b3e161ffa4b344eecb8386d8c8c5dd60699a6a54
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_TSFT)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 return len;
89 }
90
91 /*
92 * ieee80211_add_rx_radiotap_header - add radiotap header
93 *
94 * add a radiotap header containing all the fields which the hardware provided.
95 */
96 static void
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
98 struct sk_buff *skb,
99 struct ieee80211_rate *rate,
100 int rtap_len)
101 {
102 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
103 struct ieee80211_radiotap_header *rthdr;
104 unsigned char *pos;
105 u16 rx_flags = 0;
106
107 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
108 memset(rthdr, 0, rtap_len);
109
110 /* radiotap header, set always present flags */
111 rthdr->it_present =
112 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
113 (1 << IEEE80211_RADIOTAP_CHANNEL) |
114 (1 << IEEE80211_RADIOTAP_ANTENNA) |
115 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
116 rthdr->it_len = cpu_to_le16(rtap_len);
117
118 pos = (unsigned char *)(rthdr+1);
119
120 /* the order of the following fields is important */
121
122 /* IEEE80211_RADIOTAP_TSFT */
123 if (status->flag & RX_FLAG_TSFT) {
124 put_unaligned_le64(status->mactime, pos);
125 rthdr->it_present |=
126 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
127 pos += 8;
128 }
129
130 /* IEEE80211_RADIOTAP_FLAGS */
131 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
132 *pos |= IEEE80211_RADIOTAP_F_FCS;
133 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
134 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
135 if (status->flag & RX_FLAG_SHORTPRE)
136 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
137 pos++;
138
139 /* IEEE80211_RADIOTAP_RATE */
140 if (status->flag & RX_FLAG_HT) {
141 /*
142 * TODO: add following information into radiotap header once
143 * suitable fields are defined for it:
144 * - MCS index (status->rate_idx)
145 * - HT40 (status->flag & RX_FLAG_40MHZ)
146 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
147 */
148 *pos = 0;
149 } else {
150 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 *pos = rate->bitrate / 5;
152 }
153 pos++;
154
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status->freq, pos);
157 pos += 2;
158 if (status->band == IEEE80211_BAND_5GHZ)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 pos);
161 else if (status->flag & RX_FLAG_HT)
162 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 pos);
164 else if (rate->flags & IEEE80211_RATE_ERP_G)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 pos);
167 else
168 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 pos);
170 pos += 2;
171
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 *pos = status->signal;
175 rthdr->it_present |=
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 pos++;
178 }
179
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos = status->antenna;
184 pos++;
185
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos - (u8 *)rthdr) & 1)
191 pos++;
192 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 put_unaligned_le16(rx_flags, pos);
195 pos += 2;
196 }
197
198 /*
199 * This function copies a received frame to all monitor interfaces and
200 * returns a cleaned-up SKB that no longer includes the FCS nor the
201 * radiotap header the driver might have added.
202 */
203 static struct sk_buff *
204 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
205 struct ieee80211_rate *rate)
206 {
207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
208 struct ieee80211_sub_if_data *sdata;
209 int needed_headroom = 0;
210 struct sk_buff *skb, *skb2;
211 struct net_device *prev_dev = NULL;
212 int present_fcs_len = 0;
213
214 /*
215 * First, we may need to make a copy of the skb because
216 * (1) we need to modify it for radiotap (if not present), and
217 * (2) the other RX handlers will modify the skb we got.
218 *
219 * We don't need to, of course, if we aren't going to return
220 * the SKB because it has a bad FCS/PLCP checksum.
221 */
222
223 /* room for the radiotap header based on driver features */
224 needed_headroom = ieee80211_rx_radiotap_len(local, status);
225
226 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
227 present_fcs_len = FCS_LEN;
228
229 /* make sure hdr->frame_control is on the linear part */
230 if (!pskb_may_pull(origskb, 2)) {
231 dev_kfree_skb(origskb);
232 return NULL;
233 }
234
235 if (!local->monitors) {
236 if (should_drop_frame(origskb, present_fcs_len)) {
237 dev_kfree_skb(origskb);
238 return NULL;
239 }
240
241 return remove_monitor_info(local, origskb);
242 }
243
244 if (should_drop_frame(origskb, present_fcs_len)) {
245 /* only need to expand headroom if necessary */
246 skb = origskb;
247 origskb = NULL;
248
249 /*
250 * This shouldn't trigger often because most devices have an
251 * RX header they pull before we get here, and that should
252 * be big enough for our radiotap information. We should
253 * probably export the length to drivers so that we can have
254 * them allocate enough headroom to start with.
255 */
256 if (skb_headroom(skb) < needed_headroom &&
257 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
258 dev_kfree_skb(skb);
259 return NULL;
260 }
261 } else {
262 /*
263 * Need to make a copy and possibly remove radiotap header
264 * and FCS from the original.
265 */
266 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
267
268 origskb = remove_monitor_info(local, origskb);
269
270 if (!skb)
271 return origskb;
272 }
273
274 /* prepend radiotap information */
275 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
276
277 skb_reset_mac_header(skb);
278 skb->ip_summed = CHECKSUM_UNNECESSARY;
279 skb->pkt_type = PACKET_OTHERHOST;
280 skb->protocol = htons(ETH_P_802_2);
281
282 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
283 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
284 continue;
285
286 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
287 continue;
288
289 if (!ieee80211_sdata_running(sdata))
290 continue;
291
292 if (prev_dev) {
293 skb2 = skb_clone(skb, GFP_ATOMIC);
294 if (skb2) {
295 skb2->dev = prev_dev;
296 netif_receive_skb(skb2);
297 }
298 }
299
300 prev_dev = sdata->dev;
301 sdata->dev->stats.rx_packets++;
302 sdata->dev->stats.rx_bytes += skb->len;
303 }
304
305 if (prev_dev) {
306 skb->dev = prev_dev;
307 netif_receive_skb(skb);
308 } else
309 dev_kfree_skb(skb);
310
311 return origskb;
312 }
313
314
315 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
316 {
317 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
318 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
319 int tid;
320
321 /* does the frame have a qos control field? */
322 if (ieee80211_is_data_qos(hdr->frame_control)) {
323 u8 *qc = ieee80211_get_qos_ctl(hdr);
324 /* frame has qos control */
325 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
326 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
327 status->rx_flags |= IEEE80211_RX_AMSDU;
328 } else {
329 /*
330 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
331 *
332 * Sequence numbers for management frames, QoS data
333 * frames with a broadcast/multicast address in the
334 * Address 1 field, and all non-QoS data frames sent
335 * by QoS STAs are assigned using an additional single
336 * modulo-4096 counter, [...]
337 *
338 * We also use that counter for non-QoS STAs.
339 */
340 tid = NUM_RX_DATA_QUEUES - 1;
341 }
342
343 rx->queue = tid;
344 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
345 * For now, set skb->priority to 0 for other cases. */
346 rx->skb->priority = (tid > 7) ? 0 : tid;
347 }
348
349 /**
350 * DOC: Packet alignment
351 *
352 * Drivers always need to pass packets that are aligned to two-byte boundaries
353 * to the stack.
354 *
355 * Additionally, should, if possible, align the payload data in a way that
356 * guarantees that the contained IP header is aligned to a four-byte
357 * boundary. In the case of regular frames, this simply means aligning the
358 * payload to a four-byte boundary (because either the IP header is directly
359 * contained, or IV/RFC1042 headers that have a length divisible by four are
360 * in front of it). If the payload data is not properly aligned and the
361 * architecture doesn't support efficient unaligned operations, mac80211
362 * will align the data.
363 *
364 * With A-MSDU frames, however, the payload data address must yield two modulo
365 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
366 * push the IP header further back to a multiple of four again. Thankfully, the
367 * specs were sane enough this time around to require padding each A-MSDU
368 * subframe to a length that is a multiple of four.
369 *
370 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
371 * the payload is not supported, the driver is required to move the 802.11
372 * header to be directly in front of the payload in that case.
373 */
374 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
375 {
376 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
377 WARN_ONCE((unsigned long)rx->skb->data & 1,
378 "unaligned packet at 0x%p\n", rx->skb->data);
379 #endif
380 }
381
382
383 /* rx handlers */
384
385 static ieee80211_rx_result debug_noinline
386 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
387 {
388 struct ieee80211_local *local = rx->local;
389 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
390 struct sk_buff *skb = rx->skb;
391
392 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN)))
393 return RX_CONTINUE;
394
395 if (test_bit(SCAN_HW_SCANNING, &local->scanning))
396 return ieee80211_scan_rx(rx->sdata, skb);
397
398 if (test_bit(SCAN_SW_SCANNING, &local->scanning)) {
399 /* drop all the other packets during a software scan anyway */
400 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
401 dev_kfree_skb(skb);
402 return RX_QUEUED;
403 }
404
405 /* scanning finished during invoking of handlers */
406 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
407 return RX_DROP_UNUSABLE;
408 }
409
410
411 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
412 {
413 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
414
415 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
416 return 0;
417
418 return ieee80211_is_robust_mgmt_frame(hdr);
419 }
420
421
422 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
423 {
424 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
425
426 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
427 return 0;
428
429 return ieee80211_is_robust_mgmt_frame(hdr);
430 }
431
432
433 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
434 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
435 {
436 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
437 struct ieee80211_mmie *mmie;
438
439 if (skb->len < 24 + sizeof(*mmie) ||
440 !is_multicast_ether_addr(hdr->da))
441 return -1;
442
443 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
444 return -1; /* not a robust management frame */
445
446 mmie = (struct ieee80211_mmie *)
447 (skb->data + skb->len - sizeof(*mmie));
448 if (mmie->element_id != WLAN_EID_MMIE ||
449 mmie->length != sizeof(*mmie) - 2)
450 return -1;
451
452 return le16_to_cpu(mmie->key_id);
453 }
454
455
456 static ieee80211_rx_result
457 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
458 {
459 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
460 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
461 char *dev_addr = rx->sdata->vif.addr;
462
463 if (ieee80211_is_data(hdr->frame_control)) {
464 if (is_multicast_ether_addr(hdr->addr1)) {
465 if (ieee80211_has_tods(hdr->frame_control) ||
466 !ieee80211_has_fromds(hdr->frame_control))
467 return RX_DROP_MONITOR;
468 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
469 return RX_DROP_MONITOR;
470 } else {
471 if (!ieee80211_has_a4(hdr->frame_control))
472 return RX_DROP_MONITOR;
473 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
474 return RX_DROP_MONITOR;
475 }
476 }
477
478 /* If there is not an established peer link and this is not a peer link
479 * establisment frame, beacon or probe, drop the frame.
480 */
481
482 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
483 struct ieee80211_mgmt *mgmt;
484
485 if (!ieee80211_is_mgmt(hdr->frame_control))
486 return RX_DROP_MONITOR;
487
488 if (ieee80211_is_action(hdr->frame_control)) {
489 mgmt = (struct ieee80211_mgmt *)hdr;
490 if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
491 return RX_DROP_MONITOR;
492 return RX_CONTINUE;
493 }
494
495 if (ieee80211_is_probe_req(hdr->frame_control) ||
496 ieee80211_is_probe_resp(hdr->frame_control) ||
497 ieee80211_is_beacon(hdr->frame_control))
498 return RX_CONTINUE;
499
500 return RX_DROP_MONITOR;
501
502 }
503
504 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
505
506 if (ieee80211_is_data(hdr->frame_control) &&
507 is_multicast_ether_addr(hdr->addr1) &&
508 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
509 return RX_DROP_MONITOR;
510 #undef msh_h_get
511
512 return RX_CONTINUE;
513 }
514
515 #define SEQ_MODULO 0x1000
516 #define SEQ_MASK 0xfff
517
518 static inline int seq_less(u16 sq1, u16 sq2)
519 {
520 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
521 }
522
523 static inline u16 seq_inc(u16 sq)
524 {
525 return (sq + 1) & SEQ_MASK;
526 }
527
528 static inline u16 seq_sub(u16 sq1, u16 sq2)
529 {
530 return (sq1 - sq2) & SEQ_MASK;
531 }
532
533
534 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
535 struct tid_ampdu_rx *tid_agg_rx,
536 int index,
537 struct sk_buff_head *frames)
538 {
539 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
540
541 if (!skb)
542 goto no_frame;
543
544 /* release the frame from the reorder ring buffer */
545 tid_agg_rx->stored_mpdu_num--;
546 tid_agg_rx->reorder_buf[index] = NULL;
547 __skb_queue_tail(frames, skb);
548
549 no_frame:
550 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
551 }
552
553 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
554 struct tid_ampdu_rx *tid_agg_rx,
555 u16 head_seq_num,
556 struct sk_buff_head *frames)
557 {
558 int index;
559
560 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
561 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
562 tid_agg_rx->buf_size;
563 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
564 }
565 }
566
567 /*
568 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
569 * the skb was added to the buffer longer than this time ago, the earlier
570 * frames that have not yet been received are assumed to be lost and the skb
571 * can be released for processing. This may also release other skb's from the
572 * reorder buffer if there are no additional gaps between the frames.
573 *
574 * Callers must hold tid_agg_rx->reorder_lock.
575 */
576 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
577
578 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
579 struct tid_ampdu_rx *tid_agg_rx,
580 struct sk_buff_head *frames)
581 {
582 int index, j;
583
584 /* release the buffer until next missing frame */
585 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
586 tid_agg_rx->buf_size;
587 if (!tid_agg_rx->reorder_buf[index] &&
588 tid_agg_rx->stored_mpdu_num > 1) {
589 /*
590 * No buffers ready to be released, but check whether any
591 * frames in the reorder buffer have timed out.
592 */
593 int skipped = 1;
594 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
595 j = (j + 1) % tid_agg_rx->buf_size) {
596 if (!tid_agg_rx->reorder_buf[j]) {
597 skipped++;
598 continue;
599 }
600 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
601 HT_RX_REORDER_BUF_TIMEOUT))
602 goto set_release_timer;
603
604 #ifdef CONFIG_MAC80211_HT_DEBUG
605 if (net_ratelimit())
606 wiphy_debug(hw->wiphy,
607 "release an RX reorder frame due to timeout on earlier frames\n");
608 #endif
609 ieee80211_release_reorder_frame(hw, tid_agg_rx,
610 j, frames);
611
612 /*
613 * Increment the head seq# also for the skipped slots.
614 */
615 tid_agg_rx->head_seq_num =
616 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
617 skipped = 0;
618 }
619 } else while (tid_agg_rx->reorder_buf[index]) {
620 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
621 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
622 tid_agg_rx->buf_size;
623 }
624
625 if (tid_agg_rx->stored_mpdu_num) {
626 j = index = seq_sub(tid_agg_rx->head_seq_num,
627 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
628
629 for (; j != (index - 1) % tid_agg_rx->buf_size;
630 j = (j + 1) % tid_agg_rx->buf_size) {
631 if (tid_agg_rx->reorder_buf[j])
632 break;
633 }
634
635 set_release_timer:
636
637 mod_timer(&tid_agg_rx->reorder_timer,
638 tid_agg_rx->reorder_time[j] +
639 HT_RX_REORDER_BUF_TIMEOUT);
640 } else {
641 del_timer(&tid_agg_rx->reorder_timer);
642 }
643 }
644
645 /*
646 * As this function belongs to the RX path it must be under
647 * rcu_read_lock protection. It returns false if the frame
648 * can be processed immediately, true if it was consumed.
649 */
650 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
651 struct tid_ampdu_rx *tid_agg_rx,
652 struct sk_buff *skb,
653 struct sk_buff_head *frames)
654 {
655 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
656 u16 sc = le16_to_cpu(hdr->seq_ctrl);
657 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
658 u16 head_seq_num, buf_size;
659 int index;
660 bool ret = true;
661
662 buf_size = tid_agg_rx->buf_size;
663 head_seq_num = tid_agg_rx->head_seq_num;
664
665 spin_lock(&tid_agg_rx->reorder_lock);
666 /* frame with out of date sequence number */
667 if (seq_less(mpdu_seq_num, head_seq_num)) {
668 dev_kfree_skb(skb);
669 goto out;
670 }
671
672 /*
673 * If frame the sequence number exceeds our buffering window
674 * size release some previous frames to make room for this one.
675 */
676 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
677 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
678 /* release stored frames up to new head to stack */
679 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
680 frames);
681 }
682
683 /* Now the new frame is always in the range of the reordering buffer */
684
685 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
686
687 /* check if we already stored this frame */
688 if (tid_agg_rx->reorder_buf[index]) {
689 dev_kfree_skb(skb);
690 goto out;
691 }
692
693 /*
694 * If the current MPDU is in the right order and nothing else
695 * is stored we can process it directly, no need to buffer it.
696 */
697 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
698 tid_agg_rx->stored_mpdu_num == 0) {
699 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
700 ret = false;
701 goto out;
702 }
703
704 /* put the frame in the reordering buffer */
705 tid_agg_rx->reorder_buf[index] = skb;
706 tid_agg_rx->reorder_time[index] = jiffies;
707 tid_agg_rx->stored_mpdu_num++;
708 ieee80211_sta_reorder_release(hw, tid_agg_rx, frames);
709
710 out:
711 spin_unlock(&tid_agg_rx->reorder_lock);
712 return ret;
713 }
714
715 /*
716 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
717 * true if the MPDU was buffered, false if it should be processed.
718 */
719 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
720 struct sk_buff_head *frames)
721 {
722 struct sk_buff *skb = rx->skb;
723 struct ieee80211_local *local = rx->local;
724 struct ieee80211_hw *hw = &local->hw;
725 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
726 struct sta_info *sta = rx->sta;
727 struct tid_ampdu_rx *tid_agg_rx;
728 u16 sc;
729 int tid;
730
731 if (!ieee80211_is_data_qos(hdr->frame_control))
732 goto dont_reorder;
733
734 /*
735 * filter the QoS data rx stream according to
736 * STA/TID and check if this STA/TID is on aggregation
737 */
738
739 if (!sta)
740 goto dont_reorder;
741
742 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
743
744 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
745 if (!tid_agg_rx)
746 goto dont_reorder;
747
748 /* qos null data frames are excluded */
749 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
750 goto dont_reorder;
751
752 /* new, potentially un-ordered, ampdu frame - process it */
753
754 /* reset session timer */
755 if (tid_agg_rx->timeout)
756 mod_timer(&tid_agg_rx->session_timer,
757 TU_TO_EXP_TIME(tid_agg_rx->timeout));
758
759 /* if this mpdu is fragmented - terminate rx aggregation session */
760 sc = le16_to_cpu(hdr->seq_ctrl);
761 if (sc & IEEE80211_SCTL_FRAG) {
762 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
763 skb_queue_tail(&rx->sdata->skb_queue, skb);
764 ieee80211_queue_work(&local->hw, &rx->sdata->work);
765 return;
766 }
767
768 /*
769 * No locking needed -- we will only ever process one
770 * RX packet at a time, and thus own tid_agg_rx. All
771 * other code manipulating it needs to (and does) make
772 * sure that we cannot get to it any more before doing
773 * anything with it.
774 */
775 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames))
776 return;
777
778 dont_reorder:
779 __skb_queue_tail(frames, skb);
780 }
781
782 static ieee80211_rx_result debug_noinline
783 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
784 {
785 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
786 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
787
788 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
789 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
790 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
791 rx->sta->last_seq_ctrl[rx->queue] ==
792 hdr->seq_ctrl)) {
793 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
794 rx->local->dot11FrameDuplicateCount++;
795 rx->sta->num_duplicates++;
796 }
797 return RX_DROP_MONITOR;
798 } else
799 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
800 }
801
802 if (unlikely(rx->skb->len < 16)) {
803 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
804 return RX_DROP_MONITOR;
805 }
806
807 /* Drop disallowed frame classes based on STA auth/assoc state;
808 * IEEE 802.11, Chap 5.5.
809 *
810 * mac80211 filters only based on association state, i.e. it drops
811 * Class 3 frames from not associated stations. hostapd sends
812 * deauth/disassoc frames when needed. In addition, hostapd is
813 * responsible for filtering on both auth and assoc states.
814 */
815
816 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
817 return ieee80211_rx_mesh_check(rx);
818
819 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
820 ieee80211_is_pspoll(hdr->frame_control)) &&
821 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
822 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
823 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
824 if ((!ieee80211_has_fromds(hdr->frame_control) &&
825 !ieee80211_has_tods(hdr->frame_control) &&
826 ieee80211_is_data(hdr->frame_control)) ||
827 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) {
828 /* Drop IBSS frames and frames for other hosts
829 * silently. */
830 return RX_DROP_MONITOR;
831 }
832
833 return RX_DROP_MONITOR;
834 }
835
836 return RX_CONTINUE;
837 }
838
839
840 static ieee80211_rx_result debug_noinline
841 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
842 {
843 struct sk_buff *skb = rx->skb;
844 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
845 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
846 int keyidx;
847 int hdrlen;
848 ieee80211_rx_result result = RX_DROP_UNUSABLE;
849 struct ieee80211_key *stakey = NULL;
850 int mmie_keyidx = -1;
851 __le16 fc;
852
853 /*
854 * Key selection 101
855 *
856 * There are four types of keys:
857 * - GTK (group keys)
858 * - IGTK (group keys for management frames)
859 * - PTK (pairwise keys)
860 * - STK (station-to-station pairwise keys)
861 *
862 * When selecting a key, we have to distinguish between multicast
863 * (including broadcast) and unicast frames, the latter can only
864 * use PTKs and STKs while the former always use GTKs and IGTKs.
865 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
866 * unicast frames can also use key indices like GTKs. Hence, if we
867 * don't have a PTK/STK we check the key index for a WEP key.
868 *
869 * Note that in a regular BSS, multicast frames are sent by the
870 * AP only, associated stations unicast the frame to the AP first
871 * which then multicasts it on their behalf.
872 *
873 * There is also a slight problem in IBSS mode: GTKs are negotiated
874 * with each station, that is something we don't currently handle.
875 * The spec seems to expect that one negotiates the same key with
876 * every station but there's no such requirement; VLANs could be
877 * possible.
878 */
879
880 /*
881 * No point in finding a key and decrypting if the frame is neither
882 * addressed to us nor a multicast frame.
883 */
884 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
885 return RX_CONTINUE;
886
887 /* start without a key */
888 rx->key = NULL;
889
890 if (rx->sta)
891 stakey = rcu_dereference(rx->sta->key);
892
893 fc = hdr->frame_control;
894
895 if (!ieee80211_has_protected(fc))
896 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
897
898 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
899 rx->key = stakey;
900 if ((status->flag & RX_FLAG_DECRYPTED) &&
901 (status->flag & RX_FLAG_IV_STRIPPED))
902 return RX_CONTINUE;
903 /* Skip decryption if the frame is not protected. */
904 if (!ieee80211_has_protected(fc))
905 return RX_CONTINUE;
906 } else if (mmie_keyidx >= 0) {
907 /* Broadcast/multicast robust management frame / BIP */
908 if ((status->flag & RX_FLAG_DECRYPTED) &&
909 (status->flag & RX_FLAG_IV_STRIPPED))
910 return RX_CONTINUE;
911
912 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
913 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
914 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
915 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
916 } else if (!ieee80211_has_protected(fc)) {
917 /*
918 * The frame was not protected, so skip decryption. However, we
919 * need to set rx->key if there is a key that could have been
920 * used so that the frame may be dropped if encryption would
921 * have been expected.
922 */
923 struct ieee80211_key *key = NULL;
924 if (ieee80211_is_mgmt(fc) &&
925 is_multicast_ether_addr(hdr->addr1) &&
926 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
927 rx->key = key;
928 else if ((key = rcu_dereference(rx->sdata->default_key)))
929 rx->key = key;
930 return RX_CONTINUE;
931 } else {
932 u8 keyid;
933 /*
934 * The device doesn't give us the IV so we won't be
935 * able to look up the key. That's ok though, we
936 * don't need to decrypt the frame, we just won't
937 * be able to keep statistics accurate.
938 * Except for key threshold notifications, should
939 * we somehow allow the driver to tell us which key
940 * the hardware used if this flag is set?
941 */
942 if ((status->flag & RX_FLAG_DECRYPTED) &&
943 (status->flag & RX_FLAG_IV_STRIPPED))
944 return RX_CONTINUE;
945
946 hdrlen = ieee80211_hdrlen(fc);
947
948 if (rx->skb->len < 8 + hdrlen)
949 return RX_DROP_UNUSABLE; /* TODO: count this? */
950
951 /*
952 * no need to call ieee80211_wep_get_keyidx,
953 * it verifies a bunch of things we've done already
954 */
955 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
956 keyidx = keyid >> 6;
957
958 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
959
960 /*
961 * RSNA-protected unicast frames should always be sent with
962 * pairwise or station-to-station keys, but for WEP we allow
963 * using a key index as well.
964 */
965 if (rx->key && rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
966 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
967 !is_multicast_ether_addr(hdr->addr1))
968 rx->key = NULL;
969 }
970
971 if (rx->key) {
972 rx->key->tx_rx_count++;
973 /* TODO: add threshold stuff again */
974 } else {
975 return RX_DROP_MONITOR;
976 }
977
978 if (skb_linearize(rx->skb))
979 return RX_DROP_UNUSABLE;
980 /* the hdr variable is invalid now! */
981
982 switch (rx->key->conf.cipher) {
983 case WLAN_CIPHER_SUITE_WEP40:
984 case WLAN_CIPHER_SUITE_WEP104:
985 /* Check for weak IVs if possible */
986 if (rx->sta && ieee80211_is_data(fc) &&
987 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
988 !(status->flag & RX_FLAG_DECRYPTED)) &&
989 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
990 rx->sta->wep_weak_iv_count++;
991
992 result = ieee80211_crypto_wep_decrypt(rx);
993 break;
994 case WLAN_CIPHER_SUITE_TKIP:
995 result = ieee80211_crypto_tkip_decrypt(rx);
996 break;
997 case WLAN_CIPHER_SUITE_CCMP:
998 result = ieee80211_crypto_ccmp_decrypt(rx);
999 break;
1000 case WLAN_CIPHER_SUITE_AES_CMAC:
1001 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1002 break;
1003 default:
1004 /*
1005 * We can reach here only with HW-only algorithms
1006 * but why didn't it decrypt the frame?!
1007 */
1008 return RX_DROP_UNUSABLE;
1009 }
1010
1011 /* either the frame has been decrypted or will be dropped */
1012 status->flag |= RX_FLAG_DECRYPTED;
1013
1014 return result;
1015 }
1016
1017 static ieee80211_rx_result debug_noinline
1018 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1019 {
1020 struct ieee80211_local *local;
1021 struct ieee80211_hdr *hdr;
1022 struct sk_buff *skb;
1023
1024 local = rx->local;
1025 skb = rx->skb;
1026 hdr = (struct ieee80211_hdr *) skb->data;
1027
1028 if (!local->pspolling)
1029 return RX_CONTINUE;
1030
1031 if (!ieee80211_has_fromds(hdr->frame_control))
1032 /* this is not from AP */
1033 return RX_CONTINUE;
1034
1035 if (!ieee80211_is_data(hdr->frame_control))
1036 return RX_CONTINUE;
1037
1038 if (!ieee80211_has_moredata(hdr->frame_control)) {
1039 /* AP has no more frames buffered for us */
1040 local->pspolling = false;
1041 return RX_CONTINUE;
1042 }
1043
1044 /* more data bit is set, let's request a new frame from the AP */
1045 ieee80211_send_pspoll(local, rx->sdata);
1046
1047 return RX_CONTINUE;
1048 }
1049
1050 static void ap_sta_ps_start(struct sta_info *sta)
1051 {
1052 struct ieee80211_sub_if_data *sdata = sta->sdata;
1053 struct ieee80211_local *local = sdata->local;
1054
1055 atomic_inc(&sdata->bss->num_sta_ps);
1056 set_sta_flags(sta, WLAN_STA_PS_STA);
1057 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1058 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1059 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1060 sdata->name, sta->sta.addr, sta->sta.aid);
1061 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1062 }
1063
1064 static void ap_sta_ps_end(struct sta_info *sta)
1065 {
1066 struct ieee80211_sub_if_data *sdata = sta->sdata;
1067
1068 atomic_dec(&sdata->bss->num_sta_ps);
1069
1070 clear_sta_flags(sta, WLAN_STA_PS_STA);
1071
1072 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1073 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1074 sdata->name, sta->sta.addr, sta->sta.aid);
1075 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1076
1077 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1078 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1079 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1080 sdata->name, sta->sta.addr, sta->sta.aid);
1081 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1082 return;
1083 }
1084
1085 ieee80211_sta_ps_deliver_wakeup(sta);
1086 }
1087
1088 static ieee80211_rx_result debug_noinline
1089 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1090 {
1091 struct sta_info *sta = rx->sta;
1092 struct sk_buff *skb = rx->skb;
1093 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1094 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1095
1096 if (!sta)
1097 return RX_CONTINUE;
1098
1099 /*
1100 * Update last_rx only for IBSS packets which are for the current
1101 * BSSID to avoid keeping the current IBSS network alive in cases
1102 * where other STAs start using different BSSID.
1103 */
1104 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1105 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1106 NL80211_IFTYPE_ADHOC);
1107 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1108 sta->last_rx = jiffies;
1109 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1110 /*
1111 * Mesh beacons will update last_rx when if they are found to
1112 * match the current local configuration when processed.
1113 */
1114 sta->last_rx = jiffies;
1115 }
1116
1117 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1118 return RX_CONTINUE;
1119
1120 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1121 ieee80211_sta_rx_notify(rx->sdata, hdr);
1122
1123 sta->rx_fragments++;
1124 sta->rx_bytes += rx->skb->len;
1125 sta->last_signal = status->signal;
1126
1127 /*
1128 * Change STA power saving mode only at the end of a frame
1129 * exchange sequence.
1130 */
1131 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1132 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1133 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1134 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1135 /*
1136 * Ignore doze->wake transitions that are
1137 * indicated by non-data frames, the standard
1138 * is unclear here, but for example going to
1139 * PS mode and then scanning would cause a
1140 * doze->wake transition for the probe request,
1141 * and that is clearly undesirable.
1142 */
1143 if (ieee80211_is_data(hdr->frame_control) &&
1144 !ieee80211_has_pm(hdr->frame_control))
1145 ap_sta_ps_end(sta);
1146 } else {
1147 if (ieee80211_has_pm(hdr->frame_control))
1148 ap_sta_ps_start(sta);
1149 }
1150 }
1151
1152 /*
1153 * Drop (qos-)data::nullfunc frames silently, since they
1154 * are used only to control station power saving mode.
1155 */
1156 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1157 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1158 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1159
1160 /*
1161 * If we receive a 4-addr nullfunc frame from a STA
1162 * that was not moved to a 4-addr STA vlan yet, drop
1163 * the frame to the monitor interface, to make sure
1164 * that hostapd sees it
1165 */
1166 if (ieee80211_has_a4(hdr->frame_control) &&
1167 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1168 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1169 !rx->sdata->u.vlan.sta)))
1170 return RX_DROP_MONITOR;
1171 /*
1172 * Update counter and free packet here to avoid
1173 * counting this as a dropped packed.
1174 */
1175 sta->rx_packets++;
1176 dev_kfree_skb(rx->skb);
1177 return RX_QUEUED;
1178 }
1179
1180 return RX_CONTINUE;
1181 } /* ieee80211_rx_h_sta_process */
1182
1183 static inline struct ieee80211_fragment_entry *
1184 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1185 unsigned int frag, unsigned int seq, int rx_queue,
1186 struct sk_buff **skb)
1187 {
1188 struct ieee80211_fragment_entry *entry;
1189 int idx;
1190
1191 idx = sdata->fragment_next;
1192 entry = &sdata->fragments[sdata->fragment_next++];
1193 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1194 sdata->fragment_next = 0;
1195
1196 if (!skb_queue_empty(&entry->skb_list)) {
1197 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1198 struct ieee80211_hdr *hdr =
1199 (struct ieee80211_hdr *) entry->skb_list.next->data;
1200 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1201 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1202 "addr1=%pM addr2=%pM\n",
1203 sdata->name, idx,
1204 jiffies - entry->first_frag_time, entry->seq,
1205 entry->last_frag, hdr->addr1, hdr->addr2);
1206 #endif
1207 __skb_queue_purge(&entry->skb_list);
1208 }
1209
1210 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1211 *skb = NULL;
1212 entry->first_frag_time = jiffies;
1213 entry->seq = seq;
1214 entry->rx_queue = rx_queue;
1215 entry->last_frag = frag;
1216 entry->ccmp = 0;
1217 entry->extra_len = 0;
1218
1219 return entry;
1220 }
1221
1222 static inline struct ieee80211_fragment_entry *
1223 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1224 unsigned int frag, unsigned int seq,
1225 int rx_queue, struct ieee80211_hdr *hdr)
1226 {
1227 struct ieee80211_fragment_entry *entry;
1228 int i, idx;
1229
1230 idx = sdata->fragment_next;
1231 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1232 struct ieee80211_hdr *f_hdr;
1233
1234 idx--;
1235 if (idx < 0)
1236 idx = IEEE80211_FRAGMENT_MAX - 1;
1237
1238 entry = &sdata->fragments[idx];
1239 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1240 entry->rx_queue != rx_queue ||
1241 entry->last_frag + 1 != frag)
1242 continue;
1243
1244 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1245
1246 /*
1247 * Check ftype and addresses are equal, else check next fragment
1248 */
1249 if (((hdr->frame_control ^ f_hdr->frame_control) &
1250 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1251 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1252 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1253 continue;
1254
1255 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1256 __skb_queue_purge(&entry->skb_list);
1257 continue;
1258 }
1259 return entry;
1260 }
1261
1262 return NULL;
1263 }
1264
1265 static ieee80211_rx_result debug_noinline
1266 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1267 {
1268 struct ieee80211_hdr *hdr;
1269 u16 sc;
1270 __le16 fc;
1271 unsigned int frag, seq;
1272 struct ieee80211_fragment_entry *entry;
1273 struct sk_buff *skb;
1274 struct ieee80211_rx_status *status;
1275
1276 hdr = (struct ieee80211_hdr *)rx->skb->data;
1277 fc = hdr->frame_control;
1278 sc = le16_to_cpu(hdr->seq_ctrl);
1279 frag = sc & IEEE80211_SCTL_FRAG;
1280
1281 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1282 (rx->skb)->len < 24 ||
1283 is_multicast_ether_addr(hdr->addr1))) {
1284 /* not fragmented */
1285 goto out;
1286 }
1287 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1288
1289 if (skb_linearize(rx->skb))
1290 return RX_DROP_UNUSABLE;
1291
1292 /*
1293 * skb_linearize() might change the skb->data and
1294 * previously cached variables (in this case, hdr) need to
1295 * be refreshed with the new data.
1296 */
1297 hdr = (struct ieee80211_hdr *)rx->skb->data;
1298 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1299
1300 if (frag == 0) {
1301 /* This is the first fragment of a new frame. */
1302 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1303 rx->queue, &(rx->skb));
1304 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1305 ieee80211_has_protected(fc)) {
1306 int queue = ieee80211_is_mgmt(fc) ?
1307 NUM_RX_DATA_QUEUES : rx->queue;
1308 /* Store CCMP PN so that we can verify that the next
1309 * fragment has a sequential PN value. */
1310 entry->ccmp = 1;
1311 memcpy(entry->last_pn,
1312 rx->key->u.ccmp.rx_pn[queue],
1313 CCMP_PN_LEN);
1314 }
1315 return RX_QUEUED;
1316 }
1317
1318 /* This is a fragment for a frame that should already be pending in
1319 * fragment cache. Add this fragment to the end of the pending entry.
1320 */
1321 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1322 if (!entry) {
1323 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1324 return RX_DROP_MONITOR;
1325 }
1326
1327 /* Verify that MPDUs within one MSDU have sequential PN values.
1328 * (IEEE 802.11i, 8.3.3.4.5) */
1329 if (entry->ccmp) {
1330 int i;
1331 u8 pn[CCMP_PN_LEN], *rpn;
1332 int queue;
1333 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1334 return RX_DROP_UNUSABLE;
1335 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1336 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1337 pn[i]++;
1338 if (pn[i])
1339 break;
1340 }
1341 queue = ieee80211_is_mgmt(fc) ?
1342 NUM_RX_DATA_QUEUES : rx->queue;
1343 rpn = rx->key->u.ccmp.rx_pn[queue];
1344 if (memcmp(pn, rpn, CCMP_PN_LEN))
1345 return RX_DROP_UNUSABLE;
1346 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1347 }
1348
1349 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1350 __skb_queue_tail(&entry->skb_list, rx->skb);
1351 entry->last_frag = frag;
1352 entry->extra_len += rx->skb->len;
1353 if (ieee80211_has_morefrags(fc)) {
1354 rx->skb = NULL;
1355 return RX_QUEUED;
1356 }
1357
1358 rx->skb = __skb_dequeue(&entry->skb_list);
1359 if (skb_tailroom(rx->skb) < entry->extra_len) {
1360 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1361 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1362 GFP_ATOMIC))) {
1363 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1364 __skb_queue_purge(&entry->skb_list);
1365 return RX_DROP_UNUSABLE;
1366 }
1367 }
1368 while ((skb = __skb_dequeue(&entry->skb_list))) {
1369 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1370 dev_kfree_skb(skb);
1371 }
1372
1373 /* Complete frame has been reassembled - process it now */
1374 status = IEEE80211_SKB_RXCB(rx->skb);
1375 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1376
1377 out:
1378 if (rx->sta)
1379 rx->sta->rx_packets++;
1380 if (is_multicast_ether_addr(hdr->addr1))
1381 rx->local->dot11MulticastReceivedFrameCount++;
1382 else
1383 ieee80211_led_rx(rx->local);
1384 return RX_CONTINUE;
1385 }
1386
1387 static ieee80211_rx_result debug_noinline
1388 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1389 {
1390 struct ieee80211_sub_if_data *sdata = rx->sdata;
1391 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1392 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1393
1394 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1395 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1396 return RX_CONTINUE;
1397
1398 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1399 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1400 return RX_DROP_UNUSABLE;
1401
1402 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1403 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1404 else
1405 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1406
1407 /* Free PS Poll skb here instead of returning RX_DROP that would
1408 * count as an dropped frame. */
1409 dev_kfree_skb(rx->skb);
1410
1411 return RX_QUEUED;
1412 }
1413
1414 static ieee80211_rx_result debug_noinline
1415 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1416 {
1417 u8 *data = rx->skb->data;
1418 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1419
1420 if (!ieee80211_is_data_qos(hdr->frame_control))
1421 return RX_CONTINUE;
1422
1423 /* remove the qos control field, update frame type and meta-data */
1424 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1425 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1426 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1427 /* change frame type to non QOS */
1428 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1429
1430 return RX_CONTINUE;
1431 }
1432
1433 static int
1434 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1435 {
1436 if (unlikely(!rx->sta ||
1437 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1438 return -EACCES;
1439
1440 return 0;
1441 }
1442
1443 static int
1444 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1445 {
1446 struct sk_buff *skb = rx->skb;
1447 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1448
1449 /*
1450 * Pass through unencrypted frames if the hardware has
1451 * decrypted them already.
1452 */
1453 if (status->flag & RX_FLAG_DECRYPTED)
1454 return 0;
1455
1456 /* Drop unencrypted frames if key is set. */
1457 if (unlikely(!ieee80211_has_protected(fc) &&
1458 !ieee80211_is_nullfunc(fc) &&
1459 ieee80211_is_data(fc) &&
1460 (rx->key || rx->sdata->drop_unencrypted)))
1461 return -EACCES;
1462
1463 return 0;
1464 }
1465
1466 static int
1467 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1468 {
1469 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1470 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1471 __le16 fc = hdr->frame_control;
1472
1473 /*
1474 * Pass through unencrypted frames if the hardware has
1475 * decrypted them already.
1476 */
1477 if (status->flag & RX_FLAG_DECRYPTED)
1478 return 0;
1479
1480 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1481 if (unlikely(!ieee80211_has_protected(fc) &&
1482 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1483 rx->key))
1484 return -EACCES;
1485 /* BIP does not use Protected field, so need to check MMIE */
1486 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1487 ieee80211_get_mmie_keyidx(rx->skb) < 0))
1488 return -EACCES;
1489 /*
1490 * When using MFP, Action frames are not allowed prior to
1491 * having configured keys.
1492 */
1493 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1494 ieee80211_is_robust_mgmt_frame(
1495 (struct ieee80211_hdr *) rx->skb->data)))
1496 return -EACCES;
1497 }
1498
1499 return 0;
1500 }
1501
1502 static int
1503 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1504 {
1505 struct ieee80211_sub_if_data *sdata = rx->sdata;
1506 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1507
1508 if (ieee80211_has_a4(hdr->frame_control) &&
1509 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1510 return -1;
1511
1512 if (is_multicast_ether_addr(hdr->addr1) &&
1513 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1514 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1515 return -1;
1516
1517 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1518 }
1519
1520 /*
1521 * requires that rx->skb is a frame with ethernet header
1522 */
1523 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1524 {
1525 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1526 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1527 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1528
1529 /*
1530 * Allow EAPOL frames to us/the PAE group address regardless
1531 * of whether the frame was encrypted or not.
1532 */
1533 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1534 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1535 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1536 return true;
1537
1538 if (ieee80211_802_1x_port_control(rx) ||
1539 ieee80211_drop_unencrypted(rx, fc))
1540 return false;
1541
1542 return true;
1543 }
1544
1545 /*
1546 * requires that rx->skb is a frame with ethernet header
1547 */
1548 static void
1549 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1550 {
1551 struct ieee80211_sub_if_data *sdata = rx->sdata;
1552 struct net_device *dev = sdata->dev;
1553 struct sk_buff *skb, *xmit_skb;
1554 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1555 struct sta_info *dsta;
1556 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1557
1558 skb = rx->skb;
1559 xmit_skb = NULL;
1560
1561 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1562 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1563 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1564 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1565 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1566 if (is_multicast_ether_addr(ehdr->h_dest)) {
1567 /*
1568 * send multicast frames both to higher layers in
1569 * local net stack and back to the wireless medium
1570 */
1571 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1572 if (!xmit_skb && net_ratelimit())
1573 printk(KERN_DEBUG "%s: failed to clone "
1574 "multicast frame\n", dev->name);
1575 } else {
1576 dsta = sta_info_get(sdata, skb->data);
1577 if (dsta) {
1578 /*
1579 * The destination station is associated to
1580 * this AP (in this VLAN), so send the frame
1581 * directly to it and do not pass it to local
1582 * net stack.
1583 */
1584 xmit_skb = skb;
1585 skb = NULL;
1586 }
1587 }
1588 }
1589
1590 if (skb) {
1591 int align __maybe_unused;
1592
1593 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1594 /*
1595 * 'align' will only take the values 0 or 2 here
1596 * since all frames are required to be aligned
1597 * to 2-byte boundaries when being passed to
1598 * mac80211. That also explains the __skb_push()
1599 * below.
1600 */
1601 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1602 if (align) {
1603 if (WARN_ON(skb_headroom(skb) < 3)) {
1604 dev_kfree_skb(skb);
1605 skb = NULL;
1606 } else {
1607 u8 *data = skb->data;
1608 size_t len = skb_headlen(skb);
1609 skb->data -= align;
1610 memmove(skb->data, data, len);
1611 skb_set_tail_pointer(skb, len);
1612 }
1613 }
1614 #endif
1615
1616 if (skb) {
1617 /* deliver to local stack */
1618 skb->protocol = eth_type_trans(skb, dev);
1619 memset(skb->cb, 0, sizeof(skb->cb));
1620 netif_receive_skb(skb);
1621 }
1622 }
1623
1624 if (xmit_skb) {
1625 /* send to wireless media */
1626 xmit_skb->protocol = htons(ETH_P_802_3);
1627 skb_reset_network_header(xmit_skb);
1628 skb_reset_mac_header(xmit_skb);
1629 dev_queue_xmit(xmit_skb);
1630 }
1631 }
1632
1633 static ieee80211_rx_result debug_noinline
1634 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1635 {
1636 struct net_device *dev = rx->sdata->dev;
1637 struct sk_buff *skb = rx->skb;
1638 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1639 __le16 fc = hdr->frame_control;
1640 struct sk_buff_head frame_list;
1641 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1642
1643 if (unlikely(!ieee80211_is_data(fc)))
1644 return RX_CONTINUE;
1645
1646 if (unlikely(!ieee80211_is_data_present(fc)))
1647 return RX_DROP_MONITOR;
1648
1649 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1650 return RX_CONTINUE;
1651
1652 if (ieee80211_has_a4(hdr->frame_control) &&
1653 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1654 !rx->sdata->u.vlan.sta)
1655 return RX_DROP_UNUSABLE;
1656
1657 if (is_multicast_ether_addr(hdr->addr1) &&
1658 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1659 rx->sdata->u.vlan.sta) ||
1660 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1661 rx->sdata->u.mgd.use_4addr)))
1662 return RX_DROP_UNUSABLE;
1663
1664 skb->dev = dev;
1665 __skb_queue_head_init(&frame_list);
1666
1667 if (skb_linearize(skb))
1668 return RX_DROP_UNUSABLE;
1669
1670 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1671 rx->sdata->vif.type,
1672 rx->local->hw.extra_tx_headroom);
1673
1674 while (!skb_queue_empty(&frame_list)) {
1675 rx->skb = __skb_dequeue(&frame_list);
1676
1677 if (!ieee80211_frame_allowed(rx, fc)) {
1678 dev_kfree_skb(rx->skb);
1679 continue;
1680 }
1681 dev->stats.rx_packets++;
1682 dev->stats.rx_bytes += rx->skb->len;
1683
1684 ieee80211_deliver_skb(rx);
1685 }
1686
1687 return RX_QUEUED;
1688 }
1689
1690 #ifdef CONFIG_MAC80211_MESH
1691 static ieee80211_rx_result
1692 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1693 {
1694 struct ieee80211_hdr *hdr;
1695 struct ieee80211s_hdr *mesh_hdr;
1696 unsigned int hdrlen;
1697 struct sk_buff *skb = rx->skb, *fwd_skb;
1698 struct ieee80211_local *local = rx->local;
1699 struct ieee80211_sub_if_data *sdata = rx->sdata;
1700 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1701
1702 hdr = (struct ieee80211_hdr *) skb->data;
1703 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1704 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1705
1706 if (!ieee80211_is_data(hdr->frame_control))
1707 return RX_CONTINUE;
1708
1709 if (!mesh_hdr->ttl)
1710 /* illegal frame */
1711 return RX_DROP_MONITOR;
1712
1713 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1714 struct mesh_path *mppath;
1715 char *proxied_addr;
1716 char *mpp_addr;
1717
1718 if (is_multicast_ether_addr(hdr->addr1)) {
1719 mpp_addr = hdr->addr3;
1720 proxied_addr = mesh_hdr->eaddr1;
1721 } else {
1722 mpp_addr = hdr->addr4;
1723 proxied_addr = mesh_hdr->eaddr2;
1724 }
1725
1726 rcu_read_lock();
1727 mppath = mpp_path_lookup(proxied_addr, sdata);
1728 if (!mppath) {
1729 mpp_path_add(proxied_addr, mpp_addr, sdata);
1730 } else {
1731 spin_lock_bh(&mppath->state_lock);
1732 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1733 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1734 spin_unlock_bh(&mppath->state_lock);
1735 }
1736 rcu_read_unlock();
1737 }
1738
1739 /* Frame has reached destination. Don't forward */
1740 if (!is_multicast_ether_addr(hdr->addr1) &&
1741 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1742 return RX_CONTINUE;
1743
1744 mesh_hdr->ttl--;
1745
1746 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1747 if (!mesh_hdr->ttl)
1748 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1749 dropped_frames_ttl);
1750 else {
1751 struct ieee80211_hdr *fwd_hdr;
1752 struct ieee80211_tx_info *info;
1753
1754 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1755
1756 if (!fwd_skb && net_ratelimit())
1757 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1758 sdata->name);
1759
1760 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1761 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1762 info = IEEE80211_SKB_CB(fwd_skb);
1763 memset(info, 0, sizeof(*info));
1764 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1765 info->control.vif = &rx->sdata->vif;
1766 skb_set_queue_mapping(skb,
1767 ieee80211_select_queue(rx->sdata, fwd_skb));
1768 ieee80211_set_qos_hdr(local, skb);
1769 if (is_multicast_ether_addr(fwd_hdr->addr1))
1770 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1771 fwded_mcast);
1772 else {
1773 int err;
1774 /*
1775 * Save TA to addr1 to send TA a path error if a
1776 * suitable next hop is not found
1777 */
1778 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1779 ETH_ALEN);
1780 err = mesh_nexthop_lookup(fwd_skb, sdata);
1781 /* Failed to immediately resolve next hop:
1782 * fwded frame was dropped or will be added
1783 * later to the pending skb queue. */
1784 if (err)
1785 return RX_DROP_MONITOR;
1786
1787 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1788 fwded_unicast);
1789 }
1790 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1791 fwded_frames);
1792 ieee80211_add_pending_skb(local, fwd_skb);
1793 }
1794 }
1795
1796 if (is_multicast_ether_addr(hdr->addr1) ||
1797 sdata->dev->flags & IFF_PROMISC)
1798 return RX_CONTINUE;
1799 else
1800 return RX_DROP_MONITOR;
1801 }
1802 #endif
1803
1804 static ieee80211_rx_result debug_noinline
1805 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1806 {
1807 struct ieee80211_sub_if_data *sdata = rx->sdata;
1808 struct ieee80211_local *local = rx->local;
1809 struct net_device *dev = sdata->dev;
1810 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1811 __le16 fc = hdr->frame_control;
1812 int err;
1813
1814 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1815 return RX_CONTINUE;
1816
1817 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1818 return RX_DROP_MONITOR;
1819
1820 /*
1821 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1822 * that a 4-addr station can be detected and moved into a separate VLAN
1823 */
1824 if (ieee80211_has_a4(hdr->frame_control) &&
1825 sdata->vif.type == NL80211_IFTYPE_AP)
1826 return RX_DROP_MONITOR;
1827
1828 err = __ieee80211_data_to_8023(rx);
1829 if (unlikely(err))
1830 return RX_DROP_UNUSABLE;
1831
1832 if (!ieee80211_frame_allowed(rx, fc))
1833 return RX_DROP_MONITOR;
1834
1835 rx->skb->dev = dev;
1836
1837 dev->stats.rx_packets++;
1838 dev->stats.rx_bytes += rx->skb->len;
1839
1840 if (ieee80211_is_data(hdr->frame_control) &&
1841 !is_multicast_ether_addr(hdr->addr1) &&
1842 local->hw.conf.dynamic_ps_timeout > 0 && local->ps_sdata) {
1843 mod_timer(&local->dynamic_ps_timer, jiffies +
1844 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1845 }
1846
1847 ieee80211_deliver_skb(rx);
1848
1849 return RX_QUEUED;
1850 }
1851
1852 static ieee80211_rx_result debug_noinline
1853 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1854 {
1855 struct ieee80211_local *local = rx->local;
1856 struct ieee80211_hw *hw = &local->hw;
1857 struct sk_buff *skb = rx->skb;
1858 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1859 struct tid_ampdu_rx *tid_agg_rx;
1860 u16 start_seq_num;
1861 u16 tid;
1862
1863 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1864 return RX_CONTINUE;
1865
1866 if (ieee80211_is_back_req(bar->frame_control)) {
1867 struct {
1868 __le16 control, start_seq_num;
1869 } __packed bar_data;
1870
1871 if (!rx->sta)
1872 return RX_DROP_MONITOR;
1873
1874 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1875 &bar_data, sizeof(bar_data)))
1876 return RX_DROP_MONITOR;
1877
1878 tid = le16_to_cpu(bar_data.control) >> 12;
1879
1880 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
1881 if (!tid_agg_rx)
1882 return RX_DROP_MONITOR;
1883
1884 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1885
1886 /* reset session timer */
1887 if (tid_agg_rx->timeout)
1888 mod_timer(&tid_agg_rx->session_timer,
1889 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1890
1891 /* release stored frames up to start of BAR */
1892 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1893 frames);
1894 kfree_skb(skb);
1895 return RX_QUEUED;
1896 }
1897
1898 /*
1899 * After this point, we only want management frames,
1900 * so we can drop all remaining control frames to
1901 * cooked monitor interfaces.
1902 */
1903 return RX_DROP_MONITOR;
1904 }
1905
1906 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1907 struct ieee80211_mgmt *mgmt,
1908 size_t len)
1909 {
1910 struct ieee80211_local *local = sdata->local;
1911 struct sk_buff *skb;
1912 struct ieee80211_mgmt *resp;
1913
1914 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1915 /* Not to own unicast address */
1916 return;
1917 }
1918
1919 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1920 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1921 /* Not from the current AP or not associated yet. */
1922 return;
1923 }
1924
1925 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1926 /* Too short SA Query request frame */
1927 return;
1928 }
1929
1930 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1931 if (skb == NULL)
1932 return;
1933
1934 skb_reserve(skb, local->hw.extra_tx_headroom);
1935 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1936 memset(resp, 0, 24);
1937 memcpy(resp->da, mgmt->sa, ETH_ALEN);
1938 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1939 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1940 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1941 IEEE80211_STYPE_ACTION);
1942 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1943 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1944 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1945 memcpy(resp->u.action.u.sa_query.trans_id,
1946 mgmt->u.action.u.sa_query.trans_id,
1947 WLAN_SA_QUERY_TR_ID_LEN);
1948
1949 ieee80211_tx_skb(sdata, skb);
1950 }
1951
1952 static ieee80211_rx_result debug_noinline
1953 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
1954 {
1955 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1956 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1957
1958 /*
1959 * From here on, look only at management frames.
1960 * Data and control frames are already handled,
1961 * and unknown (reserved) frames are useless.
1962 */
1963 if (rx->skb->len < 24)
1964 return RX_DROP_MONITOR;
1965
1966 if (!ieee80211_is_mgmt(mgmt->frame_control))
1967 return RX_DROP_MONITOR;
1968
1969 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1970 return RX_DROP_MONITOR;
1971
1972 if (ieee80211_drop_unencrypted_mgmt(rx))
1973 return RX_DROP_UNUSABLE;
1974
1975 return RX_CONTINUE;
1976 }
1977
1978 static ieee80211_rx_result debug_noinline
1979 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
1980 {
1981 struct ieee80211_local *local = rx->local;
1982 struct ieee80211_sub_if_data *sdata = rx->sdata;
1983 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1984 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1985 int len = rx->skb->len;
1986
1987 if (!ieee80211_is_action(mgmt->frame_control))
1988 return RX_CONTINUE;
1989
1990 /* drop too small frames */
1991 if (len < IEEE80211_MIN_ACTION_SIZE)
1992 return RX_DROP_UNUSABLE;
1993
1994 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
1995 return RX_DROP_UNUSABLE;
1996
1997 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1998 return RX_DROP_UNUSABLE;
1999
2000 switch (mgmt->u.action.category) {
2001 case WLAN_CATEGORY_BACK:
2002 /*
2003 * The aggregation code is not prepared to handle
2004 * anything but STA/AP due to the BSSID handling;
2005 * IBSS could work in the code but isn't supported
2006 * by drivers or the standard.
2007 */
2008 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2009 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2010 sdata->vif.type != NL80211_IFTYPE_AP)
2011 break;
2012
2013 /* verify action_code is present */
2014 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2015 break;
2016
2017 switch (mgmt->u.action.u.addba_req.action_code) {
2018 case WLAN_ACTION_ADDBA_REQ:
2019 if (len < (IEEE80211_MIN_ACTION_SIZE +
2020 sizeof(mgmt->u.action.u.addba_req)))
2021 goto invalid;
2022 break;
2023 case WLAN_ACTION_ADDBA_RESP:
2024 if (len < (IEEE80211_MIN_ACTION_SIZE +
2025 sizeof(mgmt->u.action.u.addba_resp)))
2026 goto invalid;
2027 break;
2028 case WLAN_ACTION_DELBA:
2029 if (len < (IEEE80211_MIN_ACTION_SIZE +
2030 sizeof(mgmt->u.action.u.delba)))
2031 goto invalid;
2032 break;
2033 default:
2034 goto invalid;
2035 }
2036
2037 goto queue;
2038 case WLAN_CATEGORY_SPECTRUM_MGMT:
2039 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2040 break;
2041
2042 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2043 break;
2044
2045 /* verify action_code is present */
2046 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2047 break;
2048
2049 switch (mgmt->u.action.u.measurement.action_code) {
2050 case WLAN_ACTION_SPCT_MSR_REQ:
2051 if (len < (IEEE80211_MIN_ACTION_SIZE +
2052 sizeof(mgmt->u.action.u.measurement)))
2053 break;
2054 ieee80211_process_measurement_req(sdata, mgmt, len);
2055 goto handled;
2056 case WLAN_ACTION_SPCT_CHL_SWITCH:
2057 if (len < (IEEE80211_MIN_ACTION_SIZE +
2058 sizeof(mgmt->u.action.u.chan_switch)))
2059 break;
2060
2061 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2062 break;
2063
2064 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2065 break;
2066
2067 goto queue;
2068 }
2069 break;
2070 case WLAN_CATEGORY_SA_QUERY:
2071 if (len < (IEEE80211_MIN_ACTION_SIZE +
2072 sizeof(mgmt->u.action.u.sa_query)))
2073 break;
2074
2075 switch (mgmt->u.action.u.sa_query.action) {
2076 case WLAN_ACTION_SA_QUERY_REQUEST:
2077 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2078 break;
2079 ieee80211_process_sa_query_req(sdata, mgmt, len);
2080 goto handled;
2081 }
2082 break;
2083 case WLAN_CATEGORY_MESH_PLINK:
2084 case WLAN_CATEGORY_MESH_PATH_SEL:
2085 if (!ieee80211_vif_is_mesh(&sdata->vif))
2086 break;
2087 goto queue;
2088 }
2089
2090 return RX_CONTINUE;
2091
2092 invalid:
2093 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2094 /* will return in the next handlers */
2095 return RX_CONTINUE;
2096
2097 handled:
2098 if (rx->sta)
2099 rx->sta->rx_packets++;
2100 dev_kfree_skb(rx->skb);
2101 return RX_QUEUED;
2102
2103 queue:
2104 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2105 skb_queue_tail(&sdata->skb_queue, rx->skb);
2106 ieee80211_queue_work(&local->hw, &sdata->work);
2107 if (rx->sta)
2108 rx->sta->rx_packets++;
2109 return RX_QUEUED;
2110 }
2111
2112 static ieee80211_rx_result debug_noinline
2113 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2114 {
2115 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2116
2117 /* skip known-bad action frames and return them in the next handler */
2118 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2119 return RX_CONTINUE;
2120
2121 /*
2122 * Getting here means the kernel doesn't know how to handle
2123 * it, but maybe userspace does ... include returned frames
2124 * so userspace can register for those to know whether ones
2125 * it transmitted were processed or returned.
2126 */
2127
2128 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2129 rx->skb->data, rx->skb->len,
2130 GFP_ATOMIC)) {
2131 if (rx->sta)
2132 rx->sta->rx_packets++;
2133 dev_kfree_skb(rx->skb);
2134 return RX_QUEUED;
2135 }
2136
2137
2138 return RX_CONTINUE;
2139 }
2140
2141 static ieee80211_rx_result debug_noinline
2142 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2143 {
2144 struct ieee80211_local *local = rx->local;
2145 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2146 struct sk_buff *nskb;
2147 struct ieee80211_sub_if_data *sdata = rx->sdata;
2148 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2149
2150 if (!ieee80211_is_action(mgmt->frame_control))
2151 return RX_CONTINUE;
2152
2153 /*
2154 * For AP mode, hostapd is responsible for handling any action
2155 * frames that we didn't handle, including returning unknown
2156 * ones. For all other modes we will return them to the sender,
2157 * setting the 0x80 bit in the action category, as required by
2158 * 802.11-2007 7.3.1.11.
2159 * Newer versions of hostapd shall also use the management frame
2160 * registration mechanisms, but older ones still use cooked
2161 * monitor interfaces so push all frames there.
2162 */
2163 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2164 (sdata->vif.type == NL80211_IFTYPE_AP ||
2165 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2166 return RX_DROP_MONITOR;
2167
2168 /* do not return rejected action frames */
2169 if (mgmt->u.action.category & 0x80)
2170 return RX_DROP_UNUSABLE;
2171
2172 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2173 GFP_ATOMIC);
2174 if (nskb) {
2175 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2176
2177 nmgmt->u.action.category |= 0x80;
2178 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2179 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2180
2181 memset(nskb->cb, 0, sizeof(nskb->cb));
2182
2183 ieee80211_tx_skb(rx->sdata, nskb);
2184 }
2185 dev_kfree_skb(rx->skb);
2186 return RX_QUEUED;
2187 }
2188
2189 static ieee80211_rx_result debug_noinline
2190 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2191 {
2192 struct ieee80211_sub_if_data *sdata = rx->sdata;
2193 ieee80211_rx_result rxs;
2194 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2195 __le16 stype;
2196
2197 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2198 if (rxs != RX_CONTINUE)
2199 return rxs;
2200
2201 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2202
2203 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2204 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2205 sdata->vif.type != NL80211_IFTYPE_STATION)
2206 return RX_DROP_MONITOR;
2207
2208 switch (stype) {
2209 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2210 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2211 /* process for all: mesh, mlme, ibss */
2212 break;
2213 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2214 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2215 /* process only for station */
2216 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2217 return RX_DROP_MONITOR;
2218 break;
2219 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2220 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2221 /* process only for ibss */
2222 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2223 return RX_DROP_MONITOR;
2224 break;
2225 default:
2226 return RX_DROP_MONITOR;
2227 }
2228
2229 /* queue up frame and kick off work to process it */
2230 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2231 skb_queue_tail(&sdata->skb_queue, rx->skb);
2232 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2233 if (rx->sta)
2234 rx->sta->rx_packets++;
2235
2236 return RX_QUEUED;
2237 }
2238
2239 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2240 struct ieee80211_rx_data *rx)
2241 {
2242 int keyidx;
2243 unsigned int hdrlen;
2244
2245 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2246 if (rx->skb->len >= hdrlen + 4)
2247 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2248 else
2249 keyidx = -1;
2250
2251 if (!rx->sta) {
2252 /*
2253 * Some hardware seem to generate incorrect Michael MIC
2254 * reports; ignore them to avoid triggering countermeasures.
2255 */
2256 return;
2257 }
2258
2259 if (!ieee80211_has_protected(hdr->frame_control))
2260 return;
2261
2262 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2263 /*
2264 * APs with pairwise keys should never receive Michael MIC
2265 * errors for non-zero keyidx because these are reserved for
2266 * group keys and only the AP is sending real multicast
2267 * frames in the BSS.
2268 */
2269 return;
2270 }
2271
2272 if (!ieee80211_is_data(hdr->frame_control) &&
2273 !ieee80211_is_auth(hdr->frame_control))
2274 return;
2275
2276 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2277 GFP_ATOMIC);
2278 }
2279
2280 /* TODO: use IEEE80211_RX_FRAGMENTED */
2281 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2282 struct ieee80211_rate *rate)
2283 {
2284 struct ieee80211_sub_if_data *sdata;
2285 struct ieee80211_local *local = rx->local;
2286 struct ieee80211_rtap_hdr {
2287 struct ieee80211_radiotap_header hdr;
2288 u8 flags;
2289 u8 rate_or_pad;
2290 __le16 chan_freq;
2291 __le16 chan_flags;
2292 } __packed *rthdr;
2293 struct sk_buff *skb = rx->skb, *skb2;
2294 struct net_device *prev_dev = NULL;
2295 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2296
2297 /*
2298 * If cooked monitor has been processed already, then
2299 * don't do it again. If not, set the flag.
2300 */
2301 if (rx->flags & IEEE80211_RX_CMNTR)
2302 goto out_free_skb;
2303 rx->flags |= IEEE80211_RX_CMNTR;
2304
2305 if (skb_headroom(skb) < sizeof(*rthdr) &&
2306 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2307 goto out_free_skb;
2308
2309 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2310 memset(rthdr, 0, sizeof(*rthdr));
2311 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2312 rthdr->hdr.it_present =
2313 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2314 (1 << IEEE80211_RADIOTAP_CHANNEL));
2315
2316 if (rate) {
2317 rthdr->rate_or_pad = rate->bitrate / 5;
2318 rthdr->hdr.it_present |=
2319 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2320 }
2321 rthdr->chan_freq = cpu_to_le16(status->freq);
2322
2323 if (status->band == IEEE80211_BAND_5GHZ)
2324 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2325 IEEE80211_CHAN_5GHZ);
2326 else
2327 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2328 IEEE80211_CHAN_2GHZ);
2329
2330 skb_set_mac_header(skb, 0);
2331 skb->ip_summed = CHECKSUM_UNNECESSARY;
2332 skb->pkt_type = PACKET_OTHERHOST;
2333 skb->protocol = htons(ETH_P_802_2);
2334
2335 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2336 if (!ieee80211_sdata_running(sdata))
2337 continue;
2338
2339 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2340 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2341 continue;
2342
2343 if (prev_dev) {
2344 skb2 = skb_clone(skb, GFP_ATOMIC);
2345 if (skb2) {
2346 skb2->dev = prev_dev;
2347 netif_receive_skb(skb2);
2348 }
2349 }
2350
2351 prev_dev = sdata->dev;
2352 sdata->dev->stats.rx_packets++;
2353 sdata->dev->stats.rx_bytes += skb->len;
2354 }
2355
2356 if (prev_dev) {
2357 skb->dev = prev_dev;
2358 netif_receive_skb(skb);
2359 return;
2360 }
2361
2362 out_free_skb:
2363 dev_kfree_skb(skb);
2364 }
2365
2366 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2367 ieee80211_rx_result res)
2368 {
2369 switch (res) {
2370 case RX_DROP_MONITOR:
2371 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2372 if (rx->sta)
2373 rx->sta->rx_dropped++;
2374 /* fall through */
2375 case RX_CONTINUE: {
2376 struct ieee80211_rate *rate = NULL;
2377 struct ieee80211_supported_band *sband;
2378 struct ieee80211_rx_status *status;
2379
2380 status = IEEE80211_SKB_RXCB((rx->skb));
2381
2382 sband = rx->local->hw.wiphy->bands[status->band];
2383 if (!(status->flag & RX_FLAG_HT))
2384 rate = &sband->bitrates[status->rate_idx];
2385
2386 ieee80211_rx_cooked_monitor(rx, rate);
2387 break;
2388 }
2389 case RX_DROP_UNUSABLE:
2390 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2391 if (rx->sta)
2392 rx->sta->rx_dropped++;
2393 dev_kfree_skb(rx->skb);
2394 break;
2395 case RX_QUEUED:
2396 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2397 break;
2398 }
2399 }
2400
2401 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2402 struct sk_buff_head *frames)
2403 {
2404 ieee80211_rx_result res = RX_DROP_MONITOR;
2405 struct sk_buff *skb;
2406
2407 #define CALL_RXH(rxh) \
2408 do { \
2409 res = rxh(rx); \
2410 if (res != RX_CONTINUE) \
2411 goto rxh_next; \
2412 } while (0);
2413
2414 while ((skb = __skb_dequeue(frames))) {
2415 /*
2416 * all the other fields are valid across frames
2417 * that belong to an aMPDU since they are on the
2418 * same TID from the same station
2419 */
2420 rx->skb = skb;
2421 rx->flags = 0;
2422
2423 CALL_RXH(ieee80211_rx_h_decrypt)
2424 CALL_RXH(ieee80211_rx_h_check_more_data)
2425 CALL_RXH(ieee80211_rx_h_sta_process)
2426 CALL_RXH(ieee80211_rx_h_defragment)
2427 CALL_RXH(ieee80211_rx_h_ps_poll)
2428 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2429 /* must be after MMIC verify so header is counted in MPDU mic */
2430 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2431 CALL_RXH(ieee80211_rx_h_amsdu)
2432 #ifdef CONFIG_MAC80211_MESH
2433 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2434 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2435 #endif
2436 CALL_RXH(ieee80211_rx_h_data)
2437
2438 /* special treatment -- needs the queue */
2439 res = ieee80211_rx_h_ctrl(rx, frames);
2440 if (res != RX_CONTINUE)
2441 goto rxh_next;
2442
2443 CALL_RXH(ieee80211_rx_h_mgmt_check)
2444 CALL_RXH(ieee80211_rx_h_action)
2445 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2446 CALL_RXH(ieee80211_rx_h_action_return)
2447 CALL_RXH(ieee80211_rx_h_mgmt)
2448
2449 rxh_next:
2450 ieee80211_rx_handlers_result(rx, res);
2451
2452 #undef CALL_RXH
2453 }
2454 }
2455
2456 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2457 {
2458 struct sk_buff_head reorder_release;
2459 ieee80211_rx_result res = RX_DROP_MONITOR;
2460
2461 __skb_queue_head_init(&reorder_release);
2462
2463 #define CALL_RXH(rxh) \
2464 do { \
2465 res = rxh(rx); \
2466 if (res != RX_CONTINUE) \
2467 goto rxh_next; \
2468 } while (0);
2469
2470 CALL_RXH(ieee80211_rx_h_passive_scan)
2471 CALL_RXH(ieee80211_rx_h_check)
2472
2473 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2474
2475 ieee80211_rx_handlers(rx, &reorder_release);
2476 return;
2477
2478 rxh_next:
2479 ieee80211_rx_handlers_result(rx, res);
2480
2481 #undef CALL_RXH
2482 }
2483
2484 /*
2485 * This function makes calls into the RX path. Therefore the
2486 * caller must hold the sta_info->lock and everything has to
2487 * be under rcu_read_lock protection as well.
2488 */
2489 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2490 {
2491 struct sk_buff_head frames;
2492 struct ieee80211_rx_data rx = {
2493 .sta = sta,
2494 .sdata = sta->sdata,
2495 .local = sta->local,
2496 .queue = tid,
2497 };
2498 struct tid_ampdu_rx *tid_agg_rx;
2499
2500 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2501 if (!tid_agg_rx)
2502 return;
2503
2504 __skb_queue_head_init(&frames);
2505
2506 spin_lock(&tid_agg_rx->reorder_lock);
2507 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx, &frames);
2508 spin_unlock(&tid_agg_rx->reorder_lock);
2509
2510 ieee80211_rx_handlers(&rx, &frames);
2511 }
2512
2513 /* main receive path */
2514
2515 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2516 struct ieee80211_hdr *hdr)
2517 {
2518 struct ieee80211_sub_if_data *sdata = rx->sdata;
2519 struct sk_buff *skb = rx->skb;
2520 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2521 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2522 int multicast = is_multicast_ether_addr(hdr->addr1);
2523
2524 switch (sdata->vif.type) {
2525 case NL80211_IFTYPE_STATION:
2526 if (!bssid && !sdata->u.mgd.use_4addr)
2527 return 0;
2528 if (!multicast &&
2529 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2530 if (!(sdata->dev->flags & IFF_PROMISC))
2531 return 0;
2532 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2533 }
2534 break;
2535 case NL80211_IFTYPE_ADHOC:
2536 if (!bssid)
2537 return 0;
2538 if (ieee80211_is_beacon(hdr->frame_control)) {
2539 return 1;
2540 }
2541 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2542 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2543 return 0;
2544 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2545 } else if (!multicast &&
2546 compare_ether_addr(sdata->vif.addr,
2547 hdr->addr1) != 0) {
2548 if (!(sdata->dev->flags & IFF_PROMISC))
2549 return 0;
2550 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2551 } else if (!rx->sta) {
2552 int rate_idx;
2553 if (status->flag & RX_FLAG_HT)
2554 rate_idx = 0; /* TODO: HT rates */
2555 else
2556 rate_idx = status->rate_idx;
2557 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2558 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2559 }
2560 break;
2561 case NL80211_IFTYPE_MESH_POINT:
2562 if (!multicast &&
2563 compare_ether_addr(sdata->vif.addr,
2564 hdr->addr1) != 0) {
2565 if (!(sdata->dev->flags & IFF_PROMISC))
2566 return 0;
2567
2568 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2569 }
2570 break;
2571 case NL80211_IFTYPE_AP_VLAN:
2572 case NL80211_IFTYPE_AP:
2573 if (!bssid) {
2574 if (compare_ether_addr(sdata->vif.addr,
2575 hdr->addr1))
2576 return 0;
2577 } else if (!ieee80211_bssid_match(bssid,
2578 sdata->vif.addr)) {
2579 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2580 return 0;
2581 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2582 }
2583 break;
2584 case NL80211_IFTYPE_WDS:
2585 if (bssid || !ieee80211_is_data(hdr->frame_control))
2586 return 0;
2587 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2588 return 0;
2589 break;
2590 default:
2591 /* should never get here */
2592 WARN_ON(1);
2593 break;
2594 }
2595
2596 return 1;
2597 }
2598
2599 /*
2600 * This function returns whether or not the SKB
2601 * was destined for RX processing or not, which,
2602 * if consume is true, is equivalent to whether
2603 * or not the skb was consumed.
2604 */
2605 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2606 struct sk_buff *skb, bool consume)
2607 {
2608 struct ieee80211_local *local = rx->local;
2609 struct ieee80211_sub_if_data *sdata = rx->sdata;
2610 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2611 struct ieee80211_hdr *hdr = (void *)skb->data;
2612 int prepares;
2613
2614 rx->skb = skb;
2615 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2616 prepares = prepare_for_handlers(rx, hdr);
2617
2618 if (!prepares)
2619 return false;
2620
2621 if (status->flag & RX_FLAG_MMIC_ERROR) {
2622 if (status->rx_flags & IEEE80211_RX_RA_MATCH)
2623 ieee80211_rx_michael_mic_report(hdr, rx);
2624 return false;
2625 }
2626
2627 if (!consume) {
2628 skb = skb_copy(skb, GFP_ATOMIC);
2629 if (!skb) {
2630 if (net_ratelimit())
2631 wiphy_debug(local->hw.wiphy,
2632 "failed to copy multicast frame for %s\n",
2633 sdata->name);
2634 return true;
2635 }
2636
2637 rx->skb = skb;
2638 }
2639
2640 ieee80211_invoke_rx_handlers(rx);
2641 return true;
2642 }
2643
2644 /*
2645 * This is the actual Rx frames handler. as it blongs to Rx path it must
2646 * be called with rcu_read_lock protection.
2647 */
2648 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2649 struct sk_buff *skb)
2650 {
2651 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2652 struct ieee80211_local *local = hw_to_local(hw);
2653 struct ieee80211_sub_if_data *sdata;
2654 struct ieee80211_hdr *hdr;
2655 __le16 fc;
2656 struct ieee80211_rx_data rx;
2657 struct ieee80211_sub_if_data *prev;
2658 struct sta_info *sta, *tmp, *prev_sta;
2659 int err = 0;
2660
2661 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2662 memset(&rx, 0, sizeof(rx));
2663 rx.skb = skb;
2664 rx.local = local;
2665
2666 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2667 local->dot11ReceivedFragmentCount++;
2668
2669 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2670 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2671 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2672
2673 if (ieee80211_is_mgmt(fc))
2674 err = skb_linearize(skb);
2675 else
2676 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2677
2678 if (err) {
2679 dev_kfree_skb(skb);
2680 return;
2681 }
2682
2683 hdr = (struct ieee80211_hdr *)skb->data;
2684 ieee80211_parse_qos(&rx);
2685 ieee80211_verify_alignment(&rx);
2686
2687 if (ieee80211_is_data(fc)) {
2688 prev_sta = NULL;
2689
2690 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2691 if (!prev_sta) {
2692 prev_sta = sta;
2693 continue;
2694 }
2695
2696 rx.sta = prev_sta;
2697 rx.sdata = prev_sta->sdata;
2698 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2699
2700 prev_sta = sta;
2701 }
2702
2703 if (prev_sta) {
2704 rx.sta = prev_sta;
2705 rx.sdata = prev_sta->sdata;
2706
2707 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2708 return;
2709 }
2710 }
2711
2712 prev = NULL;
2713
2714 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2715 if (!ieee80211_sdata_running(sdata))
2716 continue;
2717
2718 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2719 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2720 continue;
2721
2722 /*
2723 * frame is destined for this interface, but if it's
2724 * not also for the previous one we handle that after
2725 * the loop to avoid copying the SKB once too much
2726 */
2727
2728 if (!prev) {
2729 prev = sdata;
2730 continue;
2731 }
2732
2733 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2734 rx.sdata = prev;
2735 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2736
2737 prev = sdata;
2738 }
2739
2740 if (prev) {
2741 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2742 rx.sdata = prev;
2743
2744 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2745 return;
2746 }
2747
2748 dev_kfree_skb(skb);
2749 }
2750
2751 /*
2752 * This is the receive path handler. It is called by a low level driver when an
2753 * 802.11 MPDU is received from the hardware.
2754 */
2755 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2756 {
2757 struct ieee80211_local *local = hw_to_local(hw);
2758 struct ieee80211_rate *rate = NULL;
2759 struct ieee80211_supported_band *sband;
2760 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2761
2762 WARN_ON_ONCE(softirq_count() == 0);
2763
2764 if (WARN_ON(status->band < 0 ||
2765 status->band >= IEEE80211_NUM_BANDS))
2766 goto drop;
2767
2768 sband = local->hw.wiphy->bands[status->band];
2769 if (WARN_ON(!sband))
2770 goto drop;
2771
2772 /*
2773 * If we're suspending, it is possible although not too likely
2774 * that we'd be receiving frames after having already partially
2775 * quiesced the stack. We can't process such frames then since
2776 * that might, for example, cause stations to be added or other
2777 * driver callbacks be invoked.
2778 */
2779 if (unlikely(local->quiescing || local->suspended))
2780 goto drop;
2781
2782 /*
2783 * The same happens when we're not even started,
2784 * but that's worth a warning.
2785 */
2786 if (WARN_ON(!local->started))
2787 goto drop;
2788
2789 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2790 /*
2791 * Validate the rate, unless a PLCP error means that
2792 * we probably can't have a valid rate here anyway.
2793 */
2794
2795 if (status->flag & RX_FLAG_HT) {
2796 /*
2797 * rate_idx is MCS index, which can be [0-76]
2798 * as documented on:
2799 *
2800 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2801 *
2802 * Anything else would be some sort of driver or
2803 * hardware error. The driver should catch hardware
2804 * errors.
2805 */
2806 if (WARN((status->rate_idx < 0 ||
2807 status->rate_idx > 76),
2808 "Rate marked as an HT rate but passed "
2809 "status->rate_idx is not "
2810 "an MCS index [0-76]: %d (0x%02x)\n",
2811 status->rate_idx,
2812 status->rate_idx))
2813 goto drop;
2814 } else {
2815 if (WARN_ON(status->rate_idx < 0 ||
2816 status->rate_idx >= sband->n_bitrates))
2817 goto drop;
2818 rate = &sband->bitrates[status->rate_idx];
2819 }
2820 }
2821
2822 status->rx_flags = 0;
2823
2824 /*
2825 * key references and virtual interfaces are protected using RCU
2826 * and this requires that we are in a read-side RCU section during
2827 * receive processing
2828 */
2829 rcu_read_lock();
2830
2831 /*
2832 * Frames with failed FCS/PLCP checksum are not returned,
2833 * all other frames are returned without radiotap header
2834 * if it was previously present.
2835 * Also, frames with less than 16 bytes are dropped.
2836 */
2837 skb = ieee80211_rx_monitor(local, skb, rate);
2838 if (!skb) {
2839 rcu_read_unlock();
2840 return;
2841 }
2842
2843 __ieee80211_rx_handle_packet(hw, skb);
2844
2845 rcu_read_unlock();
2846
2847 return;
2848 drop:
2849 kfree_skb(skb);
2850 }
2851 EXPORT_SYMBOL(ieee80211_rx);
2852
2853 /* This is a version of the rx handler that can be called from hard irq
2854 * context. Post the skb on the queue and schedule the tasklet */
2855 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2856 {
2857 struct ieee80211_local *local = hw_to_local(hw);
2858
2859 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2860
2861 skb->pkt_type = IEEE80211_RX_MSG;
2862 skb_queue_tail(&local->skb_queue, skb);
2863 tasklet_schedule(&local->tasklet);
2864 }
2865 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.088883 seconds and 4 git commands to generate.