mac80211: clean up mesh code
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
20
21 #include "ieee80211_i.h"
22 #include "ieee80211_led.h"
23 #include "mesh.h"
24 #include "wep.h"
25 #include "wpa.h"
26 #include "tkip.h"
27 #include "wme.h"
28
29 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
30 struct tid_ampdu_rx *tid_agg_rx,
31 struct sk_buff *skb, u16 mpdu_seq_num,
32 int bar_req);
33 /*
34 * monitor mode reception
35 *
36 * This function cleans up the SKB, i.e. it removes all the stuff
37 * only useful for monitoring.
38 */
39 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
40 struct sk_buff *skb,
41 int rtap_len)
42 {
43 skb_pull(skb, rtap_len);
44
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 skb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 skb = NULL;
53 }
54 }
55
56 return skb;
57 }
58
59 static inline int should_drop_frame(struct ieee80211_rx_status *status,
60 struct sk_buff *skb,
61 int present_fcs_len,
62 int radiotap_len)
63 {
64 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
65
66 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
67 return 1;
68 if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
69 return 1;
70 if (((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
71 cpu_to_le16(IEEE80211_FTYPE_CTL)) &&
72 ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
73 cpu_to_le16(IEEE80211_STYPE_PSPOLL)) &&
74 ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
75 cpu_to_le16(IEEE80211_STYPE_BACK_REQ)))
76 return 1;
77 return 0;
78 }
79
80 /*
81 * This function copies a received frame to all monitor interfaces and
82 * returns a cleaned-up SKB that no longer includes the FCS nor the
83 * radiotap header the driver might have added.
84 */
85 static struct sk_buff *
86 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
87 struct ieee80211_rx_status *status,
88 struct ieee80211_rate *rate)
89 {
90 struct ieee80211_sub_if_data *sdata;
91 int needed_headroom = 0;
92 struct ieee80211_radiotap_header *rthdr;
93 __le64 *rttsft = NULL;
94 struct ieee80211_rtap_fixed_data {
95 u8 flags;
96 u8 rate;
97 __le16 chan_freq;
98 __le16 chan_flags;
99 u8 antsignal;
100 u8 padding_for_rxflags;
101 __le16 rx_flags;
102 } __attribute__ ((packed)) *rtfixed;
103 struct sk_buff *skb, *skb2;
104 struct net_device *prev_dev = NULL;
105 int present_fcs_len = 0;
106 int rtap_len = 0;
107
108 /*
109 * First, we may need to make a copy of the skb because
110 * (1) we need to modify it for radiotap (if not present), and
111 * (2) the other RX handlers will modify the skb we got.
112 *
113 * We don't need to, of course, if we aren't going to return
114 * the SKB because it has a bad FCS/PLCP checksum.
115 */
116 if (status->flag & RX_FLAG_RADIOTAP)
117 rtap_len = ieee80211_get_radiotap_len(origskb->data);
118 else
119 /* room for radiotap header, always present fields and TSFT */
120 needed_headroom = sizeof(*rthdr) + sizeof(*rtfixed) + 8;
121
122 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
123 present_fcs_len = FCS_LEN;
124
125 if (!local->monitors) {
126 if (should_drop_frame(status, origskb, present_fcs_len,
127 rtap_len)) {
128 dev_kfree_skb(origskb);
129 return NULL;
130 }
131
132 return remove_monitor_info(local, origskb, rtap_len);
133 }
134
135 if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
136 /* only need to expand headroom if necessary */
137 skb = origskb;
138 origskb = NULL;
139
140 /*
141 * This shouldn't trigger often because most devices have an
142 * RX header they pull before we get here, and that should
143 * be big enough for our radiotap information. We should
144 * probably export the length to drivers so that we can have
145 * them allocate enough headroom to start with.
146 */
147 if (skb_headroom(skb) < needed_headroom &&
148 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
149 dev_kfree_skb(skb);
150 return NULL;
151 }
152 } else {
153 /*
154 * Need to make a copy and possibly remove radiotap header
155 * and FCS from the original.
156 */
157 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
158
159 origskb = remove_monitor_info(local, origskb, rtap_len);
160
161 if (!skb)
162 return origskb;
163 }
164
165 /* if necessary, prepend radiotap information */
166 if (!(status->flag & RX_FLAG_RADIOTAP)) {
167 rtfixed = (void *) skb_push(skb, sizeof(*rtfixed));
168 rtap_len = sizeof(*rthdr) + sizeof(*rtfixed);
169 if (status->flag & RX_FLAG_TSFT) {
170 rttsft = (void *) skb_push(skb, sizeof(*rttsft));
171 rtap_len += 8;
172 }
173 rthdr = (void *) skb_push(skb, sizeof(*rthdr));
174 memset(rthdr, 0, sizeof(*rthdr));
175 memset(rtfixed, 0, sizeof(*rtfixed));
176 rthdr->it_present =
177 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
178 (1 << IEEE80211_RADIOTAP_RATE) |
179 (1 << IEEE80211_RADIOTAP_CHANNEL) |
180 (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) |
181 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
182 rtfixed->flags = 0;
183 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
184 rtfixed->flags |= IEEE80211_RADIOTAP_F_FCS;
185
186 if (rttsft) {
187 *rttsft = cpu_to_le64(status->mactime);
188 rthdr->it_present |=
189 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
190 }
191
192 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
193 rtfixed->rx_flags = 0;
194 if (status->flag &
195 (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
196 rtfixed->rx_flags |=
197 cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
198
199 rtfixed->rate = rate->bitrate / 5;
200
201 rtfixed->chan_freq = cpu_to_le16(status->freq);
202
203 if (status->band == IEEE80211_BAND_5GHZ)
204 rtfixed->chan_flags =
205 cpu_to_le16(IEEE80211_CHAN_OFDM |
206 IEEE80211_CHAN_5GHZ);
207 else
208 rtfixed->chan_flags =
209 cpu_to_le16(IEEE80211_CHAN_DYN |
210 IEEE80211_CHAN_2GHZ);
211
212 rtfixed->antsignal = status->ssi;
213 rthdr->it_len = cpu_to_le16(rtap_len);
214 }
215
216 skb_reset_mac_header(skb);
217 skb->ip_summed = CHECKSUM_UNNECESSARY;
218 skb->pkt_type = PACKET_OTHERHOST;
219 skb->protocol = htons(ETH_P_802_2);
220
221 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
222 if (!netif_running(sdata->dev))
223 continue;
224
225 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
226 continue;
227
228 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
229 continue;
230
231 if (prev_dev) {
232 skb2 = skb_clone(skb, GFP_ATOMIC);
233 if (skb2) {
234 skb2->dev = prev_dev;
235 netif_rx(skb2);
236 }
237 }
238
239 prev_dev = sdata->dev;
240 sdata->dev->stats.rx_packets++;
241 sdata->dev->stats.rx_bytes += skb->len;
242 }
243
244 if (prev_dev) {
245 skb->dev = prev_dev;
246 netif_rx(skb);
247 } else
248 dev_kfree_skb(skb);
249
250 return origskb;
251 }
252
253
254 static void ieee80211_parse_qos(struct ieee80211_txrx_data *rx)
255 {
256 u8 *data = rx->skb->data;
257 int tid;
258
259 /* does the frame have a qos control field? */
260 if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
261 u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
262 /* frame has qos control */
263 tid = qc[0] & QOS_CONTROL_TID_MASK;
264 if (qc[0] & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
265 rx->flags |= IEEE80211_TXRXD_RX_AMSDU;
266 else
267 rx->flags &= ~IEEE80211_TXRXD_RX_AMSDU;
268 } else {
269 if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
270 /* Separate TID for management frames */
271 tid = NUM_RX_DATA_QUEUES - 1;
272 } else {
273 /* no qos control present */
274 tid = 0; /* 802.1d - Best Effort */
275 }
276 }
277
278 I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
279 /* only a debug counter, sta might not be assigned properly yet */
280 if (rx->sta)
281 I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
282
283 rx->u.rx.queue = tid;
284 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
285 * For now, set skb->priority to 0 for other cases. */
286 rx->skb->priority = (tid > 7) ? 0 : tid;
287 }
288
289 static void ieee80211_verify_ip_alignment(struct ieee80211_txrx_data *rx)
290 {
291 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
292 int hdrlen;
293
294 if (!WLAN_FC_DATA_PRESENT(rx->fc))
295 return;
296
297 /*
298 * Drivers are required to align the payload data in a way that
299 * guarantees that the contained IP header is aligned to a four-
300 * byte boundary. In the case of regular frames, this simply means
301 * aligning the payload to a four-byte boundary (because either
302 * the IP header is directly contained, or IV/RFC1042 headers that
303 * have a length divisible by four are in front of it.
304 *
305 * With A-MSDU frames, however, the payload data address must
306 * yield two modulo four because there are 14-byte 802.3 headers
307 * within the A-MSDU frames that push the IP header further back
308 * to a multiple of four again. Thankfully, the specs were sane
309 * enough this time around to require padding each A-MSDU subframe
310 * to a length that is a multiple of four.
311 *
312 * Padding like atheros hardware adds which is inbetween the 802.11
313 * header and the payload is not supported, the driver is required
314 * to move the 802.11 header further back in that case.
315 */
316 hdrlen = ieee80211_get_hdrlen(rx->fc);
317 if (rx->flags & IEEE80211_TXRXD_RX_AMSDU)
318 hdrlen += ETH_HLEN;
319 WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
320 #endif
321 }
322
323
324 static u32 ieee80211_rx_load_stats(struct ieee80211_local *local,
325 struct sk_buff *skb,
326 struct ieee80211_rx_status *status,
327 struct ieee80211_rate *rate)
328 {
329 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
330 u32 load = 0, hdrtime;
331
332 /* Estimate total channel use caused by this frame */
333
334 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
335 * 1 usec = 1/8 * (1080 / 10) = 13.5 */
336
337 if (status->band == IEEE80211_BAND_5GHZ ||
338 (status->band == IEEE80211_BAND_5GHZ &&
339 rate->flags & IEEE80211_RATE_ERP_G))
340 hdrtime = CHAN_UTIL_HDR_SHORT;
341 else
342 hdrtime = CHAN_UTIL_HDR_LONG;
343
344 load = hdrtime;
345 if (!is_multicast_ether_addr(hdr->addr1))
346 load += hdrtime;
347
348 /* TODO: optimise again */
349 load += skb->len * CHAN_UTIL_RATE_LCM / rate->bitrate;
350
351 /* Divide channel_use by 8 to avoid wrapping around the counter */
352 load >>= CHAN_UTIL_SHIFT;
353
354 return load;
355 }
356
357 /* rx handlers */
358
359 static ieee80211_rx_result
360 ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
361 {
362 if (rx->sta)
363 rx->sta->channel_use_raw += rx->u.rx.load;
364 rx->sdata->channel_use_raw += rx->u.rx.load;
365 return RX_CONTINUE;
366 }
367
368 static ieee80211_rx_result
369 ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
370 {
371 struct ieee80211_local *local = rx->local;
372 struct sk_buff *skb = rx->skb;
373
374 if (unlikely(local->sta_hw_scanning))
375 return ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
376
377 if (unlikely(local->sta_sw_scanning)) {
378 /* drop all the other packets during a software scan anyway */
379 if (ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status)
380 != RX_QUEUED)
381 dev_kfree_skb(skb);
382 return RX_QUEUED;
383 }
384
385 if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) {
386 /* scanning finished during invoking of handlers */
387 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
388 return RX_DROP_UNUSABLE;
389 }
390
391 return RX_CONTINUE;
392 }
393
394 #ifdef CONFIG_MAC80211_MESH
395 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
396 static ieee80211_rx_result
397 ieee80211_rx_mesh_check(struct ieee80211_txrx_data *rx)
398 {
399 int hdrlen = ieee80211_get_hdrlen(rx->fc);
400 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
401 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) {
402 if (!((rx->fc & IEEE80211_FCTL_FROMDS) &&
403 (rx->fc & IEEE80211_FCTL_TODS)))
404 return RX_DROP_MONITOR;
405 if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0)
406 return RX_DROP_MONITOR;
407 }
408
409 /* If there is not an established peer link and this is not a peer link
410 * establisment frame, beacon or probe, drop the frame.
411 */
412
413 if (!rx->sta || rx->sta->plink_state != ESTAB) {
414 struct ieee80211_mgmt *mgmt;
415 if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT)
416 return RX_DROP_MONITOR;
417
418 switch (rx->fc & IEEE80211_FCTL_STYPE) {
419 case IEEE80211_STYPE_ACTION:
420 mgmt = (struct ieee80211_mgmt *)hdr;
421 if (mgmt->u.action.category != PLINK_CATEGORY)
422 return RX_DROP_MONITOR;
423 /* fall through on else */
424 case IEEE80211_STYPE_PROBE_REQ:
425 case IEEE80211_STYPE_PROBE_RESP:
426 case IEEE80211_STYPE_BEACON:
427 return RX_CONTINUE;
428 break;
429 default:
430 return RX_DROP_MONITOR;
431 }
432
433 } else if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
434 is_broadcast_ether_addr(hdr->addr1) &&
435 mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->dev))
436 return RX_DROP_MONITOR;
437 else
438 return RX_CONTINUE;
439 }
440 #undef msh_h_get
441 #else
442 static inline ieee80211_rx_result
443 ieee80211_rx_mesh_check(struct ieee80211_txrx_data *rx)
444 {
445 return RX_CONTINUE;
446 }
447 #endif
448
449
450 static ieee80211_rx_result
451 ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
452 {
453 struct ieee80211_hdr *hdr;
454
455 hdr = (struct ieee80211_hdr *) rx->skb->data;
456
457 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
458 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
459 if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
460 rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
461 hdr->seq_ctrl)) {
462 if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) {
463 rx->local->dot11FrameDuplicateCount++;
464 rx->sta->num_duplicates++;
465 }
466 return RX_DROP_MONITOR;
467 } else
468 rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
469 }
470
471 if (unlikely(rx->skb->len < 16)) {
472 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
473 return RX_DROP_MONITOR;
474 }
475
476 /* Drop disallowed frame classes based on STA auth/assoc state;
477 * IEEE 802.11, Chap 5.5.
478 *
479 * 80211.o does filtering only based on association state, i.e., it
480 * drops Class 3 frames from not associated stations. hostapd sends
481 * deauth/disassoc frames when needed. In addition, hostapd is
482 * responsible for filtering on both auth and assoc states.
483 */
484
485 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
486 return ieee80211_rx_mesh_check(rx);
487
488 if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
489 ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
490 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
491 rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
492 (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
493 if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
494 !(rx->fc & IEEE80211_FCTL_TODS) &&
495 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
496 || !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
497 /* Drop IBSS frames and frames for other hosts
498 * silently. */
499 return RX_DROP_MONITOR;
500 }
501
502 return RX_DROP_MONITOR;
503 }
504
505 return RX_CONTINUE;
506 }
507
508
509 static ieee80211_rx_result
510 ieee80211_rx_h_decrypt(struct ieee80211_txrx_data *rx)
511 {
512 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
513 int keyidx;
514 int hdrlen;
515 ieee80211_rx_result result = RX_DROP_UNUSABLE;
516 struct ieee80211_key *stakey = NULL;
517
518 /*
519 * Key selection 101
520 *
521 * There are three types of keys:
522 * - GTK (group keys)
523 * - PTK (pairwise keys)
524 * - STK (station-to-station pairwise keys)
525 *
526 * When selecting a key, we have to distinguish between multicast
527 * (including broadcast) and unicast frames, the latter can only
528 * use PTKs and STKs while the former always use GTKs. Unless, of
529 * course, actual WEP keys ("pre-RSNA") are used, then unicast
530 * frames can also use key indizes like GTKs. Hence, if we don't
531 * have a PTK/STK we check the key index for a WEP key.
532 *
533 * Note that in a regular BSS, multicast frames are sent by the
534 * AP only, associated stations unicast the frame to the AP first
535 * which then multicasts it on their behalf.
536 *
537 * There is also a slight problem in IBSS mode: GTKs are negotiated
538 * with each station, that is something we don't currently handle.
539 * The spec seems to expect that one negotiates the same key with
540 * every station but there's no such requirement; VLANs could be
541 * possible.
542 */
543
544 if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
545 return RX_CONTINUE;
546
547 /*
548 * No point in finding a key and decrypting if the frame is neither
549 * addressed to us nor a multicast frame.
550 */
551 if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
552 return RX_CONTINUE;
553
554 if (rx->sta)
555 stakey = rcu_dereference(rx->sta->key);
556
557 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
558 rx->key = stakey;
559 } else {
560 /*
561 * The device doesn't give us the IV so we won't be
562 * able to look up the key. That's ok though, we
563 * don't need to decrypt the frame, we just won't
564 * be able to keep statistics accurate.
565 * Except for key threshold notifications, should
566 * we somehow allow the driver to tell us which key
567 * the hardware used if this flag is set?
568 */
569 if ((rx->u.rx.status->flag & RX_FLAG_DECRYPTED) &&
570 (rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED))
571 return RX_CONTINUE;
572
573 hdrlen = ieee80211_get_hdrlen(rx->fc);
574
575 if (rx->skb->len < 8 + hdrlen)
576 return RX_DROP_UNUSABLE; /* TODO: count this? */
577
578 /*
579 * no need to call ieee80211_wep_get_keyidx,
580 * it verifies a bunch of things we've done already
581 */
582 keyidx = rx->skb->data[hdrlen + 3] >> 6;
583
584 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
585
586 /*
587 * RSNA-protected unicast frames should always be sent with
588 * pairwise or station-to-station keys, but for WEP we allow
589 * using a key index as well.
590 */
591 if (rx->key && rx->key->conf.alg != ALG_WEP &&
592 !is_multicast_ether_addr(hdr->addr1))
593 rx->key = NULL;
594 }
595
596 if (rx->key) {
597 rx->key->tx_rx_count++;
598 /* TODO: add threshold stuff again */
599 } else {
600 #ifdef CONFIG_MAC80211_DEBUG
601 if (net_ratelimit())
602 printk(KERN_DEBUG "%s: RX protected frame,"
603 " but have no key\n", rx->dev->name);
604 #endif /* CONFIG_MAC80211_DEBUG */
605 return RX_DROP_MONITOR;
606 }
607
608 /* Check for weak IVs if possible */
609 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
610 ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
611 (!(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED) ||
612 !(rx->u.rx.status->flag & RX_FLAG_DECRYPTED)) &&
613 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
614 rx->sta->wep_weak_iv_count++;
615
616 switch (rx->key->conf.alg) {
617 case ALG_WEP:
618 result = ieee80211_crypto_wep_decrypt(rx);
619 break;
620 case ALG_TKIP:
621 result = ieee80211_crypto_tkip_decrypt(rx);
622 break;
623 case ALG_CCMP:
624 result = ieee80211_crypto_ccmp_decrypt(rx);
625 break;
626 }
627
628 /* either the frame has been decrypted or will be dropped */
629 rx->u.rx.status->flag |= RX_FLAG_DECRYPTED;
630
631 return result;
632 }
633
634 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
635 {
636 struct ieee80211_sub_if_data *sdata;
637 DECLARE_MAC_BUF(mac);
638
639 sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
640
641 if (sdata->bss)
642 atomic_inc(&sdata->bss->num_sta_ps);
643 sta->flags |= WLAN_STA_PS;
644 sta->flags &= ~WLAN_STA_PSPOLL;
645 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
646 printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
647 dev->name, print_mac(mac, sta->addr), sta->aid);
648 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
649 }
650
651 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
652 {
653 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
654 struct sk_buff *skb;
655 int sent = 0;
656 struct ieee80211_sub_if_data *sdata;
657 struct ieee80211_tx_packet_data *pkt_data;
658 DECLARE_MAC_BUF(mac);
659
660 sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
661
662 if (sdata->bss)
663 atomic_dec(&sdata->bss->num_sta_ps);
664
665 sta->flags &= ~(WLAN_STA_PS | WLAN_STA_PSPOLL);
666
667 if (!skb_queue_empty(&sta->ps_tx_buf))
668 sta_info_clear_tim_bit(sta);
669
670 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
671 printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
672 dev->name, print_mac(mac, sta->addr), sta->aid);
673 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
674
675 /* Send all buffered frames to the station */
676 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
677 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
678 sent++;
679 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
680 dev_queue_xmit(skb);
681 }
682 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
683 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
684 local->total_ps_buffered--;
685 sent++;
686 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
687 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
688 "since STA not sleeping anymore\n", dev->name,
689 print_mac(mac, sta->addr), sta->aid);
690 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
691 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
692 dev_queue_xmit(skb);
693 }
694
695 return sent;
696 }
697
698 static ieee80211_rx_result
699 ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
700 {
701 struct sta_info *sta = rx->sta;
702 struct net_device *dev = rx->dev;
703 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
704
705 if (!sta)
706 return RX_CONTINUE;
707
708 /* Update last_rx only for IBSS packets which are for the current
709 * BSSID to avoid keeping the current IBSS network alive in cases where
710 * other STAs are using different BSSID. */
711 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
712 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
713 IEEE80211_IF_TYPE_IBSS);
714 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
715 sta->last_rx = jiffies;
716 } else
717 if (!is_multicast_ether_addr(hdr->addr1) ||
718 rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
719 /* Update last_rx only for unicast frames in order to prevent
720 * the Probe Request frames (the only broadcast frames from a
721 * STA in infrastructure mode) from keeping a connection alive.
722 * Mesh beacons will update last_rx when if they are found to
723 * match the current local configuration when processed.
724 */
725 sta->last_rx = jiffies;
726 }
727
728 if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
729 return RX_CONTINUE;
730
731 sta->rx_fragments++;
732 sta->rx_bytes += rx->skb->len;
733 sta->last_rssi = rx->u.rx.status->ssi;
734 sta->last_signal = rx->u.rx.status->signal;
735 sta->last_noise = rx->u.rx.status->noise;
736
737 if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
738 /* Change STA power saving mode only in the end of a frame
739 * exchange sequence */
740 if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
741 rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
742 else if (!(sta->flags & WLAN_STA_PS) &&
743 (rx->fc & IEEE80211_FCTL_PM))
744 ap_sta_ps_start(dev, sta);
745 }
746
747 /* Drop data::nullfunc frames silently, since they are used only to
748 * control station power saving mode. */
749 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
750 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
751 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
752 /* Update counter and free packet here to avoid counting this
753 * as a dropped packed. */
754 sta->rx_packets++;
755 dev_kfree_skb(rx->skb);
756 return RX_QUEUED;
757 }
758
759 return RX_CONTINUE;
760 } /* ieee80211_rx_h_sta_process */
761
762 static inline struct ieee80211_fragment_entry *
763 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
764 unsigned int frag, unsigned int seq, int rx_queue,
765 struct sk_buff **skb)
766 {
767 struct ieee80211_fragment_entry *entry;
768 int idx;
769
770 idx = sdata->fragment_next;
771 entry = &sdata->fragments[sdata->fragment_next++];
772 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
773 sdata->fragment_next = 0;
774
775 if (!skb_queue_empty(&entry->skb_list)) {
776 #ifdef CONFIG_MAC80211_DEBUG
777 struct ieee80211_hdr *hdr =
778 (struct ieee80211_hdr *) entry->skb_list.next->data;
779 DECLARE_MAC_BUF(mac);
780 DECLARE_MAC_BUF(mac2);
781 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
782 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
783 "addr1=%s addr2=%s\n",
784 sdata->dev->name, idx,
785 jiffies - entry->first_frag_time, entry->seq,
786 entry->last_frag, print_mac(mac, hdr->addr1),
787 print_mac(mac2, hdr->addr2));
788 #endif /* CONFIG_MAC80211_DEBUG */
789 __skb_queue_purge(&entry->skb_list);
790 }
791
792 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
793 *skb = NULL;
794 entry->first_frag_time = jiffies;
795 entry->seq = seq;
796 entry->rx_queue = rx_queue;
797 entry->last_frag = frag;
798 entry->ccmp = 0;
799 entry->extra_len = 0;
800
801 return entry;
802 }
803
804 static inline struct ieee80211_fragment_entry *
805 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
806 u16 fc, unsigned int frag, unsigned int seq,
807 int rx_queue, struct ieee80211_hdr *hdr)
808 {
809 struct ieee80211_fragment_entry *entry;
810 int i, idx;
811
812 idx = sdata->fragment_next;
813 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
814 struct ieee80211_hdr *f_hdr;
815 u16 f_fc;
816
817 idx--;
818 if (idx < 0)
819 idx = IEEE80211_FRAGMENT_MAX - 1;
820
821 entry = &sdata->fragments[idx];
822 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
823 entry->rx_queue != rx_queue ||
824 entry->last_frag + 1 != frag)
825 continue;
826
827 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
828 f_fc = le16_to_cpu(f_hdr->frame_control);
829
830 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
831 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
832 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
833 continue;
834
835 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
836 __skb_queue_purge(&entry->skb_list);
837 continue;
838 }
839 return entry;
840 }
841
842 return NULL;
843 }
844
845 static ieee80211_rx_result
846 ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
847 {
848 struct ieee80211_hdr *hdr;
849 u16 sc;
850 unsigned int frag, seq;
851 struct ieee80211_fragment_entry *entry;
852 struct sk_buff *skb;
853 DECLARE_MAC_BUF(mac);
854
855 hdr = (struct ieee80211_hdr *) rx->skb->data;
856 sc = le16_to_cpu(hdr->seq_ctrl);
857 frag = sc & IEEE80211_SCTL_FRAG;
858
859 if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
860 (rx->skb)->len < 24 ||
861 is_multicast_ether_addr(hdr->addr1))) {
862 /* not fragmented */
863 goto out;
864 }
865 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
866
867 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
868
869 if (frag == 0) {
870 /* This is the first fragment of a new frame. */
871 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
872 rx->u.rx.queue, &(rx->skb));
873 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
874 (rx->fc & IEEE80211_FCTL_PROTECTED)) {
875 /* Store CCMP PN so that we can verify that the next
876 * fragment has a sequential PN value. */
877 entry->ccmp = 1;
878 memcpy(entry->last_pn,
879 rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
880 CCMP_PN_LEN);
881 }
882 return RX_QUEUED;
883 }
884
885 /* This is a fragment for a frame that should already be pending in
886 * fragment cache. Add this fragment to the end of the pending entry.
887 */
888 entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
889 rx->u.rx.queue, hdr);
890 if (!entry) {
891 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
892 return RX_DROP_MONITOR;
893 }
894
895 /* Verify that MPDUs within one MSDU have sequential PN values.
896 * (IEEE 802.11i, 8.3.3.4.5) */
897 if (entry->ccmp) {
898 int i;
899 u8 pn[CCMP_PN_LEN], *rpn;
900 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
901 return RX_DROP_UNUSABLE;
902 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
903 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
904 pn[i]++;
905 if (pn[i])
906 break;
907 }
908 rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
909 if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
910 if (net_ratelimit())
911 printk(KERN_DEBUG "%s: defrag: CCMP PN not "
912 "sequential A2=%s"
913 " PN=%02x%02x%02x%02x%02x%02x "
914 "(expected %02x%02x%02x%02x%02x%02x)\n",
915 rx->dev->name, print_mac(mac, hdr->addr2),
916 rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
917 rpn[5], pn[0], pn[1], pn[2], pn[3],
918 pn[4], pn[5]);
919 return RX_DROP_UNUSABLE;
920 }
921 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
922 }
923
924 skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
925 __skb_queue_tail(&entry->skb_list, rx->skb);
926 entry->last_frag = frag;
927 entry->extra_len += rx->skb->len;
928 if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
929 rx->skb = NULL;
930 return RX_QUEUED;
931 }
932
933 rx->skb = __skb_dequeue(&entry->skb_list);
934 if (skb_tailroom(rx->skb) < entry->extra_len) {
935 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
936 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
937 GFP_ATOMIC))) {
938 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
939 __skb_queue_purge(&entry->skb_list);
940 return RX_DROP_UNUSABLE;
941 }
942 }
943 while ((skb = __skb_dequeue(&entry->skb_list))) {
944 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
945 dev_kfree_skb(skb);
946 }
947
948 /* Complete frame has been reassembled - process it now */
949 rx->flags |= IEEE80211_TXRXD_FRAGMENTED;
950
951 out:
952 if (rx->sta)
953 rx->sta->rx_packets++;
954 if (is_multicast_ether_addr(hdr->addr1))
955 rx->local->dot11MulticastReceivedFrameCount++;
956 else
957 ieee80211_led_rx(rx->local);
958 return RX_CONTINUE;
959 }
960
961 static ieee80211_rx_result
962 ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
963 {
964 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
965 struct sk_buff *skb;
966 int no_pending_pkts;
967 DECLARE_MAC_BUF(mac);
968
969 if (likely(!rx->sta ||
970 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
971 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
972 !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)))
973 return RX_CONTINUE;
974
975 if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
976 (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
977 return RX_DROP_UNUSABLE;
978
979 skb = skb_dequeue(&rx->sta->tx_filtered);
980 if (!skb) {
981 skb = skb_dequeue(&rx->sta->ps_tx_buf);
982 if (skb)
983 rx->local->total_ps_buffered--;
984 }
985 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
986 skb_queue_empty(&rx->sta->ps_tx_buf);
987
988 if (skb) {
989 struct ieee80211_hdr *hdr =
990 (struct ieee80211_hdr *) skb->data;
991
992 /*
993 * Tell TX path to send one frame even though the STA may
994 * still remain is PS mode after this frame exchange.
995 */
996 rx->sta->flags |= WLAN_STA_PSPOLL;
997
998 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
999 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
1000 print_mac(mac, rx->sta->addr), rx->sta->aid,
1001 skb_queue_len(&rx->sta->ps_tx_buf));
1002 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1003
1004 /* Use MoreData flag to indicate whether there are more
1005 * buffered frames for this STA */
1006 if (no_pending_pkts)
1007 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1008 else
1009 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1010
1011 dev_queue_xmit(skb);
1012
1013 if (no_pending_pkts)
1014 sta_info_clear_tim_bit(rx->sta);
1015 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1016 } else if (!rx->u.rx.sent_ps_buffered) {
1017 /*
1018 * FIXME: This can be the result of a race condition between
1019 * us expiring a frame and the station polling for it.
1020 * Should we send it a null-func frame indicating we
1021 * have nothing buffered for it?
1022 */
1023 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
1024 "though there is no buffered frames for it\n",
1025 rx->dev->name, print_mac(mac, rx->sta->addr));
1026 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1027 }
1028
1029 /* Free PS Poll skb here instead of returning RX_DROP that would
1030 * count as an dropped frame. */
1031 dev_kfree_skb(rx->skb);
1032
1033 return RX_QUEUED;
1034 }
1035
1036 static ieee80211_rx_result
1037 ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx)
1038 {
1039 u16 fc = rx->fc;
1040 u8 *data = rx->skb->data;
1041 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
1042
1043 if (!WLAN_FC_IS_QOS_DATA(fc))
1044 return RX_CONTINUE;
1045
1046 /* remove the qos control field, update frame type and meta-data */
1047 memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
1048 hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
1049 /* change frame type to non QOS */
1050 rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
1051 hdr->frame_control = cpu_to_le16(fc);
1052
1053 return RX_CONTINUE;
1054 }
1055
1056 static int
1057 ieee80211_802_1x_port_control(struct ieee80211_txrx_data *rx)
1058 {
1059 if (unlikely(!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED))) {
1060 #ifdef CONFIG_MAC80211_DEBUG
1061 if (net_ratelimit())
1062 printk(KERN_DEBUG "%s: dropped frame "
1063 "(unauthorized port)\n", rx->dev->name);
1064 #endif /* CONFIG_MAC80211_DEBUG */
1065 return -EACCES;
1066 }
1067
1068 return 0;
1069 }
1070
1071 static int
1072 ieee80211_drop_unencrypted(struct ieee80211_txrx_data *rx)
1073 {
1074 /*
1075 * Pass through unencrypted frames if the hardware has
1076 * decrypted them already.
1077 */
1078 if (rx->u.rx.status->flag & RX_FLAG_DECRYPTED)
1079 return 0;
1080
1081 /* Drop unencrypted frames if key is set. */
1082 if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
1083 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
1084 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1085 (rx->key || rx->sdata->drop_unencrypted))) {
1086 if (net_ratelimit())
1087 printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
1088 "encryption\n", rx->dev->name);
1089 return -EACCES;
1090 }
1091 return 0;
1092 }
1093
1094 static int
1095 ieee80211_data_to_8023(struct ieee80211_txrx_data *rx)
1096 {
1097 struct net_device *dev = rx->dev;
1098 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1099 u16 fc, hdrlen, ethertype;
1100 u8 *payload;
1101 u8 dst[ETH_ALEN];
1102 u8 src[ETH_ALEN];
1103 struct sk_buff *skb = rx->skb;
1104 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1105 DECLARE_MAC_BUF(mac);
1106 DECLARE_MAC_BUF(mac2);
1107 DECLARE_MAC_BUF(mac3);
1108 DECLARE_MAC_BUF(mac4);
1109
1110 fc = rx->fc;
1111
1112 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1113 return -1;
1114
1115 hdrlen = ieee80211_get_hdrlen(fc);
1116
1117 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1118 int meshhdrlen = ieee80211_get_mesh_hdrlen(
1119 (struct ieee80211s_hdr *) (skb->data + hdrlen));
1120 /* Copy on cb:
1121 * - mesh header: to be used for mesh forwarding
1122 * decision. It will also be used as mesh header template at
1123 * tx.c:ieee80211_subif_start_xmit() if interface
1124 * type is mesh and skb->pkt_type == PACKET_OTHERHOST
1125 * - ta: to be used if a RERR needs to be sent.
1126 */
1127 memcpy(skb->cb, skb->data + hdrlen, meshhdrlen);
1128 memcpy(MESH_PREQ(skb), hdr->addr2, ETH_ALEN);
1129 hdrlen += meshhdrlen;
1130 }
1131
1132 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1133 * header
1134 * IEEE 802.11 address fields:
1135 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1136 * 0 0 DA SA BSSID n/a
1137 * 0 1 DA BSSID SA n/a
1138 * 1 0 BSSID SA DA n/a
1139 * 1 1 RA TA DA SA
1140 */
1141
1142 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1143 case IEEE80211_FCTL_TODS:
1144 /* BSSID SA DA */
1145 memcpy(dst, hdr->addr3, ETH_ALEN);
1146 memcpy(src, hdr->addr2, ETH_ALEN);
1147
1148 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
1149 sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) {
1150 if (net_ratelimit())
1151 printk(KERN_DEBUG "%s: dropped ToDS frame "
1152 "(BSSID=%s SA=%s DA=%s)\n",
1153 dev->name,
1154 print_mac(mac, hdr->addr1),
1155 print_mac(mac2, hdr->addr2),
1156 print_mac(mac3, hdr->addr3));
1157 return -1;
1158 }
1159 break;
1160 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1161 /* RA TA DA SA */
1162 memcpy(dst, hdr->addr3, ETH_ALEN);
1163 memcpy(src, hdr->addr4, ETH_ALEN);
1164
1165 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS &&
1166 sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT)) {
1167 if (net_ratelimit())
1168 printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
1169 "frame (RA=%s TA=%s DA=%s SA=%s)\n",
1170 rx->dev->name,
1171 print_mac(mac, hdr->addr1),
1172 print_mac(mac2, hdr->addr2),
1173 print_mac(mac3, hdr->addr3),
1174 print_mac(mac4, hdr->addr4));
1175 return -1;
1176 }
1177 break;
1178 case IEEE80211_FCTL_FROMDS:
1179 /* DA BSSID SA */
1180 memcpy(dst, hdr->addr1, ETH_ALEN);
1181 memcpy(src, hdr->addr3, ETH_ALEN);
1182
1183 if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1184 (is_multicast_ether_addr(dst) &&
1185 !compare_ether_addr(src, dev->dev_addr)))
1186 return -1;
1187 break;
1188 case 0:
1189 /* DA SA BSSID */
1190 memcpy(dst, hdr->addr1, ETH_ALEN);
1191 memcpy(src, hdr->addr2, ETH_ALEN);
1192
1193 if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
1194 if (net_ratelimit()) {
1195 printk(KERN_DEBUG "%s: dropped IBSS frame "
1196 "(DA=%s SA=%s BSSID=%s)\n",
1197 dev->name,
1198 print_mac(mac, hdr->addr1),
1199 print_mac(mac2, hdr->addr2),
1200 print_mac(mac3, hdr->addr3));
1201 }
1202 return -1;
1203 }
1204 break;
1205 }
1206
1207 if (unlikely(skb->len - hdrlen < 8)) {
1208 if (net_ratelimit()) {
1209 printk(KERN_DEBUG "%s: RX too short data frame "
1210 "payload\n", dev->name);
1211 }
1212 return -1;
1213 }
1214
1215 payload = skb->data + hdrlen;
1216 ethertype = (payload[6] << 8) | payload[7];
1217
1218 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1219 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1220 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1221 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1222 * replace EtherType */
1223 skb_pull(skb, hdrlen + 6);
1224 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1225 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1226 } else {
1227 struct ethhdr *ehdr;
1228 __be16 len;
1229
1230 skb_pull(skb, hdrlen);
1231 len = htons(skb->len);
1232 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1233 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1234 memcpy(ehdr->h_source, src, ETH_ALEN);
1235 ehdr->h_proto = len;
1236 }
1237 return 0;
1238 }
1239
1240 /*
1241 * requires that rx->skb is a frame with ethernet header
1242 */
1243 static bool ieee80211_frame_allowed(struct ieee80211_txrx_data *rx)
1244 {
1245 static const u8 pae_group_addr[ETH_ALEN]
1246 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1247 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1248
1249 /*
1250 * Allow EAPOL frames to us/the PAE group address regardless
1251 * of whether the frame was encrypted or not.
1252 */
1253 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1254 (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1255 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1256 return true;
1257
1258 if (ieee80211_802_1x_port_control(rx) ||
1259 ieee80211_drop_unencrypted(rx))
1260 return false;
1261
1262 return true;
1263 }
1264
1265 /*
1266 * requires that rx->skb is a frame with ethernet header
1267 */
1268 static void
1269 ieee80211_deliver_skb(struct ieee80211_txrx_data *rx)
1270 {
1271 struct net_device *dev = rx->dev;
1272 struct ieee80211_local *local = rx->local;
1273 struct sk_buff *skb, *xmit_skb;
1274 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1275 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1276 struct sta_info *dsta;
1277
1278 skb = rx->skb;
1279 xmit_skb = NULL;
1280
1281 if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
1282 sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1283 (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
1284 if (is_multicast_ether_addr(ehdr->h_dest)) {
1285 /*
1286 * send multicast frames both to higher layers in
1287 * local net stack and back to the wireless medium
1288 */
1289 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1290 if (!xmit_skb && net_ratelimit())
1291 printk(KERN_DEBUG "%s: failed to clone "
1292 "multicast frame\n", dev->name);
1293 } else {
1294 dsta = sta_info_get(local, skb->data);
1295 if (dsta && dsta->dev == dev) {
1296 /*
1297 * The destination station is associated to
1298 * this AP (in this VLAN), so send the frame
1299 * directly to it and do not pass it to local
1300 * net stack.
1301 */
1302 xmit_skb = skb;
1303 skb = NULL;
1304 }
1305 if (dsta)
1306 sta_info_put(dsta);
1307 }
1308 }
1309
1310 /* Mesh forwarding */
1311 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1312 u8 *mesh_ttl = &((struct ieee80211s_hdr *)skb->cb)->ttl;
1313 (*mesh_ttl)--;
1314
1315 if (is_multicast_ether_addr(skb->data)) {
1316 if (*mesh_ttl > 0) {
1317 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1318 if (!xmit_skb && net_ratelimit())
1319 printk(KERN_DEBUG "%s: failed to clone "
1320 "multicast frame\n", dev->name);
1321 else
1322 xmit_skb->pkt_type = PACKET_OTHERHOST;
1323 } else
1324 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1325 dropped_frames_ttl);
1326 } else if (skb->pkt_type != PACKET_OTHERHOST &&
1327 compare_ether_addr(dev->dev_addr, skb->data) != 0) {
1328 if (*mesh_ttl == 0) {
1329 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1330 dropped_frames_ttl);
1331 dev_kfree_skb(skb);
1332 skb = NULL;
1333 } else {
1334 xmit_skb = skb;
1335 xmit_skb->pkt_type = PACKET_OTHERHOST;
1336 if (!(dev->flags & IFF_PROMISC))
1337 skb = NULL;
1338 }
1339 }
1340 }
1341
1342 if (skb) {
1343 /* deliver to local stack */
1344 skb->protocol = eth_type_trans(skb, dev);
1345 memset(skb->cb, 0, sizeof(skb->cb));
1346 netif_rx(skb);
1347 }
1348
1349 if (xmit_skb) {
1350 /* send to wireless media */
1351 xmit_skb->protocol = htons(ETH_P_802_3);
1352 skb_reset_network_header(xmit_skb);
1353 skb_reset_mac_header(xmit_skb);
1354 dev_queue_xmit(xmit_skb);
1355 }
1356 }
1357
1358 static ieee80211_rx_result
1359 ieee80211_rx_h_amsdu(struct ieee80211_txrx_data *rx)
1360 {
1361 struct net_device *dev = rx->dev;
1362 struct ieee80211_local *local = rx->local;
1363 u16 fc, ethertype;
1364 u8 *payload;
1365 struct sk_buff *skb = rx->skb, *frame = NULL;
1366 const struct ethhdr *eth;
1367 int remaining, err;
1368 u8 dst[ETH_ALEN];
1369 u8 src[ETH_ALEN];
1370 DECLARE_MAC_BUF(mac);
1371
1372 fc = rx->fc;
1373 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1374 return RX_CONTINUE;
1375
1376 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1377 return RX_DROP_MONITOR;
1378
1379 if (!(rx->flags & IEEE80211_TXRXD_RX_AMSDU))
1380 return RX_CONTINUE;
1381
1382 err = ieee80211_data_to_8023(rx);
1383 if (unlikely(err))
1384 return RX_DROP_UNUSABLE;
1385
1386 skb->dev = dev;
1387
1388 dev->stats.rx_packets++;
1389 dev->stats.rx_bytes += skb->len;
1390
1391 /* skip the wrapping header */
1392 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1393 if (!eth)
1394 return RX_DROP_UNUSABLE;
1395
1396 while (skb != frame) {
1397 u8 padding;
1398 __be16 len = eth->h_proto;
1399 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1400
1401 remaining = skb->len;
1402 memcpy(dst, eth->h_dest, ETH_ALEN);
1403 memcpy(src, eth->h_source, ETH_ALEN);
1404
1405 padding = ((4 - subframe_len) & 0x3);
1406 /* the last MSDU has no padding */
1407 if (subframe_len > remaining) {
1408 printk(KERN_DEBUG "%s: wrong buffer size", dev->name);
1409 return RX_DROP_UNUSABLE;
1410 }
1411
1412 skb_pull(skb, sizeof(struct ethhdr));
1413 /* if last subframe reuse skb */
1414 if (remaining <= subframe_len + padding)
1415 frame = skb;
1416 else {
1417 frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1418 subframe_len);
1419
1420 if (frame == NULL)
1421 return RX_DROP_UNUSABLE;
1422
1423 skb_reserve(frame, local->hw.extra_tx_headroom +
1424 sizeof(struct ethhdr));
1425 memcpy(skb_put(frame, ntohs(len)), skb->data,
1426 ntohs(len));
1427
1428 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1429 padding);
1430 if (!eth) {
1431 printk(KERN_DEBUG "%s: wrong buffer size ",
1432 dev->name);
1433 dev_kfree_skb(frame);
1434 return RX_DROP_UNUSABLE;
1435 }
1436 }
1437
1438 skb_reset_network_header(frame);
1439 frame->dev = dev;
1440 frame->priority = skb->priority;
1441 rx->skb = frame;
1442
1443 payload = frame->data;
1444 ethertype = (payload[6] << 8) | payload[7];
1445
1446 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1447 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1448 compare_ether_addr(payload,
1449 bridge_tunnel_header) == 0)) {
1450 /* remove RFC1042 or Bridge-Tunnel
1451 * encapsulation and replace EtherType */
1452 skb_pull(frame, 6);
1453 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1454 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1455 } else {
1456 memcpy(skb_push(frame, sizeof(__be16)),
1457 &len, sizeof(__be16));
1458 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1459 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1460 }
1461
1462 if (!ieee80211_frame_allowed(rx)) {
1463 if (skb == frame) /* last frame */
1464 return RX_DROP_UNUSABLE;
1465 dev_kfree_skb(frame);
1466 continue;
1467 }
1468
1469 ieee80211_deliver_skb(rx);
1470 }
1471
1472 return RX_QUEUED;
1473 }
1474
1475 static ieee80211_rx_result
1476 ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
1477 {
1478 struct net_device *dev = rx->dev;
1479 u16 fc;
1480 int err;
1481
1482 fc = rx->fc;
1483 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1484 return RX_CONTINUE;
1485
1486 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1487 return RX_DROP_MONITOR;
1488
1489 err = ieee80211_data_to_8023(rx);
1490 if (unlikely(err))
1491 return RX_DROP_UNUSABLE;
1492
1493 if (!ieee80211_frame_allowed(rx))
1494 return RX_DROP_MONITOR;
1495
1496 rx->skb->dev = dev;
1497
1498 dev->stats.rx_packets++;
1499 dev->stats.rx_bytes += rx->skb->len;
1500
1501 ieee80211_deliver_skb(rx);
1502
1503 return RX_QUEUED;
1504 }
1505
1506 static ieee80211_rx_result
1507 ieee80211_rx_h_ctrl(struct ieee80211_txrx_data *rx)
1508 {
1509 struct ieee80211_local *local = rx->local;
1510 struct ieee80211_hw *hw = &local->hw;
1511 struct sk_buff *skb = rx->skb;
1512 struct ieee80211_bar *bar = (struct ieee80211_bar *) skb->data;
1513 struct tid_ampdu_rx *tid_agg_rx;
1514 u16 start_seq_num;
1515 u16 tid;
1516
1517 if (likely((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL))
1518 return RX_CONTINUE;
1519
1520 if ((rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BACK_REQ) {
1521 if (!rx->sta)
1522 return RX_CONTINUE;
1523 tid = le16_to_cpu(bar->control) >> 12;
1524 tid_agg_rx = &(rx->sta->ampdu_mlme.tid_rx[tid]);
1525 if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL)
1526 return RX_CONTINUE;
1527
1528 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1529
1530 /* reset session timer */
1531 if (tid_agg_rx->timeout) {
1532 unsigned long expires =
1533 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1534 mod_timer(&tid_agg_rx->session_timer, expires);
1535 }
1536
1537 /* manage reordering buffer according to requested */
1538 /* sequence number */
1539 rcu_read_lock();
1540 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1541 start_seq_num, 1);
1542 rcu_read_unlock();
1543 return RX_DROP_UNUSABLE;
1544 }
1545
1546 return RX_CONTINUE;
1547 }
1548
1549 static ieee80211_rx_result
1550 ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
1551 {
1552 struct ieee80211_sub_if_data *sdata;
1553
1554 if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
1555 return RX_DROP_MONITOR;
1556
1557 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1558 if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
1559 sdata->vif.type == IEEE80211_IF_TYPE_IBSS ||
1560 sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) &&
1561 !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
1562 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
1563 else
1564 return RX_DROP_MONITOR;
1565
1566 return RX_QUEUED;
1567 }
1568
1569 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1570 struct ieee80211_hdr *hdr,
1571 struct ieee80211_txrx_data *rx)
1572 {
1573 int keyidx, hdrlen;
1574 DECLARE_MAC_BUF(mac);
1575 DECLARE_MAC_BUF(mac2);
1576
1577 hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
1578 if (rx->skb->len >= hdrlen + 4)
1579 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1580 else
1581 keyidx = -1;
1582
1583 if (net_ratelimit())
1584 printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
1585 "failure from %s to %s keyidx=%d\n",
1586 dev->name, print_mac(mac, hdr->addr2),
1587 print_mac(mac2, hdr->addr1), keyidx);
1588
1589 if (!rx->sta) {
1590 /*
1591 * Some hardware seem to generate incorrect Michael MIC
1592 * reports; ignore them to avoid triggering countermeasures.
1593 */
1594 if (net_ratelimit())
1595 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1596 "error for unknown address %s\n",
1597 dev->name, print_mac(mac, hdr->addr2));
1598 goto ignore;
1599 }
1600
1601 if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
1602 if (net_ratelimit())
1603 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1604 "error for a frame with no PROTECTED flag (src "
1605 "%s)\n", dev->name, print_mac(mac, hdr->addr2));
1606 goto ignore;
1607 }
1608
1609 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
1610 /*
1611 * APs with pairwise keys should never receive Michael MIC
1612 * errors for non-zero keyidx because these are reserved for
1613 * group keys and only the AP is sending real multicast
1614 * frames in the BSS.
1615 */
1616 if (net_ratelimit())
1617 printk(KERN_DEBUG "%s: ignored Michael MIC error for "
1618 "a frame with non-zero keyidx (%d)"
1619 " (src %s)\n", dev->name, keyidx,
1620 print_mac(mac, hdr->addr2));
1621 goto ignore;
1622 }
1623
1624 if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
1625 ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
1626 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
1627 if (net_ratelimit())
1628 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1629 "error for a frame that cannot be encrypted "
1630 "(fc=0x%04x) (src %s)\n",
1631 dev->name, rx->fc, print_mac(mac, hdr->addr2));
1632 goto ignore;
1633 }
1634
1635 mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
1636 ignore:
1637 dev_kfree_skb(rx->skb);
1638 rx->skb = NULL;
1639 }
1640
1641 static void ieee80211_rx_cooked_monitor(struct ieee80211_txrx_data *rx)
1642 {
1643 struct ieee80211_sub_if_data *sdata;
1644 struct ieee80211_local *local = rx->local;
1645 struct ieee80211_rtap_hdr {
1646 struct ieee80211_radiotap_header hdr;
1647 u8 flags;
1648 u8 rate;
1649 __le16 chan_freq;
1650 __le16 chan_flags;
1651 } __attribute__ ((packed)) *rthdr;
1652 struct sk_buff *skb = rx->skb, *skb2;
1653 struct net_device *prev_dev = NULL;
1654 struct ieee80211_rx_status *status = rx->u.rx.status;
1655
1656 if (rx->flags & IEEE80211_TXRXD_RX_CMNTR_REPORTED)
1657 goto out_free_skb;
1658
1659 if (skb_headroom(skb) < sizeof(*rthdr) &&
1660 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
1661 goto out_free_skb;
1662
1663 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
1664 memset(rthdr, 0, sizeof(*rthdr));
1665 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
1666 rthdr->hdr.it_present =
1667 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
1668 (1 << IEEE80211_RADIOTAP_RATE) |
1669 (1 << IEEE80211_RADIOTAP_CHANNEL));
1670
1671 rthdr->rate = rx->u.rx.rate->bitrate / 5;
1672 rthdr->chan_freq = cpu_to_le16(status->freq);
1673
1674 if (status->band == IEEE80211_BAND_5GHZ)
1675 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
1676 IEEE80211_CHAN_5GHZ);
1677 else
1678 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
1679 IEEE80211_CHAN_2GHZ);
1680
1681 skb_set_mac_header(skb, 0);
1682 skb->ip_summed = CHECKSUM_UNNECESSARY;
1683 skb->pkt_type = PACKET_OTHERHOST;
1684 skb->protocol = htons(ETH_P_802_2);
1685
1686 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1687 if (!netif_running(sdata->dev))
1688 continue;
1689
1690 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR ||
1691 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
1692 continue;
1693
1694 if (prev_dev) {
1695 skb2 = skb_clone(skb, GFP_ATOMIC);
1696 if (skb2) {
1697 skb2->dev = prev_dev;
1698 netif_rx(skb2);
1699 }
1700 }
1701
1702 prev_dev = sdata->dev;
1703 sdata->dev->stats.rx_packets++;
1704 sdata->dev->stats.rx_bytes += skb->len;
1705 }
1706
1707 if (prev_dev) {
1708 skb->dev = prev_dev;
1709 netif_rx(skb);
1710 skb = NULL;
1711 } else
1712 goto out_free_skb;
1713
1714 rx->flags |= IEEE80211_TXRXD_RX_CMNTR_REPORTED;
1715 return;
1716
1717 out_free_skb:
1718 dev_kfree_skb(skb);
1719 }
1720
1721 typedef ieee80211_rx_result (*ieee80211_rx_handler)(struct ieee80211_txrx_data *);
1722 static ieee80211_rx_handler ieee80211_rx_handlers[] =
1723 {
1724 ieee80211_rx_h_if_stats,
1725 ieee80211_rx_h_passive_scan,
1726 ieee80211_rx_h_check,
1727 ieee80211_rx_h_decrypt,
1728 ieee80211_rx_h_sta_process,
1729 ieee80211_rx_h_defragment,
1730 ieee80211_rx_h_ps_poll,
1731 ieee80211_rx_h_michael_mic_verify,
1732 /* this must be after decryption - so header is counted in MPDU mic
1733 * must be before pae and data, so QOS_DATA format frames
1734 * are not passed to user space by these functions
1735 */
1736 ieee80211_rx_h_remove_qos_control,
1737 ieee80211_rx_h_amsdu,
1738 ieee80211_rx_h_data,
1739 ieee80211_rx_h_ctrl,
1740 ieee80211_rx_h_mgmt,
1741 NULL
1742 };
1743
1744 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
1745 struct ieee80211_txrx_data *rx,
1746 struct sk_buff *skb)
1747 {
1748 ieee80211_rx_handler *handler;
1749 ieee80211_rx_result res = RX_DROP_MONITOR;
1750
1751 rx->skb = skb;
1752 rx->sdata = sdata;
1753 rx->dev = sdata->dev;
1754
1755 for (handler = ieee80211_rx_handlers; *handler != NULL; handler++) {
1756 res = (*handler)(rx);
1757
1758 switch (res) {
1759 case RX_CONTINUE:
1760 continue;
1761 case RX_DROP_UNUSABLE:
1762 case RX_DROP_MONITOR:
1763 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1764 if (rx->sta)
1765 rx->sta->rx_dropped++;
1766 break;
1767 case RX_QUEUED:
1768 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
1769 break;
1770 }
1771 break;
1772 }
1773
1774 switch (res) {
1775 case RX_CONTINUE:
1776 case RX_DROP_MONITOR:
1777 ieee80211_rx_cooked_monitor(rx);
1778 break;
1779 case RX_DROP_UNUSABLE:
1780 dev_kfree_skb(rx->skb);
1781 break;
1782 }
1783 }
1784
1785 /* main receive path */
1786
1787 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1788 u8 *bssid, struct ieee80211_txrx_data *rx,
1789 struct ieee80211_hdr *hdr)
1790 {
1791 int multicast = is_multicast_ether_addr(hdr->addr1);
1792
1793 switch (sdata->vif.type) {
1794 case IEEE80211_IF_TYPE_STA:
1795 if (!bssid)
1796 return 0;
1797 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1798 if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1799 return 0;
1800 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1801 } else if (!multicast &&
1802 compare_ether_addr(sdata->dev->dev_addr,
1803 hdr->addr1) != 0) {
1804 if (!(sdata->dev->flags & IFF_PROMISC))
1805 return 0;
1806 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1807 }
1808 break;
1809 case IEEE80211_IF_TYPE_IBSS:
1810 if (!bssid)
1811 return 0;
1812 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
1813 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON)
1814 return 1;
1815 else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1816 if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1817 return 0;
1818 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1819 } else if (!multicast &&
1820 compare_ether_addr(sdata->dev->dev_addr,
1821 hdr->addr1) != 0) {
1822 if (!(sdata->dev->flags & IFF_PROMISC))
1823 return 0;
1824 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1825 } else if (!rx->sta)
1826 rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
1827 bssid, hdr->addr2);
1828 break;
1829 case IEEE80211_IF_TYPE_MESH_POINT:
1830 if (!multicast &&
1831 compare_ether_addr(sdata->dev->dev_addr,
1832 hdr->addr1) != 0) {
1833 if (!(sdata->dev->flags & IFF_PROMISC))
1834 return 0;
1835
1836 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1837 }
1838 break;
1839 case IEEE80211_IF_TYPE_VLAN:
1840 case IEEE80211_IF_TYPE_AP:
1841 if (!bssid) {
1842 if (compare_ether_addr(sdata->dev->dev_addr,
1843 hdr->addr1))
1844 return 0;
1845 } else if (!ieee80211_bssid_match(bssid,
1846 sdata->dev->dev_addr)) {
1847 if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1848 return 0;
1849 rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
1850 }
1851 if (sdata->dev == sdata->local->mdev &&
1852 !(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
1853 /* do not receive anything via
1854 * master device when not scanning */
1855 return 0;
1856 break;
1857 case IEEE80211_IF_TYPE_WDS:
1858 if (bssid ||
1859 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
1860 return 0;
1861 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1862 return 0;
1863 break;
1864 case IEEE80211_IF_TYPE_MNTR:
1865 /* take everything */
1866 break;
1867 case IEEE80211_IF_TYPE_INVALID:
1868 /* should never get here */
1869 WARN_ON(1);
1870 break;
1871 }
1872
1873 return 1;
1874 }
1875
1876 /*
1877 * This is the actual Rx frames handler. as it blongs to Rx path it must
1878 * be called with rcu_read_lock protection.
1879 */
1880 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1881 struct sk_buff *skb,
1882 struct ieee80211_rx_status *status,
1883 u32 load,
1884 struct ieee80211_rate *rate)
1885 {
1886 struct ieee80211_local *local = hw_to_local(hw);
1887 struct ieee80211_sub_if_data *sdata;
1888 struct ieee80211_hdr *hdr;
1889 struct ieee80211_txrx_data rx;
1890 u16 type;
1891 int prepares;
1892 struct ieee80211_sub_if_data *prev = NULL;
1893 struct sk_buff *skb_new;
1894 u8 *bssid;
1895
1896 hdr = (struct ieee80211_hdr *) skb->data;
1897 memset(&rx, 0, sizeof(rx));
1898 rx.skb = skb;
1899 rx.local = local;
1900
1901 rx.u.rx.status = status;
1902 rx.u.rx.load = load;
1903 rx.u.rx.rate = rate;
1904 rx.fc = le16_to_cpu(hdr->frame_control);
1905 type = rx.fc & IEEE80211_FCTL_FTYPE;
1906
1907 if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
1908 local->dot11ReceivedFragmentCount++;
1909
1910 rx.sta = sta_info_get(local, hdr->addr2);
1911 if (rx.sta) {
1912 rx.dev = rx.sta->dev;
1913 rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
1914 }
1915
1916 if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1917 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
1918 goto end;
1919 }
1920
1921 if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
1922 rx.flags |= IEEE80211_TXRXD_RXIN_SCAN;
1923
1924 ieee80211_parse_qos(&rx);
1925 ieee80211_verify_ip_alignment(&rx);
1926
1927 skb = rx.skb;
1928
1929 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1930 if (!netif_running(sdata->dev))
1931 continue;
1932
1933 if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
1934 continue;
1935
1936 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1937 rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
1938 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1939
1940 if (!prepares)
1941 continue;
1942
1943 /*
1944 * frame is destined for this interface, but if it's not
1945 * also for the previous one we handle that after the
1946 * loop to avoid copying the SKB once too much
1947 */
1948
1949 if (!prev) {
1950 prev = sdata;
1951 continue;
1952 }
1953
1954 /*
1955 * frame was destined for the previous interface
1956 * so invoke RX handlers for it
1957 */
1958
1959 skb_new = skb_copy(skb, GFP_ATOMIC);
1960 if (!skb_new) {
1961 if (net_ratelimit())
1962 printk(KERN_DEBUG "%s: failed to copy "
1963 "multicast frame for %s",
1964 wiphy_name(local->hw.wiphy),
1965 prev->dev->name);
1966 continue;
1967 }
1968 rx.fc = le16_to_cpu(hdr->frame_control);
1969 ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
1970 prev = sdata;
1971 }
1972 if (prev) {
1973 rx.fc = le16_to_cpu(hdr->frame_control);
1974 ieee80211_invoke_rx_handlers(prev, &rx, skb);
1975 } else
1976 dev_kfree_skb(skb);
1977
1978 end:
1979 if (rx.sta)
1980 sta_info_put(rx.sta);
1981 }
1982
1983 #define SEQ_MODULO 0x1000
1984 #define SEQ_MASK 0xfff
1985
1986 static inline int seq_less(u16 sq1, u16 sq2)
1987 {
1988 return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
1989 }
1990
1991 static inline u16 seq_inc(u16 sq)
1992 {
1993 return ((sq + 1) & SEQ_MASK);
1994 }
1995
1996 static inline u16 seq_sub(u16 sq1, u16 sq2)
1997 {
1998 return ((sq1 - sq2) & SEQ_MASK);
1999 }
2000
2001
2002 /*
2003 * As it function blongs to Rx path it must be called with
2004 * the proper rcu_read_lock protection for its flow.
2005 */
2006 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
2007 struct tid_ampdu_rx *tid_agg_rx,
2008 struct sk_buff *skb, u16 mpdu_seq_num,
2009 int bar_req)
2010 {
2011 struct ieee80211_local *local = hw_to_local(hw);
2012 struct ieee80211_rx_status status;
2013 u16 head_seq_num, buf_size;
2014 int index;
2015 u32 pkt_load;
2016 struct ieee80211_supported_band *sband;
2017 struct ieee80211_rate *rate;
2018
2019 buf_size = tid_agg_rx->buf_size;
2020 head_seq_num = tid_agg_rx->head_seq_num;
2021
2022 /* frame with out of date sequence number */
2023 if (seq_less(mpdu_seq_num, head_seq_num)) {
2024 dev_kfree_skb(skb);
2025 return 1;
2026 }
2027
2028 /* if frame sequence number exceeds our buffering window size or
2029 * block Ack Request arrived - release stored frames */
2030 if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
2031 /* new head to the ordering buffer */
2032 if (bar_req)
2033 head_seq_num = mpdu_seq_num;
2034 else
2035 head_seq_num =
2036 seq_inc(seq_sub(mpdu_seq_num, buf_size));
2037 /* release stored frames up to new head to stack */
2038 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
2039 index = seq_sub(tid_agg_rx->head_seq_num,
2040 tid_agg_rx->ssn)
2041 % tid_agg_rx->buf_size;
2042
2043 if (tid_agg_rx->reorder_buf[index]) {
2044 /* release the reordered frames to stack */
2045 memcpy(&status,
2046 tid_agg_rx->reorder_buf[index]->cb,
2047 sizeof(status));
2048 sband = local->hw.wiphy->bands[status.band];
2049 rate = &sband->bitrates[status.rate_idx];
2050 pkt_load = ieee80211_rx_load_stats(local,
2051 tid_agg_rx->reorder_buf[index],
2052 &status, rate);
2053 __ieee80211_rx_handle_packet(hw,
2054 tid_agg_rx->reorder_buf[index],
2055 &status, pkt_load, rate);
2056 tid_agg_rx->stored_mpdu_num--;
2057 tid_agg_rx->reorder_buf[index] = NULL;
2058 }
2059 tid_agg_rx->head_seq_num =
2060 seq_inc(tid_agg_rx->head_seq_num);
2061 }
2062 if (bar_req)
2063 return 1;
2064 }
2065
2066 /* now the new frame is always in the range of the reordering */
2067 /* buffer window */
2068 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
2069 % tid_agg_rx->buf_size;
2070 /* check if we already stored this frame */
2071 if (tid_agg_rx->reorder_buf[index]) {
2072 dev_kfree_skb(skb);
2073 return 1;
2074 }
2075
2076 /* if arrived mpdu is in the right order and nothing else stored */
2077 /* release it immediately */
2078 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
2079 tid_agg_rx->stored_mpdu_num == 0) {
2080 tid_agg_rx->head_seq_num =
2081 seq_inc(tid_agg_rx->head_seq_num);
2082 return 0;
2083 }
2084
2085 /* put the frame in the reordering buffer */
2086 tid_agg_rx->reorder_buf[index] = skb;
2087 tid_agg_rx->stored_mpdu_num++;
2088 /* release the buffer until next missing frame */
2089 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
2090 % tid_agg_rx->buf_size;
2091 while (tid_agg_rx->reorder_buf[index]) {
2092 /* release the reordered frame back to stack */
2093 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
2094 sizeof(status));
2095 sband = local->hw.wiphy->bands[status.band];
2096 rate = &sband->bitrates[status.rate_idx];
2097 pkt_load = ieee80211_rx_load_stats(local,
2098 tid_agg_rx->reorder_buf[index],
2099 &status, rate);
2100 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
2101 &status, pkt_load, rate);
2102 tid_agg_rx->stored_mpdu_num--;
2103 tid_agg_rx->reorder_buf[index] = NULL;
2104 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
2105 index = seq_sub(tid_agg_rx->head_seq_num,
2106 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
2107 }
2108 return 1;
2109 }
2110
2111 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
2112 struct sk_buff *skb)
2113 {
2114 struct ieee80211_hw *hw = &local->hw;
2115 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2116 struct sta_info *sta;
2117 struct tid_ampdu_rx *tid_agg_rx;
2118 u16 fc, sc;
2119 u16 mpdu_seq_num;
2120 u8 ret = 0, *qc;
2121 int tid;
2122
2123 sta = sta_info_get(local, hdr->addr2);
2124 if (!sta)
2125 return ret;
2126
2127 fc = le16_to_cpu(hdr->frame_control);
2128
2129 /* filter the QoS data rx stream according to
2130 * STA/TID and check if this STA/TID is on aggregation */
2131 if (!WLAN_FC_IS_QOS_DATA(fc))
2132 goto end_reorder;
2133
2134 qc = skb->data + ieee80211_get_hdrlen(fc) - QOS_CONTROL_LEN;
2135 tid = qc[0] & QOS_CONTROL_TID_MASK;
2136 tid_agg_rx = &(sta->ampdu_mlme.tid_rx[tid]);
2137
2138 if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL)
2139 goto end_reorder;
2140
2141 /* null data frames are excluded */
2142 if (unlikely(fc & IEEE80211_STYPE_NULLFUNC))
2143 goto end_reorder;
2144
2145 /* new un-ordered ampdu frame - process it */
2146
2147 /* reset session timer */
2148 if (tid_agg_rx->timeout) {
2149 unsigned long expires =
2150 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
2151 mod_timer(&tid_agg_rx->session_timer, expires);
2152 }
2153
2154 /* if this mpdu is fragmented - terminate rx aggregation session */
2155 sc = le16_to_cpu(hdr->seq_ctrl);
2156 if (sc & IEEE80211_SCTL_FRAG) {
2157 ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr,
2158 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
2159 ret = 1;
2160 goto end_reorder;
2161 }
2162
2163 /* according to mpdu sequence number deal with reordering buffer */
2164 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
2165 ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
2166 mpdu_seq_num, 0);
2167 end_reorder:
2168 if (sta)
2169 sta_info_put(sta);
2170 return ret;
2171 }
2172
2173 /*
2174 * This is the receive path handler. It is called by a low level driver when an
2175 * 802.11 MPDU is received from the hardware.
2176 */
2177 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2178 struct ieee80211_rx_status *status)
2179 {
2180 struct ieee80211_local *local = hw_to_local(hw);
2181 u32 pkt_load;
2182 struct ieee80211_rate *rate = NULL;
2183 struct ieee80211_supported_band *sband;
2184
2185 if (status->band < 0 ||
2186 status->band > IEEE80211_NUM_BANDS) {
2187 WARN_ON(1);
2188 return;
2189 }
2190
2191 sband = local->hw.wiphy->bands[status->band];
2192
2193 if (!sband ||
2194 status->rate_idx < 0 ||
2195 status->rate_idx >= sband->n_bitrates) {
2196 WARN_ON(1);
2197 return;
2198 }
2199
2200 rate = &sband->bitrates[status->rate_idx];
2201
2202 /*
2203 * key references and virtual interfaces are protected using RCU
2204 * and this requires that we are in a read-side RCU section during
2205 * receive processing
2206 */
2207 rcu_read_lock();
2208
2209 /*
2210 * Frames with failed FCS/PLCP checksum are not returned,
2211 * all other frames are returned without radiotap header
2212 * if it was previously present.
2213 * Also, frames with less than 16 bytes are dropped.
2214 */
2215 skb = ieee80211_rx_monitor(local, skb, status, rate);
2216 if (!skb) {
2217 rcu_read_unlock();
2218 return;
2219 }
2220
2221 pkt_load = ieee80211_rx_load_stats(local, skb, status, rate);
2222 local->channel_use_raw += pkt_load;
2223
2224 if (!ieee80211_rx_reorder_ampdu(local, skb))
2225 __ieee80211_rx_handle_packet(hw, skb, status, pkt_load, rate);
2226
2227 rcu_read_unlock();
2228 }
2229 EXPORT_SYMBOL(__ieee80211_rx);
2230
2231 /* This is a version of the rx handler that can be called from hard irq
2232 * context. Post the skb on the queue and schedule the tasklet */
2233 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2234 struct ieee80211_rx_status *status)
2235 {
2236 struct ieee80211_local *local = hw_to_local(hw);
2237
2238 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2239
2240 skb->dev = local->mdev;
2241 /* copy status into skb->cb for use by tasklet */
2242 memcpy(skb->cb, status, sizeof(*status));
2243 skb->pkt_type = IEEE80211_RX_MSG;
2244 skb_queue_tail(&local->skb_queue, skb);
2245 tasklet_schedule(&local->tasklet);
2246 }
2247 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.161263 seconds and 5 git commands to generate.