Merge remote-tracking branches 'asoc/topic/ux500' and 'asoc/topic/wm8962' into asoc...
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40
41 u64_stats_update_begin(&tstats->syncp);
42 tstats->rx_packets++;
43 tstats->rx_bytes += len;
44 u64_stats_update_end(&tstats->syncp);
45 }
46
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 enum nl80211_iftype type)
49 {
50 __le16 fc = hdr->frame_control;
51
52 if (ieee80211_is_data(fc)) {
53 if (len < 24) /* drop incorrect hdr len (data) */
54 return NULL;
55
56 if (ieee80211_has_a4(fc))
57 return NULL;
58 if (ieee80211_has_tods(fc))
59 return hdr->addr1;
60 if (ieee80211_has_fromds(fc))
61 return hdr->addr2;
62
63 return hdr->addr3;
64 }
65
66 if (ieee80211_is_mgmt(fc)) {
67 if (len < 24) /* drop incorrect hdr len (mgmt) */
68 return NULL;
69 return hdr->addr3;
70 }
71
72 if (ieee80211_is_ctl(fc)) {
73 if (ieee80211_is_pspoll(fc))
74 return hdr->addr1;
75
76 if (ieee80211_is_back_req(fc)) {
77 switch (type) {
78 case NL80211_IFTYPE_STATION:
79 return hdr->addr2;
80 case NL80211_IFTYPE_AP:
81 case NL80211_IFTYPE_AP_VLAN:
82 return hdr->addr1;
83 default:
84 break; /* fall through to the return */
85 }
86 }
87 }
88
89 return NULL;
90 }
91
92 /*
93 * monitor mode reception
94 *
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
97 */
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 struct sk_buff *skb,
100 unsigned int rtap_vendor_space)
101 {
102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 if (likely(skb->len > FCS_LEN))
104 __pskb_trim(skb, skb->len - FCS_LEN);
105 else {
106 /* driver bug */
107 WARN_ON(1);
108 dev_kfree_skb(skb);
109 return NULL;
110 }
111 }
112
113 __pskb_pull(skb, rtap_vendor_space);
114
115 return skb;
116 }
117
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 unsigned int rtap_vendor_space)
120 {
121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 struct ieee80211_hdr *hdr;
123
124 hdr = (void *)(skb->data + rtap_vendor_space);
125
126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 RX_FLAG_FAILED_PLCP_CRC |
128 RX_FLAG_ONLY_MONITOR))
129 return true;
130
131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 return true;
133
134 if (ieee80211_is_ctl(hdr->frame_control) &&
135 !ieee80211_is_pspoll(hdr->frame_control) &&
136 !ieee80211_is_back_req(hdr->frame_control))
137 return true;
138
139 return false;
140 }
141
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 struct ieee80211_rx_status *status,
145 struct sk_buff *skb)
146 {
147 int len;
148
149 /* always present fields */
150 len = sizeof(struct ieee80211_radiotap_header) + 8;
151
152 /* allocate extra bitmaps */
153 if (status->chains)
154 len += 4 * hweight8(status->chains);
155
156 if (ieee80211_have_rx_timestamp(status)) {
157 len = ALIGN(len, 8);
158 len += 8;
159 }
160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 len += 1;
162
163 /* antenna field, if we don't have per-chain info */
164 if (!status->chains)
165 len += 1;
166
167 /* padding for RX_FLAGS if necessary */
168 len = ALIGN(len, 2);
169
170 if (status->flag & RX_FLAG_HT) /* HT info */
171 len += 3;
172
173 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 len = ALIGN(len, 4);
175 len += 8;
176 }
177
178 if (status->flag & RX_FLAG_VHT) {
179 len = ALIGN(len, 2);
180 len += 12;
181 }
182
183 if (status->chains) {
184 /* antenna and antenna signal fields */
185 len += 2 * hweight8(status->chains);
186 }
187
188 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
189 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
190
191 /* vendor presence bitmap */
192 len += 4;
193 /* alignment for fixed 6-byte vendor data header */
194 len = ALIGN(len, 2);
195 /* vendor data header */
196 len += 6;
197 if (WARN_ON(rtap->align == 0))
198 rtap->align = 1;
199 len = ALIGN(len, rtap->align);
200 len += rtap->len + rtap->pad;
201 }
202
203 return len;
204 }
205
206 /*
207 * ieee80211_add_rx_radiotap_header - add radiotap header
208 *
209 * add a radiotap header containing all the fields which the hardware provided.
210 */
211 static void
212 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
213 struct sk_buff *skb,
214 struct ieee80211_rate *rate,
215 int rtap_len, bool has_fcs)
216 {
217 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
218 struct ieee80211_radiotap_header *rthdr;
219 unsigned char *pos;
220 __le32 *it_present;
221 u32 it_present_val;
222 u16 rx_flags = 0;
223 u16 channel_flags = 0;
224 int mpdulen, chain;
225 unsigned long chains = status->chains;
226 struct ieee80211_vendor_radiotap rtap = {};
227
228 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
229 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
230 /* rtap.len and rtap.pad are undone immediately */
231 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
232 }
233
234 mpdulen = skb->len;
235 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
236 mpdulen += FCS_LEN;
237
238 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
239 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
240 it_present = &rthdr->it_present;
241
242 /* radiotap header, set always present flags */
243 rthdr->it_len = cpu_to_le16(rtap_len);
244 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
245 BIT(IEEE80211_RADIOTAP_CHANNEL) |
246 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
247
248 if (!status->chains)
249 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
250
251 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
252 it_present_val |=
253 BIT(IEEE80211_RADIOTAP_EXT) |
254 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
255 put_unaligned_le32(it_present_val, it_present);
256 it_present++;
257 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
258 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
259 }
260
261 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
262 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
263 BIT(IEEE80211_RADIOTAP_EXT);
264 put_unaligned_le32(it_present_val, it_present);
265 it_present++;
266 it_present_val = rtap.present;
267 }
268
269 put_unaligned_le32(it_present_val, it_present);
270
271 pos = (void *)(it_present + 1);
272
273 /* the order of the following fields is important */
274
275 /* IEEE80211_RADIOTAP_TSFT */
276 if (ieee80211_have_rx_timestamp(status)) {
277 /* padding */
278 while ((pos - (u8 *)rthdr) & 7)
279 *pos++ = 0;
280 put_unaligned_le64(
281 ieee80211_calculate_rx_timestamp(local, status,
282 mpdulen, 0),
283 pos);
284 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
285 pos += 8;
286 }
287
288 /* IEEE80211_RADIOTAP_FLAGS */
289 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
290 *pos |= IEEE80211_RADIOTAP_F_FCS;
291 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
292 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
293 if (status->flag & RX_FLAG_SHORTPRE)
294 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
295 pos++;
296
297 /* IEEE80211_RADIOTAP_RATE */
298 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
299 /*
300 * Without rate information don't add it. If we have,
301 * MCS information is a separate field in radiotap,
302 * added below. The byte here is needed as padding
303 * for the channel though, so initialise it to 0.
304 */
305 *pos = 0;
306 } else {
307 int shift = 0;
308 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
309 if (status->flag & RX_FLAG_10MHZ)
310 shift = 1;
311 else if (status->flag & RX_FLAG_5MHZ)
312 shift = 2;
313 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
314 }
315 pos++;
316
317 /* IEEE80211_RADIOTAP_CHANNEL */
318 put_unaligned_le16(status->freq, pos);
319 pos += 2;
320 if (status->flag & RX_FLAG_10MHZ)
321 channel_flags |= IEEE80211_CHAN_HALF;
322 else if (status->flag & RX_FLAG_5MHZ)
323 channel_flags |= IEEE80211_CHAN_QUARTER;
324
325 if (status->band == NL80211_BAND_5GHZ)
326 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
327 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
328 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
329 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
330 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
331 else if (rate)
332 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
333 else
334 channel_flags |= IEEE80211_CHAN_2GHZ;
335 put_unaligned_le16(channel_flags, pos);
336 pos += 2;
337
338 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
339 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
340 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
341 *pos = status->signal;
342 rthdr->it_present |=
343 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
344 pos++;
345 }
346
347 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
348
349 if (!status->chains) {
350 /* IEEE80211_RADIOTAP_ANTENNA */
351 *pos = status->antenna;
352 pos++;
353 }
354
355 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
356
357 /* IEEE80211_RADIOTAP_RX_FLAGS */
358 /* ensure 2 byte alignment for the 2 byte field as required */
359 if ((pos - (u8 *)rthdr) & 1)
360 *pos++ = 0;
361 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
362 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
363 put_unaligned_le16(rx_flags, pos);
364 pos += 2;
365
366 if (status->flag & RX_FLAG_HT) {
367 unsigned int stbc;
368
369 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
370 *pos++ = local->hw.radiotap_mcs_details;
371 *pos = 0;
372 if (status->flag & RX_FLAG_SHORT_GI)
373 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
374 if (status->flag & RX_FLAG_40MHZ)
375 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
376 if (status->flag & RX_FLAG_HT_GF)
377 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
378 if (status->flag & RX_FLAG_LDPC)
379 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
380 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
381 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
382 pos++;
383 *pos++ = status->rate_idx;
384 }
385
386 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
387 u16 flags = 0;
388
389 /* ensure 4 byte alignment */
390 while ((pos - (u8 *)rthdr) & 3)
391 pos++;
392 rthdr->it_present |=
393 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
394 put_unaligned_le32(status->ampdu_reference, pos);
395 pos += 4;
396 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
397 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
398 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
399 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
400 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
401 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
402 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
403 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
404 put_unaligned_le16(flags, pos);
405 pos += 2;
406 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
407 *pos++ = status->ampdu_delimiter_crc;
408 else
409 *pos++ = 0;
410 *pos++ = 0;
411 }
412
413 if (status->flag & RX_FLAG_VHT) {
414 u16 known = local->hw.radiotap_vht_details;
415
416 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
417 put_unaligned_le16(known, pos);
418 pos += 2;
419 /* flags */
420 if (status->flag & RX_FLAG_SHORT_GI)
421 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
422 /* in VHT, STBC is binary */
423 if (status->flag & RX_FLAG_STBC_MASK)
424 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
425 if (status->vht_flag & RX_VHT_FLAG_BF)
426 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
427 pos++;
428 /* bandwidth */
429 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
430 *pos++ = 4;
431 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
432 *pos++ = 11;
433 else if (status->flag & RX_FLAG_40MHZ)
434 *pos++ = 1;
435 else /* 20 MHz */
436 *pos++ = 0;
437 /* MCS/NSS */
438 *pos = (status->rate_idx << 4) | status->vht_nss;
439 pos += 4;
440 /* coding field */
441 if (status->flag & RX_FLAG_LDPC)
442 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
443 pos++;
444 /* group ID */
445 pos++;
446 /* partial_aid */
447 pos += 2;
448 }
449
450 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
451 *pos++ = status->chain_signal[chain];
452 *pos++ = chain;
453 }
454
455 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
456 /* ensure 2 byte alignment for the vendor field as required */
457 if ((pos - (u8 *)rthdr) & 1)
458 *pos++ = 0;
459 *pos++ = rtap.oui[0];
460 *pos++ = rtap.oui[1];
461 *pos++ = rtap.oui[2];
462 *pos++ = rtap.subns;
463 put_unaligned_le16(rtap.len, pos);
464 pos += 2;
465 /* align the actual payload as requested */
466 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
467 *pos++ = 0;
468 /* data (and possible padding) already follows */
469 }
470 }
471
472 /*
473 * This function copies a received frame to all monitor interfaces and
474 * returns a cleaned-up SKB that no longer includes the FCS nor the
475 * radiotap header the driver might have added.
476 */
477 static struct sk_buff *
478 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
479 struct ieee80211_rate *rate)
480 {
481 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
482 struct ieee80211_sub_if_data *sdata;
483 int rt_hdrlen, needed_headroom;
484 struct sk_buff *skb, *skb2;
485 struct net_device *prev_dev = NULL;
486 int present_fcs_len = 0;
487 unsigned int rtap_vendor_space = 0;
488
489 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
490 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
491
492 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
493 }
494
495 /*
496 * First, we may need to make a copy of the skb because
497 * (1) we need to modify it for radiotap (if not present), and
498 * (2) the other RX handlers will modify the skb we got.
499 *
500 * We don't need to, of course, if we aren't going to return
501 * the SKB because it has a bad FCS/PLCP checksum.
502 */
503
504 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
505 present_fcs_len = FCS_LEN;
506
507 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
508 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
509 dev_kfree_skb(origskb);
510 return NULL;
511 }
512
513 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
514 if (should_drop_frame(origskb, present_fcs_len,
515 rtap_vendor_space)) {
516 dev_kfree_skb(origskb);
517 return NULL;
518 }
519
520 return remove_monitor_info(local, origskb, rtap_vendor_space);
521 }
522
523 /* room for the radiotap header based on driver features */
524 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
525 needed_headroom = rt_hdrlen - rtap_vendor_space;
526
527 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
528 /* only need to expand headroom if necessary */
529 skb = origskb;
530 origskb = NULL;
531
532 /*
533 * This shouldn't trigger often because most devices have an
534 * RX header they pull before we get here, and that should
535 * be big enough for our radiotap information. We should
536 * probably export the length to drivers so that we can have
537 * them allocate enough headroom to start with.
538 */
539 if (skb_headroom(skb) < needed_headroom &&
540 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
541 dev_kfree_skb(skb);
542 return NULL;
543 }
544 } else {
545 /*
546 * Need to make a copy and possibly remove radiotap header
547 * and FCS from the original.
548 */
549 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
550
551 origskb = remove_monitor_info(local, origskb,
552 rtap_vendor_space);
553
554 if (!skb)
555 return origskb;
556 }
557
558 /* prepend radiotap information */
559 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
560
561 skb_reset_mac_header(skb);
562 skb->ip_summed = CHECKSUM_UNNECESSARY;
563 skb->pkt_type = PACKET_OTHERHOST;
564 skb->protocol = htons(ETH_P_802_2);
565
566 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
567 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
568 continue;
569
570 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
571 continue;
572
573 if (!ieee80211_sdata_running(sdata))
574 continue;
575
576 if (prev_dev) {
577 skb2 = skb_clone(skb, GFP_ATOMIC);
578 if (skb2) {
579 skb2->dev = prev_dev;
580 netif_receive_skb(skb2);
581 }
582 }
583
584 prev_dev = sdata->dev;
585 ieee80211_rx_stats(sdata->dev, skb->len);
586 }
587
588 if (prev_dev) {
589 skb->dev = prev_dev;
590 netif_receive_skb(skb);
591 } else
592 dev_kfree_skb(skb);
593
594 return origskb;
595 }
596
597 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
598 {
599 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
600 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
601 int tid, seqno_idx, security_idx;
602
603 /* does the frame have a qos control field? */
604 if (ieee80211_is_data_qos(hdr->frame_control)) {
605 u8 *qc = ieee80211_get_qos_ctl(hdr);
606 /* frame has qos control */
607 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
608 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
609 status->rx_flags |= IEEE80211_RX_AMSDU;
610
611 seqno_idx = tid;
612 security_idx = tid;
613 } else {
614 /*
615 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
616 *
617 * Sequence numbers for management frames, QoS data
618 * frames with a broadcast/multicast address in the
619 * Address 1 field, and all non-QoS data frames sent
620 * by QoS STAs are assigned using an additional single
621 * modulo-4096 counter, [...]
622 *
623 * We also use that counter for non-QoS STAs.
624 */
625 seqno_idx = IEEE80211_NUM_TIDS;
626 security_idx = 0;
627 if (ieee80211_is_mgmt(hdr->frame_control))
628 security_idx = IEEE80211_NUM_TIDS;
629 tid = 0;
630 }
631
632 rx->seqno_idx = seqno_idx;
633 rx->security_idx = security_idx;
634 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
635 * For now, set skb->priority to 0 for other cases. */
636 rx->skb->priority = (tid > 7) ? 0 : tid;
637 }
638
639 /**
640 * DOC: Packet alignment
641 *
642 * Drivers always need to pass packets that are aligned to two-byte boundaries
643 * to the stack.
644 *
645 * Additionally, should, if possible, align the payload data in a way that
646 * guarantees that the contained IP header is aligned to a four-byte
647 * boundary. In the case of regular frames, this simply means aligning the
648 * payload to a four-byte boundary (because either the IP header is directly
649 * contained, or IV/RFC1042 headers that have a length divisible by four are
650 * in front of it). If the payload data is not properly aligned and the
651 * architecture doesn't support efficient unaligned operations, mac80211
652 * will align the data.
653 *
654 * With A-MSDU frames, however, the payload data address must yield two modulo
655 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
656 * push the IP header further back to a multiple of four again. Thankfully, the
657 * specs were sane enough this time around to require padding each A-MSDU
658 * subframe to a length that is a multiple of four.
659 *
660 * Padding like Atheros hardware adds which is between the 802.11 header and
661 * the payload is not supported, the driver is required to move the 802.11
662 * header to be directly in front of the payload in that case.
663 */
664 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
665 {
666 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
667 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
668 #endif
669 }
670
671
672 /* rx handlers */
673
674 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
675 {
676 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
677
678 if (is_multicast_ether_addr(hdr->addr1))
679 return 0;
680
681 return ieee80211_is_robust_mgmt_frame(skb);
682 }
683
684
685 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
686 {
687 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
688
689 if (!is_multicast_ether_addr(hdr->addr1))
690 return 0;
691
692 return ieee80211_is_robust_mgmt_frame(skb);
693 }
694
695
696 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
697 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
698 {
699 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
700 struct ieee80211_mmie *mmie;
701 struct ieee80211_mmie_16 *mmie16;
702
703 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
704 return -1;
705
706 if (!ieee80211_is_robust_mgmt_frame(skb))
707 return -1; /* not a robust management frame */
708
709 mmie = (struct ieee80211_mmie *)
710 (skb->data + skb->len - sizeof(*mmie));
711 if (mmie->element_id == WLAN_EID_MMIE &&
712 mmie->length == sizeof(*mmie) - 2)
713 return le16_to_cpu(mmie->key_id);
714
715 mmie16 = (struct ieee80211_mmie_16 *)
716 (skb->data + skb->len - sizeof(*mmie16));
717 if (skb->len >= 24 + sizeof(*mmie16) &&
718 mmie16->element_id == WLAN_EID_MMIE &&
719 mmie16->length == sizeof(*mmie16) - 2)
720 return le16_to_cpu(mmie16->key_id);
721
722 return -1;
723 }
724
725 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
726 struct sk_buff *skb)
727 {
728 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
729 __le16 fc;
730 int hdrlen;
731 u8 keyid;
732
733 fc = hdr->frame_control;
734 hdrlen = ieee80211_hdrlen(fc);
735
736 if (skb->len < hdrlen + cs->hdr_len)
737 return -EINVAL;
738
739 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
740 keyid &= cs->key_idx_mask;
741 keyid >>= cs->key_idx_shift;
742
743 return keyid;
744 }
745
746 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
747 {
748 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
749 char *dev_addr = rx->sdata->vif.addr;
750
751 if (ieee80211_is_data(hdr->frame_control)) {
752 if (is_multicast_ether_addr(hdr->addr1)) {
753 if (ieee80211_has_tods(hdr->frame_control) ||
754 !ieee80211_has_fromds(hdr->frame_control))
755 return RX_DROP_MONITOR;
756 if (ether_addr_equal(hdr->addr3, dev_addr))
757 return RX_DROP_MONITOR;
758 } else {
759 if (!ieee80211_has_a4(hdr->frame_control))
760 return RX_DROP_MONITOR;
761 if (ether_addr_equal(hdr->addr4, dev_addr))
762 return RX_DROP_MONITOR;
763 }
764 }
765
766 /* If there is not an established peer link and this is not a peer link
767 * establisment frame, beacon or probe, drop the frame.
768 */
769
770 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
771 struct ieee80211_mgmt *mgmt;
772
773 if (!ieee80211_is_mgmt(hdr->frame_control))
774 return RX_DROP_MONITOR;
775
776 if (ieee80211_is_action(hdr->frame_control)) {
777 u8 category;
778
779 /* make sure category field is present */
780 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
781 return RX_DROP_MONITOR;
782
783 mgmt = (struct ieee80211_mgmt *)hdr;
784 category = mgmt->u.action.category;
785 if (category != WLAN_CATEGORY_MESH_ACTION &&
786 category != WLAN_CATEGORY_SELF_PROTECTED)
787 return RX_DROP_MONITOR;
788 return RX_CONTINUE;
789 }
790
791 if (ieee80211_is_probe_req(hdr->frame_control) ||
792 ieee80211_is_probe_resp(hdr->frame_control) ||
793 ieee80211_is_beacon(hdr->frame_control) ||
794 ieee80211_is_auth(hdr->frame_control))
795 return RX_CONTINUE;
796
797 return RX_DROP_MONITOR;
798 }
799
800 return RX_CONTINUE;
801 }
802
803 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
804 int index)
805 {
806 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
807 struct sk_buff *tail = skb_peek_tail(frames);
808 struct ieee80211_rx_status *status;
809
810 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
811 return true;
812
813 if (!tail)
814 return false;
815
816 status = IEEE80211_SKB_RXCB(tail);
817 if (status->flag & RX_FLAG_AMSDU_MORE)
818 return false;
819
820 return true;
821 }
822
823 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
824 struct tid_ampdu_rx *tid_agg_rx,
825 int index,
826 struct sk_buff_head *frames)
827 {
828 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
829 struct sk_buff *skb;
830 struct ieee80211_rx_status *status;
831
832 lockdep_assert_held(&tid_agg_rx->reorder_lock);
833
834 if (skb_queue_empty(skb_list))
835 goto no_frame;
836
837 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
838 __skb_queue_purge(skb_list);
839 goto no_frame;
840 }
841
842 /* release frames from the reorder ring buffer */
843 tid_agg_rx->stored_mpdu_num--;
844 while ((skb = __skb_dequeue(skb_list))) {
845 status = IEEE80211_SKB_RXCB(skb);
846 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
847 __skb_queue_tail(frames, skb);
848 }
849
850 no_frame:
851 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
852 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
853 }
854
855 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
856 struct tid_ampdu_rx *tid_agg_rx,
857 u16 head_seq_num,
858 struct sk_buff_head *frames)
859 {
860 int index;
861
862 lockdep_assert_held(&tid_agg_rx->reorder_lock);
863
864 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
865 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
866 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
867 frames);
868 }
869 }
870
871 /*
872 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
873 * the skb was added to the buffer longer than this time ago, the earlier
874 * frames that have not yet been received are assumed to be lost and the skb
875 * can be released for processing. This may also release other skb's from the
876 * reorder buffer if there are no additional gaps between the frames.
877 *
878 * Callers must hold tid_agg_rx->reorder_lock.
879 */
880 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
881
882 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
883 struct tid_ampdu_rx *tid_agg_rx,
884 struct sk_buff_head *frames)
885 {
886 int index, i, j;
887
888 lockdep_assert_held(&tid_agg_rx->reorder_lock);
889
890 /* release the buffer until next missing frame */
891 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
892 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
893 tid_agg_rx->stored_mpdu_num) {
894 /*
895 * No buffers ready to be released, but check whether any
896 * frames in the reorder buffer have timed out.
897 */
898 int skipped = 1;
899 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
900 j = (j + 1) % tid_agg_rx->buf_size) {
901 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
902 skipped++;
903 continue;
904 }
905 if (skipped &&
906 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
907 HT_RX_REORDER_BUF_TIMEOUT))
908 goto set_release_timer;
909
910 /* don't leave incomplete A-MSDUs around */
911 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
912 i = (i + 1) % tid_agg_rx->buf_size)
913 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
914
915 ht_dbg_ratelimited(sdata,
916 "release an RX reorder frame due to timeout on earlier frames\n");
917 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
918 frames);
919
920 /*
921 * Increment the head seq# also for the skipped slots.
922 */
923 tid_agg_rx->head_seq_num =
924 (tid_agg_rx->head_seq_num +
925 skipped) & IEEE80211_SN_MASK;
926 skipped = 0;
927 }
928 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
929 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
930 frames);
931 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
932 }
933
934 if (tid_agg_rx->stored_mpdu_num) {
935 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
936
937 for (; j != (index - 1) % tid_agg_rx->buf_size;
938 j = (j + 1) % tid_agg_rx->buf_size) {
939 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
940 break;
941 }
942
943 set_release_timer:
944
945 if (!tid_agg_rx->removed)
946 mod_timer(&tid_agg_rx->reorder_timer,
947 tid_agg_rx->reorder_time[j] + 1 +
948 HT_RX_REORDER_BUF_TIMEOUT);
949 } else {
950 del_timer(&tid_agg_rx->reorder_timer);
951 }
952 }
953
954 /*
955 * As this function belongs to the RX path it must be under
956 * rcu_read_lock protection. It returns false if the frame
957 * can be processed immediately, true if it was consumed.
958 */
959 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
960 struct tid_ampdu_rx *tid_agg_rx,
961 struct sk_buff *skb,
962 struct sk_buff_head *frames)
963 {
964 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
965 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
966 u16 sc = le16_to_cpu(hdr->seq_ctrl);
967 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
968 u16 head_seq_num, buf_size;
969 int index;
970 bool ret = true;
971
972 spin_lock(&tid_agg_rx->reorder_lock);
973
974 /*
975 * Offloaded BA sessions have no known starting sequence number so pick
976 * one from first Rxed frame for this tid after BA was started.
977 */
978 if (unlikely(tid_agg_rx->auto_seq)) {
979 tid_agg_rx->auto_seq = false;
980 tid_agg_rx->ssn = mpdu_seq_num;
981 tid_agg_rx->head_seq_num = mpdu_seq_num;
982 }
983
984 buf_size = tid_agg_rx->buf_size;
985 head_seq_num = tid_agg_rx->head_seq_num;
986
987 /* frame with out of date sequence number */
988 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
989 dev_kfree_skb(skb);
990 goto out;
991 }
992
993 /*
994 * If frame the sequence number exceeds our buffering window
995 * size release some previous frames to make room for this one.
996 */
997 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
998 head_seq_num = ieee80211_sn_inc(
999 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1000 /* release stored frames up to new head to stack */
1001 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1002 head_seq_num, frames);
1003 }
1004
1005 /* Now the new frame is always in the range of the reordering buffer */
1006
1007 index = mpdu_seq_num % tid_agg_rx->buf_size;
1008
1009 /* check if we already stored this frame */
1010 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1011 dev_kfree_skb(skb);
1012 goto out;
1013 }
1014
1015 /*
1016 * If the current MPDU is in the right order and nothing else
1017 * is stored we can process it directly, no need to buffer it.
1018 * If it is first but there's something stored, we may be able
1019 * to release frames after this one.
1020 */
1021 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1022 tid_agg_rx->stored_mpdu_num == 0) {
1023 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1024 tid_agg_rx->head_seq_num =
1025 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1026 ret = false;
1027 goto out;
1028 }
1029
1030 /* put the frame in the reordering buffer */
1031 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1032 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1033 tid_agg_rx->reorder_time[index] = jiffies;
1034 tid_agg_rx->stored_mpdu_num++;
1035 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1036 }
1037
1038 out:
1039 spin_unlock(&tid_agg_rx->reorder_lock);
1040 return ret;
1041 }
1042
1043 /*
1044 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1045 * true if the MPDU was buffered, false if it should be processed.
1046 */
1047 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1048 struct sk_buff_head *frames)
1049 {
1050 struct sk_buff *skb = rx->skb;
1051 struct ieee80211_local *local = rx->local;
1052 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1053 struct sta_info *sta = rx->sta;
1054 struct tid_ampdu_rx *tid_agg_rx;
1055 u16 sc;
1056 u8 tid, ack_policy;
1057
1058 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1059 is_multicast_ether_addr(hdr->addr1))
1060 goto dont_reorder;
1061
1062 /*
1063 * filter the QoS data rx stream according to
1064 * STA/TID and check if this STA/TID is on aggregation
1065 */
1066
1067 if (!sta)
1068 goto dont_reorder;
1069
1070 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1071 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1072 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1073
1074 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1075 if (!tid_agg_rx)
1076 goto dont_reorder;
1077
1078 /* qos null data frames are excluded */
1079 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1080 goto dont_reorder;
1081
1082 /* not part of a BA session */
1083 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1084 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1085 goto dont_reorder;
1086
1087 /* new, potentially un-ordered, ampdu frame - process it */
1088
1089 /* reset session timer */
1090 if (tid_agg_rx->timeout)
1091 tid_agg_rx->last_rx = jiffies;
1092
1093 /* if this mpdu is fragmented - terminate rx aggregation session */
1094 sc = le16_to_cpu(hdr->seq_ctrl);
1095 if (sc & IEEE80211_SCTL_FRAG) {
1096 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1097 skb_queue_tail(&rx->sdata->skb_queue, skb);
1098 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1099 return;
1100 }
1101
1102 /*
1103 * No locking needed -- we will only ever process one
1104 * RX packet at a time, and thus own tid_agg_rx. All
1105 * other code manipulating it needs to (and does) make
1106 * sure that we cannot get to it any more before doing
1107 * anything with it.
1108 */
1109 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1110 frames))
1111 return;
1112
1113 dont_reorder:
1114 __skb_queue_tail(frames, skb);
1115 }
1116
1117 static ieee80211_rx_result debug_noinline
1118 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1119 {
1120 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1122
1123 if (status->flag & RX_FLAG_DUP_VALIDATED)
1124 return RX_CONTINUE;
1125
1126 /*
1127 * Drop duplicate 802.11 retransmissions
1128 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1129 */
1130
1131 if (rx->skb->len < 24)
1132 return RX_CONTINUE;
1133
1134 if (ieee80211_is_ctl(hdr->frame_control) ||
1135 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1136 is_multicast_ether_addr(hdr->addr1))
1137 return RX_CONTINUE;
1138
1139 if (!rx->sta)
1140 return RX_CONTINUE;
1141
1142 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1143 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1144 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1145 rx->sta->rx_stats.num_duplicates++;
1146 return RX_DROP_UNUSABLE;
1147 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1148 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1149 }
1150
1151 return RX_CONTINUE;
1152 }
1153
1154 static ieee80211_rx_result debug_noinline
1155 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1156 {
1157 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1158
1159 /* Drop disallowed frame classes based on STA auth/assoc state;
1160 * IEEE 802.11, Chap 5.5.
1161 *
1162 * mac80211 filters only based on association state, i.e. it drops
1163 * Class 3 frames from not associated stations. hostapd sends
1164 * deauth/disassoc frames when needed. In addition, hostapd is
1165 * responsible for filtering on both auth and assoc states.
1166 */
1167
1168 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1169 return ieee80211_rx_mesh_check(rx);
1170
1171 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1172 ieee80211_is_pspoll(hdr->frame_control)) &&
1173 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1174 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1175 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1176 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1177 /*
1178 * accept port control frames from the AP even when it's not
1179 * yet marked ASSOC to prevent a race where we don't set the
1180 * assoc bit quickly enough before it sends the first frame
1181 */
1182 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1183 ieee80211_is_data_present(hdr->frame_control)) {
1184 unsigned int hdrlen;
1185 __be16 ethertype;
1186
1187 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1188
1189 if (rx->skb->len < hdrlen + 8)
1190 return RX_DROP_MONITOR;
1191
1192 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1193 if (ethertype == rx->sdata->control_port_protocol)
1194 return RX_CONTINUE;
1195 }
1196
1197 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1198 cfg80211_rx_spurious_frame(rx->sdata->dev,
1199 hdr->addr2,
1200 GFP_ATOMIC))
1201 return RX_DROP_UNUSABLE;
1202
1203 return RX_DROP_MONITOR;
1204 }
1205
1206 return RX_CONTINUE;
1207 }
1208
1209
1210 static ieee80211_rx_result debug_noinline
1211 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1212 {
1213 struct ieee80211_local *local;
1214 struct ieee80211_hdr *hdr;
1215 struct sk_buff *skb;
1216
1217 local = rx->local;
1218 skb = rx->skb;
1219 hdr = (struct ieee80211_hdr *) skb->data;
1220
1221 if (!local->pspolling)
1222 return RX_CONTINUE;
1223
1224 if (!ieee80211_has_fromds(hdr->frame_control))
1225 /* this is not from AP */
1226 return RX_CONTINUE;
1227
1228 if (!ieee80211_is_data(hdr->frame_control))
1229 return RX_CONTINUE;
1230
1231 if (!ieee80211_has_moredata(hdr->frame_control)) {
1232 /* AP has no more frames buffered for us */
1233 local->pspolling = false;
1234 return RX_CONTINUE;
1235 }
1236
1237 /* more data bit is set, let's request a new frame from the AP */
1238 ieee80211_send_pspoll(local, rx->sdata);
1239
1240 return RX_CONTINUE;
1241 }
1242
1243 static void sta_ps_start(struct sta_info *sta)
1244 {
1245 struct ieee80211_sub_if_data *sdata = sta->sdata;
1246 struct ieee80211_local *local = sdata->local;
1247 struct ps_data *ps;
1248 int tid;
1249
1250 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1251 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1252 ps = &sdata->bss->ps;
1253 else
1254 return;
1255
1256 atomic_inc(&ps->num_sta_ps);
1257 set_sta_flag(sta, WLAN_STA_PS_STA);
1258 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1259 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1260 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1261 sta->sta.addr, sta->sta.aid);
1262
1263 ieee80211_clear_fast_xmit(sta);
1264
1265 if (!sta->sta.txq[0])
1266 return;
1267
1268 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1269 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1270
1271 if (txqi->tin.backlog_packets)
1272 set_bit(tid, &sta->txq_buffered_tids);
1273 else
1274 clear_bit(tid, &sta->txq_buffered_tids);
1275 }
1276 }
1277
1278 static void sta_ps_end(struct sta_info *sta)
1279 {
1280 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1281 sta->sta.addr, sta->sta.aid);
1282
1283 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1284 /*
1285 * Clear the flag only if the other one is still set
1286 * so that the TX path won't start TX'ing new frames
1287 * directly ... In the case that the driver flag isn't
1288 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1289 */
1290 clear_sta_flag(sta, WLAN_STA_PS_STA);
1291 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1292 sta->sta.addr, sta->sta.aid);
1293 return;
1294 }
1295
1296 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1297 clear_sta_flag(sta, WLAN_STA_PS_STA);
1298 ieee80211_sta_ps_deliver_wakeup(sta);
1299 }
1300
1301 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1302 {
1303 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1304 bool in_ps;
1305
1306 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1307
1308 /* Don't let the same PS state be set twice */
1309 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1310 if ((start && in_ps) || (!start && !in_ps))
1311 return -EINVAL;
1312
1313 if (start)
1314 sta_ps_start(sta);
1315 else
1316 sta_ps_end(sta);
1317
1318 return 0;
1319 }
1320 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1321
1322 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1323 {
1324 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1325
1326 if (test_sta_flag(sta, WLAN_STA_SP))
1327 return;
1328
1329 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1330 ieee80211_sta_ps_deliver_poll_response(sta);
1331 else
1332 set_sta_flag(sta, WLAN_STA_PSPOLL);
1333 }
1334 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1335
1336 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1337 {
1338 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1339 u8 ac = ieee802_1d_to_ac[tid & 7];
1340
1341 /*
1342 * If this AC is not trigger-enabled do nothing.
1343 *
1344 * NB: This could/should check a separate bitmap of trigger-
1345 * enabled queues, but for now we only implement uAPSD w/o
1346 * TSPEC changes to the ACs, so they're always the same.
1347 */
1348 if (!(sta->sta.uapsd_queues & BIT(ac)))
1349 return;
1350
1351 /* if we are in a service period, do nothing */
1352 if (test_sta_flag(sta, WLAN_STA_SP))
1353 return;
1354
1355 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1356 ieee80211_sta_ps_deliver_uapsd(sta);
1357 else
1358 set_sta_flag(sta, WLAN_STA_UAPSD);
1359 }
1360 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1361
1362 static ieee80211_rx_result debug_noinline
1363 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1364 {
1365 struct ieee80211_sub_if_data *sdata = rx->sdata;
1366 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1367 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1368
1369 if (!rx->sta)
1370 return RX_CONTINUE;
1371
1372 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1373 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1374 return RX_CONTINUE;
1375
1376 /*
1377 * The device handles station powersave, so don't do anything about
1378 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1379 * it to mac80211 since they're handled.)
1380 */
1381 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1382 return RX_CONTINUE;
1383
1384 /*
1385 * Don't do anything if the station isn't already asleep. In
1386 * the uAPSD case, the station will probably be marked asleep,
1387 * in the PS-Poll case the station must be confused ...
1388 */
1389 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1390 return RX_CONTINUE;
1391
1392 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1393 ieee80211_sta_pspoll(&rx->sta->sta);
1394
1395 /* Free PS Poll skb here instead of returning RX_DROP that would
1396 * count as an dropped frame. */
1397 dev_kfree_skb(rx->skb);
1398
1399 return RX_QUEUED;
1400 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1401 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1402 ieee80211_has_pm(hdr->frame_control) &&
1403 (ieee80211_is_data_qos(hdr->frame_control) ||
1404 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1405 u8 tid;
1406
1407 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1408
1409 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1410 }
1411
1412 return RX_CONTINUE;
1413 }
1414
1415 static ieee80211_rx_result debug_noinline
1416 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1417 {
1418 struct sta_info *sta = rx->sta;
1419 struct sk_buff *skb = rx->skb;
1420 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1421 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1422 int i;
1423
1424 if (!sta)
1425 return RX_CONTINUE;
1426
1427 /*
1428 * Update last_rx only for IBSS packets which are for the current
1429 * BSSID and for station already AUTHORIZED to avoid keeping the
1430 * current IBSS network alive in cases where other STAs start
1431 * using different BSSID. This will also give the station another
1432 * chance to restart the authentication/authorization in case
1433 * something went wrong the first time.
1434 */
1435 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1436 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1437 NL80211_IFTYPE_ADHOC);
1438 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1439 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1440 sta->rx_stats.last_rx = jiffies;
1441 if (ieee80211_is_data(hdr->frame_control) &&
1442 !is_multicast_ether_addr(hdr->addr1))
1443 sta->rx_stats.last_rate =
1444 sta_stats_encode_rate(status);
1445 }
1446 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1447 sta->rx_stats.last_rx = jiffies;
1448 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1449 /*
1450 * Mesh beacons will update last_rx when if they are found to
1451 * match the current local configuration when processed.
1452 */
1453 sta->rx_stats.last_rx = jiffies;
1454 if (ieee80211_is_data(hdr->frame_control))
1455 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1456 }
1457
1458 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1459 ieee80211_sta_rx_notify(rx->sdata, hdr);
1460
1461 sta->rx_stats.fragments++;
1462
1463 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1464 sta->rx_stats.bytes += rx->skb->len;
1465 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1466
1467 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1468 sta->rx_stats.last_signal = status->signal;
1469 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1470 }
1471
1472 if (status->chains) {
1473 sta->rx_stats.chains = status->chains;
1474 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1475 int signal = status->chain_signal[i];
1476
1477 if (!(status->chains & BIT(i)))
1478 continue;
1479
1480 sta->rx_stats.chain_signal_last[i] = signal;
1481 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1482 -signal);
1483 }
1484 }
1485
1486 /*
1487 * Change STA power saving mode only at the end of a frame
1488 * exchange sequence.
1489 */
1490 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1491 !ieee80211_has_morefrags(hdr->frame_control) &&
1492 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1493 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1494 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1495 /* PM bit is only checked in frames where it isn't reserved,
1496 * in AP mode it's reserved in non-bufferable management frames
1497 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1498 */
1499 (!ieee80211_is_mgmt(hdr->frame_control) ||
1500 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1501 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1502 if (!ieee80211_has_pm(hdr->frame_control))
1503 sta_ps_end(sta);
1504 } else {
1505 if (ieee80211_has_pm(hdr->frame_control))
1506 sta_ps_start(sta);
1507 }
1508 }
1509
1510 /* mesh power save support */
1511 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1512 ieee80211_mps_rx_h_sta_process(sta, hdr);
1513
1514 /*
1515 * Drop (qos-)data::nullfunc frames silently, since they
1516 * are used only to control station power saving mode.
1517 */
1518 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1519 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1520 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1521
1522 /*
1523 * If we receive a 4-addr nullfunc frame from a STA
1524 * that was not moved to a 4-addr STA vlan yet send
1525 * the event to userspace and for older hostapd drop
1526 * the frame to the monitor interface.
1527 */
1528 if (ieee80211_has_a4(hdr->frame_control) &&
1529 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1530 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1531 !rx->sdata->u.vlan.sta))) {
1532 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1533 cfg80211_rx_unexpected_4addr_frame(
1534 rx->sdata->dev, sta->sta.addr,
1535 GFP_ATOMIC);
1536 return RX_DROP_MONITOR;
1537 }
1538 /*
1539 * Update counter and free packet here to avoid
1540 * counting this as a dropped packed.
1541 */
1542 sta->rx_stats.packets++;
1543 dev_kfree_skb(rx->skb);
1544 return RX_QUEUED;
1545 }
1546
1547 return RX_CONTINUE;
1548 } /* ieee80211_rx_h_sta_process */
1549
1550 static ieee80211_rx_result debug_noinline
1551 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1552 {
1553 struct sk_buff *skb = rx->skb;
1554 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1555 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1556 int keyidx;
1557 int hdrlen;
1558 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1559 struct ieee80211_key *sta_ptk = NULL;
1560 int mmie_keyidx = -1;
1561 __le16 fc;
1562 const struct ieee80211_cipher_scheme *cs = NULL;
1563
1564 /*
1565 * Key selection 101
1566 *
1567 * There are four types of keys:
1568 * - GTK (group keys)
1569 * - IGTK (group keys for management frames)
1570 * - PTK (pairwise keys)
1571 * - STK (station-to-station pairwise keys)
1572 *
1573 * When selecting a key, we have to distinguish between multicast
1574 * (including broadcast) and unicast frames, the latter can only
1575 * use PTKs and STKs while the former always use GTKs and IGTKs.
1576 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1577 * unicast frames can also use key indices like GTKs. Hence, if we
1578 * don't have a PTK/STK we check the key index for a WEP key.
1579 *
1580 * Note that in a regular BSS, multicast frames are sent by the
1581 * AP only, associated stations unicast the frame to the AP first
1582 * which then multicasts it on their behalf.
1583 *
1584 * There is also a slight problem in IBSS mode: GTKs are negotiated
1585 * with each station, that is something we don't currently handle.
1586 * The spec seems to expect that one negotiates the same key with
1587 * every station but there's no such requirement; VLANs could be
1588 * possible.
1589 */
1590
1591 /* start without a key */
1592 rx->key = NULL;
1593 fc = hdr->frame_control;
1594
1595 if (rx->sta) {
1596 int keyid = rx->sta->ptk_idx;
1597
1598 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1599 cs = rx->sta->cipher_scheme;
1600 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1601 if (unlikely(keyid < 0))
1602 return RX_DROP_UNUSABLE;
1603 }
1604 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1605 }
1606
1607 if (!ieee80211_has_protected(fc))
1608 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1609
1610 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1611 rx->key = sta_ptk;
1612 if ((status->flag & RX_FLAG_DECRYPTED) &&
1613 (status->flag & RX_FLAG_IV_STRIPPED))
1614 return RX_CONTINUE;
1615 /* Skip decryption if the frame is not protected. */
1616 if (!ieee80211_has_protected(fc))
1617 return RX_CONTINUE;
1618 } else if (mmie_keyidx >= 0) {
1619 /* Broadcast/multicast robust management frame / BIP */
1620 if ((status->flag & RX_FLAG_DECRYPTED) &&
1621 (status->flag & RX_FLAG_IV_STRIPPED))
1622 return RX_CONTINUE;
1623
1624 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1625 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1626 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1627 if (rx->sta) {
1628 if (ieee80211_is_group_privacy_action(skb) &&
1629 test_sta_flag(rx->sta, WLAN_STA_MFP))
1630 return RX_DROP_MONITOR;
1631
1632 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1633 }
1634 if (!rx->key)
1635 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1636 } else if (!ieee80211_has_protected(fc)) {
1637 /*
1638 * The frame was not protected, so skip decryption. However, we
1639 * need to set rx->key if there is a key that could have been
1640 * used so that the frame may be dropped if encryption would
1641 * have been expected.
1642 */
1643 struct ieee80211_key *key = NULL;
1644 struct ieee80211_sub_if_data *sdata = rx->sdata;
1645 int i;
1646
1647 if (ieee80211_is_mgmt(fc) &&
1648 is_multicast_ether_addr(hdr->addr1) &&
1649 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1650 rx->key = key;
1651 else {
1652 if (rx->sta) {
1653 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1654 key = rcu_dereference(rx->sta->gtk[i]);
1655 if (key)
1656 break;
1657 }
1658 }
1659 if (!key) {
1660 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1661 key = rcu_dereference(sdata->keys[i]);
1662 if (key)
1663 break;
1664 }
1665 }
1666 if (key)
1667 rx->key = key;
1668 }
1669 return RX_CONTINUE;
1670 } else {
1671 u8 keyid;
1672
1673 /*
1674 * The device doesn't give us the IV so we won't be
1675 * able to look up the key. That's ok though, we
1676 * don't need to decrypt the frame, we just won't
1677 * be able to keep statistics accurate.
1678 * Except for key threshold notifications, should
1679 * we somehow allow the driver to tell us which key
1680 * the hardware used if this flag is set?
1681 */
1682 if ((status->flag & RX_FLAG_DECRYPTED) &&
1683 (status->flag & RX_FLAG_IV_STRIPPED))
1684 return RX_CONTINUE;
1685
1686 hdrlen = ieee80211_hdrlen(fc);
1687
1688 if (cs) {
1689 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1690
1691 if (unlikely(keyidx < 0))
1692 return RX_DROP_UNUSABLE;
1693 } else {
1694 if (rx->skb->len < 8 + hdrlen)
1695 return RX_DROP_UNUSABLE; /* TODO: count this? */
1696 /*
1697 * no need to call ieee80211_wep_get_keyidx,
1698 * it verifies a bunch of things we've done already
1699 */
1700 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1701 keyidx = keyid >> 6;
1702 }
1703
1704 /* check per-station GTK first, if multicast packet */
1705 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1706 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1707
1708 /* if not found, try default key */
1709 if (!rx->key) {
1710 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1711
1712 /*
1713 * RSNA-protected unicast frames should always be
1714 * sent with pairwise or station-to-station keys,
1715 * but for WEP we allow using a key index as well.
1716 */
1717 if (rx->key &&
1718 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1719 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1720 !is_multicast_ether_addr(hdr->addr1))
1721 rx->key = NULL;
1722 }
1723 }
1724
1725 if (rx->key) {
1726 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1727 return RX_DROP_MONITOR;
1728
1729 /* TODO: add threshold stuff again */
1730 } else {
1731 return RX_DROP_MONITOR;
1732 }
1733
1734 switch (rx->key->conf.cipher) {
1735 case WLAN_CIPHER_SUITE_WEP40:
1736 case WLAN_CIPHER_SUITE_WEP104:
1737 result = ieee80211_crypto_wep_decrypt(rx);
1738 break;
1739 case WLAN_CIPHER_SUITE_TKIP:
1740 result = ieee80211_crypto_tkip_decrypt(rx);
1741 break;
1742 case WLAN_CIPHER_SUITE_CCMP:
1743 result = ieee80211_crypto_ccmp_decrypt(
1744 rx, IEEE80211_CCMP_MIC_LEN);
1745 break;
1746 case WLAN_CIPHER_SUITE_CCMP_256:
1747 result = ieee80211_crypto_ccmp_decrypt(
1748 rx, IEEE80211_CCMP_256_MIC_LEN);
1749 break;
1750 case WLAN_CIPHER_SUITE_AES_CMAC:
1751 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1752 break;
1753 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1754 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1755 break;
1756 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1757 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1758 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1759 break;
1760 case WLAN_CIPHER_SUITE_GCMP:
1761 case WLAN_CIPHER_SUITE_GCMP_256:
1762 result = ieee80211_crypto_gcmp_decrypt(rx);
1763 break;
1764 default:
1765 result = ieee80211_crypto_hw_decrypt(rx);
1766 }
1767
1768 /* the hdr variable is invalid after the decrypt handlers */
1769
1770 /* either the frame has been decrypted or will be dropped */
1771 status->flag |= RX_FLAG_DECRYPTED;
1772
1773 return result;
1774 }
1775
1776 static inline struct ieee80211_fragment_entry *
1777 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1778 unsigned int frag, unsigned int seq, int rx_queue,
1779 struct sk_buff **skb)
1780 {
1781 struct ieee80211_fragment_entry *entry;
1782
1783 entry = &sdata->fragments[sdata->fragment_next++];
1784 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1785 sdata->fragment_next = 0;
1786
1787 if (!skb_queue_empty(&entry->skb_list))
1788 __skb_queue_purge(&entry->skb_list);
1789
1790 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1791 *skb = NULL;
1792 entry->first_frag_time = jiffies;
1793 entry->seq = seq;
1794 entry->rx_queue = rx_queue;
1795 entry->last_frag = frag;
1796 entry->check_sequential_pn = false;
1797 entry->extra_len = 0;
1798
1799 return entry;
1800 }
1801
1802 static inline struct ieee80211_fragment_entry *
1803 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1804 unsigned int frag, unsigned int seq,
1805 int rx_queue, struct ieee80211_hdr *hdr)
1806 {
1807 struct ieee80211_fragment_entry *entry;
1808 int i, idx;
1809
1810 idx = sdata->fragment_next;
1811 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1812 struct ieee80211_hdr *f_hdr;
1813
1814 idx--;
1815 if (idx < 0)
1816 idx = IEEE80211_FRAGMENT_MAX - 1;
1817
1818 entry = &sdata->fragments[idx];
1819 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1820 entry->rx_queue != rx_queue ||
1821 entry->last_frag + 1 != frag)
1822 continue;
1823
1824 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1825
1826 /*
1827 * Check ftype and addresses are equal, else check next fragment
1828 */
1829 if (((hdr->frame_control ^ f_hdr->frame_control) &
1830 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1831 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1832 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1833 continue;
1834
1835 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1836 __skb_queue_purge(&entry->skb_list);
1837 continue;
1838 }
1839 return entry;
1840 }
1841
1842 return NULL;
1843 }
1844
1845 static ieee80211_rx_result debug_noinline
1846 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1847 {
1848 struct ieee80211_hdr *hdr;
1849 u16 sc;
1850 __le16 fc;
1851 unsigned int frag, seq;
1852 struct ieee80211_fragment_entry *entry;
1853 struct sk_buff *skb;
1854 struct ieee80211_rx_status *status;
1855
1856 hdr = (struct ieee80211_hdr *)rx->skb->data;
1857 fc = hdr->frame_control;
1858
1859 if (ieee80211_is_ctl(fc))
1860 return RX_CONTINUE;
1861
1862 sc = le16_to_cpu(hdr->seq_ctrl);
1863 frag = sc & IEEE80211_SCTL_FRAG;
1864
1865 if (is_multicast_ether_addr(hdr->addr1)) {
1866 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1867 goto out_no_led;
1868 }
1869
1870 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1871 goto out;
1872
1873 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1874
1875 if (skb_linearize(rx->skb))
1876 return RX_DROP_UNUSABLE;
1877
1878 /*
1879 * skb_linearize() might change the skb->data and
1880 * previously cached variables (in this case, hdr) need to
1881 * be refreshed with the new data.
1882 */
1883 hdr = (struct ieee80211_hdr *)rx->skb->data;
1884 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1885
1886 if (frag == 0) {
1887 /* This is the first fragment of a new frame. */
1888 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1889 rx->seqno_idx, &(rx->skb));
1890 if (rx->key &&
1891 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1892 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1893 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1894 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1895 ieee80211_has_protected(fc)) {
1896 int queue = rx->security_idx;
1897
1898 /* Store CCMP/GCMP PN so that we can verify that the
1899 * next fragment has a sequential PN value.
1900 */
1901 entry->check_sequential_pn = true;
1902 memcpy(entry->last_pn,
1903 rx->key->u.ccmp.rx_pn[queue],
1904 IEEE80211_CCMP_PN_LEN);
1905 BUILD_BUG_ON(offsetof(struct ieee80211_key,
1906 u.ccmp.rx_pn) !=
1907 offsetof(struct ieee80211_key,
1908 u.gcmp.rx_pn));
1909 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1910 sizeof(rx->key->u.gcmp.rx_pn[queue]));
1911 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1912 IEEE80211_GCMP_PN_LEN);
1913 }
1914 return RX_QUEUED;
1915 }
1916
1917 /* This is a fragment for a frame that should already be pending in
1918 * fragment cache. Add this fragment to the end of the pending entry.
1919 */
1920 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1921 rx->seqno_idx, hdr);
1922 if (!entry) {
1923 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1924 return RX_DROP_MONITOR;
1925 }
1926
1927 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
1928 * MPDU PN values are not incrementing in steps of 1."
1929 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1930 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1931 */
1932 if (entry->check_sequential_pn) {
1933 int i;
1934 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1935 int queue;
1936
1937 if (!rx->key ||
1938 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1939 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1940 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1941 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1942 return RX_DROP_UNUSABLE;
1943 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1944 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1945 pn[i]++;
1946 if (pn[i])
1947 break;
1948 }
1949 queue = rx->security_idx;
1950 rpn = rx->key->u.ccmp.rx_pn[queue];
1951 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1952 return RX_DROP_UNUSABLE;
1953 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1954 }
1955
1956 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1957 __skb_queue_tail(&entry->skb_list, rx->skb);
1958 entry->last_frag = frag;
1959 entry->extra_len += rx->skb->len;
1960 if (ieee80211_has_morefrags(fc)) {
1961 rx->skb = NULL;
1962 return RX_QUEUED;
1963 }
1964
1965 rx->skb = __skb_dequeue(&entry->skb_list);
1966 if (skb_tailroom(rx->skb) < entry->extra_len) {
1967 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1968 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1969 GFP_ATOMIC))) {
1970 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1971 __skb_queue_purge(&entry->skb_list);
1972 return RX_DROP_UNUSABLE;
1973 }
1974 }
1975 while ((skb = __skb_dequeue(&entry->skb_list))) {
1976 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1977 dev_kfree_skb(skb);
1978 }
1979
1980 /* Complete frame has been reassembled - process it now */
1981 status = IEEE80211_SKB_RXCB(rx->skb);
1982
1983 out:
1984 ieee80211_led_rx(rx->local);
1985 out_no_led:
1986 if (rx->sta)
1987 rx->sta->rx_stats.packets++;
1988 return RX_CONTINUE;
1989 }
1990
1991 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1992 {
1993 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1994 return -EACCES;
1995
1996 return 0;
1997 }
1998
1999 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2000 {
2001 struct sk_buff *skb = rx->skb;
2002 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2003
2004 /*
2005 * Pass through unencrypted frames if the hardware has
2006 * decrypted them already.
2007 */
2008 if (status->flag & RX_FLAG_DECRYPTED)
2009 return 0;
2010
2011 /* Drop unencrypted frames if key is set. */
2012 if (unlikely(!ieee80211_has_protected(fc) &&
2013 !ieee80211_is_nullfunc(fc) &&
2014 ieee80211_is_data(fc) && rx->key))
2015 return -EACCES;
2016
2017 return 0;
2018 }
2019
2020 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2021 {
2022 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2023 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2024 __le16 fc = hdr->frame_control;
2025
2026 /*
2027 * Pass through unencrypted frames if the hardware has
2028 * decrypted them already.
2029 */
2030 if (status->flag & RX_FLAG_DECRYPTED)
2031 return 0;
2032
2033 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2034 if (unlikely(!ieee80211_has_protected(fc) &&
2035 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2036 rx->key)) {
2037 if (ieee80211_is_deauth(fc) ||
2038 ieee80211_is_disassoc(fc))
2039 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2040 rx->skb->data,
2041 rx->skb->len);
2042 return -EACCES;
2043 }
2044 /* BIP does not use Protected field, so need to check MMIE */
2045 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2046 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2047 if (ieee80211_is_deauth(fc) ||
2048 ieee80211_is_disassoc(fc))
2049 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2050 rx->skb->data,
2051 rx->skb->len);
2052 return -EACCES;
2053 }
2054 /*
2055 * When using MFP, Action frames are not allowed prior to
2056 * having configured keys.
2057 */
2058 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2059 ieee80211_is_robust_mgmt_frame(rx->skb)))
2060 return -EACCES;
2061 }
2062
2063 return 0;
2064 }
2065
2066 static int
2067 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2068 {
2069 struct ieee80211_sub_if_data *sdata = rx->sdata;
2070 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2071 bool check_port_control = false;
2072 struct ethhdr *ehdr;
2073 int ret;
2074
2075 *port_control = false;
2076 if (ieee80211_has_a4(hdr->frame_control) &&
2077 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2078 return -1;
2079
2080 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2081 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2082
2083 if (!sdata->u.mgd.use_4addr)
2084 return -1;
2085 else
2086 check_port_control = true;
2087 }
2088
2089 if (is_multicast_ether_addr(hdr->addr1) &&
2090 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2091 return -1;
2092
2093 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2094 if (ret < 0)
2095 return ret;
2096
2097 ehdr = (struct ethhdr *) rx->skb->data;
2098 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2099 *port_control = true;
2100 else if (check_port_control)
2101 return -1;
2102
2103 return 0;
2104 }
2105
2106 /*
2107 * requires that rx->skb is a frame with ethernet header
2108 */
2109 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2110 {
2111 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2112 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2113 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2114
2115 /*
2116 * Allow EAPOL frames to us/the PAE group address regardless
2117 * of whether the frame was encrypted or not.
2118 */
2119 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2120 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2121 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2122 return true;
2123
2124 if (ieee80211_802_1x_port_control(rx) ||
2125 ieee80211_drop_unencrypted(rx, fc))
2126 return false;
2127
2128 return true;
2129 }
2130
2131 /*
2132 * requires that rx->skb is a frame with ethernet header
2133 */
2134 static void
2135 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2136 {
2137 struct ieee80211_sub_if_data *sdata = rx->sdata;
2138 struct net_device *dev = sdata->dev;
2139 struct sk_buff *skb, *xmit_skb;
2140 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2141 struct sta_info *dsta;
2142
2143 skb = rx->skb;
2144 xmit_skb = NULL;
2145
2146 ieee80211_rx_stats(dev, skb->len);
2147
2148 if (rx->sta) {
2149 /* The seqno index has the same property as needed
2150 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2151 * for non-QoS-data frames. Here we know it's a data
2152 * frame, so count MSDUs.
2153 */
2154 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2155 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2156 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2157 }
2158
2159 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2160 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2161 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2162 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2163 if (is_multicast_ether_addr(ehdr->h_dest)) {
2164 /*
2165 * send multicast frames both to higher layers in
2166 * local net stack and back to the wireless medium
2167 */
2168 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2169 if (!xmit_skb)
2170 net_info_ratelimited("%s: failed to clone multicast frame\n",
2171 dev->name);
2172 } else {
2173 dsta = sta_info_get(sdata, skb->data);
2174 if (dsta) {
2175 /*
2176 * The destination station is associated to
2177 * this AP (in this VLAN), so send the frame
2178 * directly to it and do not pass it to local
2179 * net stack.
2180 */
2181 xmit_skb = skb;
2182 skb = NULL;
2183 }
2184 }
2185 }
2186
2187 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2188 if (skb) {
2189 /* 'align' will only take the values 0 or 2 here since all
2190 * frames are required to be aligned to 2-byte boundaries
2191 * when being passed to mac80211; the code here works just
2192 * as well if that isn't true, but mac80211 assumes it can
2193 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2194 */
2195 int align;
2196
2197 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2198 if (align) {
2199 if (WARN_ON(skb_headroom(skb) < 3)) {
2200 dev_kfree_skb(skb);
2201 skb = NULL;
2202 } else {
2203 u8 *data = skb->data;
2204 size_t len = skb_headlen(skb);
2205 skb->data -= align;
2206 memmove(skb->data, data, len);
2207 skb_set_tail_pointer(skb, len);
2208 }
2209 }
2210 }
2211 #endif
2212
2213 if (skb) {
2214 /* deliver to local stack */
2215 skb->protocol = eth_type_trans(skb, dev);
2216 memset(skb->cb, 0, sizeof(skb->cb));
2217 if (rx->napi)
2218 napi_gro_receive(rx->napi, skb);
2219 else
2220 netif_receive_skb(skb);
2221 }
2222
2223 if (xmit_skb) {
2224 /*
2225 * Send to wireless media and increase priority by 256 to
2226 * keep the received priority instead of reclassifying
2227 * the frame (see cfg80211_classify8021d).
2228 */
2229 xmit_skb->priority += 256;
2230 xmit_skb->protocol = htons(ETH_P_802_3);
2231 skb_reset_network_header(xmit_skb);
2232 skb_reset_mac_header(xmit_skb);
2233 dev_queue_xmit(xmit_skb);
2234 }
2235 }
2236
2237 static ieee80211_rx_result debug_noinline
2238 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2239 {
2240 struct net_device *dev = rx->sdata->dev;
2241 struct sk_buff *skb = rx->skb;
2242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2243 __le16 fc = hdr->frame_control;
2244 struct sk_buff_head frame_list;
2245 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2246
2247 if (unlikely(!ieee80211_is_data(fc)))
2248 return RX_CONTINUE;
2249
2250 if (unlikely(!ieee80211_is_data_present(fc)))
2251 return RX_DROP_MONITOR;
2252
2253 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2254 return RX_CONTINUE;
2255
2256 if (ieee80211_has_a4(hdr->frame_control) &&
2257 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2258 !rx->sdata->u.vlan.sta)
2259 return RX_DROP_UNUSABLE;
2260
2261 if (is_multicast_ether_addr(hdr->addr1) &&
2262 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2263 rx->sdata->u.vlan.sta) ||
2264 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2265 rx->sdata->u.mgd.use_4addr)))
2266 return RX_DROP_UNUSABLE;
2267
2268 skb->dev = dev;
2269 __skb_queue_head_init(&frame_list);
2270
2271 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2272 rx->sdata->vif.type,
2273 rx->local->hw.extra_tx_headroom, true);
2274
2275 while (!skb_queue_empty(&frame_list)) {
2276 rx->skb = __skb_dequeue(&frame_list);
2277
2278 if (!ieee80211_frame_allowed(rx, fc)) {
2279 dev_kfree_skb(rx->skb);
2280 continue;
2281 }
2282
2283 ieee80211_deliver_skb(rx);
2284 }
2285
2286 return RX_QUEUED;
2287 }
2288
2289 #ifdef CONFIG_MAC80211_MESH
2290 static ieee80211_rx_result
2291 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2292 {
2293 struct ieee80211_hdr *fwd_hdr, *hdr;
2294 struct ieee80211_tx_info *info;
2295 struct ieee80211s_hdr *mesh_hdr;
2296 struct sk_buff *skb = rx->skb, *fwd_skb;
2297 struct ieee80211_local *local = rx->local;
2298 struct ieee80211_sub_if_data *sdata = rx->sdata;
2299 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2300 u16 ac, q, hdrlen;
2301
2302 hdr = (struct ieee80211_hdr *) skb->data;
2303 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2304
2305 /* make sure fixed part of mesh header is there, also checks skb len */
2306 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2307 return RX_DROP_MONITOR;
2308
2309 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2310
2311 /* make sure full mesh header is there, also checks skb len */
2312 if (!pskb_may_pull(rx->skb,
2313 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2314 return RX_DROP_MONITOR;
2315
2316 /* reload pointers */
2317 hdr = (struct ieee80211_hdr *) skb->data;
2318 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2319
2320 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2321 return RX_DROP_MONITOR;
2322
2323 /* frame is in RMC, don't forward */
2324 if (ieee80211_is_data(hdr->frame_control) &&
2325 is_multicast_ether_addr(hdr->addr1) &&
2326 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2327 return RX_DROP_MONITOR;
2328
2329 if (!ieee80211_is_data(hdr->frame_control))
2330 return RX_CONTINUE;
2331
2332 if (!mesh_hdr->ttl)
2333 return RX_DROP_MONITOR;
2334
2335 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2336 struct mesh_path *mppath;
2337 char *proxied_addr;
2338 char *mpp_addr;
2339
2340 if (is_multicast_ether_addr(hdr->addr1)) {
2341 mpp_addr = hdr->addr3;
2342 proxied_addr = mesh_hdr->eaddr1;
2343 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2344 /* has_a4 already checked in ieee80211_rx_mesh_check */
2345 mpp_addr = hdr->addr4;
2346 proxied_addr = mesh_hdr->eaddr2;
2347 } else {
2348 return RX_DROP_MONITOR;
2349 }
2350
2351 rcu_read_lock();
2352 mppath = mpp_path_lookup(sdata, proxied_addr);
2353 if (!mppath) {
2354 mpp_path_add(sdata, proxied_addr, mpp_addr);
2355 } else {
2356 spin_lock_bh(&mppath->state_lock);
2357 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2358 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2359 mppath->exp_time = jiffies;
2360 spin_unlock_bh(&mppath->state_lock);
2361 }
2362 rcu_read_unlock();
2363 }
2364
2365 /* Frame has reached destination. Don't forward */
2366 if (!is_multicast_ether_addr(hdr->addr1) &&
2367 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2368 return RX_CONTINUE;
2369
2370 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2371 q = sdata->vif.hw_queue[ac];
2372 if (ieee80211_queue_stopped(&local->hw, q)) {
2373 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2374 return RX_DROP_MONITOR;
2375 }
2376 skb_set_queue_mapping(skb, q);
2377
2378 if (!--mesh_hdr->ttl) {
2379 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2380 goto out;
2381 }
2382
2383 if (!ifmsh->mshcfg.dot11MeshForwarding)
2384 goto out;
2385
2386 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2387 if (!fwd_skb) {
2388 net_info_ratelimited("%s: failed to clone mesh frame\n",
2389 sdata->name);
2390 goto out;
2391 }
2392
2393 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2394 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2395 info = IEEE80211_SKB_CB(fwd_skb);
2396 memset(info, 0, sizeof(*info));
2397 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2398 info->control.vif = &rx->sdata->vif;
2399 info->control.jiffies = jiffies;
2400 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2401 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2402 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2403 /* update power mode indication when forwarding */
2404 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2405 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2406 /* mesh power mode flags updated in mesh_nexthop_lookup */
2407 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2408 } else {
2409 /* unable to resolve next hop */
2410 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2411 fwd_hdr->addr3, 0,
2412 WLAN_REASON_MESH_PATH_NOFORWARD,
2413 fwd_hdr->addr2);
2414 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2415 kfree_skb(fwd_skb);
2416 return RX_DROP_MONITOR;
2417 }
2418
2419 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2420 ieee80211_add_pending_skb(local, fwd_skb);
2421 out:
2422 if (is_multicast_ether_addr(hdr->addr1))
2423 return RX_CONTINUE;
2424 return RX_DROP_MONITOR;
2425 }
2426 #endif
2427
2428 static ieee80211_rx_result debug_noinline
2429 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2430 {
2431 struct ieee80211_sub_if_data *sdata = rx->sdata;
2432 struct ieee80211_local *local = rx->local;
2433 struct net_device *dev = sdata->dev;
2434 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2435 __le16 fc = hdr->frame_control;
2436 bool port_control;
2437 int err;
2438
2439 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2440 return RX_CONTINUE;
2441
2442 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2443 return RX_DROP_MONITOR;
2444
2445 /*
2446 * Send unexpected-4addr-frame event to hostapd. For older versions,
2447 * also drop the frame to cooked monitor interfaces.
2448 */
2449 if (ieee80211_has_a4(hdr->frame_control) &&
2450 sdata->vif.type == NL80211_IFTYPE_AP) {
2451 if (rx->sta &&
2452 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2453 cfg80211_rx_unexpected_4addr_frame(
2454 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2455 return RX_DROP_MONITOR;
2456 }
2457
2458 err = __ieee80211_data_to_8023(rx, &port_control);
2459 if (unlikely(err))
2460 return RX_DROP_UNUSABLE;
2461
2462 if (!ieee80211_frame_allowed(rx, fc))
2463 return RX_DROP_MONITOR;
2464
2465 /* directly handle TDLS channel switch requests/responses */
2466 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2467 cpu_to_be16(ETH_P_TDLS))) {
2468 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2469
2470 if (pskb_may_pull(rx->skb,
2471 offsetof(struct ieee80211_tdls_data, u)) &&
2472 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2473 tf->category == WLAN_CATEGORY_TDLS &&
2474 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2475 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2476 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2477 schedule_work(&local->tdls_chsw_work);
2478 if (rx->sta)
2479 rx->sta->rx_stats.packets++;
2480
2481 return RX_QUEUED;
2482 }
2483 }
2484
2485 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2486 unlikely(port_control) && sdata->bss) {
2487 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2488 u.ap);
2489 dev = sdata->dev;
2490 rx->sdata = sdata;
2491 }
2492
2493 rx->skb->dev = dev;
2494
2495 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2496 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2497 !is_multicast_ether_addr(
2498 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2499 (!local->scanning &&
2500 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2501 mod_timer(&local->dynamic_ps_timer, jiffies +
2502 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2503
2504 ieee80211_deliver_skb(rx);
2505
2506 return RX_QUEUED;
2507 }
2508
2509 static ieee80211_rx_result debug_noinline
2510 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2511 {
2512 struct sk_buff *skb = rx->skb;
2513 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2514 struct tid_ampdu_rx *tid_agg_rx;
2515 u16 start_seq_num;
2516 u16 tid;
2517
2518 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2519 return RX_CONTINUE;
2520
2521 if (ieee80211_is_back_req(bar->frame_control)) {
2522 struct {
2523 __le16 control, start_seq_num;
2524 } __packed bar_data;
2525 struct ieee80211_event event = {
2526 .type = BAR_RX_EVENT,
2527 };
2528
2529 if (!rx->sta)
2530 return RX_DROP_MONITOR;
2531
2532 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2533 &bar_data, sizeof(bar_data)))
2534 return RX_DROP_MONITOR;
2535
2536 tid = le16_to_cpu(bar_data.control) >> 12;
2537
2538 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2539 if (!tid_agg_rx)
2540 return RX_DROP_MONITOR;
2541
2542 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2543 event.u.ba.tid = tid;
2544 event.u.ba.ssn = start_seq_num;
2545 event.u.ba.sta = &rx->sta->sta;
2546
2547 /* reset session timer */
2548 if (tid_agg_rx->timeout)
2549 mod_timer(&tid_agg_rx->session_timer,
2550 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2551
2552 spin_lock(&tid_agg_rx->reorder_lock);
2553 /* release stored frames up to start of BAR */
2554 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2555 start_seq_num, frames);
2556 spin_unlock(&tid_agg_rx->reorder_lock);
2557
2558 drv_event_callback(rx->local, rx->sdata, &event);
2559
2560 kfree_skb(skb);
2561 return RX_QUEUED;
2562 }
2563
2564 /*
2565 * After this point, we only want management frames,
2566 * so we can drop all remaining control frames to
2567 * cooked monitor interfaces.
2568 */
2569 return RX_DROP_MONITOR;
2570 }
2571
2572 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2573 struct ieee80211_mgmt *mgmt,
2574 size_t len)
2575 {
2576 struct ieee80211_local *local = sdata->local;
2577 struct sk_buff *skb;
2578 struct ieee80211_mgmt *resp;
2579
2580 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2581 /* Not to own unicast address */
2582 return;
2583 }
2584
2585 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2586 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2587 /* Not from the current AP or not associated yet. */
2588 return;
2589 }
2590
2591 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2592 /* Too short SA Query request frame */
2593 return;
2594 }
2595
2596 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2597 if (skb == NULL)
2598 return;
2599
2600 skb_reserve(skb, local->hw.extra_tx_headroom);
2601 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2602 memset(resp, 0, 24);
2603 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2604 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2605 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2606 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2607 IEEE80211_STYPE_ACTION);
2608 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2609 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2610 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2611 memcpy(resp->u.action.u.sa_query.trans_id,
2612 mgmt->u.action.u.sa_query.trans_id,
2613 WLAN_SA_QUERY_TR_ID_LEN);
2614
2615 ieee80211_tx_skb(sdata, skb);
2616 }
2617
2618 static ieee80211_rx_result debug_noinline
2619 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2620 {
2621 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2622 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2623
2624 /*
2625 * From here on, look only at management frames.
2626 * Data and control frames are already handled,
2627 * and unknown (reserved) frames are useless.
2628 */
2629 if (rx->skb->len < 24)
2630 return RX_DROP_MONITOR;
2631
2632 if (!ieee80211_is_mgmt(mgmt->frame_control))
2633 return RX_DROP_MONITOR;
2634
2635 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2636 ieee80211_is_beacon(mgmt->frame_control) &&
2637 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2638 int sig = 0;
2639
2640 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2641 sig = status->signal;
2642
2643 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2644 rx->skb->data, rx->skb->len,
2645 status->freq, sig);
2646 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2647 }
2648
2649 if (ieee80211_drop_unencrypted_mgmt(rx))
2650 return RX_DROP_UNUSABLE;
2651
2652 return RX_CONTINUE;
2653 }
2654
2655 static ieee80211_rx_result debug_noinline
2656 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2657 {
2658 struct ieee80211_local *local = rx->local;
2659 struct ieee80211_sub_if_data *sdata = rx->sdata;
2660 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2661 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2662 int len = rx->skb->len;
2663
2664 if (!ieee80211_is_action(mgmt->frame_control))
2665 return RX_CONTINUE;
2666
2667 /* drop too small frames */
2668 if (len < IEEE80211_MIN_ACTION_SIZE)
2669 return RX_DROP_UNUSABLE;
2670
2671 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2672 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2673 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2674 return RX_DROP_UNUSABLE;
2675
2676 switch (mgmt->u.action.category) {
2677 case WLAN_CATEGORY_HT:
2678 /* reject HT action frames from stations not supporting HT */
2679 if (!rx->sta->sta.ht_cap.ht_supported)
2680 goto invalid;
2681
2682 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2683 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2684 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2685 sdata->vif.type != NL80211_IFTYPE_AP &&
2686 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2687 break;
2688
2689 /* verify action & smps_control/chanwidth are present */
2690 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2691 goto invalid;
2692
2693 switch (mgmt->u.action.u.ht_smps.action) {
2694 case WLAN_HT_ACTION_SMPS: {
2695 struct ieee80211_supported_band *sband;
2696 enum ieee80211_smps_mode smps_mode;
2697
2698 /* convert to HT capability */
2699 switch (mgmt->u.action.u.ht_smps.smps_control) {
2700 case WLAN_HT_SMPS_CONTROL_DISABLED:
2701 smps_mode = IEEE80211_SMPS_OFF;
2702 break;
2703 case WLAN_HT_SMPS_CONTROL_STATIC:
2704 smps_mode = IEEE80211_SMPS_STATIC;
2705 break;
2706 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2707 smps_mode = IEEE80211_SMPS_DYNAMIC;
2708 break;
2709 default:
2710 goto invalid;
2711 }
2712
2713 /* if no change do nothing */
2714 if (rx->sta->sta.smps_mode == smps_mode)
2715 goto handled;
2716 rx->sta->sta.smps_mode = smps_mode;
2717
2718 sband = rx->local->hw.wiphy->bands[status->band];
2719
2720 rate_control_rate_update(local, sband, rx->sta,
2721 IEEE80211_RC_SMPS_CHANGED);
2722 goto handled;
2723 }
2724 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2725 struct ieee80211_supported_band *sband;
2726 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2727 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2728
2729 /* If it doesn't support 40 MHz it can't change ... */
2730 if (!(rx->sta->sta.ht_cap.cap &
2731 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2732 goto handled;
2733
2734 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2735 max_bw = IEEE80211_STA_RX_BW_20;
2736 else
2737 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2738
2739 /* set cur_max_bandwidth and recalc sta bw */
2740 rx->sta->cur_max_bandwidth = max_bw;
2741 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2742
2743 if (rx->sta->sta.bandwidth == new_bw)
2744 goto handled;
2745
2746 rx->sta->sta.bandwidth = new_bw;
2747 sband = rx->local->hw.wiphy->bands[status->band];
2748
2749 rate_control_rate_update(local, sband, rx->sta,
2750 IEEE80211_RC_BW_CHANGED);
2751 goto handled;
2752 }
2753 default:
2754 goto invalid;
2755 }
2756
2757 break;
2758 case WLAN_CATEGORY_PUBLIC:
2759 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2760 goto invalid;
2761 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2762 break;
2763 if (!rx->sta)
2764 break;
2765 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2766 break;
2767 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2768 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2769 break;
2770 if (len < offsetof(struct ieee80211_mgmt,
2771 u.action.u.ext_chan_switch.variable))
2772 goto invalid;
2773 goto queue;
2774 case WLAN_CATEGORY_VHT:
2775 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2776 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2777 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2778 sdata->vif.type != NL80211_IFTYPE_AP &&
2779 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2780 break;
2781
2782 /* verify action code is present */
2783 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2784 goto invalid;
2785
2786 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2787 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2788 u8 opmode;
2789
2790 /* verify opmode is present */
2791 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2792 goto invalid;
2793
2794 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2795
2796 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2797 opmode, status->band);
2798 goto handled;
2799 }
2800 case WLAN_VHT_ACTION_GROUPID_MGMT: {
2801 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2802 goto invalid;
2803 goto queue;
2804 }
2805 default:
2806 break;
2807 }
2808 break;
2809 case WLAN_CATEGORY_BACK:
2810 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2811 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2812 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2813 sdata->vif.type != NL80211_IFTYPE_AP &&
2814 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2815 break;
2816
2817 /* verify action_code is present */
2818 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2819 break;
2820
2821 switch (mgmt->u.action.u.addba_req.action_code) {
2822 case WLAN_ACTION_ADDBA_REQ:
2823 if (len < (IEEE80211_MIN_ACTION_SIZE +
2824 sizeof(mgmt->u.action.u.addba_req)))
2825 goto invalid;
2826 break;
2827 case WLAN_ACTION_ADDBA_RESP:
2828 if (len < (IEEE80211_MIN_ACTION_SIZE +
2829 sizeof(mgmt->u.action.u.addba_resp)))
2830 goto invalid;
2831 break;
2832 case WLAN_ACTION_DELBA:
2833 if (len < (IEEE80211_MIN_ACTION_SIZE +
2834 sizeof(mgmt->u.action.u.delba)))
2835 goto invalid;
2836 break;
2837 default:
2838 goto invalid;
2839 }
2840
2841 goto queue;
2842 case WLAN_CATEGORY_SPECTRUM_MGMT:
2843 /* verify action_code is present */
2844 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2845 break;
2846
2847 switch (mgmt->u.action.u.measurement.action_code) {
2848 case WLAN_ACTION_SPCT_MSR_REQ:
2849 if (status->band != NL80211_BAND_5GHZ)
2850 break;
2851
2852 if (len < (IEEE80211_MIN_ACTION_SIZE +
2853 sizeof(mgmt->u.action.u.measurement)))
2854 break;
2855
2856 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2857 break;
2858
2859 ieee80211_process_measurement_req(sdata, mgmt, len);
2860 goto handled;
2861 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2862 u8 *bssid;
2863 if (len < (IEEE80211_MIN_ACTION_SIZE +
2864 sizeof(mgmt->u.action.u.chan_switch)))
2865 break;
2866
2867 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2868 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2869 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2870 break;
2871
2872 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2873 bssid = sdata->u.mgd.bssid;
2874 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2875 bssid = sdata->u.ibss.bssid;
2876 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2877 bssid = mgmt->sa;
2878 else
2879 break;
2880
2881 if (!ether_addr_equal(mgmt->bssid, bssid))
2882 break;
2883
2884 goto queue;
2885 }
2886 }
2887 break;
2888 case WLAN_CATEGORY_SA_QUERY:
2889 if (len < (IEEE80211_MIN_ACTION_SIZE +
2890 sizeof(mgmt->u.action.u.sa_query)))
2891 break;
2892
2893 switch (mgmt->u.action.u.sa_query.action) {
2894 case WLAN_ACTION_SA_QUERY_REQUEST:
2895 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2896 break;
2897 ieee80211_process_sa_query_req(sdata, mgmt, len);
2898 goto handled;
2899 }
2900 break;
2901 case WLAN_CATEGORY_SELF_PROTECTED:
2902 if (len < (IEEE80211_MIN_ACTION_SIZE +
2903 sizeof(mgmt->u.action.u.self_prot.action_code)))
2904 break;
2905
2906 switch (mgmt->u.action.u.self_prot.action_code) {
2907 case WLAN_SP_MESH_PEERING_OPEN:
2908 case WLAN_SP_MESH_PEERING_CLOSE:
2909 case WLAN_SP_MESH_PEERING_CONFIRM:
2910 if (!ieee80211_vif_is_mesh(&sdata->vif))
2911 goto invalid;
2912 if (sdata->u.mesh.user_mpm)
2913 /* userspace handles this frame */
2914 break;
2915 goto queue;
2916 case WLAN_SP_MGK_INFORM:
2917 case WLAN_SP_MGK_ACK:
2918 if (!ieee80211_vif_is_mesh(&sdata->vif))
2919 goto invalid;
2920 break;
2921 }
2922 break;
2923 case WLAN_CATEGORY_MESH_ACTION:
2924 if (len < (IEEE80211_MIN_ACTION_SIZE +
2925 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2926 break;
2927
2928 if (!ieee80211_vif_is_mesh(&sdata->vif))
2929 break;
2930 if (mesh_action_is_path_sel(mgmt) &&
2931 !mesh_path_sel_is_hwmp(sdata))
2932 break;
2933 goto queue;
2934 }
2935
2936 return RX_CONTINUE;
2937
2938 invalid:
2939 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2940 /* will return in the next handlers */
2941 return RX_CONTINUE;
2942
2943 handled:
2944 if (rx->sta)
2945 rx->sta->rx_stats.packets++;
2946 dev_kfree_skb(rx->skb);
2947 return RX_QUEUED;
2948
2949 queue:
2950 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2951 skb_queue_tail(&sdata->skb_queue, rx->skb);
2952 ieee80211_queue_work(&local->hw, &sdata->work);
2953 if (rx->sta)
2954 rx->sta->rx_stats.packets++;
2955 return RX_QUEUED;
2956 }
2957
2958 static ieee80211_rx_result debug_noinline
2959 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2960 {
2961 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2962 int sig = 0;
2963
2964 /* skip known-bad action frames and return them in the next handler */
2965 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2966 return RX_CONTINUE;
2967
2968 /*
2969 * Getting here means the kernel doesn't know how to handle
2970 * it, but maybe userspace does ... include returned frames
2971 * so userspace can register for those to know whether ones
2972 * it transmitted were processed or returned.
2973 */
2974
2975 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2976 sig = status->signal;
2977
2978 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2979 rx->skb->data, rx->skb->len, 0)) {
2980 if (rx->sta)
2981 rx->sta->rx_stats.packets++;
2982 dev_kfree_skb(rx->skb);
2983 return RX_QUEUED;
2984 }
2985
2986 return RX_CONTINUE;
2987 }
2988
2989 static ieee80211_rx_result debug_noinline
2990 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2991 {
2992 struct ieee80211_local *local = rx->local;
2993 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2994 struct sk_buff *nskb;
2995 struct ieee80211_sub_if_data *sdata = rx->sdata;
2996 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2997
2998 if (!ieee80211_is_action(mgmt->frame_control))
2999 return RX_CONTINUE;
3000
3001 /*
3002 * For AP mode, hostapd is responsible for handling any action
3003 * frames that we didn't handle, including returning unknown
3004 * ones. For all other modes we will return them to the sender,
3005 * setting the 0x80 bit in the action category, as required by
3006 * 802.11-2012 9.24.4.
3007 * Newer versions of hostapd shall also use the management frame
3008 * registration mechanisms, but older ones still use cooked
3009 * monitor interfaces so push all frames there.
3010 */
3011 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3012 (sdata->vif.type == NL80211_IFTYPE_AP ||
3013 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3014 return RX_DROP_MONITOR;
3015
3016 if (is_multicast_ether_addr(mgmt->da))
3017 return RX_DROP_MONITOR;
3018
3019 /* do not return rejected action frames */
3020 if (mgmt->u.action.category & 0x80)
3021 return RX_DROP_UNUSABLE;
3022
3023 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3024 GFP_ATOMIC);
3025 if (nskb) {
3026 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3027
3028 nmgmt->u.action.category |= 0x80;
3029 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3030 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3031
3032 memset(nskb->cb, 0, sizeof(nskb->cb));
3033
3034 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3035 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3036
3037 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3038 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3039 IEEE80211_TX_CTL_NO_CCK_RATE;
3040 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3041 info->hw_queue =
3042 local->hw.offchannel_tx_hw_queue;
3043 }
3044
3045 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3046 status->band);
3047 }
3048 dev_kfree_skb(rx->skb);
3049 return RX_QUEUED;
3050 }
3051
3052 static ieee80211_rx_result debug_noinline
3053 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3054 {
3055 struct ieee80211_sub_if_data *sdata = rx->sdata;
3056 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3057 __le16 stype;
3058
3059 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3060
3061 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3062 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3063 sdata->vif.type != NL80211_IFTYPE_OCB &&
3064 sdata->vif.type != NL80211_IFTYPE_STATION)
3065 return RX_DROP_MONITOR;
3066
3067 switch (stype) {
3068 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3069 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3070 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3071 /* process for all: mesh, mlme, ibss */
3072 break;
3073 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3074 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3075 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3076 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3077 if (is_multicast_ether_addr(mgmt->da) &&
3078 !is_broadcast_ether_addr(mgmt->da))
3079 return RX_DROP_MONITOR;
3080
3081 /* process only for station */
3082 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3083 return RX_DROP_MONITOR;
3084 break;
3085 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3086 /* process only for ibss and mesh */
3087 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3088 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3089 return RX_DROP_MONITOR;
3090 break;
3091 default:
3092 return RX_DROP_MONITOR;
3093 }
3094
3095 /* queue up frame and kick off work to process it */
3096 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3097 skb_queue_tail(&sdata->skb_queue, rx->skb);
3098 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3099 if (rx->sta)
3100 rx->sta->rx_stats.packets++;
3101
3102 return RX_QUEUED;
3103 }
3104
3105 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3106 struct ieee80211_rate *rate)
3107 {
3108 struct ieee80211_sub_if_data *sdata;
3109 struct ieee80211_local *local = rx->local;
3110 struct sk_buff *skb = rx->skb, *skb2;
3111 struct net_device *prev_dev = NULL;
3112 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3113 int needed_headroom;
3114
3115 /*
3116 * If cooked monitor has been processed already, then
3117 * don't do it again. If not, set the flag.
3118 */
3119 if (rx->flags & IEEE80211_RX_CMNTR)
3120 goto out_free_skb;
3121 rx->flags |= IEEE80211_RX_CMNTR;
3122
3123 /* If there are no cooked monitor interfaces, just free the SKB */
3124 if (!local->cooked_mntrs)
3125 goto out_free_skb;
3126
3127 /* vendor data is long removed here */
3128 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3129 /* room for the radiotap header based on driver features */
3130 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3131
3132 if (skb_headroom(skb) < needed_headroom &&
3133 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3134 goto out_free_skb;
3135
3136 /* prepend radiotap information */
3137 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3138 false);
3139
3140 skb_reset_mac_header(skb);
3141 skb->ip_summed = CHECKSUM_UNNECESSARY;
3142 skb->pkt_type = PACKET_OTHERHOST;
3143 skb->protocol = htons(ETH_P_802_2);
3144
3145 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3146 if (!ieee80211_sdata_running(sdata))
3147 continue;
3148
3149 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3150 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3151 continue;
3152
3153 if (prev_dev) {
3154 skb2 = skb_clone(skb, GFP_ATOMIC);
3155 if (skb2) {
3156 skb2->dev = prev_dev;
3157 netif_receive_skb(skb2);
3158 }
3159 }
3160
3161 prev_dev = sdata->dev;
3162 ieee80211_rx_stats(sdata->dev, skb->len);
3163 }
3164
3165 if (prev_dev) {
3166 skb->dev = prev_dev;
3167 netif_receive_skb(skb);
3168 return;
3169 }
3170
3171 out_free_skb:
3172 dev_kfree_skb(skb);
3173 }
3174
3175 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3176 ieee80211_rx_result res)
3177 {
3178 switch (res) {
3179 case RX_DROP_MONITOR:
3180 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3181 if (rx->sta)
3182 rx->sta->rx_stats.dropped++;
3183 /* fall through */
3184 case RX_CONTINUE: {
3185 struct ieee80211_rate *rate = NULL;
3186 struct ieee80211_supported_band *sband;
3187 struct ieee80211_rx_status *status;
3188
3189 status = IEEE80211_SKB_RXCB((rx->skb));
3190
3191 sband = rx->local->hw.wiphy->bands[status->band];
3192 if (!(status->flag & RX_FLAG_HT) &&
3193 !(status->flag & RX_FLAG_VHT))
3194 rate = &sband->bitrates[status->rate_idx];
3195
3196 ieee80211_rx_cooked_monitor(rx, rate);
3197 break;
3198 }
3199 case RX_DROP_UNUSABLE:
3200 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3201 if (rx->sta)
3202 rx->sta->rx_stats.dropped++;
3203 dev_kfree_skb(rx->skb);
3204 break;
3205 case RX_QUEUED:
3206 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3207 break;
3208 }
3209 }
3210
3211 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3212 struct sk_buff_head *frames)
3213 {
3214 ieee80211_rx_result res = RX_DROP_MONITOR;
3215 struct sk_buff *skb;
3216
3217 #define CALL_RXH(rxh) \
3218 do { \
3219 res = rxh(rx); \
3220 if (res != RX_CONTINUE) \
3221 goto rxh_next; \
3222 } while (0)
3223
3224 /* Lock here to avoid hitting all of the data used in the RX
3225 * path (e.g. key data, station data, ...) concurrently when
3226 * a frame is released from the reorder buffer due to timeout
3227 * from the timer, potentially concurrently with RX from the
3228 * driver.
3229 */
3230 spin_lock_bh(&rx->local->rx_path_lock);
3231
3232 while ((skb = __skb_dequeue(frames))) {
3233 /*
3234 * all the other fields are valid across frames
3235 * that belong to an aMPDU since they are on the
3236 * same TID from the same station
3237 */
3238 rx->skb = skb;
3239
3240 CALL_RXH(ieee80211_rx_h_check_more_data);
3241 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3242 CALL_RXH(ieee80211_rx_h_sta_process);
3243 CALL_RXH(ieee80211_rx_h_decrypt);
3244 CALL_RXH(ieee80211_rx_h_defragment);
3245 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3246 /* must be after MMIC verify so header is counted in MPDU mic */
3247 #ifdef CONFIG_MAC80211_MESH
3248 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3249 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3250 #endif
3251 CALL_RXH(ieee80211_rx_h_amsdu);
3252 CALL_RXH(ieee80211_rx_h_data);
3253
3254 /* special treatment -- needs the queue */
3255 res = ieee80211_rx_h_ctrl(rx, frames);
3256 if (res != RX_CONTINUE)
3257 goto rxh_next;
3258
3259 CALL_RXH(ieee80211_rx_h_mgmt_check);
3260 CALL_RXH(ieee80211_rx_h_action);
3261 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3262 CALL_RXH(ieee80211_rx_h_action_return);
3263 CALL_RXH(ieee80211_rx_h_mgmt);
3264
3265 rxh_next:
3266 ieee80211_rx_handlers_result(rx, res);
3267
3268 #undef CALL_RXH
3269 }
3270
3271 spin_unlock_bh(&rx->local->rx_path_lock);
3272 }
3273
3274 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3275 {
3276 struct sk_buff_head reorder_release;
3277 ieee80211_rx_result res = RX_DROP_MONITOR;
3278
3279 __skb_queue_head_init(&reorder_release);
3280
3281 #define CALL_RXH(rxh) \
3282 do { \
3283 res = rxh(rx); \
3284 if (res != RX_CONTINUE) \
3285 goto rxh_next; \
3286 } while (0)
3287
3288 CALL_RXH(ieee80211_rx_h_check_dup);
3289 CALL_RXH(ieee80211_rx_h_check);
3290
3291 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3292
3293 ieee80211_rx_handlers(rx, &reorder_release);
3294 return;
3295
3296 rxh_next:
3297 ieee80211_rx_handlers_result(rx, res);
3298
3299 #undef CALL_RXH
3300 }
3301
3302 /*
3303 * This function makes calls into the RX path, therefore
3304 * it has to be invoked under RCU read lock.
3305 */
3306 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3307 {
3308 struct sk_buff_head frames;
3309 struct ieee80211_rx_data rx = {
3310 .sta = sta,
3311 .sdata = sta->sdata,
3312 .local = sta->local,
3313 /* This is OK -- must be QoS data frame */
3314 .security_idx = tid,
3315 .seqno_idx = tid,
3316 .napi = NULL, /* must be NULL to not have races */
3317 };
3318 struct tid_ampdu_rx *tid_agg_rx;
3319
3320 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3321 if (!tid_agg_rx)
3322 return;
3323
3324 __skb_queue_head_init(&frames);
3325
3326 spin_lock(&tid_agg_rx->reorder_lock);
3327 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3328 spin_unlock(&tid_agg_rx->reorder_lock);
3329
3330 if (!skb_queue_empty(&frames)) {
3331 struct ieee80211_event event = {
3332 .type = BA_FRAME_TIMEOUT,
3333 .u.ba.tid = tid,
3334 .u.ba.sta = &sta->sta,
3335 };
3336 drv_event_callback(rx.local, rx.sdata, &event);
3337 }
3338
3339 ieee80211_rx_handlers(&rx, &frames);
3340 }
3341
3342 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3343 u16 ssn, u64 filtered,
3344 u16 received_mpdus)
3345 {
3346 struct sta_info *sta;
3347 struct tid_ampdu_rx *tid_agg_rx;
3348 struct sk_buff_head frames;
3349 struct ieee80211_rx_data rx = {
3350 /* This is OK -- must be QoS data frame */
3351 .security_idx = tid,
3352 .seqno_idx = tid,
3353 };
3354 int i, diff;
3355
3356 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3357 return;
3358
3359 __skb_queue_head_init(&frames);
3360
3361 sta = container_of(pubsta, struct sta_info, sta);
3362
3363 rx.sta = sta;
3364 rx.sdata = sta->sdata;
3365 rx.local = sta->local;
3366
3367 rcu_read_lock();
3368 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3369 if (!tid_agg_rx)
3370 goto out;
3371
3372 spin_lock_bh(&tid_agg_rx->reorder_lock);
3373
3374 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3375 int release;
3376
3377 /* release all frames in the reorder buffer */
3378 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3379 IEEE80211_SN_MODULO;
3380 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3381 release, &frames);
3382 /* update ssn to match received ssn */
3383 tid_agg_rx->head_seq_num = ssn;
3384 } else {
3385 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3386 &frames);
3387 }
3388
3389 /* handle the case that received ssn is behind the mac ssn.
3390 * it can be tid_agg_rx->buf_size behind and still be valid */
3391 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3392 if (diff >= tid_agg_rx->buf_size) {
3393 tid_agg_rx->reorder_buf_filtered = 0;
3394 goto release;
3395 }
3396 filtered = filtered >> diff;
3397 ssn += diff;
3398
3399 /* update bitmap */
3400 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3401 int index = (ssn + i) % tid_agg_rx->buf_size;
3402
3403 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3404 if (filtered & BIT_ULL(i))
3405 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3406 }
3407
3408 /* now process also frames that the filter marking released */
3409 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3410
3411 release:
3412 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3413
3414 ieee80211_rx_handlers(&rx, &frames);
3415
3416 out:
3417 rcu_read_unlock();
3418 }
3419 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3420
3421 /* main receive path */
3422
3423 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3424 {
3425 struct ieee80211_sub_if_data *sdata = rx->sdata;
3426 struct sk_buff *skb = rx->skb;
3427 struct ieee80211_hdr *hdr = (void *)skb->data;
3428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3429 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3430 int multicast = is_multicast_ether_addr(hdr->addr1);
3431
3432 switch (sdata->vif.type) {
3433 case NL80211_IFTYPE_STATION:
3434 if (!bssid && !sdata->u.mgd.use_4addr)
3435 return false;
3436 if (multicast)
3437 return true;
3438 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3439 case NL80211_IFTYPE_ADHOC:
3440 if (!bssid)
3441 return false;
3442 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3443 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3444 return false;
3445 if (ieee80211_is_beacon(hdr->frame_control))
3446 return true;
3447 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3448 return false;
3449 if (!multicast &&
3450 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3451 return false;
3452 if (!rx->sta) {
3453 int rate_idx;
3454 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3455 rate_idx = 0; /* TODO: HT/VHT rates */
3456 else
3457 rate_idx = status->rate_idx;
3458 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3459 BIT(rate_idx));
3460 }
3461 return true;
3462 case NL80211_IFTYPE_OCB:
3463 if (!bssid)
3464 return false;
3465 if (!ieee80211_is_data_present(hdr->frame_control))
3466 return false;
3467 if (!is_broadcast_ether_addr(bssid))
3468 return false;
3469 if (!multicast &&
3470 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3471 return false;
3472 if (!rx->sta) {
3473 int rate_idx;
3474 if (status->flag & RX_FLAG_HT)
3475 rate_idx = 0; /* TODO: HT rates */
3476 else
3477 rate_idx = status->rate_idx;
3478 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3479 BIT(rate_idx));
3480 }
3481 return true;
3482 case NL80211_IFTYPE_MESH_POINT:
3483 if (multicast)
3484 return true;
3485 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3486 case NL80211_IFTYPE_AP_VLAN:
3487 case NL80211_IFTYPE_AP:
3488 if (!bssid)
3489 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3490
3491 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3492 /*
3493 * Accept public action frames even when the
3494 * BSSID doesn't match, this is used for P2P
3495 * and location updates. Note that mac80211
3496 * itself never looks at these frames.
3497 */
3498 if (!multicast &&
3499 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3500 return false;
3501 if (ieee80211_is_public_action(hdr, skb->len))
3502 return true;
3503 return ieee80211_is_beacon(hdr->frame_control);
3504 }
3505
3506 if (!ieee80211_has_tods(hdr->frame_control)) {
3507 /* ignore data frames to TDLS-peers */
3508 if (ieee80211_is_data(hdr->frame_control))
3509 return false;
3510 /* ignore action frames to TDLS-peers */
3511 if (ieee80211_is_action(hdr->frame_control) &&
3512 !is_broadcast_ether_addr(bssid) &&
3513 !ether_addr_equal(bssid, hdr->addr1))
3514 return false;
3515 }
3516 return true;
3517 case NL80211_IFTYPE_WDS:
3518 if (bssid || !ieee80211_is_data(hdr->frame_control))
3519 return false;
3520 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3521 case NL80211_IFTYPE_P2P_DEVICE:
3522 return ieee80211_is_public_action(hdr, skb->len) ||
3523 ieee80211_is_probe_req(hdr->frame_control) ||
3524 ieee80211_is_probe_resp(hdr->frame_control) ||
3525 ieee80211_is_beacon(hdr->frame_control);
3526 default:
3527 break;
3528 }
3529
3530 WARN_ON_ONCE(1);
3531 return false;
3532 }
3533
3534 void ieee80211_check_fast_rx(struct sta_info *sta)
3535 {
3536 struct ieee80211_sub_if_data *sdata = sta->sdata;
3537 struct ieee80211_local *local = sdata->local;
3538 struct ieee80211_key *key;
3539 struct ieee80211_fast_rx fastrx = {
3540 .dev = sdata->dev,
3541 .vif_type = sdata->vif.type,
3542 .control_port_protocol = sdata->control_port_protocol,
3543 }, *old, *new = NULL;
3544 bool assign = false;
3545
3546 /* use sparse to check that we don't return without updating */
3547 __acquire(check_fast_rx);
3548
3549 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3550 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3551 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3552 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3553
3554 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3555
3556 /* fast-rx doesn't do reordering */
3557 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3558 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3559 goto clear;
3560
3561 switch (sdata->vif.type) {
3562 case NL80211_IFTYPE_STATION:
3563 /* 4-addr is harder to deal with, later maybe */
3564 if (sdata->u.mgd.use_4addr)
3565 goto clear;
3566 /* software powersave is a huge mess, avoid all of it */
3567 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3568 goto clear;
3569 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3570 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3571 goto clear;
3572 if (sta->sta.tdls) {
3573 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3574 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3575 fastrx.expected_ds_bits = 0;
3576 } else {
3577 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3578 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3579 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3580 fastrx.expected_ds_bits =
3581 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3582 }
3583 break;
3584 case NL80211_IFTYPE_AP_VLAN:
3585 case NL80211_IFTYPE_AP:
3586 /* parallel-rx requires this, at least with calls to
3587 * ieee80211_sta_ps_transition()
3588 */
3589 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3590 goto clear;
3591 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3592 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3593 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3594
3595 fastrx.internal_forward =
3596 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3597 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3598 !sdata->u.vlan.sta);
3599 break;
3600 default:
3601 goto clear;
3602 }
3603
3604 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3605 goto clear;
3606
3607 rcu_read_lock();
3608 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3609 if (key) {
3610 switch (key->conf.cipher) {
3611 case WLAN_CIPHER_SUITE_TKIP:
3612 /* we don't want to deal with MMIC in fast-rx */
3613 goto clear_rcu;
3614 case WLAN_CIPHER_SUITE_CCMP:
3615 case WLAN_CIPHER_SUITE_CCMP_256:
3616 case WLAN_CIPHER_SUITE_GCMP:
3617 case WLAN_CIPHER_SUITE_GCMP_256:
3618 break;
3619 default:
3620 /* we also don't want to deal with WEP or cipher scheme
3621 * since those require looking up the key idx in the
3622 * frame, rather than assuming the PTK is used
3623 * (we need to revisit this once we implement the real
3624 * PTK index, which is now valid in the spec, but we
3625 * haven't implemented that part yet)
3626 */
3627 goto clear_rcu;
3628 }
3629
3630 fastrx.key = true;
3631 fastrx.icv_len = key->conf.icv_len;
3632 }
3633
3634 assign = true;
3635 clear_rcu:
3636 rcu_read_unlock();
3637 clear:
3638 __release(check_fast_rx);
3639
3640 if (assign)
3641 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3642
3643 spin_lock_bh(&sta->lock);
3644 old = rcu_dereference_protected(sta->fast_rx, true);
3645 rcu_assign_pointer(sta->fast_rx, new);
3646 spin_unlock_bh(&sta->lock);
3647
3648 if (old)
3649 kfree_rcu(old, rcu_head);
3650 }
3651
3652 void ieee80211_clear_fast_rx(struct sta_info *sta)
3653 {
3654 struct ieee80211_fast_rx *old;
3655
3656 spin_lock_bh(&sta->lock);
3657 old = rcu_dereference_protected(sta->fast_rx, true);
3658 RCU_INIT_POINTER(sta->fast_rx, NULL);
3659 spin_unlock_bh(&sta->lock);
3660
3661 if (old)
3662 kfree_rcu(old, rcu_head);
3663 }
3664
3665 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3666 {
3667 struct ieee80211_local *local = sdata->local;
3668 struct sta_info *sta;
3669
3670 lockdep_assert_held(&local->sta_mtx);
3671
3672 list_for_each_entry_rcu(sta, &local->sta_list, list) {
3673 if (sdata != sta->sdata &&
3674 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3675 continue;
3676 ieee80211_check_fast_rx(sta);
3677 }
3678 }
3679
3680 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3681 {
3682 struct ieee80211_local *local = sdata->local;
3683
3684 mutex_lock(&local->sta_mtx);
3685 __ieee80211_check_fast_rx_iface(sdata);
3686 mutex_unlock(&local->sta_mtx);
3687 }
3688
3689 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3690 struct ieee80211_fast_rx *fast_rx)
3691 {
3692 struct sk_buff *skb = rx->skb;
3693 struct ieee80211_hdr *hdr = (void *)skb->data;
3694 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3695 struct sta_info *sta = rx->sta;
3696 int orig_len = skb->len;
3697 int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3698 struct {
3699 u8 snap[sizeof(rfc1042_header)];
3700 __be16 proto;
3701 } *payload __aligned(2);
3702 struct {
3703 u8 da[ETH_ALEN];
3704 u8 sa[ETH_ALEN];
3705 } addrs __aligned(2);
3706 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3707
3708 if (fast_rx->uses_rss)
3709 stats = this_cpu_ptr(sta->pcpu_rx_stats);
3710
3711 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3712 * to a common data structure; drivers can implement that per queue
3713 * but we don't have that information in mac80211
3714 */
3715 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3716 return false;
3717
3718 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3719
3720 /* If using encryption, we also need to have:
3721 * - PN_VALIDATED: similar, but the implementation is tricky
3722 * - DECRYPTED: necessary for PN_VALIDATED
3723 */
3724 if (fast_rx->key &&
3725 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3726 return false;
3727
3728 /* we don't deal with A-MSDU deaggregation here */
3729 if (status->rx_flags & IEEE80211_RX_AMSDU)
3730 return false;
3731
3732 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3733 return false;
3734
3735 if (unlikely(ieee80211_is_frag(hdr)))
3736 return false;
3737
3738 /* Since our interface address cannot be multicast, this
3739 * implicitly also rejects multicast frames without the
3740 * explicit check.
3741 *
3742 * We shouldn't get any *data* frames not addressed to us
3743 * (AP mode will accept multicast *management* frames), but
3744 * punting here will make it go through the full checks in
3745 * ieee80211_accept_frame().
3746 */
3747 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3748 return false;
3749
3750 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3751 IEEE80211_FCTL_TODS)) !=
3752 fast_rx->expected_ds_bits)
3753 goto drop;
3754
3755 /* assign the key to drop unencrypted frames (later)
3756 * and strip the IV/MIC if necessary
3757 */
3758 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3759 /* GCMP header length is the same */
3760 snap_offs += IEEE80211_CCMP_HDR_LEN;
3761 }
3762
3763 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3764 goto drop;
3765 payload = (void *)(skb->data + snap_offs);
3766
3767 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3768 return false;
3769
3770 /* Don't handle these here since they require special code.
3771 * Accept AARP and IPX even though they should come with a
3772 * bridge-tunnel header - but if we get them this way then
3773 * there's little point in discarding them.
3774 */
3775 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3776 payload->proto == fast_rx->control_port_protocol))
3777 return false;
3778
3779 /* after this point, don't punt to the slowpath! */
3780
3781 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3782 pskb_trim(skb, skb->len - fast_rx->icv_len))
3783 goto drop;
3784
3785 if (unlikely(fast_rx->sta_notify)) {
3786 ieee80211_sta_rx_notify(rx->sdata, hdr);
3787 fast_rx->sta_notify = false;
3788 }
3789
3790 /* statistics part of ieee80211_rx_h_sta_process() */
3791 stats->last_rx = jiffies;
3792 stats->last_rate = sta_stats_encode_rate(status);
3793
3794 stats->fragments++;
3795
3796 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3797 stats->last_signal = status->signal;
3798 if (!fast_rx->uses_rss)
3799 ewma_signal_add(&sta->rx_stats_avg.signal,
3800 -status->signal);
3801 }
3802
3803 if (status->chains) {
3804 int i;
3805
3806 stats->chains = status->chains;
3807 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3808 int signal = status->chain_signal[i];
3809
3810 if (!(status->chains & BIT(i)))
3811 continue;
3812
3813 stats->chain_signal_last[i] = signal;
3814 if (!fast_rx->uses_rss)
3815 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3816 -signal);
3817 }
3818 }
3819 /* end of statistics */
3820
3821 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3822 goto drop;
3823
3824 /* do the header conversion - first grab the addresses */
3825 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3826 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3827 /* remove the SNAP but leave the ethertype */
3828 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3829 /* push the addresses in front */
3830 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3831
3832 skb->dev = fast_rx->dev;
3833
3834 ieee80211_rx_stats(fast_rx->dev, skb->len);
3835
3836 /* The seqno index has the same property as needed
3837 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3838 * for non-QoS-data frames. Here we know it's a data
3839 * frame, so count MSDUs.
3840 */
3841 u64_stats_update_begin(&stats->syncp);
3842 stats->msdu[rx->seqno_idx]++;
3843 stats->bytes += orig_len;
3844 u64_stats_update_end(&stats->syncp);
3845
3846 if (fast_rx->internal_forward) {
3847 struct sta_info *dsta = sta_info_get(rx->sdata, skb->data);
3848
3849 if (dsta) {
3850 /*
3851 * Send to wireless media and increase priority by 256
3852 * to keep the received priority instead of
3853 * reclassifying the frame (see cfg80211_classify8021d).
3854 */
3855 skb->priority += 256;
3856 skb->protocol = htons(ETH_P_802_3);
3857 skb_reset_network_header(skb);
3858 skb_reset_mac_header(skb);
3859 dev_queue_xmit(skb);
3860 return true;
3861 }
3862 }
3863
3864 /* deliver to local stack */
3865 skb->protocol = eth_type_trans(skb, fast_rx->dev);
3866 memset(skb->cb, 0, sizeof(skb->cb));
3867 if (rx->napi)
3868 napi_gro_receive(rx->napi, skb);
3869 else
3870 netif_receive_skb(skb);
3871
3872 return true;
3873 drop:
3874 dev_kfree_skb(skb);
3875 stats->dropped++;
3876 return true;
3877 }
3878
3879 /*
3880 * This function returns whether or not the SKB
3881 * was destined for RX processing or not, which,
3882 * if consume is true, is equivalent to whether
3883 * or not the skb was consumed.
3884 */
3885 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3886 struct sk_buff *skb, bool consume)
3887 {
3888 struct ieee80211_local *local = rx->local;
3889 struct ieee80211_sub_if_data *sdata = rx->sdata;
3890
3891 rx->skb = skb;
3892
3893 /* See if we can do fast-rx; if we have to copy we already lost,
3894 * so punt in that case. We should never have to deliver a data
3895 * frame to multiple interfaces anyway.
3896 *
3897 * We skip the ieee80211_accept_frame() call and do the necessary
3898 * checking inside ieee80211_invoke_fast_rx().
3899 */
3900 if (consume && rx->sta) {
3901 struct ieee80211_fast_rx *fast_rx;
3902
3903 fast_rx = rcu_dereference(rx->sta->fast_rx);
3904 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
3905 return true;
3906 }
3907
3908 if (!ieee80211_accept_frame(rx))
3909 return false;
3910
3911 if (!consume) {
3912 skb = skb_copy(skb, GFP_ATOMIC);
3913 if (!skb) {
3914 if (net_ratelimit())
3915 wiphy_debug(local->hw.wiphy,
3916 "failed to copy skb for %s\n",
3917 sdata->name);
3918 return true;
3919 }
3920
3921 rx->skb = skb;
3922 }
3923
3924 ieee80211_invoke_rx_handlers(rx);
3925 return true;
3926 }
3927
3928 /*
3929 * This is the actual Rx frames handler. as it belongs to Rx path it must
3930 * be called with rcu_read_lock protection.
3931 */
3932 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3933 struct ieee80211_sta *pubsta,
3934 struct sk_buff *skb,
3935 struct napi_struct *napi)
3936 {
3937 struct ieee80211_local *local = hw_to_local(hw);
3938 struct ieee80211_sub_if_data *sdata;
3939 struct ieee80211_hdr *hdr;
3940 __le16 fc;
3941 struct ieee80211_rx_data rx;
3942 struct ieee80211_sub_if_data *prev;
3943 struct rhash_head *tmp;
3944 int err = 0;
3945
3946 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3947 memset(&rx, 0, sizeof(rx));
3948 rx.skb = skb;
3949 rx.local = local;
3950 rx.napi = napi;
3951
3952 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3953 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3954
3955 if (ieee80211_is_mgmt(fc)) {
3956 /* drop frame if too short for header */
3957 if (skb->len < ieee80211_hdrlen(fc))
3958 err = -ENOBUFS;
3959 else
3960 err = skb_linearize(skb);
3961 } else {
3962 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3963 }
3964
3965 if (err) {
3966 dev_kfree_skb(skb);
3967 return;
3968 }
3969
3970 hdr = (struct ieee80211_hdr *)skb->data;
3971 ieee80211_parse_qos(&rx);
3972 ieee80211_verify_alignment(&rx);
3973
3974 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3975 ieee80211_is_beacon(hdr->frame_control)))
3976 ieee80211_scan_rx(local, skb);
3977
3978 if (pubsta) {
3979 rx.sta = container_of(pubsta, struct sta_info, sta);
3980 rx.sdata = rx.sta->sdata;
3981 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3982 return;
3983 goto out;
3984 } else if (ieee80211_is_data(fc)) {
3985 struct sta_info *sta, *prev_sta;
3986 const struct bucket_table *tbl;
3987
3988 prev_sta = NULL;
3989
3990 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3991
3992 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3993 if (!prev_sta) {
3994 prev_sta = sta;
3995 continue;
3996 }
3997
3998 rx.sta = prev_sta;
3999 rx.sdata = prev_sta->sdata;
4000 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4001
4002 prev_sta = sta;
4003 }
4004
4005 if (prev_sta) {
4006 rx.sta = prev_sta;
4007 rx.sdata = prev_sta->sdata;
4008
4009 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4010 return;
4011 goto out;
4012 }
4013 }
4014
4015 prev = NULL;
4016
4017 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4018 if (!ieee80211_sdata_running(sdata))
4019 continue;
4020
4021 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4022 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4023 continue;
4024
4025 /*
4026 * frame is destined for this interface, but if it's
4027 * not also for the previous one we handle that after
4028 * the loop to avoid copying the SKB once too much
4029 */
4030
4031 if (!prev) {
4032 prev = sdata;
4033 continue;
4034 }
4035
4036 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4037 rx.sdata = prev;
4038 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4039
4040 prev = sdata;
4041 }
4042
4043 if (prev) {
4044 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4045 rx.sdata = prev;
4046
4047 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4048 return;
4049 }
4050
4051 out:
4052 dev_kfree_skb(skb);
4053 }
4054
4055 /*
4056 * This is the receive path handler. It is called by a low level driver when an
4057 * 802.11 MPDU is received from the hardware.
4058 */
4059 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4060 struct sk_buff *skb, struct napi_struct *napi)
4061 {
4062 struct ieee80211_local *local = hw_to_local(hw);
4063 struct ieee80211_rate *rate = NULL;
4064 struct ieee80211_supported_band *sband;
4065 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4066
4067 WARN_ON_ONCE(softirq_count() == 0);
4068
4069 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4070 goto drop;
4071
4072 sband = local->hw.wiphy->bands[status->band];
4073 if (WARN_ON(!sband))
4074 goto drop;
4075
4076 /*
4077 * If we're suspending, it is possible although not too likely
4078 * that we'd be receiving frames after having already partially
4079 * quiesced the stack. We can't process such frames then since
4080 * that might, for example, cause stations to be added or other
4081 * driver callbacks be invoked.
4082 */
4083 if (unlikely(local->quiescing || local->suspended))
4084 goto drop;
4085
4086 /* We might be during a HW reconfig, prevent Rx for the same reason */
4087 if (unlikely(local->in_reconfig))
4088 goto drop;
4089
4090 /*
4091 * The same happens when we're not even started,
4092 * but that's worth a warning.
4093 */
4094 if (WARN_ON(!local->started))
4095 goto drop;
4096
4097 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4098 /*
4099 * Validate the rate, unless a PLCP error means that
4100 * we probably can't have a valid rate here anyway.
4101 */
4102
4103 if (status->flag & RX_FLAG_HT) {
4104 /*
4105 * rate_idx is MCS index, which can be [0-76]
4106 * as documented on:
4107 *
4108 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4109 *
4110 * Anything else would be some sort of driver or
4111 * hardware error. The driver should catch hardware
4112 * errors.
4113 */
4114 if (WARN(status->rate_idx > 76,
4115 "Rate marked as an HT rate but passed "
4116 "status->rate_idx is not "
4117 "an MCS index [0-76]: %d (0x%02x)\n",
4118 status->rate_idx,
4119 status->rate_idx))
4120 goto drop;
4121 } else if (status->flag & RX_FLAG_VHT) {
4122 if (WARN_ONCE(status->rate_idx > 9 ||
4123 !status->vht_nss ||
4124 status->vht_nss > 8,
4125 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4126 status->rate_idx, status->vht_nss))
4127 goto drop;
4128 } else {
4129 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4130 goto drop;
4131 rate = &sband->bitrates[status->rate_idx];
4132 }
4133 }
4134
4135 status->rx_flags = 0;
4136
4137 /*
4138 * key references and virtual interfaces are protected using RCU
4139 * and this requires that we are in a read-side RCU section during
4140 * receive processing
4141 */
4142 rcu_read_lock();
4143
4144 /*
4145 * Frames with failed FCS/PLCP checksum are not returned,
4146 * all other frames are returned without radiotap header
4147 * if it was previously present.
4148 * Also, frames with less than 16 bytes are dropped.
4149 */
4150 skb = ieee80211_rx_monitor(local, skb, rate);
4151 if (!skb) {
4152 rcu_read_unlock();
4153 return;
4154 }
4155
4156 ieee80211_tpt_led_trig_rx(local,
4157 ((struct ieee80211_hdr *)skb->data)->frame_control,
4158 skb->len);
4159
4160 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4161
4162 rcu_read_unlock();
4163
4164 return;
4165 drop:
4166 kfree_skb(skb);
4167 }
4168 EXPORT_SYMBOL(ieee80211_rx_napi);
4169
4170 /* This is a version of the rx handler that can be called from hard irq
4171 * context. Post the skb on the queue and schedule the tasklet */
4172 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4173 {
4174 struct ieee80211_local *local = hw_to_local(hw);
4175
4176 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4177
4178 skb->pkt_type = IEEE80211_RX_MSG;
4179 skb_queue_tail(&local->skb_queue, skb);
4180 tasklet_schedule(&local->tasklet);
4181 }
4182 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.15934 seconds and 5 git commands to generate.