (ieee80211_drop_unencrypted_mgmt(rx))
1966 return RX_DROP_UNUSABLE;
1967
1968 return RX_CONTINUE;
1969 }
1970
1971 static ieee80211_rx_result debug_noinline
1972 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
1973 {
1974 struct ieee80211_local *local = rx->local;
1975 struct ieee80211_sub_if_data *sdata = rx->sdata;
1976 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1977 int len = rx->skb->len;
1978
1979 if (!ieee80211_is_action(mgmt->frame_control))
1980 return RX_CONTINUE;
1981
1982 /* drop too small frames */
1983 if (len < IEEE80211_MIN_ACTION_SIZE)
1984 return RX_DROP_UNUSABLE;
1985
1986 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
1987 return RX_DROP_UNUSABLE;
1988
1989 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1990 return RX_DROP_UNUSABLE;
1991
1992 switch (mgmt->u.action.category) {
1993 case WLAN_CATEGORY_BACK:
1994 /*
1995 * The aggregation code is not prepared to handle
1996 * anything but STA/AP due to the BSSID handling;
1997 * IBSS could work in the code but isn't supported
1998 * by drivers or the standard.
1999 */
2000 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2001 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2002 sdata->vif.type != NL80211_IFTYPE_AP)
2003 break;
2004
2005 /* verify action_code is present */
2006 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2007 break;
2008
2009 switch (mgmt->u.action.u.addba_req.action_code) {
2010 case WLAN_ACTION_ADDBA_REQ:
2011 if (len < (IEEE80211_MIN_ACTION_SIZE +
2012 sizeof(mgmt->u.action.u.addba_req)))
2013 goto invalid;
2014 break;
2015 case WLAN_ACTION_ADDBA_RESP:
2016 if (len < (IEEE80211_MIN_ACTION_SIZE +
2017 sizeof(mgmt->u.action.u.addba_resp)))
2018 goto invalid;
2019 break;
2020 case WLAN_ACTION_DELBA:
2021 if (len < (IEEE80211_MIN_ACTION_SIZE +
2022 sizeof(mgmt->u.action.u.delba)))
2023 goto invalid;
2024 break;
2025 default:
2026 goto invalid;
2027 }
2028
2029 goto queue;
2030 case WLAN_CATEGORY_SPECTRUM_MGMT:
2031 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2032 break;
2033
2034 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2035 break;
2036
2037 /* verify action_code is present */
2038 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2039 break;
2040
2041 switch (mgmt->u.action.u.measurement.action_code) {
2042 case WLAN_ACTION_SPCT_MSR_REQ:
2043 if (len < (IEEE80211_MIN_ACTION_SIZE +
2044 sizeof(mgmt->u.action.u.measurement)))
2045 break;
2046 ieee80211_process_measurement_req(sdata, mgmt, len);
2047 goto handled;
2048 case WLAN_ACTION_SPCT_CHL_SWITCH:
2049 if (len < (IEEE80211_MIN_ACTION_SIZE +
2050 sizeof(mgmt->u.action.u.chan_switch)))
2051 break;
2052
2053 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2054 break;
2055
2056 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2057 break;
2058
2059 goto queue;
2060 }
2061 break;
2062 case WLAN_CATEGORY_SA_QUERY:
2063 if (len < (IEEE80211_MIN_ACTION_SIZE +
2064 sizeof(mgmt->u.action.u.sa_query)))
2065 break;
2066
2067 switch (mgmt->u.action.u.sa_query.action) {
2068 case WLAN_ACTION_SA_QUERY_REQUEST:
2069 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2070 break;
2071 ieee80211_process_sa_query_req(sdata, mgmt, len);
2072 goto handled;
2073 }
2074 break;
2075 case WLAN_CATEGORY_MESH_PLINK:
2076 case WLAN_CATEGORY_MESH_PATH_SEL:
2077 if (!ieee80211_vif_is_mesh(&sdata->vif))
2078 break;
2079 goto queue;
2080 }
2081
2082 return RX_CONTINUE;
2083
2084 invalid:
2085 rx->flags |= IEEE80211_MALFORMED_ACTION_FRM;
2086 /* will return in the next handlers */
2087 return RX_CONTINUE;
2088
2089 handled:
2090 if (rx->sta)
2091 rx->sta->rx_packets++;
2092 dev_kfree_skb(rx->skb);
2093 return RX_QUEUED;
2094
2095 queue:
2096 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2097 skb_queue_tail(&sdata->skb_queue, rx->skb);
2098 ieee80211_queue_work(&local->hw, &sdata->work);
2099 if (rx->sta)
2100 rx->sta->rx_packets++;
2101 return RX_QUEUED;
2102 }
2103
2104 static ieee80211_rx_result debug_noinline
2105 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2106 {
2107 struct ieee80211_rx_status *status;
2108
2109 /* skip known-bad action frames and return them in the next handler */
2110 if (rx->flags & IEEE80211_MALFORMED_ACTION_FRM)
2111 return RX_CONTINUE;
2112
2113 /*
2114 * Getting here means the kernel doesn't know how to handle
2115 * it, but maybe userspace does ... include returned frames
2116 * so userspace can register for those to know whether ones
2117 * it transmitted were processed or returned.
2118 */
2119 status = IEEE80211_SKB_RXCB(rx->skb);
2120
2121 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2122 rx->skb->data, rx->skb->len,
2123 GFP_ATOMIC)) {
2124 if (rx->sta)
2125 rx->sta->rx_packets++;
2126 dev_kfree_skb(rx->skb);
2127 return RX_QUEUED;
2128 }
2129
2130
2131 return RX_CONTINUE;
2132 }
2133
2134 static ieee80211_rx_result debug_noinline
2135 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2136 {
2137 struct ieee80211_local *local = rx->local;
2138 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2139 struct sk_buff *nskb;
2140 struct ieee80211_sub_if_data *sdata = rx->sdata;
2141
2142 if (!ieee80211_is_action(mgmt->frame_control))
2143 return RX_CONTINUE;
2144
2145 /*
2146 * For AP mode, hostapd is responsible for handling any action
2147 * frames that we didn't handle, including returning unknown
2148 * ones. For all other modes we will return them to the sender,
2149 * setting the 0x80 bit in the action category, as required by
2150 * 802.11-2007 7.3.1.11.
2151 * Newer versions of hostapd shall also use the management frame
2152 * registration mechanisms, but older ones still use cooked
2153 * monitor interfaces so push all frames there.
2154 */
2155 if (!(rx->flags & IEEE80211_MALFORMED_ACTION_FRM) &&
2156 (sdata->vif.type == NL80211_IFTYPE_AP ||
2157 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2158 return RX_DROP_MONITOR;
2159
2160 /* do not return rejected action frames */
2161 if (mgmt->u.action.category & 0x80)
2162 return RX_DROP_UNUSABLE;
2163
2164 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2165 GFP_ATOMIC);
2166 if (nskb) {
2167 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2168
2169 nmgmt->u.action.category |= 0x80;
2170 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2171 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2172
2173 memset(nskb->cb, 0, sizeof(nskb->cb));
2174
2175 ieee80211_tx_skb(rx->sdata, nskb);
2176 }
2177 dev_kfree_skb(rx->skb);
2178 return RX_QUEUED;
2179 }
2180
2181 static ieee80211_rx_result debug_noinline
2182 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2183 {
2184 struct ieee80211_sub_if_data *sdata = rx->sdata;
2185 ieee80211_rx_result rxs;
2186 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2187 __le16 stype;
2188
2189 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2190 if (rxs != RX_CONTINUE)
2191 return rxs;
2192
2193 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2194
2195 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2196 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2197 sdata->vif.type != NL80211_IFTYPE_STATION)
2198 return RX_DROP_MONITOR;
2199
2200 switch (stype) {
2201 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2202 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2203 /* process for all: mesh, mlme, ibss */
2204 break;
2205 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2206 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2207 /* process only for station */
2208 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2209 return RX_DROP_MONITOR;
2210 break;
2211 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2212 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2213 /* process only for ibss */
2214 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2215 return RX_DROP_MONITOR;
2216 break;
2217 default:
2218 return RX_DROP_MONITOR;
2219 }
2220
2221 /* queue up frame and kick off work to process it */
2222 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2223 skb_queue_tail(&sdata->skb_queue, rx->skb);
2224 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2225 if (rx->sta)
2226 rx->sta->rx_packets++;
2227
2228 return RX_QUEUED;
2229 }
2230
2231 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2232 struct ieee80211_rx_data *rx)
2233 {
2234 int keyidx;
2235 unsigned int hdrlen;
2236
2237 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2238 if (rx->skb->len >= hdrlen + 4)
2239 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2240 else
2241 keyidx = -1;
2242
2243 if (!rx->sta) {
2244 /*
2245 * Some hardware seem to generate incorrect Michael MIC
2246 * reports; ignore them to avoid triggering countermeasures.
2247 */
2248 return;
2249 }
2250
2251 if (!ieee80211_has_protected(hdr->frame_control))
2252 return;
2253
2254 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2255 /*
2256 * APs with pairwise keys should never receive Michael MIC
2257 * errors for non-zero keyidx because these are reserved for
2258 * group keys and only the AP is sending real multicast
2259 * frames in the BSS.
2260 */
2261 return;
2262 }
2263
2264 if (!ieee80211_is_data(hdr->frame_control) &&
2265 !ieee80211_is_auth(hdr->frame_control))
2266 return;
2267
2268 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2269 GFP_ATOMIC);
2270 }
2271
2272 /* TODO: use IEEE80211_RX_FRAGMENTED */
2273 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2274 struct ieee80211_rate *rate)
2275 {
2276 struct ieee80211_sub_if_data *sdata;
2277 struct ieee80211_local *local = rx->local;
2278 struct ieee80211_rtap_hdr {
2279 struct ieee80211_radiotap_header hdr;
2280 u8 flags;
2281 u8 rate_or_pad;
2282 __le16 chan_freq;
2283 __le16 chan_flags;
2284 } __packed *rthdr;
2285 struct sk_buff *skb = rx->skb, *skb2;
2286 struct net_device *prev_dev = NULL;
2287 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2288
2289 if (status->flag & RX_FLAG_INTERNAL_CMTR)
2290 goto out_free_skb;
2291
2292 if (skb_headroom(skb) < sizeof(*rthdr) &&
2293 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2294 goto out_free_skb;
2295
2296 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2297 memset(rthdr, 0, sizeof(*rthdr));
2298 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2299 rthdr->hdr.it_present =
2300 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2301 (1 << IEEE80211_RADIOTAP_CHANNEL));
2302
2303 if (rate) {
2304 rthdr->rate_or_pad = rate->bitrate / 5;
2305 rthdr->hdr.it_present |=
2306 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2307 }
2308 rthdr->chan_freq = cpu_to_le16(status->freq);
2309
2310 if (status->band == IEEE80211_BAND_5GHZ)
2311 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2312 IEEE80211_CHAN_5GHZ);
2313 else
2314 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2315 IEEE80211_CHAN_2GHZ);
2316
2317 skb_set_mac_header(skb, 0);
2318 skb->ip_summed = CHECKSUM_UNNECESSARY;
2319 skb->pkt_type = PACKET_OTHERHOST;
2320 skb->protocol = htons(ETH_P_802_2);
2321
2322 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2323 if (!ieee80211_sdata_running(sdata))
2324 continue;
2325
2326 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2327 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2328 continue;
2329
2330 if (prev_dev) {
2331 skb2 = skb_clone(skb, GFP_ATOMIC);
2332 if (skb2) {
2333 skb2->dev = prev_dev;
2334 netif_receive_skb(skb2);
2335 }
2336 }
2337
2338 prev_dev = sdata->dev;
2339 sdata->dev->stats.rx_packets++;
2340 sdata->dev->stats.rx_bytes += skb->len;
2341 }
2342
2343 if (prev_dev) {
2344 skb->dev = prev_dev;
2345 netif_receive_skb(skb);
2346 skb = NULL;
2347 } else
2348 goto out_free_skb;
2349
2350 status->flag |= RX_FLAG_INTERNAL_CMTR;
2351 return;
2352
2353 out_free_skb:
2354 dev_kfree_skb(skb);
2355 }
2356
2357 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2358 ieee80211_rx_result res)
2359 {
2360 switch (res) {
2361 case RX_DROP_MONITOR:
2362 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2363 if (rx->sta)
2364 rx->sta->rx_dropped++;
2365 /* fall through */
2366 case RX_CONTINUE: {
2367 struct ieee80211_rate *rate = NULL;
2368 struct ieee80211_supported_band *sband;
2369 struct ieee80211_rx_status *status;
2370
2371 status = IEEE80211_SKB_RXCB((rx->skb));
2372
2373 sband = rx->local->hw.wiphy->bands[status->band];
2374 if (!(status->flag & RX_FLAG_HT))
2375 rate = &sband->bitrates[status->rate_idx];
2376
2377 ieee80211_rx_cooked_monitor(rx, rate);
2378 break;
2379 }
2380 case RX_DROP_UNUSABLE:
2381 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2382 if (rx->sta)
2383 rx->sta->rx_dropped++;
2384 dev_kfree_skb(rx->skb);
2385 break;
2386 case RX_QUEUED:
2387 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2388 break;
2389 }
2390 }
2391
2392 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2393 struct sk_buff_head *frames)
2394 {
2395 ieee80211_rx_result res = RX_DROP_MONITOR;
2396 struct sk_buff *skb;
2397
2398 #define CALL_RXH(rxh) \
2399 do { \
2400 res = rxh(rx); \
2401 if (res != RX_CONTINUE) \
2402 goto rxh_next; \
2403 } while (0);
2404
2405 while ((skb = __skb_dequeue(frames))) {
2406 /*
2407 * all the other fields are valid across frames
2408 * that belong to an aMPDU since they are on the
2409 * same TID from the same station
2410 */
2411 rx->skb = skb;
2412
2413 CALL_RXH(ieee80211_rx_h_decrypt)
2414 CALL_RXH(ieee80211_rx_h_check_more_data)
2415 CALL_RXH(ieee80211_rx_h_sta_process)
2416 CALL_RXH(ieee80211_rx_h_defragment)
2417 CALL_RXH(ieee80211_rx_h_ps_poll)
2418 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2419 /* must be after MMIC verify so header is counted in MPDU mic */
2420 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2421 CALL_RXH(ieee80211_rx_h_amsdu)
2422 #ifdef CONFIG_MAC80211_MESH
2423 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2424 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2425 #endif
2426 CALL_RXH(ieee80211_rx_h_data)
2427
2428 /* special treatment -- needs the queue */
2429 res = ieee80211_rx_h_ctrl(rx, frames);
2430 if (res != RX_CONTINUE)
2431 goto rxh_next;
2432
2433 CALL_RXH(ieee80211_rx_h_mgmt_check)
2434 CALL_RXH(ieee80211_rx_h_action)
2435 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2436 CALL_RXH(ieee80211_rx_h_action_return)
2437 CALL_RXH(ieee80211_rx_h_mgmt)
2438
2439 rxh_next:
2440 ieee80211_rx_handlers_result(rx, res);
2441
2442 #undef CALL_RXH
2443 }
2444 }
2445
2446 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
2447 struct ieee80211_rx_data *rx,
2448 struct sk_buff *skb)
2449 {
2450 struct sk_buff_head reorder_release;
2451 ieee80211_rx_result res = RX_DROP_MONITOR;
2452
2453 __skb_queue_head_init(&reorder_release);
2454
2455 rx->skb = skb;
2456 rx->sdata = sdata;
2457
2458 #define CALL_RXH(rxh) \
2459 do { \
2460 res = rxh(rx); \
2461 if (res != RX_CONTINUE) \
2462 goto rxh_next; \
2463 } while (0);
2464
2465 CALL_RXH(ieee80211_rx_h_passive_scan)
2466 CALL_RXH(ieee80211_rx_h_check)
2467
2468 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2469
2470 ieee80211_rx_handlers(rx, &reorder_release);
2471 return;
2472
2473 rxh_next:
2474 ieee80211_rx_handlers_result(rx, res);
2475
2476 #undef CALL_RXH
2477 }
2478
2479 /*
2480 * This function makes calls into the RX path. Therefore the
2481 * caller must hold the sta_info->lock and everything has to
2482 * be under rcu_read_lock protection as well.
2483 */
2484 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2485 {
2486 struct sk_buff_head frames;
2487 struct ieee80211_rx_data rx = { };
2488 struct tid_ampdu_rx *tid_agg_rx;
2489
2490 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2491 if (!tid_agg_rx)
2492 return;
2493
2494 __skb_queue_head_init(&frames);
2495
2496 /* construct rx struct */
2497 rx.sta = sta;
2498 rx.sdata = sta->sdata;
2499 rx.local = sta->local;
2500 rx.queue = tid;
2501 rx.flags |= IEEE80211_RX_RA_MATCH;
2502
2503 if (unlikely(test_bit(SCAN_HW_SCANNING, &sta->local->scanning) ||
2504 test_bit(SCAN_OFF_CHANNEL, &sta->local->scanning)))
2505 rx.flags |= IEEE80211_RX_IN_SCAN;
2506
2507 spin_lock(&tid_agg_rx->reorder_lock);
2508 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx, &frames);
2509 spin_unlock(&tid_agg_rx->reorder_lock);
2510
2511 ieee80211_rx_handlers(&rx, &frames);
2512 }
2513
2514 /* main receive path */
2515
2516 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
2517 struct ieee80211_rx_data *rx,
2518 struct ieee80211_hdr *hdr)
2519 {
2520 struct sk_buff *skb = rx->skb;
2521 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2522 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2523 int multicast = is_multicast_ether_addr(hdr->addr1);
2524
2525 switch (sdata->vif.type) {
2526 case NL80211_IFTYPE_STATION:
2527 if (!bssid && !sdata->u.mgd.use_4addr)
2528 return 0;
2529 if (!multicast &&
2530 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2531 if (!(sdata->dev->flags & IFF_PROMISC))
2532 return 0;
2533 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2534 }
2535 break;
2536 case NL80211_IFTYPE_ADHOC:
2537 if (!bssid)
2538 return 0;
2539 if (ieee80211_is_beacon(hdr->frame_control)) {
2540 return 1;
2541 }
2542 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2543 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2544 return 0;
2545 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2546 } else if (!multicast &&
2547 compare_ether_addr(sdata->vif.addr,
2548 hdr->addr1) != 0) {
2549 if (!(sdata->dev->flags & IFF_PROMISC))
2550 return 0;
2551 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2552 } else if (!rx->sta) {
2553 int rate_idx;
2554 if (status->flag & RX_FLAG_HT)
2555 rate_idx = 0; /* TODO: HT rates */
2556 else
2557 rate_idx = status->rate_idx;
2558 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2559 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2560 }
2561 break;
2562 case NL80211_IFTYPE_MESH_POINT:
2563 if (!multicast &&
2564 compare_ether_addr(sdata->vif.addr,
2565 hdr->addr1) != 0) {
2566 if (!(sdata->dev->flags & IFF_PROMISC))
2567 return 0;
2568
2569 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2570 }
2571 break;
2572 case NL80211_IFTYPE_AP_VLAN:
2573 case NL80211_IFTYPE_AP:
2574 if (!bssid) {
2575 if (compare_ether_addr(sdata->vif.addr,
2576 hdr->addr1))
2577 return 0;
2578 } else if (!ieee80211_bssid_match(bssid,
2579 sdata->vif.addr)) {
2580 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2581 return 0;
2582 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2583 }
2584 break;
2585 case NL80211_IFTYPE_WDS:
2586 if (bssid || !ieee80211_is_data(hdr->frame_control))
2587 return 0;
2588 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2589 return 0;
2590 break;
2591 case NL80211_IFTYPE_MONITOR:
2592 case NL80211_IFTYPE_UNSPECIFIED:
2593 case NUM_NL80211_IFTYPES:
2594 /* should never get here */
2595 WARN_ON(1);
2596 break;
2597 }
2598
2599 return 1;
2600 }
2601
2602 /*
2603 * This is the actual Rx frames handler. as it blongs to Rx path it must
2604 * be called with rcu_read_lock protection.
2605 */
2606 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2607 struct sk_buff *skb)
2608 {
2609 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2610 struct ieee80211_local *local = hw_to_local(hw);
2611 struct ieee80211_sub_if_data *sdata;
2612 struct ieee80211_hdr *hdr;
2613 __le16 fc;
2614 struct ieee80211_rx_data rx;
2615 int prepares;
2616 struct ieee80211_sub_if_data *prev = NULL;
2617 struct sk_buff *skb_new;
2618 struct sta_info *sta, *tmp;
2619 bool found_sta = false;
2620 int err = 0;
2621
2622 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2623 memset(&rx, 0, sizeof(rx));
2624 rx.skb = skb;
2625 rx.local = local;
2626
2627 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2628 local->dot11ReceivedFragmentCount++;
2629
2630 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2631 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2632 rx.flags |= IEEE80211_RX_IN_SCAN;
2633
2634 if (ieee80211_is_mgmt(fc))
2635 err = skb_linearize(skb);
2636 else
2637 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2638
2639 if (err) {
2640 dev_kfree_skb(skb);
2641 return;
2642 }
2643
2644 hdr = (struct ieee80211_hdr *)skb->data;
2645 ieee80211_parse_qos(&rx);
2646 ieee80211_verify_alignment(&rx);
2647
2648 if (ieee80211_is_data(fc)) {
2649 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2650 rx.sta = sta;
2651 found_sta = true;
2652 rx.sdata = sta->sdata;
2653
2654 rx.flags |= IEEE80211_RX_RA_MATCH;
2655 prepares = prepare_for_handlers(rx.sdata, &rx, hdr);
2656 if (prepares) {
2657 if (status->flag & RX_FLAG_MMIC_ERROR) {
2658 if (rx.flags & IEEE80211_RX_RA_MATCH)
2659 ieee80211_rx_michael_mic_report(hdr, &rx);
2660 } else
2661 prev = rx.sdata;
2662 }
2663 }
2664 }
2665 if (!found_sta) {
2666 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2667 if (!ieee80211_sdata_running(sdata))
2668 continue;
2669
2670 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2671 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2672 continue;
2673
2674 /*
2675 * frame is destined for this interface, but if it's
2676 * not also for the previous one we handle that after
2677 * the loop to avoid copying the SKB once too much
2678 */
2679
2680 if (!prev) {
2681 prev = sdata;
2682 continue;
2683 }
2684
2685 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2686
2687 rx.flags |= IEEE80211_RX_RA_MATCH;
2688 prepares = prepare_for_handlers(prev, &rx, hdr);
2689
2690 if (!prepares)
2691 goto next;
2692
2693 if (status->flag & RX_FLAG_MMIC_ERROR) {
2694 rx.sdata = prev;
2695 if (rx.flags & IEEE80211_RX_RA_MATCH)
2696 ieee80211_rx_michael_mic_report(hdr,
2697 &rx);
2698 goto next;
2699 }
2700
2701 /*
2702 * frame was destined for the previous interface
2703 * so invoke RX handlers for it
2704 */
2705
2706 skb_new = skb_copy(skb, GFP_ATOMIC);
2707 if (!skb_new) {
2708 if (net_ratelimit())
2709 wiphy_debug(local->hw.wiphy,
2710 "failed to copy multicast frame for %s\n",
2711 prev->name);
2712 goto next;
2713 }
2714 ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
2715 next:
2716 prev = sdata;
2717 }
2718
2719 if (prev) {
2720 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2721
2722 rx.flags |= IEEE80211_RX_RA_MATCH;
2723 prepares = prepare_for_handlers(prev, &rx, hdr);
2724
2725 if (!prepares)
2726 prev = NULL;
2727 }
2728 }
2729 if (prev)
2730 ieee80211_invoke_rx_handlers(prev, &rx, skb);
2731 else
2732 dev_kfree_skb(skb);
2733 }
2734
2735 /*
2736 * This is the receive path handler. It is called by a low level driver when an
2737 * 802.11 MPDU is received from the hardware.
2738 */
2739 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2740 {
2741 struct ieee80211_local *local = hw_to_local(hw);
2742 struct ieee80211_rate *rate = NULL;
2743 struct ieee80211_supported_band *sband;
2744 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2745
2746 WARN_ON_ONCE(softirq_count() == 0);
2747
2748 if (WARN_ON(status->band < 0 ||
2749 status->band >= IEEE80211_NUM_BANDS))
2750 goto drop;
2751
2752 sband = local->hw.wiphy->bands[status->band];
2753 if (WARN_ON(!sband))
2754 goto drop;
2755
2756 /*
2757 * If we're suspending, it is possible although not too likely
2758 * that we'd be receiving frames after having already partially
2759 * quiesced the stack. We can't process such frames then since
2760 * that might, for example, cause stations to be added or other
2761 * driver callbacks be invoked.
2762 */
2763 if (unlikely(local->quiescing || local->suspended))
2764 goto drop;
2765
2766 /*
2767 * The same happens when we're not even started,
2768 * but that's worth a warning.
2769 */
2770 if (WARN_ON(!local->started))
2771 goto drop;
2772
2773 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2774 /*
2775 * Validate the rate, unless a PLCP error means that
2776 * we probably can't have a valid rate here anyway.
2777 */
2778
2779 if (status->flag & RX_FLAG_HT) {
2780 /*
2781 * rate_idx is MCS index, which can be [0-76]
2782 * as documented on:
2783 *
2784 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2785 *
2786 * Anything else would be some sort of driver or
2787 * hardware error. The driver should catch hardware
2788 * errors.
2789 */
2790 if (WARN((status->rate_idx < 0 ||
2791 status->rate_idx > 76),
2792 "Rate marked as an HT rate but passed "
2793 "status->rate_idx is not "
2794 "an MCS index [0-76]: %d (0x%02x)\n",
2795 status->rate_idx,
2796 status->rate_idx))
2797 goto drop;
2798 } else {
2799 if (WARN_ON(status->rate_idx < 0 ||
2800 status->rate_idx >= sband->n_bitrates))
2801 goto drop;
2802 rate = &sband->bitrates[status->rate_idx];
2803 }
2804 }
2805
2806 /*
2807 * key references and virtual interfaces are protected using RCU
2808 * and this requires that we are in a read-side RCU section during
2809 * receive processing
2810 */
2811 rcu_read_lock();
2812
2813 /*
2814 * Frames with failed FCS/PLCP checksum are not returned,
2815 * all other frames are returned without radiotap header
2816 * if it was previously present.
2817 * Also, frames with less than 16 bytes are dropped.
2818 */
2819 skb = ieee80211_rx_monitor(local, skb, rate);
2820 if (!skb) {
2821 rcu_read_unlock();
2822 return;
2823 }
2824
2825 __ieee80211_rx_handle_packet(hw, skb);
2826
2827 rcu_read_unlock();
2828
2829 return;
2830 drop:
2831 kfree_skb(skb);
2832 }
2833 EXPORT_SYMBOL(ieee80211_rx);
2834
2835 /* This is a version of the rx handler that can be called from hard irq
2836 * context. Post the skb on the queue and schedule the tasklet */
2837 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2838 {
2839 struct ieee80211_local *local = hw_to_local(hw);
2840
2841 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2842
2843 skb->pkt_type = IEEE80211_RX_MSG;
2844 skb_queue_tail(&local->skb_queue, skb);
2845 tasklet_schedule(&local->tasklet);
2846 }
2847 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.091105 seconds and 5 git commands to generate.