c0ad7e879a6ee4a88b5f2106d525df69c5e96fa4
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
20
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "led.h"
24 #include "mesh.h"
25 #include "wep.h"
26 #include "wpa.h"
27 #include "tkip.h"
28 #include "wme.h"
29
30 /*
31 * monitor mode reception
32 *
33 * This function cleans up the SKB, i.e. it removes all the stuff
34 * only useful for monitoring.
35 */
36 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
37 struct sk_buff *skb)
38 {
39 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
40 if (likely(skb->len > FCS_LEN))
41 __pskb_trim(skb, skb->len - FCS_LEN);
42 else {
43 /* driver bug */
44 WARN_ON(1);
45 dev_kfree_skb(skb);
46 skb = NULL;
47 }
48 }
49
50 return skb;
51 }
52
53 static inline int should_drop_frame(struct sk_buff *skb,
54 int present_fcs_len)
55 {
56 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
57 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
58
59 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
60 return 1;
61 if (unlikely(skb->len < 16 + present_fcs_len))
62 return 1;
63 if (ieee80211_is_ctl(hdr->frame_control) &&
64 !ieee80211_is_pspoll(hdr->frame_control) &&
65 !ieee80211_is_back_req(hdr->frame_control))
66 return 1;
67 return 0;
68 }
69
70 static int
71 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
72 struct ieee80211_rx_status *status)
73 {
74 int len;
75
76 /* always present fields */
77 len = sizeof(struct ieee80211_radiotap_header) + 9;
78
79 if (status->flag & RX_FLAG_TSFT)
80 len += 8;
81 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
82 len += 1;
83 if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
84 len += 1;
85
86 if (len & 1) /* padding for RX_FLAGS if necessary */
87 len++;
88
89 return len;
90 }
91
92 /*
93 * ieee80211_add_rx_radiotap_header - add radiotap header
94 *
95 * add a radiotap header containing all the fields which the hardware provided.
96 */
97 static void
98 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
99 struct sk_buff *skb,
100 struct ieee80211_rate *rate,
101 int rtap_len)
102 {
103 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
104 struct ieee80211_radiotap_header *rthdr;
105 unsigned char *pos;
106 u16 rx_flags = 0;
107
108 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
109 memset(rthdr, 0, rtap_len);
110
111 /* radiotap header, set always present flags */
112 rthdr->it_present =
113 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
114 (1 << IEEE80211_RADIOTAP_CHANNEL) |
115 (1 << IEEE80211_RADIOTAP_ANTENNA) |
116 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
117 rthdr->it_len = cpu_to_le16(rtap_len);
118
119 pos = (unsigned char *)(rthdr+1);
120
121 /* the order of the following fields is important */
122
123 /* IEEE80211_RADIOTAP_TSFT */
124 if (status->flag & RX_FLAG_TSFT) {
125 put_unaligned_le64(status->mactime, pos);
126 rthdr->it_present |=
127 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
128 pos += 8;
129 }
130
131 /* IEEE80211_RADIOTAP_FLAGS */
132 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
133 *pos |= IEEE80211_RADIOTAP_F_FCS;
134 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
135 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
136 if (status->flag & RX_FLAG_SHORTPRE)
137 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
138 pos++;
139
140 /* IEEE80211_RADIOTAP_RATE */
141 if (status->flag & RX_FLAG_HT) {
142 /*
143 * TODO: add following information into radiotap header once
144 * suitable fields are defined for it:
145 * - MCS index (status->rate_idx)
146 * - HT40 (status->flag & RX_FLAG_40MHZ)
147 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
148 */
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
153 }
154 pos++;
155
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
172
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
179 }
180
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos = status->antenna;
185 pos++;
186
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos - (u8 *)rthdr) & 1)
192 pos++;
193 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195 put_unaligned_le16(rx_flags, pos);
196 pos += 2;
197 }
198
199 /*
200 * This function copies a received frame to all monitor interfaces and
201 * returns a cleaned-up SKB that no longer includes the FCS nor the
202 * radiotap header the driver might have added.
203 */
204 static struct sk_buff *
205 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
206 struct ieee80211_rate *rate)
207 {
208 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
209 struct ieee80211_sub_if_data *sdata;
210 int needed_headroom = 0;
211 struct sk_buff *skb, *skb2;
212 struct net_device *prev_dev = NULL;
213 int present_fcs_len = 0;
214
215 /*
216 * First, we may need to make a copy of the skb because
217 * (1) we need to modify it for radiotap (if not present), and
218 * (2) the other RX handlers will modify the skb we got.
219 *
220 * We don't need to, of course, if we aren't going to return
221 * the SKB because it has a bad FCS/PLCP checksum.
222 */
223
224 /* room for the radiotap header based on driver features */
225 needed_headroom = ieee80211_rx_radiotap_len(local, status);
226
227 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
228 present_fcs_len = FCS_LEN;
229
230 /* make sure hdr->frame_control is on the linear part */
231 if (!pskb_may_pull(origskb, 2)) {
232 dev_kfree_skb(origskb);
233 return NULL;
234 }
235
236 if (!local->monitors) {
237 if (should_drop_frame(origskb, present_fcs_len)) {
238 dev_kfree_skb(origskb);
239 return NULL;
240 }
241
242 return remove_monitor_info(local, origskb);
243 }
244
245 if (should_drop_frame(origskb, present_fcs_len)) {
246 /* only need to expand headroom if necessary */
247 skb = origskb;
248 origskb = NULL;
249
250 /*
251 * This shouldn't trigger often because most devices have an
252 * RX header they pull before we get here, and that should
253 * be big enough for our radiotap information. We should
254 * probably export the length to drivers so that we can have
255 * them allocate enough headroom to start with.
256 */
257 if (skb_headroom(skb) < needed_headroom &&
258 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
259 dev_kfree_skb(skb);
260 return NULL;
261 }
262 } else {
263 /*
264 * Need to make a copy and possibly remove radiotap header
265 * and FCS from the original.
266 */
267 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
268
269 origskb = remove_monitor_info(local, origskb);
270
271 if (!skb)
272 return origskb;
273 }
274
275 /* prepend radiotap information */
276 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
277
278 skb_reset_mac_header(skb);
279 skb->ip_summed = CHECKSUM_UNNECESSARY;
280 skb->pkt_type = PACKET_OTHERHOST;
281 skb->protocol = htons(ETH_P_802_2);
282
283 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
284 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
285 continue;
286
287 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
288 continue;
289
290 if (!ieee80211_sdata_running(sdata))
291 continue;
292
293 if (prev_dev) {
294 skb2 = skb_clone(skb, GFP_ATOMIC);
295 if (skb2) {
296 skb2->dev = prev_dev;
297 netif_rx(skb2);
298 }
299 }
300
301 prev_dev = sdata->dev;
302 sdata->dev->stats.rx_packets++;
303 sdata->dev->stats.rx_bytes += skb->len;
304 }
305
306 if (prev_dev) {
307 skb->dev = prev_dev;
308 netif_rx(skb);
309 } else
310 dev_kfree_skb(skb);
311
312 return origskb;
313 }
314
315
316 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
317 {
318 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
319 int tid;
320
321 /* does the frame have a qos control field? */
322 if (ieee80211_is_data_qos(hdr->frame_control)) {
323 u8 *qc = ieee80211_get_qos_ctl(hdr);
324 /* frame has qos control */
325 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
326 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
327 rx->flags |= IEEE80211_RX_AMSDU;
328 else
329 rx->flags &= ~IEEE80211_RX_AMSDU;
330 } else {
331 /*
332 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
333 *
334 * Sequence numbers for management frames, QoS data
335 * frames with a broadcast/multicast address in the
336 * Address 1 field, and all non-QoS data frames sent
337 * by QoS STAs are assigned using an additional single
338 * modulo-4096 counter, [...]
339 *
340 * We also use that counter for non-QoS STAs.
341 */
342 tid = NUM_RX_DATA_QUEUES - 1;
343 }
344
345 rx->queue = tid;
346 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
347 * For now, set skb->priority to 0 for other cases. */
348 rx->skb->priority = (tid > 7) ? 0 : tid;
349 }
350
351 /**
352 * DOC: Packet alignment
353 *
354 * Drivers always need to pass packets that are aligned to two-byte boundaries
355 * to the stack.
356 *
357 * Additionally, should, if possible, align the payload data in a way that
358 * guarantees that the contained IP header is aligned to a four-byte
359 * boundary. In the case of regular frames, this simply means aligning the
360 * payload to a four-byte boundary (because either the IP header is directly
361 * contained, or IV/RFC1042 headers that have a length divisible by four are
362 * in front of it). If the payload data is not properly aligned and the
363 * architecture doesn't support efficient unaligned operations, mac80211
364 * will align the data.
365 *
366 * With A-MSDU frames, however, the payload data address must yield two modulo
367 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
368 * push the IP header further back to a multiple of four again. Thankfully, the
369 * specs were sane enough this time around to require padding each A-MSDU
370 * subframe to a length that is a multiple of four.
371 *
372 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
373 * the payload is not supported, the driver is required to move the 802.11
374 * header to be directly in front of the payload in that case.
375 */
376 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
377 {
378 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
379 WARN_ONCE((unsigned long)rx->skb->data & 1,
380 "unaligned packet at 0x%p\n", rx->skb->data);
381 #endif
382 }
383
384
385 /* rx handlers */
386
387 static ieee80211_rx_result debug_noinline
388 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
389 {
390 struct ieee80211_local *local = rx->local;
391 struct sk_buff *skb = rx->skb;
392
393 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning)))
394 return ieee80211_scan_rx(rx->sdata, skb);
395
396 if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning) &&
397 (rx->flags & IEEE80211_RX_IN_SCAN))) {
398 /* drop all the other packets during a software scan anyway */
399 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
400 dev_kfree_skb(skb);
401 return RX_QUEUED;
402 }
403
404 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
405 /* scanning finished during invoking of handlers */
406 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
407 return RX_DROP_UNUSABLE;
408 }
409
410 return RX_CONTINUE;
411 }
412
413
414 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
415 {
416 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
417
418 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
419 return 0;
420
421 return ieee80211_is_robust_mgmt_frame(hdr);
422 }
423
424
425 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
426 {
427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428
429 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
430 return 0;
431
432 return ieee80211_is_robust_mgmt_frame(hdr);
433 }
434
435
436 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
437 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
438 {
439 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
440 struct ieee80211_mmie *mmie;
441
442 if (skb->len < 24 + sizeof(*mmie) ||
443 !is_multicast_ether_addr(hdr->da))
444 return -1;
445
446 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
447 return -1; /* not a robust management frame */
448
449 mmie = (struct ieee80211_mmie *)
450 (skb->data + skb->len - sizeof(*mmie));
451 if (mmie->element_id != WLAN_EID_MMIE ||
452 mmie->length != sizeof(*mmie) - 2)
453 return -1;
454
455 return le16_to_cpu(mmie->key_id);
456 }
457
458
459 static ieee80211_rx_result
460 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
461 {
462 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
463 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
464 char *dev_addr = rx->sdata->vif.addr;
465
466 if (ieee80211_is_data(hdr->frame_control)) {
467 if (is_multicast_ether_addr(hdr->addr1)) {
468 if (ieee80211_has_tods(hdr->frame_control) ||
469 !ieee80211_has_fromds(hdr->frame_control))
470 return RX_DROP_MONITOR;
471 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
472 return RX_DROP_MONITOR;
473 } else {
474 if (!ieee80211_has_a4(hdr->frame_control))
475 return RX_DROP_MONITOR;
476 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
477 return RX_DROP_MONITOR;
478 }
479 }
480
481 /* If there is not an established peer link and this is not a peer link
482 * establisment frame, beacon or probe, drop the frame.
483 */
484
485 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
486 struct ieee80211_mgmt *mgmt;
487
488 if (!ieee80211_is_mgmt(hdr->frame_control))
489 return RX_DROP_MONITOR;
490
491 if (ieee80211_is_action(hdr->frame_control)) {
492 mgmt = (struct ieee80211_mgmt *)hdr;
493 if (mgmt->u.action.category != MESH_PLINK_CATEGORY)
494 return RX_DROP_MONITOR;
495 return RX_CONTINUE;
496 }
497
498 if (ieee80211_is_probe_req(hdr->frame_control) ||
499 ieee80211_is_probe_resp(hdr->frame_control) ||
500 ieee80211_is_beacon(hdr->frame_control))
501 return RX_CONTINUE;
502
503 return RX_DROP_MONITOR;
504
505 }
506
507 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
508
509 if (ieee80211_is_data(hdr->frame_control) &&
510 is_multicast_ether_addr(hdr->addr1) &&
511 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
512 return RX_DROP_MONITOR;
513 #undef msh_h_get
514
515 return RX_CONTINUE;
516 }
517
518 #define SEQ_MODULO 0x1000
519 #define SEQ_MASK 0xfff
520
521 static inline int seq_less(u16 sq1, u16 sq2)
522 {
523 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
524 }
525
526 static inline u16 seq_inc(u16 sq)
527 {
528 return (sq + 1) & SEQ_MASK;
529 }
530
531 static inline u16 seq_sub(u16 sq1, u16 sq2)
532 {
533 return (sq1 - sq2) & SEQ_MASK;
534 }
535
536
537 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
538 struct tid_ampdu_rx *tid_agg_rx,
539 int index,
540 struct sk_buff_head *frames)
541 {
542 struct ieee80211_supported_band *sband;
543 struct ieee80211_rate *rate = NULL;
544 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
545 struct ieee80211_rx_status *status;
546
547 if (!skb)
548 goto no_frame;
549
550 status = IEEE80211_SKB_RXCB(skb);
551
552 /* release the reordered frames to stack */
553 sband = hw->wiphy->bands[status->band];
554 if (!(status->flag & RX_FLAG_HT))
555 rate = &sband->bitrates[status->rate_idx];
556 tid_agg_rx->stored_mpdu_num--;
557 tid_agg_rx->reorder_buf[index] = NULL;
558 __skb_queue_tail(frames, skb);
559
560 no_frame:
561 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
562 }
563
564 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
565 struct tid_ampdu_rx *tid_agg_rx,
566 u16 head_seq_num,
567 struct sk_buff_head *frames)
568 {
569 int index;
570
571 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
572 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
573 tid_agg_rx->buf_size;
574 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
575 }
576 }
577
578 /*
579 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
580 * the skb was added to the buffer longer than this time ago, the earlier
581 * frames that have not yet been received are assumed to be lost and the skb
582 * can be released for processing. This may also release other skb's from the
583 * reorder buffer if there are no additional gaps between the frames.
584 */
585 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
586
587 /*
588 * As this function belongs to the RX path it must be under
589 * rcu_read_lock protection. It returns false if the frame
590 * can be processed immediately, true if it was consumed.
591 */
592 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
593 struct tid_ampdu_rx *tid_agg_rx,
594 struct sk_buff *skb,
595 struct sk_buff_head *frames)
596 {
597 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
598 u16 sc = le16_to_cpu(hdr->seq_ctrl);
599 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
600 u16 head_seq_num, buf_size;
601 int index;
602
603 buf_size = tid_agg_rx->buf_size;
604 head_seq_num = tid_agg_rx->head_seq_num;
605
606 /* frame with out of date sequence number */
607 if (seq_less(mpdu_seq_num, head_seq_num)) {
608 dev_kfree_skb(skb);
609 return true;
610 }
611
612 /*
613 * If frame the sequence number exceeds our buffering window
614 * size release some previous frames to make room for this one.
615 */
616 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
617 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
618 /* release stored frames up to new head to stack */
619 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
620 frames);
621 }
622
623 /* Now the new frame is always in the range of the reordering buffer */
624
625 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
626
627 /* check if we already stored this frame */
628 if (tid_agg_rx->reorder_buf[index]) {
629 dev_kfree_skb(skb);
630 return true;
631 }
632
633 /*
634 * If the current MPDU is in the right order and nothing else
635 * is stored we can process it directly, no need to buffer it.
636 */
637 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
638 tid_agg_rx->stored_mpdu_num == 0) {
639 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
640 return false;
641 }
642
643 /* put the frame in the reordering buffer */
644 tid_agg_rx->reorder_buf[index] = skb;
645 tid_agg_rx->reorder_time[index] = jiffies;
646 tid_agg_rx->stored_mpdu_num++;
647 /* release the buffer until next missing frame */
648 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
649 tid_agg_rx->buf_size;
650 if (!tid_agg_rx->reorder_buf[index] &&
651 tid_agg_rx->stored_mpdu_num > 1) {
652 /*
653 * No buffers ready to be released, but check whether any
654 * frames in the reorder buffer have timed out.
655 */
656 int j;
657 int skipped = 1;
658 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
659 j = (j + 1) % tid_agg_rx->buf_size) {
660 if (!tid_agg_rx->reorder_buf[j]) {
661 skipped++;
662 continue;
663 }
664 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
665 HT_RX_REORDER_BUF_TIMEOUT))
666 break;
667
668 #ifdef CONFIG_MAC80211_HT_DEBUG
669 if (net_ratelimit())
670 printk(KERN_DEBUG "%s: release an RX reorder "
671 "frame due to timeout on earlier "
672 "frames\n",
673 wiphy_name(hw->wiphy));
674 #endif
675 ieee80211_release_reorder_frame(hw, tid_agg_rx,
676 j, frames);
677
678 /*
679 * Increment the head seq# also for the skipped slots.
680 */
681 tid_agg_rx->head_seq_num =
682 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
683 skipped = 0;
684 }
685 } else while (tid_agg_rx->reorder_buf[index]) {
686 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
687 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
688 tid_agg_rx->buf_size;
689 }
690
691 return true;
692 }
693
694 /*
695 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
696 * true if the MPDU was buffered, false if it should be processed.
697 */
698 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
699 struct sk_buff_head *frames)
700 {
701 struct sk_buff *skb = rx->skb;
702 struct ieee80211_local *local = rx->local;
703 struct ieee80211_hw *hw = &local->hw;
704 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
705 struct sta_info *sta = rx->sta;
706 struct tid_ampdu_rx *tid_agg_rx;
707 u16 sc;
708 int tid;
709
710 if (!ieee80211_is_data_qos(hdr->frame_control))
711 goto dont_reorder;
712
713 /*
714 * filter the QoS data rx stream according to
715 * STA/TID and check if this STA/TID is on aggregation
716 */
717
718 if (!sta)
719 goto dont_reorder;
720
721 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
722
723 spin_lock(&sta->lock);
724
725 if (!sta->ampdu_mlme.tid_active_rx[tid])
726 goto dont_reorder_unlock;
727
728 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
729
730 /* qos null data frames are excluded */
731 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
732 goto dont_reorder_unlock;
733
734 /* new, potentially un-ordered, ampdu frame - process it */
735
736 /* reset session timer */
737 if (tid_agg_rx->timeout)
738 mod_timer(&tid_agg_rx->session_timer,
739 TU_TO_EXP_TIME(tid_agg_rx->timeout));
740
741 /* if this mpdu is fragmented - terminate rx aggregation session */
742 sc = le16_to_cpu(hdr->seq_ctrl);
743 if (sc & IEEE80211_SCTL_FRAG) {
744 spin_unlock(&sta->lock);
745 __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT,
746 WLAN_REASON_QSTA_REQUIRE_SETUP);
747 dev_kfree_skb(skb);
748 return;
749 }
750
751 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames)) {
752 spin_unlock(&sta->lock);
753 return;
754 }
755
756 dont_reorder_unlock:
757 spin_unlock(&sta->lock);
758 dont_reorder:
759 __skb_queue_tail(frames, skb);
760 }
761
762 static ieee80211_rx_result debug_noinline
763 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
764 {
765 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
766
767 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
768 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
769 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
770 rx->sta->last_seq_ctrl[rx->queue] ==
771 hdr->seq_ctrl)) {
772 if (rx->flags & IEEE80211_RX_RA_MATCH) {
773 rx->local->dot11FrameDuplicateCount++;
774 rx->sta->num_duplicates++;
775 }
776 return RX_DROP_MONITOR;
777 } else
778 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
779 }
780
781 if (unlikely(rx->skb->len < 16)) {
782 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
783 return RX_DROP_MONITOR;
784 }
785
786 /* Drop disallowed frame classes based on STA auth/assoc state;
787 * IEEE 802.11, Chap 5.5.
788 *
789 * mac80211 filters only based on association state, i.e. it drops
790 * Class 3 frames from not associated stations. hostapd sends
791 * deauth/disassoc frames when needed. In addition, hostapd is
792 * responsible for filtering on both auth and assoc states.
793 */
794
795 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
796 return ieee80211_rx_mesh_check(rx);
797
798 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
799 ieee80211_is_pspoll(hdr->frame_control)) &&
800 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
801 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
802 if ((!ieee80211_has_fromds(hdr->frame_control) &&
803 !ieee80211_has_tods(hdr->frame_control) &&
804 ieee80211_is_data(hdr->frame_control)) ||
805 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
806 /* Drop IBSS frames and frames for other hosts
807 * silently. */
808 return RX_DROP_MONITOR;
809 }
810
811 return RX_DROP_MONITOR;
812 }
813
814 return RX_CONTINUE;
815 }
816
817
818 static ieee80211_rx_result debug_noinline
819 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
820 {
821 struct sk_buff *skb = rx->skb;
822 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
823 struct ieee80211_hdr *hdr;
824 int keyidx;
825 int hdrlen;
826 ieee80211_rx_result result = RX_DROP_UNUSABLE;
827 struct ieee80211_key *stakey = NULL;
828 int mmie_keyidx = -1;
829
830 /*
831 * Key selection 101
832 *
833 * There are four types of keys:
834 * - GTK (group keys)
835 * - IGTK (group keys for management frames)
836 * - PTK (pairwise keys)
837 * - STK (station-to-station pairwise keys)
838 *
839 * When selecting a key, we have to distinguish between multicast
840 * (including broadcast) and unicast frames, the latter can only
841 * use PTKs and STKs while the former always use GTKs and IGTKs.
842 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
843 * unicast frames can also use key indices like GTKs. Hence, if we
844 * don't have a PTK/STK we check the key index for a WEP key.
845 *
846 * Note that in a regular BSS, multicast frames are sent by the
847 * AP only, associated stations unicast the frame to the AP first
848 * which then multicasts it on their behalf.
849 *
850 * There is also a slight problem in IBSS mode: GTKs are negotiated
851 * with each station, that is something we don't currently handle.
852 * The spec seems to expect that one negotiates the same key with
853 * every station but there's no such requirement; VLANs could be
854 * possible.
855 */
856
857 /*
858 * No point in finding a key and decrypting if the frame is neither
859 * addressed to us nor a multicast frame.
860 */
861 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
862 return RX_CONTINUE;
863
864 if (skb_linearize(rx->skb))
865 return RX_DROP_UNUSABLE;
866
867 hdr = (struct ieee80211_hdr *)skb->data;
868
869 /* start without a key */
870 rx->key = NULL;
871
872 if (rx->sta)
873 stakey = rcu_dereference(rx->sta->key);
874
875 if (!ieee80211_has_protected(hdr->frame_control))
876 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
877
878 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
879 rx->key = stakey;
880 /* Skip decryption if the frame is not protected. */
881 if (!ieee80211_has_protected(hdr->frame_control))
882 return RX_CONTINUE;
883 } else if (mmie_keyidx >= 0) {
884 /* Broadcast/multicast robust management frame / BIP */
885 if ((status->flag & RX_FLAG_DECRYPTED) &&
886 (status->flag & RX_FLAG_IV_STRIPPED))
887 return RX_CONTINUE;
888
889 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
890 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
891 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
892 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
893 } else if (!ieee80211_has_protected(hdr->frame_control)) {
894 /*
895 * The frame was not protected, so skip decryption. However, we
896 * need to set rx->key if there is a key that could have been
897 * used so that the frame may be dropped if encryption would
898 * have been expected.
899 */
900 struct ieee80211_key *key = NULL;
901 if (ieee80211_is_mgmt(hdr->frame_control) &&
902 is_multicast_ether_addr(hdr->addr1) &&
903 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
904 rx->key = key;
905 else if ((key = rcu_dereference(rx->sdata->default_key)))
906 rx->key = key;
907 return RX_CONTINUE;
908 } else {
909 /*
910 * The device doesn't give us the IV so we won't be
911 * able to look up the key. That's ok though, we
912 * don't need to decrypt the frame, we just won't
913 * be able to keep statistics accurate.
914 * Except for key threshold notifications, should
915 * we somehow allow the driver to tell us which key
916 * the hardware used if this flag is set?
917 */
918 if ((status->flag & RX_FLAG_DECRYPTED) &&
919 (status->flag & RX_FLAG_IV_STRIPPED))
920 return RX_CONTINUE;
921
922 hdrlen = ieee80211_hdrlen(hdr->frame_control);
923
924 if (rx->skb->len < 8 + hdrlen)
925 return RX_DROP_UNUSABLE; /* TODO: count this? */
926
927 /*
928 * no need to call ieee80211_wep_get_keyidx,
929 * it verifies a bunch of things we've done already
930 */
931 keyidx = rx->skb->data[hdrlen + 3] >> 6;
932
933 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
934
935 /*
936 * RSNA-protected unicast frames should always be sent with
937 * pairwise or station-to-station keys, but for WEP we allow
938 * using a key index as well.
939 */
940 if (rx->key && rx->key->conf.alg != ALG_WEP &&
941 !is_multicast_ether_addr(hdr->addr1))
942 rx->key = NULL;
943 }
944
945 if (rx->key) {
946 rx->key->tx_rx_count++;
947 /* TODO: add threshold stuff again */
948 } else {
949 return RX_DROP_MONITOR;
950 }
951
952 /* Check for weak IVs if possible */
953 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
954 ieee80211_is_data(hdr->frame_control) &&
955 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
956 !(status->flag & RX_FLAG_DECRYPTED)) &&
957 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
958 rx->sta->wep_weak_iv_count++;
959
960 switch (rx->key->conf.alg) {
961 case ALG_WEP:
962 result = ieee80211_crypto_wep_decrypt(rx);
963 break;
964 case ALG_TKIP:
965 result = ieee80211_crypto_tkip_decrypt(rx);
966 break;
967 case ALG_CCMP:
968 result = ieee80211_crypto_ccmp_decrypt(rx);
969 break;
970 case ALG_AES_CMAC:
971 result = ieee80211_crypto_aes_cmac_decrypt(rx);
972 break;
973 }
974
975 /* either the frame has been decrypted or will be dropped */
976 status->flag |= RX_FLAG_DECRYPTED;
977
978 return result;
979 }
980
981 static ieee80211_rx_result debug_noinline
982 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
983 {
984 struct ieee80211_local *local;
985 struct ieee80211_hdr *hdr;
986 struct sk_buff *skb;
987
988 local = rx->local;
989 skb = rx->skb;
990 hdr = (struct ieee80211_hdr *) skb->data;
991
992 if (!local->pspolling)
993 return RX_CONTINUE;
994
995 if (!ieee80211_has_fromds(hdr->frame_control))
996 /* this is not from AP */
997 return RX_CONTINUE;
998
999 if (!ieee80211_is_data(hdr->frame_control))
1000 return RX_CONTINUE;
1001
1002 if (!ieee80211_has_moredata(hdr->frame_control)) {
1003 /* AP has no more frames buffered for us */
1004 local->pspolling = false;
1005 return RX_CONTINUE;
1006 }
1007
1008 /* more data bit is set, let's request a new frame from the AP */
1009 ieee80211_send_pspoll(local, rx->sdata);
1010
1011 return RX_CONTINUE;
1012 }
1013
1014 static void ap_sta_ps_start(struct sta_info *sta)
1015 {
1016 struct ieee80211_sub_if_data *sdata = sta->sdata;
1017 struct ieee80211_local *local = sdata->local;
1018
1019 atomic_inc(&sdata->bss->num_sta_ps);
1020 set_sta_flags(sta, WLAN_STA_PS_STA);
1021 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1022 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1023 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1024 sdata->name, sta->sta.addr, sta->sta.aid);
1025 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1026 }
1027
1028 static void ap_sta_ps_end(struct sta_info *sta)
1029 {
1030 struct ieee80211_sub_if_data *sdata = sta->sdata;
1031
1032 atomic_dec(&sdata->bss->num_sta_ps);
1033
1034 clear_sta_flags(sta, WLAN_STA_PS_STA);
1035
1036 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1037 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1038 sdata->name, sta->sta.addr, sta->sta.aid);
1039 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1040
1041 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1042 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1043 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1044 sdata->name, sta->sta.addr, sta->sta.aid);
1045 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1046 return;
1047 }
1048
1049 ieee80211_sta_ps_deliver_wakeup(sta);
1050 }
1051
1052 static ieee80211_rx_result debug_noinline
1053 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1054 {
1055 struct sta_info *sta = rx->sta;
1056 struct sk_buff *skb = rx->skb;
1057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1058 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1059
1060 if (!sta)
1061 return RX_CONTINUE;
1062
1063 /*
1064 * Update last_rx only for IBSS packets which are for the current
1065 * BSSID to avoid keeping the current IBSS network alive in cases
1066 * where other STAs start using different BSSID.
1067 */
1068 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1069 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1070 NL80211_IFTYPE_ADHOC);
1071 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1072 sta->last_rx = jiffies;
1073 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1074 /*
1075 * Mesh beacons will update last_rx when if they are found to
1076 * match the current local configuration when processed.
1077 */
1078 sta->last_rx = jiffies;
1079 }
1080
1081 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1082 return RX_CONTINUE;
1083
1084 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1085 ieee80211_sta_rx_notify(rx->sdata, hdr);
1086
1087 sta->rx_fragments++;
1088 sta->rx_bytes += rx->skb->len;
1089 sta->last_signal = status->signal;
1090
1091 /*
1092 * Change STA power saving mode only at the end of a frame
1093 * exchange sequence.
1094 */
1095 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1096 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1097 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1098 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1099 /*
1100 * Ignore doze->wake transitions that are
1101 * indicated by non-data frames, the standard
1102 * is unclear here, but for example going to
1103 * PS mode and then scanning would cause a
1104 * doze->wake transition for the probe request,
1105 * and that is clearly undesirable.
1106 */
1107 if (ieee80211_is_data(hdr->frame_control) &&
1108 !ieee80211_has_pm(hdr->frame_control))
1109 ap_sta_ps_end(sta);
1110 } else {
1111 if (ieee80211_has_pm(hdr->frame_control))
1112 ap_sta_ps_start(sta);
1113 }
1114 }
1115
1116 /*
1117 * Drop (qos-)data::nullfunc frames silently, since they
1118 * are used only to control station power saving mode.
1119 */
1120 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1121 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1122 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1123
1124 /*
1125 * If we receive a 4-addr nullfunc frame from a STA
1126 * that was not moved to a 4-addr STA vlan yet, drop
1127 * the frame to the monitor interface, to make sure
1128 * that hostapd sees it
1129 */
1130 if (ieee80211_has_a4(hdr->frame_control) &&
1131 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1132 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1133 !rx->sdata->u.vlan.sta)))
1134 return RX_DROP_MONITOR;
1135 /*
1136 * Update counter and free packet here to avoid
1137 * counting this as a dropped packed.
1138 */
1139 sta->rx_packets++;
1140 dev_kfree_skb(rx->skb);
1141 return RX_QUEUED;
1142 }
1143
1144 return RX_CONTINUE;
1145 } /* ieee80211_rx_h_sta_process */
1146
1147 static inline struct ieee80211_fragment_entry *
1148 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1149 unsigned int frag, unsigned int seq, int rx_queue,
1150 struct sk_buff **skb)
1151 {
1152 struct ieee80211_fragment_entry *entry;
1153 int idx;
1154
1155 idx = sdata->fragment_next;
1156 entry = &sdata->fragments[sdata->fragment_next++];
1157 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1158 sdata->fragment_next = 0;
1159
1160 if (!skb_queue_empty(&entry->skb_list)) {
1161 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1162 struct ieee80211_hdr *hdr =
1163 (struct ieee80211_hdr *) entry->skb_list.next->data;
1164 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1165 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1166 "addr1=%pM addr2=%pM\n",
1167 sdata->name, idx,
1168 jiffies - entry->first_frag_time, entry->seq,
1169 entry->last_frag, hdr->addr1, hdr->addr2);
1170 #endif
1171 __skb_queue_purge(&entry->skb_list);
1172 }
1173
1174 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1175 *skb = NULL;
1176 entry->first_frag_time = jiffies;
1177 entry->seq = seq;
1178 entry->rx_queue = rx_queue;
1179 entry->last_frag = frag;
1180 entry->ccmp = 0;
1181 entry->extra_len = 0;
1182
1183 return entry;
1184 }
1185
1186 static inline struct ieee80211_fragment_entry *
1187 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1188 unsigned int frag, unsigned int seq,
1189 int rx_queue, struct ieee80211_hdr *hdr)
1190 {
1191 struct ieee80211_fragment_entry *entry;
1192 int i, idx;
1193
1194 idx = sdata->fragment_next;
1195 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1196 struct ieee80211_hdr *f_hdr;
1197
1198 idx--;
1199 if (idx < 0)
1200 idx = IEEE80211_FRAGMENT_MAX - 1;
1201
1202 entry = &sdata->fragments[idx];
1203 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1204 entry->rx_queue != rx_queue ||
1205 entry->last_frag + 1 != frag)
1206 continue;
1207
1208 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1209
1210 /*
1211 * Check ftype and addresses are equal, else check next fragment
1212 */
1213 if (((hdr->frame_control ^ f_hdr->frame_control) &
1214 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1215 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1216 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1217 continue;
1218
1219 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1220 __skb_queue_purge(&entry->skb_list);
1221 continue;
1222 }
1223 return entry;
1224 }
1225
1226 return NULL;
1227 }
1228
1229 static ieee80211_rx_result debug_noinline
1230 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1231 {
1232 struct ieee80211_hdr *hdr;
1233 u16 sc;
1234 __le16 fc;
1235 unsigned int frag, seq;
1236 struct ieee80211_fragment_entry *entry;
1237 struct sk_buff *skb;
1238
1239 hdr = (struct ieee80211_hdr *)rx->skb->data;
1240 fc = hdr->frame_control;
1241 sc = le16_to_cpu(hdr->seq_ctrl);
1242 frag = sc & IEEE80211_SCTL_FRAG;
1243
1244 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1245 (rx->skb)->len < 24 ||
1246 is_multicast_ether_addr(hdr->addr1))) {
1247 /* not fragmented */
1248 goto out;
1249 }
1250 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1251
1252 if (skb_linearize(rx->skb))
1253 return RX_DROP_UNUSABLE;
1254
1255 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1256
1257 if (frag == 0) {
1258 /* This is the first fragment of a new frame. */
1259 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1260 rx->queue, &(rx->skb));
1261 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
1262 ieee80211_has_protected(fc)) {
1263 /* Store CCMP PN so that we can verify that the next
1264 * fragment has a sequential PN value. */
1265 entry->ccmp = 1;
1266 memcpy(entry->last_pn,
1267 rx->key->u.ccmp.rx_pn[rx->queue],
1268 CCMP_PN_LEN);
1269 }
1270 return RX_QUEUED;
1271 }
1272
1273 /* This is a fragment for a frame that should already be pending in
1274 * fragment cache. Add this fragment to the end of the pending entry.
1275 */
1276 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1277 if (!entry) {
1278 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1279 return RX_DROP_MONITOR;
1280 }
1281
1282 /* Verify that MPDUs within one MSDU have sequential PN values.
1283 * (IEEE 802.11i, 8.3.3.4.5) */
1284 if (entry->ccmp) {
1285 int i;
1286 u8 pn[CCMP_PN_LEN], *rpn;
1287 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
1288 return RX_DROP_UNUSABLE;
1289 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1290 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1291 pn[i]++;
1292 if (pn[i])
1293 break;
1294 }
1295 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
1296 if (memcmp(pn, rpn, CCMP_PN_LEN))
1297 return RX_DROP_UNUSABLE;
1298 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1299 }
1300
1301 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1302 __skb_queue_tail(&entry->skb_list, rx->skb);
1303 entry->last_frag = frag;
1304 entry->extra_len += rx->skb->len;
1305 if (ieee80211_has_morefrags(fc)) {
1306 rx->skb = NULL;
1307 return RX_QUEUED;
1308 }
1309
1310 rx->skb = __skb_dequeue(&entry->skb_list);
1311 if (skb_tailroom(rx->skb) < entry->extra_len) {
1312 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1313 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1314 GFP_ATOMIC))) {
1315 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1316 __skb_queue_purge(&entry->skb_list);
1317 return RX_DROP_UNUSABLE;
1318 }
1319 }
1320 while ((skb = __skb_dequeue(&entry->skb_list))) {
1321 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1322 dev_kfree_skb(skb);
1323 }
1324
1325 /* Complete frame has been reassembled - process it now */
1326 rx->flags |= IEEE80211_RX_FRAGMENTED;
1327
1328 out:
1329 if (rx->sta)
1330 rx->sta->rx_packets++;
1331 if (is_multicast_ether_addr(hdr->addr1))
1332 rx->local->dot11MulticastReceivedFrameCount++;
1333 else
1334 ieee80211_led_rx(rx->local);
1335 return RX_CONTINUE;
1336 }
1337
1338 static ieee80211_rx_result debug_noinline
1339 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1340 {
1341 struct ieee80211_sub_if_data *sdata = rx->sdata;
1342 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1343
1344 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1345 !(rx->flags & IEEE80211_RX_RA_MATCH)))
1346 return RX_CONTINUE;
1347
1348 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1349 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1350 return RX_DROP_UNUSABLE;
1351
1352 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1353 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1354 else
1355 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1356
1357 /* Free PS Poll skb here instead of returning RX_DROP that would
1358 * count as an dropped frame. */
1359 dev_kfree_skb(rx->skb);
1360
1361 return RX_QUEUED;
1362 }
1363
1364 static ieee80211_rx_result debug_noinline
1365 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1366 {
1367 u8 *data = rx->skb->data;
1368 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1369
1370 if (!ieee80211_is_data_qos(hdr->frame_control))
1371 return RX_CONTINUE;
1372
1373 /* remove the qos control field, update frame type and meta-data */
1374 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1375 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1376 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1377 /* change frame type to non QOS */
1378 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1379
1380 return RX_CONTINUE;
1381 }
1382
1383 static int
1384 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1385 {
1386 if (unlikely(!rx->sta ||
1387 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1388 return -EACCES;
1389
1390 return 0;
1391 }
1392
1393 static int
1394 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1395 {
1396 struct sk_buff *skb = rx->skb;
1397 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1398
1399 /*
1400 * Pass through unencrypted frames if the hardware has
1401 * decrypted them already.
1402 */
1403 if (status->flag & RX_FLAG_DECRYPTED)
1404 return 0;
1405
1406 /* Drop unencrypted frames if key is set. */
1407 if (unlikely(!ieee80211_has_protected(fc) &&
1408 !ieee80211_is_nullfunc(fc) &&
1409 ieee80211_is_data(fc) &&
1410 (rx->key || rx->sdata->drop_unencrypted)))
1411 return -EACCES;
1412
1413 return 0;
1414 }
1415
1416 static int
1417 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1418 {
1419 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1420 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1421 __le16 fc = hdr->frame_control;
1422
1423 /*
1424 * Pass through unencrypted frames if the hardware has
1425 * decrypted them already.
1426 */
1427 if (status->flag & RX_FLAG_DECRYPTED)
1428 return 0;
1429
1430 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1431 if (unlikely(!ieee80211_has_protected(fc) &&
1432 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1433 rx->key))
1434 return -EACCES;
1435 /* BIP does not use Protected field, so need to check MMIE */
1436 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1437 ieee80211_get_mmie_keyidx(rx->skb) < 0))
1438 return -EACCES;
1439 /*
1440 * When using MFP, Action frames are not allowed prior to
1441 * having configured keys.
1442 */
1443 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1444 ieee80211_is_robust_mgmt_frame(
1445 (struct ieee80211_hdr *) rx->skb->data)))
1446 return -EACCES;
1447 }
1448
1449 return 0;
1450 }
1451
1452 static int
1453 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1454 {
1455 struct ieee80211_sub_if_data *sdata = rx->sdata;
1456 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1457
1458 if (ieee80211_has_a4(hdr->frame_control) &&
1459 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1460 return -1;
1461
1462 if (is_multicast_ether_addr(hdr->addr1) &&
1463 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1464 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1465 return -1;
1466
1467 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1468 }
1469
1470 /*
1471 * requires that rx->skb is a frame with ethernet header
1472 */
1473 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1474 {
1475 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1476 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1477 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1478
1479 /*
1480 * Allow EAPOL frames to us/the PAE group address regardless
1481 * of whether the frame was encrypted or not.
1482 */
1483 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1484 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1485 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1486 return true;
1487
1488 if (ieee80211_802_1x_port_control(rx) ||
1489 ieee80211_drop_unencrypted(rx, fc))
1490 return false;
1491
1492 return true;
1493 }
1494
1495 /*
1496 * requires that rx->skb is a frame with ethernet header
1497 */
1498 static void
1499 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1500 {
1501 struct ieee80211_sub_if_data *sdata = rx->sdata;
1502 struct net_device *dev = sdata->dev;
1503 struct sk_buff *skb, *xmit_skb;
1504 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1505 struct sta_info *dsta;
1506
1507 skb = rx->skb;
1508 xmit_skb = NULL;
1509
1510 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1511 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1512 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1513 (rx->flags & IEEE80211_RX_RA_MATCH) &&
1514 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1515 if (is_multicast_ether_addr(ehdr->h_dest)) {
1516 /*
1517 * send multicast frames both to higher layers in
1518 * local net stack and back to the wireless medium
1519 */
1520 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1521 if (!xmit_skb && net_ratelimit())
1522 printk(KERN_DEBUG "%s: failed to clone "
1523 "multicast frame\n", dev->name);
1524 } else {
1525 dsta = sta_info_get(sdata, skb->data);
1526 if (dsta) {
1527 /*
1528 * The destination station is associated to
1529 * this AP (in this VLAN), so send the frame
1530 * directly to it and do not pass it to local
1531 * net stack.
1532 */
1533 xmit_skb = skb;
1534 skb = NULL;
1535 }
1536 }
1537 }
1538
1539 if (skb) {
1540 int align __maybe_unused;
1541
1542 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1543 /*
1544 * 'align' will only take the values 0 or 2 here
1545 * since all frames are required to be aligned
1546 * to 2-byte boundaries when being passed to
1547 * mac80211. That also explains the __skb_push()
1548 * below.
1549 */
1550 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1551 if (align) {
1552 if (WARN_ON(skb_headroom(skb) < 3)) {
1553 dev_kfree_skb(skb);
1554 skb = NULL;
1555 } else {
1556 u8 *data = skb->data;
1557 size_t len = skb_headlen(skb);
1558 skb->data -= align;
1559 memmove(skb->data, data, len);
1560 skb_set_tail_pointer(skb, len);
1561 }
1562 }
1563 #endif
1564
1565 if (skb) {
1566 /* deliver to local stack */
1567 skb->protocol = eth_type_trans(skb, dev);
1568 memset(skb->cb, 0, sizeof(skb->cb));
1569 netif_rx(skb);
1570 }
1571 }
1572
1573 if (xmit_skb) {
1574 /* send to wireless media */
1575 xmit_skb->protocol = htons(ETH_P_802_3);
1576 skb_reset_network_header(xmit_skb);
1577 skb_reset_mac_header(xmit_skb);
1578 dev_queue_xmit(xmit_skb);
1579 }
1580 }
1581
1582 static ieee80211_rx_result debug_noinline
1583 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1584 {
1585 struct net_device *dev = rx->sdata->dev;
1586 struct sk_buff *skb = rx->skb;
1587 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1588 __le16 fc = hdr->frame_control;
1589 struct sk_buff_head frame_list;
1590
1591 if (unlikely(!ieee80211_is_data(fc)))
1592 return RX_CONTINUE;
1593
1594 if (unlikely(!ieee80211_is_data_present(fc)))
1595 return RX_DROP_MONITOR;
1596
1597 if (!(rx->flags & IEEE80211_RX_AMSDU))
1598 return RX_CONTINUE;
1599
1600 if (ieee80211_has_a4(hdr->frame_control) &&
1601 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1602 !rx->sdata->u.vlan.sta)
1603 return RX_DROP_UNUSABLE;
1604
1605 if (is_multicast_ether_addr(hdr->addr1) &&
1606 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1607 rx->sdata->u.vlan.sta) ||
1608 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1609 rx->sdata->u.mgd.use_4addr)))
1610 return RX_DROP_UNUSABLE;
1611
1612 skb->dev = dev;
1613 __skb_queue_head_init(&frame_list);
1614
1615 if (skb_linearize(skb))
1616 return RX_DROP_UNUSABLE;
1617
1618 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1619 rx->sdata->vif.type,
1620 rx->local->hw.extra_tx_headroom);
1621
1622 while (!skb_queue_empty(&frame_list)) {
1623 rx->skb = __skb_dequeue(&frame_list);
1624
1625 if (!ieee80211_frame_allowed(rx, fc)) {
1626 dev_kfree_skb(rx->skb);
1627 continue;
1628 }
1629 dev->stats.rx_packets++;
1630 dev->stats.rx_bytes += rx->skb->len;
1631
1632 ieee80211_deliver_skb(rx);
1633 }
1634
1635 return RX_QUEUED;
1636 }
1637
1638 #ifdef CONFIG_MAC80211_MESH
1639 static ieee80211_rx_result
1640 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1641 {
1642 struct ieee80211_hdr *hdr;
1643 struct ieee80211s_hdr *mesh_hdr;
1644 unsigned int hdrlen;
1645 struct sk_buff *skb = rx->skb, *fwd_skb;
1646 struct ieee80211_local *local = rx->local;
1647 struct ieee80211_sub_if_data *sdata = rx->sdata;
1648
1649 hdr = (struct ieee80211_hdr *) skb->data;
1650 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1651 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1652
1653 if (!ieee80211_is_data(hdr->frame_control))
1654 return RX_CONTINUE;
1655
1656 if (!mesh_hdr->ttl)
1657 /* illegal frame */
1658 return RX_DROP_MONITOR;
1659
1660 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1661 struct mesh_path *mppath;
1662 char *proxied_addr;
1663 char *mpp_addr;
1664
1665 if (is_multicast_ether_addr(hdr->addr1)) {
1666 mpp_addr = hdr->addr3;
1667 proxied_addr = mesh_hdr->eaddr1;
1668 } else {
1669 mpp_addr = hdr->addr4;
1670 proxied_addr = mesh_hdr->eaddr2;
1671 }
1672
1673 rcu_read_lock();
1674 mppath = mpp_path_lookup(proxied_addr, sdata);
1675 if (!mppath) {
1676 mpp_path_add(proxied_addr, mpp_addr, sdata);
1677 } else {
1678 spin_lock_bh(&mppath->state_lock);
1679 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1680 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1681 spin_unlock_bh(&mppath->state_lock);
1682 }
1683 rcu_read_unlock();
1684 }
1685
1686 /* Frame has reached destination. Don't forward */
1687 if (!is_multicast_ether_addr(hdr->addr1) &&
1688 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1689 return RX_CONTINUE;
1690
1691 mesh_hdr->ttl--;
1692
1693 if (rx->flags & IEEE80211_RX_RA_MATCH) {
1694 if (!mesh_hdr->ttl)
1695 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1696 dropped_frames_ttl);
1697 else {
1698 struct ieee80211_hdr *fwd_hdr;
1699 struct ieee80211_tx_info *info;
1700
1701 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1702
1703 if (!fwd_skb && net_ratelimit())
1704 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1705 sdata->name);
1706
1707 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1708 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1709 info = IEEE80211_SKB_CB(fwd_skb);
1710 memset(info, 0, sizeof(*info));
1711 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1712 info->control.vif = &rx->sdata->vif;
1713 skb_set_queue_mapping(skb,
1714 ieee80211_select_queue(rx->sdata, fwd_skb));
1715 ieee80211_set_qos_hdr(local, skb);
1716 if (is_multicast_ether_addr(fwd_hdr->addr1))
1717 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1718 fwded_mcast);
1719 else {
1720 int err;
1721 /*
1722 * Save TA to addr1 to send TA a path error if a
1723 * suitable next hop is not found
1724 */
1725 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1726 ETH_ALEN);
1727 err = mesh_nexthop_lookup(fwd_skb, sdata);
1728 /* Failed to immediately resolve next hop:
1729 * fwded frame was dropped or will be added
1730 * later to the pending skb queue. */
1731 if (err)
1732 return RX_DROP_MONITOR;
1733
1734 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1735 fwded_unicast);
1736 }
1737 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1738 fwded_frames);
1739 ieee80211_add_pending_skb(local, fwd_skb);
1740 }
1741 }
1742
1743 if (is_multicast_ether_addr(hdr->addr1) ||
1744 sdata->dev->flags & IFF_PROMISC)
1745 return RX_CONTINUE;
1746 else
1747 return RX_DROP_MONITOR;
1748 }
1749 #endif
1750
1751 static ieee80211_rx_result debug_noinline
1752 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1753 {
1754 struct ieee80211_sub_if_data *sdata = rx->sdata;
1755 struct ieee80211_local *local = rx->local;
1756 struct net_device *dev = sdata->dev;
1757 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1758 __le16 fc = hdr->frame_control;
1759 int err;
1760
1761 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1762 return RX_CONTINUE;
1763
1764 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1765 return RX_DROP_MONITOR;
1766
1767 /*
1768 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1769 * that a 4-addr station can be detected and moved into a separate VLAN
1770 */
1771 if (ieee80211_has_a4(hdr->frame_control) &&
1772 sdata->vif.type == NL80211_IFTYPE_AP)
1773 return RX_DROP_MONITOR;
1774
1775 err = __ieee80211_data_to_8023(rx);
1776 if (unlikely(err))
1777 return RX_DROP_UNUSABLE;
1778
1779 if (!ieee80211_frame_allowed(rx, fc))
1780 return RX_DROP_MONITOR;
1781
1782 rx->skb->dev = dev;
1783
1784 dev->stats.rx_packets++;
1785 dev->stats.rx_bytes += rx->skb->len;
1786
1787 if (ieee80211_is_data(hdr->frame_control) &&
1788 !is_multicast_ether_addr(hdr->addr1) &&
1789 local->hw.conf.dynamic_ps_timeout > 0 && local->ps_sdata) {
1790 mod_timer(&local->dynamic_ps_timer, jiffies +
1791 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1792 }
1793
1794 ieee80211_deliver_skb(rx);
1795
1796 return RX_QUEUED;
1797 }
1798
1799 static ieee80211_rx_result debug_noinline
1800 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1801 {
1802 struct ieee80211_local *local = rx->local;
1803 struct ieee80211_hw *hw = &local->hw;
1804 struct sk_buff *skb = rx->skb;
1805 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1806 struct tid_ampdu_rx *tid_agg_rx;
1807 u16 start_seq_num;
1808 u16 tid;
1809
1810 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1811 return RX_CONTINUE;
1812
1813 if (ieee80211_is_back_req(bar->frame_control)) {
1814 if (!rx->sta)
1815 return RX_DROP_MONITOR;
1816 spin_lock(&rx->sta->lock);
1817 tid = le16_to_cpu(bar->control) >> 12;
1818 if (!rx->sta->ampdu_mlme.tid_active_rx[tid]) {
1819 spin_unlock(&rx->sta->lock);
1820 return RX_DROP_MONITOR;
1821 }
1822 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1823
1824 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1825
1826 /* reset session timer */
1827 if (tid_agg_rx->timeout)
1828 mod_timer(&tid_agg_rx->session_timer,
1829 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1830
1831 /* release stored frames up to start of BAR */
1832 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1833 frames);
1834 kfree_skb(skb);
1835 spin_unlock(&rx->sta->lock);
1836 return RX_QUEUED;
1837 }
1838
1839 return RX_CONTINUE;
1840 }
1841
1842 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1843 struct ieee80211_mgmt *mgmt,
1844 size_t len)
1845 {
1846 struct ieee80211_local *local = sdata->local;
1847 struct sk_buff *skb;
1848 struct ieee80211_mgmt *resp;
1849
1850 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1851 /* Not to own unicast address */
1852 return;
1853 }
1854
1855 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1856 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1857 /* Not from the current AP or not associated yet. */
1858 return;
1859 }
1860
1861 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1862 /* Too short SA Query request frame */
1863 return;
1864 }
1865
1866 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1867 if (skb == NULL)
1868 return;
1869
1870 skb_reserve(skb, local->hw.extra_tx_headroom);
1871 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1872 memset(resp, 0, 24);
1873 memcpy(resp->da, mgmt->sa, ETH_ALEN);
1874 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1875 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1876 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1877 IEEE80211_STYPE_ACTION);
1878 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1879 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1880 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1881 memcpy(resp->u.action.u.sa_query.trans_id,
1882 mgmt->u.action.u.sa_query.trans_id,
1883 WLAN_SA_QUERY_TR_ID_LEN);
1884
1885 ieee80211_tx_skb(sdata, skb);
1886 }
1887
1888 static ieee80211_rx_result debug_noinline
1889 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
1890 {
1891 struct ieee80211_local *local = rx->local;
1892 struct ieee80211_sub_if_data *sdata = rx->sdata;
1893 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1894 struct sk_buff *nskb;
1895 struct ieee80211_rx_status *status;
1896 int len = rx->skb->len;
1897
1898 if (!ieee80211_is_action(mgmt->frame_control))
1899 return RX_CONTINUE;
1900
1901 /* drop too small frames */
1902 if (len < IEEE80211_MIN_ACTION_SIZE)
1903 return RX_DROP_UNUSABLE;
1904
1905 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
1906 return RX_DROP_UNUSABLE;
1907
1908 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1909 return RX_DROP_UNUSABLE;
1910
1911 if (ieee80211_drop_unencrypted_mgmt(rx))
1912 return RX_DROP_UNUSABLE;
1913
1914 switch (mgmt->u.action.category) {
1915 case WLAN_CATEGORY_BACK:
1916 /*
1917 * The aggregation code is not prepared to handle
1918 * anything but STA/AP due to the BSSID handling;
1919 * IBSS could work in the code but isn't supported
1920 * by drivers or the standard.
1921 */
1922 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
1923 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1924 sdata->vif.type != NL80211_IFTYPE_AP)
1925 break;
1926
1927 /* verify action_code is present */
1928 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1929 break;
1930
1931 switch (mgmt->u.action.u.addba_req.action_code) {
1932 case WLAN_ACTION_ADDBA_REQ:
1933 if (len < (IEEE80211_MIN_ACTION_SIZE +
1934 sizeof(mgmt->u.action.u.addba_req)))
1935 return RX_DROP_MONITOR;
1936 ieee80211_process_addba_request(local, rx->sta, mgmt, len);
1937 goto handled;
1938 case WLAN_ACTION_ADDBA_RESP:
1939 if (len < (IEEE80211_MIN_ACTION_SIZE +
1940 sizeof(mgmt->u.action.u.addba_resp)))
1941 break;
1942 ieee80211_process_addba_resp(local, rx->sta, mgmt, len);
1943 goto handled;
1944 case WLAN_ACTION_DELBA:
1945 if (len < (IEEE80211_MIN_ACTION_SIZE +
1946 sizeof(mgmt->u.action.u.delba)))
1947 break;
1948 ieee80211_process_delba(sdata, rx->sta, mgmt, len);
1949 goto handled;
1950 }
1951 break;
1952 case WLAN_CATEGORY_SPECTRUM_MGMT:
1953 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
1954 break;
1955
1956 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1957 break;
1958
1959 /* verify action_code is present */
1960 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1961 break;
1962
1963 switch (mgmt->u.action.u.measurement.action_code) {
1964 case WLAN_ACTION_SPCT_MSR_REQ:
1965 if (len < (IEEE80211_MIN_ACTION_SIZE +
1966 sizeof(mgmt->u.action.u.measurement)))
1967 break;
1968 ieee80211_process_measurement_req(sdata, mgmt, len);
1969 goto handled;
1970 case WLAN_ACTION_SPCT_CHL_SWITCH:
1971 if (len < (IEEE80211_MIN_ACTION_SIZE +
1972 sizeof(mgmt->u.action.u.chan_switch)))
1973 break;
1974
1975 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1976 break;
1977
1978 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
1979 break;
1980
1981 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
1982 }
1983 break;
1984 case WLAN_CATEGORY_SA_QUERY:
1985 if (len < (IEEE80211_MIN_ACTION_SIZE +
1986 sizeof(mgmt->u.action.u.sa_query)))
1987 break;
1988
1989 switch (mgmt->u.action.u.sa_query.action) {
1990 case WLAN_ACTION_SA_QUERY_REQUEST:
1991 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1992 break;
1993 ieee80211_process_sa_query_req(sdata, mgmt, len);
1994 goto handled;
1995 }
1996 break;
1997 case MESH_PLINK_CATEGORY:
1998 case MESH_PATH_SEL_CATEGORY:
1999 if (ieee80211_vif_is_mesh(&sdata->vif))
2000 return ieee80211_mesh_rx_mgmt(sdata, rx->skb);
2001 break;
2002 }
2003
2004 /*
2005 * For AP mode, hostapd is responsible for handling any action
2006 * frames that we didn't handle, including returning unknown
2007 * ones. For all other modes we will return them to the sender,
2008 * setting the 0x80 bit in the action category, as required by
2009 * 802.11-2007 7.3.1.11.
2010 */
2011 if (sdata->vif.type == NL80211_IFTYPE_AP ||
2012 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2013 return RX_DROP_MONITOR;
2014
2015 /*
2016 * Getting here means the kernel doesn't know how to handle
2017 * it, but maybe userspace does ... include returned frames
2018 * so userspace can register for those to know whether ones
2019 * it transmitted were processed or returned.
2020 */
2021 status = IEEE80211_SKB_RXCB(rx->skb);
2022
2023 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2024 cfg80211_rx_action(rx->sdata->dev, status->freq,
2025 rx->skb->data, rx->skb->len,
2026 GFP_ATOMIC))
2027 goto handled;
2028
2029 /* do not return rejected action frames */
2030 if (mgmt->u.action.category & 0x80)
2031 return RX_DROP_UNUSABLE;
2032
2033 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2034 GFP_ATOMIC);
2035 if (nskb) {
2036 struct ieee80211_mgmt *mgmt = (void *)nskb->data;
2037
2038 mgmt->u.action.category |= 0x80;
2039 memcpy(mgmt->da, mgmt->sa, ETH_ALEN);
2040 memcpy(mgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2041
2042 memset(nskb->cb, 0, sizeof(nskb->cb));
2043
2044 ieee80211_tx_skb(rx->sdata, nskb);
2045 }
2046
2047 handled:
2048 if (rx->sta)
2049 rx->sta->rx_packets++;
2050 dev_kfree_skb(rx->skb);
2051 return RX_QUEUED;
2052 }
2053
2054 static ieee80211_rx_result debug_noinline
2055 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2056 {
2057 struct ieee80211_sub_if_data *sdata = rx->sdata;
2058 ieee80211_rx_result rxs;
2059
2060 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
2061 return RX_DROP_MONITOR;
2062
2063 if (ieee80211_drop_unencrypted_mgmt(rx))
2064 return RX_DROP_UNUSABLE;
2065
2066 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2067 if (rxs != RX_CONTINUE)
2068 return rxs;
2069
2070 if (ieee80211_vif_is_mesh(&sdata->vif))
2071 return ieee80211_mesh_rx_mgmt(sdata, rx->skb);
2072
2073 if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2074 return ieee80211_ibss_rx_mgmt(sdata, rx->skb);
2075
2076 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2077 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
2078
2079 return RX_DROP_MONITOR;
2080 }
2081
2082 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2083 struct ieee80211_rx_data *rx)
2084 {
2085 int keyidx;
2086 unsigned int hdrlen;
2087
2088 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2089 if (rx->skb->len >= hdrlen + 4)
2090 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2091 else
2092 keyidx = -1;
2093
2094 if (!rx->sta) {
2095 /*
2096 * Some hardware seem to generate incorrect Michael MIC
2097 * reports; ignore them to avoid triggering countermeasures.
2098 */
2099 return;
2100 }
2101
2102 if (!ieee80211_has_protected(hdr->frame_control))
2103 return;
2104
2105 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2106 /*
2107 * APs with pairwise keys should never receive Michael MIC
2108 * errors for non-zero keyidx because these are reserved for
2109 * group keys and only the AP is sending real multicast
2110 * frames in the BSS.
2111 */
2112 return;
2113 }
2114
2115 if (!ieee80211_is_data(hdr->frame_control) &&
2116 !ieee80211_is_auth(hdr->frame_control))
2117 return;
2118
2119 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2120 GFP_ATOMIC);
2121 }
2122
2123 /* TODO: use IEEE80211_RX_FRAGMENTED */
2124 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2125 struct ieee80211_rate *rate)
2126 {
2127 struct ieee80211_sub_if_data *sdata;
2128 struct ieee80211_local *local = rx->local;
2129 struct ieee80211_rtap_hdr {
2130 struct ieee80211_radiotap_header hdr;
2131 u8 flags;
2132 u8 rate_or_pad;
2133 __le16 chan_freq;
2134 __le16 chan_flags;
2135 } __attribute__ ((packed)) *rthdr;
2136 struct sk_buff *skb = rx->skb, *skb2;
2137 struct net_device *prev_dev = NULL;
2138 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2139
2140 if (status->flag & RX_FLAG_INTERNAL_CMTR)
2141 goto out_free_skb;
2142
2143 if (skb_headroom(skb) < sizeof(*rthdr) &&
2144 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2145 goto out_free_skb;
2146
2147 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2148 memset(rthdr, 0, sizeof(*rthdr));
2149 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2150 rthdr->hdr.it_present =
2151 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2152 (1 << IEEE80211_RADIOTAP_CHANNEL));
2153
2154 if (rate) {
2155 rthdr->rate_or_pad = rate->bitrate / 5;
2156 rthdr->hdr.it_present |=
2157 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2158 }
2159 rthdr->chan_freq = cpu_to_le16(status->freq);
2160
2161 if (status->band == IEEE80211_BAND_5GHZ)
2162 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2163 IEEE80211_CHAN_5GHZ);
2164 else
2165 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2166 IEEE80211_CHAN_2GHZ);
2167
2168 skb_set_mac_header(skb, 0);
2169 skb->ip_summed = CHECKSUM_UNNECESSARY;
2170 skb->pkt_type = PACKET_OTHERHOST;
2171 skb->protocol = htons(ETH_P_802_2);
2172
2173 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2174 if (!ieee80211_sdata_running(sdata))
2175 continue;
2176
2177 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2178 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2179 continue;
2180
2181 if (prev_dev) {
2182 skb2 = skb_clone(skb, GFP_ATOMIC);
2183 if (skb2) {
2184 skb2->dev = prev_dev;
2185 netif_rx(skb2);
2186 }
2187 }
2188
2189 prev_dev = sdata->dev;
2190 sdata->dev->stats.rx_packets++;
2191 sdata->dev->stats.rx_bytes += skb->len;
2192 }
2193
2194 if (prev_dev) {
2195 skb->dev = prev_dev;
2196 netif_rx(skb);
2197 skb = NULL;
2198 } else
2199 goto out_free_skb;
2200
2201 status->flag |= RX_FLAG_INTERNAL_CMTR;
2202 return;
2203
2204 out_free_skb:
2205 dev_kfree_skb(skb);
2206 }
2207
2208
2209 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
2210 struct ieee80211_rx_data *rx,
2211 struct sk_buff *skb,
2212 struct ieee80211_rate *rate)
2213 {
2214 struct sk_buff_head reorder_release;
2215 ieee80211_rx_result res = RX_DROP_MONITOR;
2216
2217 __skb_queue_head_init(&reorder_release);
2218
2219 rx->skb = skb;
2220 rx->sdata = sdata;
2221
2222 #define CALL_RXH(rxh) \
2223 do { \
2224 res = rxh(rx); \
2225 if (res != RX_CONTINUE) \
2226 goto rxh_next; \
2227 } while (0);
2228
2229 /*
2230 * NB: the rxh_next label works even if we jump
2231 * to it from here because then the list will
2232 * be empty, which is a trivial check
2233 */
2234 CALL_RXH(ieee80211_rx_h_passive_scan)
2235 CALL_RXH(ieee80211_rx_h_check)
2236
2237 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2238
2239 while ((skb = __skb_dequeue(&reorder_release))) {
2240 /*
2241 * all the other fields are valid across frames
2242 * that belong to an aMPDU since they are on the
2243 * same TID from the same station
2244 */
2245 rx->skb = skb;
2246
2247 CALL_RXH(ieee80211_rx_h_decrypt)
2248 CALL_RXH(ieee80211_rx_h_check_more_data)
2249 CALL_RXH(ieee80211_rx_h_sta_process)
2250 CALL_RXH(ieee80211_rx_h_defragment)
2251 CALL_RXH(ieee80211_rx_h_ps_poll)
2252 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2253 /* must be after MMIC verify so header is counted in MPDU mic */
2254 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2255 CALL_RXH(ieee80211_rx_h_amsdu)
2256 #ifdef CONFIG_MAC80211_MESH
2257 if (ieee80211_vif_is_mesh(&sdata->vif))
2258 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2259 #endif
2260 CALL_RXH(ieee80211_rx_h_data)
2261
2262 /* special treatment -- needs the queue */
2263 res = ieee80211_rx_h_ctrl(rx, &reorder_release);
2264 if (res != RX_CONTINUE)
2265 goto rxh_next;
2266
2267 CALL_RXH(ieee80211_rx_h_action)
2268 CALL_RXH(ieee80211_rx_h_mgmt)
2269
2270 #undef CALL_RXH
2271
2272 rxh_next:
2273 switch (res) {
2274 case RX_DROP_MONITOR:
2275 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2276 if (rx->sta)
2277 rx->sta->rx_dropped++;
2278 /* fall through */
2279 case RX_CONTINUE:
2280 ieee80211_rx_cooked_monitor(rx, rate);
2281 break;
2282 case RX_DROP_UNUSABLE:
2283 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2284 if (rx->sta)
2285 rx->sta->rx_dropped++;
2286 dev_kfree_skb(rx->skb);
2287 break;
2288 case RX_QUEUED:
2289 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
2290 break;
2291 }
2292 }
2293 }
2294
2295 /* main receive path */
2296
2297 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
2298 struct ieee80211_rx_data *rx,
2299 struct ieee80211_hdr *hdr)
2300 {
2301 struct sk_buff *skb = rx->skb;
2302 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2303 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2304 int multicast = is_multicast_ether_addr(hdr->addr1);
2305
2306 switch (sdata->vif.type) {
2307 case NL80211_IFTYPE_STATION:
2308 if (!bssid && !sdata->u.mgd.use_4addr)
2309 return 0;
2310 if (!multicast &&
2311 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2312 if (!(sdata->dev->flags & IFF_PROMISC))
2313 return 0;
2314 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2315 }
2316 break;
2317 case NL80211_IFTYPE_ADHOC:
2318 if (!bssid)
2319 return 0;
2320 if (ieee80211_is_beacon(hdr->frame_control)) {
2321 return 1;
2322 }
2323 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2324 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2325 return 0;
2326 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2327 } else if (!multicast &&
2328 compare_ether_addr(sdata->vif.addr,
2329 hdr->addr1) != 0) {
2330 if (!(sdata->dev->flags & IFF_PROMISC))
2331 return 0;
2332 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2333 } else if (!rx->sta) {
2334 int rate_idx;
2335 if (status->flag & RX_FLAG_HT)
2336 rate_idx = 0; /* TODO: HT rates */
2337 else
2338 rate_idx = status->rate_idx;
2339 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2340 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2341 }
2342 break;
2343 case NL80211_IFTYPE_MESH_POINT:
2344 if (!multicast &&
2345 compare_ether_addr(sdata->vif.addr,
2346 hdr->addr1) != 0) {
2347 if (!(sdata->dev->flags & IFF_PROMISC))
2348 return 0;
2349
2350 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2351 }
2352 break;
2353 case NL80211_IFTYPE_AP_VLAN:
2354 case NL80211_IFTYPE_AP:
2355 if (!bssid) {
2356 if (compare_ether_addr(sdata->vif.addr,
2357 hdr->addr1))
2358 return 0;
2359 } else if (!ieee80211_bssid_match(bssid,
2360 sdata->vif.addr)) {
2361 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2362 return 0;
2363 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2364 }
2365 break;
2366 case NL80211_IFTYPE_WDS:
2367 if (bssid || !ieee80211_is_data(hdr->frame_control))
2368 return 0;
2369 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2370 return 0;
2371 break;
2372 case NL80211_IFTYPE_MONITOR:
2373 case NL80211_IFTYPE_UNSPECIFIED:
2374 case __NL80211_IFTYPE_AFTER_LAST:
2375 /* should never get here */
2376 WARN_ON(1);
2377 break;
2378 }
2379
2380 return 1;
2381 }
2382
2383 /*
2384 * This is the actual Rx frames handler. as it blongs to Rx path it must
2385 * be called with rcu_read_lock protection.
2386 */
2387 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2388 struct sk_buff *skb,
2389 struct ieee80211_rate *rate)
2390 {
2391 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2392 struct ieee80211_local *local = hw_to_local(hw);
2393 struct ieee80211_sub_if_data *sdata;
2394 struct ieee80211_hdr *hdr;
2395 __le16 fc;
2396 struct ieee80211_rx_data rx;
2397 int prepares;
2398 struct ieee80211_sub_if_data *prev = NULL;
2399 struct sk_buff *skb_new;
2400 struct sta_info *sta, *tmp;
2401 bool found_sta = false;
2402 int err = 0;
2403
2404 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2405 memset(&rx, 0, sizeof(rx));
2406 rx.skb = skb;
2407 rx.local = local;
2408
2409 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2410 local->dot11ReceivedFragmentCount++;
2411
2412 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2413 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2414 rx.flags |= IEEE80211_RX_IN_SCAN;
2415
2416 if (ieee80211_is_mgmt(fc))
2417 err = skb_linearize(skb);
2418 else
2419 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2420
2421 if (err) {
2422 dev_kfree_skb(skb);
2423 return;
2424 }
2425
2426 hdr = (struct ieee80211_hdr *)skb->data;
2427 ieee80211_parse_qos(&rx);
2428 ieee80211_verify_alignment(&rx);
2429
2430 if (ieee80211_is_data(fc)) {
2431 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2432 rx.sta = sta;
2433 found_sta = true;
2434 rx.sdata = sta->sdata;
2435
2436 rx.flags |= IEEE80211_RX_RA_MATCH;
2437 prepares = prepare_for_handlers(rx.sdata, &rx, hdr);
2438 if (prepares) {
2439 if (status->flag & RX_FLAG_MMIC_ERROR) {
2440 if (rx.flags & IEEE80211_RX_RA_MATCH)
2441 ieee80211_rx_michael_mic_report(hdr, &rx);
2442 } else
2443 prev = rx.sdata;
2444 }
2445 }
2446 }
2447 if (!found_sta) {
2448 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2449 if (!ieee80211_sdata_running(sdata))
2450 continue;
2451
2452 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2453 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2454 continue;
2455
2456 /*
2457 * frame is destined for this interface, but if it's
2458 * not also for the previous one we handle that after
2459 * the loop to avoid copying the SKB once too much
2460 */
2461
2462 if (!prev) {
2463 prev = sdata;
2464 continue;
2465 }
2466
2467 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2468
2469 rx.flags |= IEEE80211_RX_RA_MATCH;
2470 prepares = prepare_for_handlers(prev, &rx, hdr);
2471
2472 if (!prepares)
2473 goto next;
2474
2475 if (status->flag & RX_FLAG_MMIC_ERROR) {
2476 rx.sdata = prev;
2477 if (rx.flags & IEEE80211_RX_RA_MATCH)
2478 ieee80211_rx_michael_mic_report(hdr,
2479 &rx);
2480 goto next;
2481 }
2482
2483 /*
2484 * frame was destined for the previous interface
2485 * so invoke RX handlers for it
2486 */
2487
2488 skb_new = skb_copy(skb, GFP_ATOMIC);
2489 if (!skb_new) {
2490 if (net_ratelimit())
2491 printk(KERN_DEBUG "%s: failed to copy "
2492 "multicast frame for %s\n",
2493 wiphy_name(local->hw.wiphy),
2494 prev->name);
2495 goto next;
2496 }
2497 ieee80211_invoke_rx_handlers(prev, &rx, skb_new, rate);
2498 next:
2499 prev = sdata;
2500 }
2501
2502 if (prev) {
2503 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2504
2505 rx.flags |= IEEE80211_RX_RA_MATCH;
2506 prepares = prepare_for_handlers(prev, &rx, hdr);
2507
2508 if (!prepares)
2509 prev = NULL;
2510 }
2511 }
2512 if (prev)
2513 ieee80211_invoke_rx_handlers(prev, &rx, skb, rate);
2514 else
2515 dev_kfree_skb(skb);
2516 }
2517
2518 /*
2519 * This is the receive path handler. It is called by a low level driver when an
2520 * 802.11 MPDU is received from the hardware.
2521 */
2522 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2523 {
2524 struct ieee80211_local *local = hw_to_local(hw);
2525 struct ieee80211_rate *rate = NULL;
2526 struct ieee80211_supported_band *sband;
2527 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2528
2529 WARN_ON_ONCE(softirq_count() == 0);
2530
2531 if (WARN_ON(status->band < 0 ||
2532 status->band >= IEEE80211_NUM_BANDS))
2533 goto drop;
2534
2535 sband = local->hw.wiphy->bands[status->band];
2536 if (WARN_ON(!sband))
2537 goto drop;
2538
2539 /*
2540 * If we're suspending, it is possible although not too likely
2541 * that we'd be receiving frames after having already partially
2542 * quiesced the stack. We can't process such frames then since
2543 * that might, for example, cause stations to be added or other
2544 * driver callbacks be invoked.
2545 */
2546 if (unlikely(local->quiescing || local->suspended))
2547 goto drop;
2548
2549 /*
2550 * The same happens when we're not even started,
2551 * but that's worth a warning.
2552 */
2553 if (WARN_ON(!local->started))
2554 goto drop;
2555
2556 if (status->flag & RX_FLAG_HT) {
2557 /*
2558 * rate_idx is MCS index, which can be [0-76] as documented on:
2559 *
2560 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2561 *
2562 * Anything else would be some sort of driver or hardware error.
2563 * The driver should catch hardware errors.
2564 */
2565 if (WARN((status->rate_idx < 0 ||
2566 status->rate_idx > 76),
2567 "Rate marked as an HT rate but passed "
2568 "status->rate_idx is not "
2569 "an MCS index [0-76]: %d (0x%02x)\n",
2570 status->rate_idx,
2571 status->rate_idx))
2572 goto drop;
2573 } else {
2574 if (WARN_ON(status->rate_idx < 0 ||
2575 status->rate_idx >= sband->n_bitrates))
2576 goto drop;
2577 rate = &sband->bitrates[status->rate_idx];
2578 }
2579
2580 /*
2581 * key references and virtual interfaces are protected using RCU
2582 * and this requires that we are in a read-side RCU section during
2583 * receive processing
2584 */
2585 rcu_read_lock();
2586
2587 /*
2588 * Frames with failed FCS/PLCP checksum are not returned,
2589 * all other frames are returned without radiotap header
2590 * if it was previously present.
2591 * Also, frames with less than 16 bytes are dropped.
2592 */
2593 skb = ieee80211_rx_monitor(local, skb, rate);
2594 if (!skb) {
2595 rcu_read_unlock();
2596 return;
2597 }
2598
2599 __ieee80211_rx_handle_packet(hw, skb, rate);
2600
2601 rcu_read_unlock();
2602
2603 return;
2604 drop:
2605 kfree_skb(skb);
2606 }
2607 EXPORT_SYMBOL(ieee80211_rx);
2608
2609 /* This is a version of the rx handler that can be called from hard irq
2610 * context. Post the skb on the queue and schedule the tasklet */
2611 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2612 {
2613 struct ieee80211_local *local = hw_to_local(hw);
2614
2615 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2616
2617 skb->pkt_type = IEEE80211_RX_MSG;
2618 skb_queue_tail(&local->skb_queue, skb);
2619 tasklet_schedule(&local->tasklet);
2620 }
2621 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.084035 seconds and 5 git commands to generate.