mac80211: Support on-channel scan option.
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 if (likely(skb->len > FCS_LEN))
45 __pskb_trim(skb, skb->len - FCS_LEN);
46 else {
47 /* driver bug */
48 WARN_ON(1);
49 dev_kfree_skb(skb);
50 skb = NULL;
51 }
52 }
53
54 return skb;
55 }
56
57 static inline int should_drop_frame(struct sk_buff *skb,
58 int present_fcs_len)
59 {
60 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
61 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
62
63 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
64 return 1;
65 if (unlikely(skb->len < 16 + present_fcs_len))
66 return 1;
67 if (ieee80211_is_ctl(hdr->frame_control) &&
68 !ieee80211_is_pspoll(hdr->frame_control) &&
69 !ieee80211_is_back_req(hdr->frame_control))
70 return 1;
71 return 0;
72 }
73
74 static int
75 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
76 struct ieee80211_rx_status *status)
77 {
78 int len;
79
80 /* always present fields */
81 len = sizeof(struct ieee80211_radiotap_header) + 9;
82
83 if (status->flag & RX_FLAG_MACTIME_MPDU)
84 len += 8;
85 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
86 len += 1;
87
88 if (len & 1) /* padding for RX_FLAGS if necessary */
89 len++;
90
91 if (status->flag & RX_FLAG_HT) /* HT info */
92 len += 3;
93
94 return len;
95 }
96
97 /*
98 * ieee80211_add_rx_radiotap_header - add radiotap header
99 *
100 * add a radiotap header containing all the fields which the hardware provided.
101 */
102 static void
103 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
104 struct sk_buff *skb,
105 struct ieee80211_rate *rate,
106 int rtap_len)
107 {
108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
109 struct ieee80211_radiotap_header *rthdr;
110 unsigned char *pos;
111 u16 rx_flags = 0;
112
113 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
114 memset(rthdr, 0, rtap_len);
115
116 /* radiotap header, set always present flags */
117 rthdr->it_present =
118 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
119 (1 << IEEE80211_RADIOTAP_CHANNEL) |
120 (1 << IEEE80211_RADIOTAP_ANTENNA) |
121 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
122 rthdr->it_len = cpu_to_le16(rtap_len);
123
124 pos = (unsigned char *)(rthdr+1);
125
126 /* the order of the following fields is important */
127
128 /* IEEE80211_RADIOTAP_TSFT */
129 if (status->flag & RX_FLAG_MACTIME_MPDU) {
130 put_unaligned_le64(status->mactime, pos);
131 rthdr->it_present |=
132 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
133 pos += 8;
134 }
135
136 /* IEEE80211_RADIOTAP_FLAGS */
137 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
138 *pos |= IEEE80211_RADIOTAP_F_FCS;
139 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
140 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
141 if (status->flag & RX_FLAG_SHORTPRE)
142 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
143 pos++;
144
145 /* IEEE80211_RADIOTAP_RATE */
146 if (!rate || status->flag & RX_FLAG_HT) {
147 /*
148 * Without rate information don't add it. If we have,
149 * MCS information is a separate field in radiotap,
150 * added below. The byte here is needed as padding
151 * for the channel though, so initialise it to 0.
152 */
153 *pos = 0;
154 } else {
155 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
156 *pos = rate->bitrate / 5;
157 }
158 pos++;
159
160 /* IEEE80211_RADIOTAP_CHANNEL */
161 put_unaligned_le16(status->freq, pos);
162 pos += 2;
163 if (status->band == IEEE80211_BAND_5GHZ)
164 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
165 pos);
166 else if (status->flag & RX_FLAG_HT)
167 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
168 pos);
169 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
170 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
171 pos);
172 else if (rate)
173 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
174 pos);
175 else
176 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
177 pos += 2;
178
179 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
180 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
181 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
182 *pos = status->signal;
183 rthdr->it_present |=
184 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
185 pos++;
186 }
187
188 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
189
190 /* IEEE80211_RADIOTAP_ANTENNA */
191 *pos = status->antenna;
192 pos++;
193
194 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
195
196 /* IEEE80211_RADIOTAP_RX_FLAGS */
197 /* ensure 2 byte alignment for the 2 byte field as required */
198 if ((pos - (u8 *)rthdr) & 1)
199 pos++;
200 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
201 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
202 put_unaligned_le16(rx_flags, pos);
203 pos += 2;
204
205 if (status->flag & RX_FLAG_HT) {
206 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
207 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
208 IEEE80211_RADIOTAP_MCS_HAVE_GI |
209 IEEE80211_RADIOTAP_MCS_HAVE_BW;
210 *pos = 0;
211 if (status->flag & RX_FLAG_SHORT_GI)
212 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
213 if (status->flag & RX_FLAG_40MHZ)
214 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
215 pos++;
216 *pos++ = status->rate_idx;
217 }
218 }
219
220 /*
221 * This function copies a received frame to all monitor interfaces and
222 * returns a cleaned-up SKB that no longer includes the FCS nor the
223 * radiotap header the driver might have added.
224 */
225 static struct sk_buff *
226 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
227 struct ieee80211_rate *rate)
228 {
229 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
230 struct ieee80211_sub_if_data *sdata;
231 int needed_headroom;
232 struct sk_buff *skb, *skb2;
233 struct net_device *prev_dev = NULL;
234 int present_fcs_len = 0;
235
236 /*
237 * First, we may need to make a copy of the skb because
238 * (1) we need to modify it for radiotap (if not present), and
239 * (2) the other RX handlers will modify the skb we got.
240 *
241 * We don't need to, of course, if we aren't going to return
242 * the SKB because it has a bad FCS/PLCP checksum.
243 */
244
245 /* room for the radiotap header based on driver features */
246 needed_headroom = ieee80211_rx_radiotap_len(local, status);
247
248 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
249 present_fcs_len = FCS_LEN;
250
251 /* make sure hdr->frame_control is on the linear part */
252 if (!pskb_may_pull(origskb, 2)) {
253 dev_kfree_skb(origskb);
254 return NULL;
255 }
256
257 if (!local->monitors) {
258 if (should_drop_frame(origskb, present_fcs_len)) {
259 dev_kfree_skb(origskb);
260 return NULL;
261 }
262
263 return remove_monitor_info(local, origskb);
264 }
265
266 if (should_drop_frame(origskb, present_fcs_len)) {
267 /* only need to expand headroom if necessary */
268 skb = origskb;
269 origskb = NULL;
270
271 /*
272 * This shouldn't trigger often because most devices have an
273 * RX header they pull before we get here, and that should
274 * be big enough for our radiotap information. We should
275 * probably export the length to drivers so that we can have
276 * them allocate enough headroom to start with.
277 */
278 if (skb_headroom(skb) < needed_headroom &&
279 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
280 dev_kfree_skb(skb);
281 return NULL;
282 }
283 } else {
284 /*
285 * Need to make a copy and possibly remove radiotap header
286 * and FCS from the original.
287 */
288 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
289
290 origskb = remove_monitor_info(local, origskb);
291
292 if (!skb)
293 return origskb;
294 }
295
296 /* prepend radiotap information */
297 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
298
299 skb_reset_mac_header(skb);
300 skb->ip_summed = CHECKSUM_UNNECESSARY;
301 skb->pkt_type = PACKET_OTHERHOST;
302 skb->protocol = htons(ETH_P_802_2);
303
304 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
305 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
306 continue;
307
308 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
309 continue;
310
311 if (!ieee80211_sdata_running(sdata))
312 continue;
313
314 if (prev_dev) {
315 skb2 = skb_clone(skb, GFP_ATOMIC);
316 if (skb2) {
317 skb2->dev = prev_dev;
318 netif_receive_skb(skb2);
319 }
320 }
321
322 prev_dev = sdata->dev;
323 sdata->dev->stats.rx_packets++;
324 sdata->dev->stats.rx_bytes += skb->len;
325 }
326
327 if (prev_dev) {
328 skb->dev = prev_dev;
329 netif_receive_skb(skb);
330 } else
331 dev_kfree_skb(skb);
332
333 return origskb;
334 }
335
336
337 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
338 {
339 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
340 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
341 int tid, seqno_idx, security_idx;
342
343 /* does the frame have a qos control field? */
344 if (ieee80211_is_data_qos(hdr->frame_control)) {
345 u8 *qc = ieee80211_get_qos_ctl(hdr);
346 /* frame has qos control */
347 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
348 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
349 status->rx_flags |= IEEE80211_RX_AMSDU;
350
351 seqno_idx = tid;
352 security_idx = tid;
353 } else {
354 /*
355 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
356 *
357 * Sequence numbers for management frames, QoS data
358 * frames with a broadcast/multicast address in the
359 * Address 1 field, and all non-QoS data frames sent
360 * by QoS STAs are assigned using an additional single
361 * modulo-4096 counter, [...]
362 *
363 * We also use that counter for non-QoS STAs.
364 */
365 seqno_idx = NUM_RX_DATA_QUEUES;
366 security_idx = 0;
367 if (ieee80211_is_mgmt(hdr->frame_control))
368 security_idx = NUM_RX_DATA_QUEUES;
369 tid = 0;
370 }
371
372 rx->seqno_idx = seqno_idx;
373 rx->security_idx = security_idx;
374 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
375 * For now, set skb->priority to 0 for other cases. */
376 rx->skb->priority = (tid > 7) ? 0 : tid;
377 }
378
379 /**
380 * DOC: Packet alignment
381 *
382 * Drivers always need to pass packets that are aligned to two-byte boundaries
383 * to the stack.
384 *
385 * Additionally, should, if possible, align the payload data in a way that
386 * guarantees that the contained IP header is aligned to a four-byte
387 * boundary. In the case of regular frames, this simply means aligning the
388 * payload to a four-byte boundary (because either the IP header is directly
389 * contained, or IV/RFC1042 headers that have a length divisible by four are
390 * in front of it). If the payload data is not properly aligned and the
391 * architecture doesn't support efficient unaligned operations, mac80211
392 * will align the data.
393 *
394 * With A-MSDU frames, however, the payload data address must yield two modulo
395 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
396 * push the IP header further back to a multiple of four again. Thankfully, the
397 * specs were sane enough this time around to require padding each A-MSDU
398 * subframe to a length that is a multiple of four.
399 *
400 * Padding like Atheros hardware adds which is between the 802.11 header and
401 * the payload is not supported, the driver is required to move the 802.11
402 * header to be directly in front of the payload in that case.
403 */
404 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
405 {
406 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
407 WARN_ONCE((unsigned long)rx->skb->data & 1,
408 "unaligned packet at 0x%p\n", rx->skb->data);
409 #endif
410 }
411
412
413 /* rx handlers */
414
415 static ieee80211_rx_result debug_noinline
416 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
417 {
418 struct ieee80211_local *local = rx->local;
419 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
420 struct sk_buff *skb = rx->skb;
421
422 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
423 !local->sched_scanning))
424 return RX_CONTINUE;
425
426 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
427 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
428 test_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning) ||
429 local->sched_scanning)
430 return ieee80211_scan_rx(rx->sdata, skb);
431
432 /* scanning finished during invoking of handlers */
433 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
434 return RX_DROP_UNUSABLE;
435 }
436
437
438 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
439 {
440 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
441
442 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
443 return 0;
444
445 return ieee80211_is_robust_mgmt_frame(hdr);
446 }
447
448
449 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
450 {
451 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
452
453 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
454 return 0;
455
456 return ieee80211_is_robust_mgmt_frame(hdr);
457 }
458
459
460 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
461 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
462 {
463 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
464 struct ieee80211_mmie *mmie;
465
466 if (skb->len < 24 + sizeof(*mmie) ||
467 !is_multicast_ether_addr(hdr->da))
468 return -1;
469
470 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
471 return -1; /* not a robust management frame */
472
473 mmie = (struct ieee80211_mmie *)
474 (skb->data + skb->len - sizeof(*mmie));
475 if (mmie->element_id != WLAN_EID_MMIE ||
476 mmie->length != sizeof(*mmie) - 2)
477 return -1;
478
479 return le16_to_cpu(mmie->key_id);
480 }
481
482
483 static ieee80211_rx_result
484 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
485 {
486 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
487 char *dev_addr = rx->sdata->vif.addr;
488
489 if (ieee80211_is_data(hdr->frame_control)) {
490 if (is_multicast_ether_addr(hdr->addr1)) {
491 if (ieee80211_has_tods(hdr->frame_control) ||
492 !ieee80211_has_fromds(hdr->frame_control))
493 return RX_DROP_MONITOR;
494 if (compare_ether_addr(hdr->addr3, dev_addr) == 0)
495 return RX_DROP_MONITOR;
496 } else {
497 if (!ieee80211_has_a4(hdr->frame_control))
498 return RX_DROP_MONITOR;
499 if (compare_ether_addr(hdr->addr4, dev_addr) == 0)
500 return RX_DROP_MONITOR;
501 }
502 }
503
504 /* If there is not an established peer link and this is not a peer link
505 * establisment frame, beacon or probe, drop the frame.
506 */
507
508 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
509 struct ieee80211_mgmt *mgmt;
510
511 if (!ieee80211_is_mgmt(hdr->frame_control))
512 return RX_DROP_MONITOR;
513
514 if (ieee80211_is_action(hdr->frame_control)) {
515 u8 category;
516 mgmt = (struct ieee80211_mgmt *)hdr;
517 category = mgmt->u.action.category;
518 if (category != WLAN_CATEGORY_MESH_ACTION &&
519 category != WLAN_CATEGORY_SELF_PROTECTED)
520 return RX_DROP_MONITOR;
521 return RX_CONTINUE;
522 }
523
524 if (ieee80211_is_probe_req(hdr->frame_control) ||
525 ieee80211_is_probe_resp(hdr->frame_control) ||
526 ieee80211_is_beacon(hdr->frame_control) ||
527 ieee80211_is_auth(hdr->frame_control))
528 return RX_CONTINUE;
529
530 return RX_DROP_MONITOR;
531
532 }
533
534 return RX_CONTINUE;
535 }
536
537 #define SEQ_MODULO 0x1000
538 #define SEQ_MASK 0xfff
539
540 static inline int seq_less(u16 sq1, u16 sq2)
541 {
542 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
543 }
544
545 static inline u16 seq_inc(u16 sq)
546 {
547 return (sq + 1) & SEQ_MASK;
548 }
549
550 static inline u16 seq_sub(u16 sq1, u16 sq2)
551 {
552 return (sq1 - sq2) & SEQ_MASK;
553 }
554
555
556 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
557 struct tid_ampdu_rx *tid_agg_rx,
558 int index)
559 {
560 struct ieee80211_local *local = hw_to_local(hw);
561 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
562 struct ieee80211_rx_status *status;
563
564 lockdep_assert_held(&tid_agg_rx->reorder_lock);
565
566 if (!skb)
567 goto no_frame;
568
569 /* release the frame from the reorder ring buffer */
570 tid_agg_rx->stored_mpdu_num--;
571 tid_agg_rx->reorder_buf[index] = NULL;
572 status = IEEE80211_SKB_RXCB(skb);
573 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
574 skb_queue_tail(&local->rx_skb_queue, skb);
575
576 no_frame:
577 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
578 }
579
580 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
581 struct tid_ampdu_rx *tid_agg_rx,
582 u16 head_seq_num)
583 {
584 int index;
585
586 lockdep_assert_held(&tid_agg_rx->reorder_lock);
587
588 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
589 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
590 tid_agg_rx->buf_size;
591 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
592 }
593 }
594
595 /*
596 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
597 * the skb was added to the buffer longer than this time ago, the earlier
598 * frames that have not yet been received are assumed to be lost and the skb
599 * can be released for processing. This may also release other skb's from the
600 * reorder buffer if there are no additional gaps between the frames.
601 *
602 * Callers must hold tid_agg_rx->reorder_lock.
603 */
604 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
605
606 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
607 struct tid_ampdu_rx *tid_agg_rx)
608 {
609 int index, j;
610
611 lockdep_assert_held(&tid_agg_rx->reorder_lock);
612
613 /* release the buffer until next missing frame */
614 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
615 tid_agg_rx->buf_size;
616 if (!tid_agg_rx->reorder_buf[index] &&
617 tid_agg_rx->stored_mpdu_num) {
618 /*
619 * No buffers ready to be released, but check whether any
620 * frames in the reorder buffer have timed out.
621 */
622 int skipped = 1;
623 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
624 j = (j + 1) % tid_agg_rx->buf_size) {
625 if (!tid_agg_rx->reorder_buf[j]) {
626 skipped++;
627 continue;
628 }
629 if (skipped &&
630 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
631 HT_RX_REORDER_BUF_TIMEOUT))
632 goto set_release_timer;
633
634 #ifdef CONFIG_MAC80211_HT_DEBUG
635 if (net_ratelimit())
636 wiphy_debug(hw->wiphy,
637 "release an RX reorder frame due to timeout on earlier frames\n");
638 #endif
639 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
640
641 /*
642 * Increment the head seq# also for the skipped slots.
643 */
644 tid_agg_rx->head_seq_num =
645 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
646 skipped = 0;
647 }
648 } else while (tid_agg_rx->reorder_buf[index]) {
649 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
650 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
651 tid_agg_rx->buf_size;
652 }
653
654 if (tid_agg_rx->stored_mpdu_num) {
655 j = index = seq_sub(tid_agg_rx->head_seq_num,
656 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
657
658 for (; j != (index - 1) % tid_agg_rx->buf_size;
659 j = (j + 1) % tid_agg_rx->buf_size) {
660 if (tid_agg_rx->reorder_buf[j])
661 break;
662 }
663
664 set_release_timer:
665
666 mod_timer(&tid_agg_rx->reorder_timer,
667 tid_agg_rx->reorder_time[j] + 1 +
668 HT_RX_REORDER_BUF_TIMEOUT);
669 } else {
670 del_timer(&tid_agg_rx->reorder_timer);
671 }
672 }
673
674 /*
675 * As this function belongs to the RX path it must be under
676 * rcu_read_lock protection. It returns false if the frame
677 * can be processed immediately, true if it was consumed.
678 */
679 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
680 struct tid_ampdu_rx *tid_agg_rx,
681 struct sk_buff *skb)
682 {
683 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
684 u16 sc = le16_to_cpu(hdr->seq_ctrl);
685 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
686 u16 head_seq_num, buf_size;
687 int index;
688 bool ret = true;
689
690 spin_lock(&tid_agg_rx->reorder_lock);
691
692 buf_size = tid_agg_rx->buf_size;
693 head_seq_num = tid_agg_rx->head_seq_num;
694
695 /* frame with out of date sequence number */
696 if (seq_less(mpdu_seq_num, head_seq_num)) {
697 dev_kfree_skb(skb);
698 goto out;
699 }
700
701 /*
702 * If frame the sequence number exceeds our buffering window
703 * size release some previous frames to make room for this one.
704 */
705 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
706 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
707 /* release stored frames up to new head to stack */
708 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
709 }
710
711 /* Now the new frame is always in the range of the reordering buffer */
712
713 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
714
715 /* check if we already stored this frame */
716 if (tid_agg_rx->reorder_buf[index]) {
717 dev_kfree_skb(skb);
718 goto out;
719 }
720
721 /*
722 * If the current MPDU is in the right order and nothing else
723 * is stored we can process it directly, no need to buffer it.
724 * If it is first but there's something stored, we may be able
725 * to release frames after this one.
726 */
727 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
728 tid_agg_rx->stored_mpdu_num == 0) {
729 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
730 ret = false;
731 goto out;
732 }
733
734 /* put the frame in the reordering buffer */
735 tid_agg_rx->reorder_buf[index] = skb;
736 tid_agg_rx->reorder_time[index] = jiffies;
737 tid_agg_rx->stored_mpdu_num++;
738 ieee80211_sta_reorder_release(hw, tid_agg_rx);
739
740 out:
741 spin_unlock(&tid_agg_rx->reorder_lock);
742 return ret;
743 }
744
745 /*
746 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
747 * true if the MPDU was buffered, false if it should be processed.
748 */
749 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
750 {
751 struct sk_buff *skb = rx->skb;
752 struct ieee80211_local *local = rx->local;
753 struct ieee80211_hw *hw = &local->hw;
754 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
755 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
756 struct sta_info *sta = rx->sta;
757 struct tid_ampdu_rx *tid_agg_rx;
758 u16 sc;
759 u8 tid, ack_policy;
760
761 if (!ieee80211_is_data_qos(hdr->frame_control))
762 goto dont_reorder;
763
764 /*
765 * filter the QoS data rx stream according to
766 * STA/TID and check if this STA/TID is on aggregation
767 */
768
769 if (!sta)
770 goto dont_reorder;
771
772 ack_policy = *ieee80211_get_qos_ctl(hdr) &
773 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
774 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
775
776 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
777 if (!tid_agg_rx)
778 goto dont_reorder;
779
780 /* qos null data frames are excluded */
781 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
782 goto dont_reorder;
783
784 /* not part of a BA session */
785 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
786 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
787 goto dont_reorder;
788
789 /* not actually part of this BA session */
790 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
791 goto dont_reorder;
792
793 /* new, potentially un-ordered, ampdu frame - process it */
794
795 /* reset session timer */
796 if (tid_agg_rx->timeout)
797 tid_agg_rx->last_rx = jiffies;
798
799 /* if this mpdu is fragmented - terminate rx aggregation session */
800 sc = le16_to_cpu(hdr->seq_ctrl);
801 if (sc & IEEE80211_SCTL_FRAG) {
802 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
803 skb_queue_tail(&rx->sdata->skb_queue, skb);
804 ieee80211_queue_work(&local->hw, &rx->sdata->work);
805 return;
806 }
807
808 /*
809 * No locking needed -- we will only ever process one
810 * RX packet at a time, and thus own tid_agg_rx. All
811 * other code manipulating it needs to (and does) make
812 * sure that we cannot get to it any more before doing
813 * anything with it.
814 */
815 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
816 return;
817
818 dont_reorder:
819 skb_queue_tail(&local->rx_skb_queue, skb);
820 }
821
822 static ieee80211_rx_result debug_noinline
823 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
824 {
825 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
826 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
827
828 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
829 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
830 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
831 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
832 hdr->seq_ctrl)) {
833 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
834 rx->local->dot11FrameDuplicateCount++;
835 rx->sta->num_duplicates++;
836 }
837 return RX_DROP_UNUSABLE;
838 } else
839 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
840 }
841
842 if (unlikely(rx->skb->len < 16)) {
843 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
844 return RX_DROP_MONITOR;
845 }
846
847 /* Drop disallowed frame classes based on STA auth/assoc state;
848 * IEEE 802.11, Chap 5.5.
849 *
850 * mac80211 filters only based on association state, i.e. it drops
851 * Class 3 frames from not associated stations. hostapd sends
852 * deauth/disassoc frames when needed. In addition, hostapd is
853 * responsible for filtering on both auth and assoc states.
854 */
855
856 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
857 return ieee80211_rx_mesh_check(rx);
858
859 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
860 ieee80211_is_pspoll(hdr->frame_control)) &&
861 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
862 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
863 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
864 /*
865 * accept port control frames from the AP even when it's not
866 * yet marked ASSOC to prevent a race where we don't set the
867 * assoc bit quickly enough before it sends the first frame
868 */
869 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
870 ieee80211_is_data_present(hdr->frame_control)) {
871 u16 ethertype;
872 u8 *payload;
873
874 payload = rx->skb->data +
875 ieee80211_hdrlen(hdr->frame_control);
876 ethertype = (payload[6] << 8) | payload[7];
877 if (cpu_to_be16(ethertype) ==
878 rx->sdata->control_port_protocol)
879 return RX_CONTINUE;
880 }
881
882 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
883 cfg80211_rx_spurious_frame(rx->sdata->dev,
884 hdr->addr2,
885 GFP_ATOMIC))
886 return RX_DROP_UNUSABLE;
887
888 return RX_DROP_MONITOR;
889 }
890
891 return RX_CONTINUE;
892 }
893
894
895 static ieee80211_rx_result debug_noinline
896 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
897 {
898 struct sk_buff *skb = rx->skb;
899 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
900 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
901 int keyidx;
902 int hdrlen;
903 ieee80211_rx_result result = RX_DROP_UNUSABLE;
904 struct ieee80211_key *sta_ptk = NULL;
905 int mmie_keyidx = -1;
906 __le16 fc;
907
908 /*
909 * Key selection 101
910 *
911 * There are four types of keys:
912 * - GTK (group keys)
913 * - IGTK (group keys for management frames)
914 * - PTK (pairwise keys)
915 * - STK (station-to-station pairwise keys)
916 *
917 * When selecting a key, we have to distinguish between multicast
918 * (including broadcast) and unicast frames, the latter can only
919 * use PTKs and STKs while the former always use GTKs and IGTKs.
920 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
921 * unicast frames can also use key indices like GTKs. Hence, if we
922 * don't have a PTK/STK we check the key index for a WEP key.
923 *
924 * Note that in a regular BSS, multicast frames are sent by the
925 * AP only, associated stations unicast the frame to the AP first
926 * which then multicasts it on their behalf.
927 *
928 * There is also a slight problem in IBSS mode: GTKs are negotiated
929 * with each station, that is something we don't currently handle.
930 * The spec seems to expect that one negotiates the same key with
931 * every station but there's no such requirement; VLANs could be
932 * possible.
933 */
934
935 /*
936 * No point in finding a key and decrypting if the frame is neither
937 * addressed to us nor a multicast frame.
938 */
939 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
940 return RX_CONTINUE;
941
942 /* start without a key */
943 rx->key = NULL;
944
945 if (rx->sta)
946 sta_ptk = rcu_dereference(rx->sta->ptk);
947
948 fc = hdr->frame_control;
949
950 if (!ieee80211_has_protected(fc))
951 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
952
953 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
954 rx->key = sta_ptk;
955 if ((status->flag & RX_FLAG_DECRYPTED) &&
956 (status->flag & RX_FLAG_IV_STRIPPED))
957 return RX_CONTINUE;
958 /* Skip decryption if the frame is not protected. */
959 if (!ieee80211_has_protected(fc))
960 return RX_CONTINUE;
961 } else if (mmie_keyidx >= 0) {
962 /* Broadcast/multicast robust management frame / BIP */
963 if ((status->flag & RX_FLAG_DECRYPTED) &&
964 (status->flag & RX_FLAG_IV_STRIPPED))
965 return RX_CONTINUE;
966
967 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
968 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
969 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
970 if (rx->sta)
971 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
972 if (!rx->key)
973 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
974 } else if (!ieee80211_has_protected(fc)) {
975 /*
976 * The frame was not protected, so skip decryption. However, we
977 * need to set rx->key if there is a key that could have been
978 * used so that the frame may be dropped if encryption would
979 * have been expected.
980 */
981 struct ieee80211_key *key = NULL;
982 struct ieee80211_sub_if_data *sdata = rx->sdata;
983 int i;
984
985 if (ieee80211_is_mgmt(fc) &&
986 is_multicast_ether_addr(hdr->addr1) &&
987 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
988 rx->key = key;
989 else {
990 if (rx->sta) {
991 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
992 key = rcu_dereference(rx->sta->gtk[i]);
993 if (key)
994 break;
995 }
996 }
997 if (!key) {
998 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
999 key = rcu_dereference(sdata->keys[i]);
1000 if (key)
1001 break;
1002 }
1003 }
1004 if (key)
1005 rx->key = key;
1006 }
1007 return RX_CONTINUE;
1008 } else {
1009 u8 keyid;
1010 /*
1011 * The device doesn't give us the IV so we won't be
1012 * able to look up the key. That's ok though, we
1013 * don't need to decrypt the frame, we just won't
1014 * be able to keep statistics accurate.
1015 * Except for key threshold notifications, should
1016 * we somehow allow the driver to tell us which key
1017 * the hardware used if this flag is set?
1018 */
1019 if ((status->flag & RX_FLAG_DECRYPTED) &&
1020 (status->flag & RX_FLAG_IV_STRIPPED))
1021 return RX_CONTINUE;
1022
1023 hdrlen = ieee80211_hdrlen(fc);
1024
1025 if (rx->skb->len < 8 + hdrlen)
1026 return RX_DROP_UNUSABLE; /* TODO: count this? */
1027
1028 /*
1029 * no need to call ieee80211_wep_get_keyidx,
1030 * it verifies a bunch of things we've done already
1031 */
1032 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1033 keyidx = keyid >> 6;
1034
1035 /* check per-station GTK first, if multicast packet */
1036 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1037 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1038
1039 /* if not found, try default key */
1040 if (!rx->key) {
1041 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1042
1043 /*
1044 * RSNA-protected unicast frames should always be
1045 * sent with pairwise or station-to-station keys,
1046 * but for WEP we allow using a key index as well.
1047 */
1048 if (rx->key &&
1049 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1050 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1051 !is_multicast_ether_addr(hdr->addr1))
1052 rx->key = NULL;
1053 }
1054 }
1055
1056 if (rx->key) {
1057 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1058 return RX_DROP_MONITOR;
1059
1060 rx->key->tx_rx_count++;
1061 /* TODO: add threshold stuff again */
1062 } else {
1063 return RX_DROP_MONITOR;
1064 }
1065
1066 switch (rx->key->conf.cipher) {
1067 case WLAN_CIPHER_SUITE_WEP40:
1068 case WLAN_CIPHER_SUITE_WEP104:
1069 result = ieee80211_crypto_wep_decrypt(rx);
1070 break;
1071 case WLAN_CIPHER_SUITE_TKIP:
1072 result = ieee80211_crypto_tkip_decrypt(rx);
1073 break;
1074 case WLAN_CIPHER_SUITE_CCMP:
1075 result = ieee80211_crypto_ccmp_decrypt(rx);
1076 break;
1077 case WLAN_CIPHER_SUITE_AES_CMAC:
1078 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1079 break;
1080 default:
1081 /*
1082 * We can reach here only with HW-only algorithms
1083 * but why didn't it decrypt the frame?!
1084 */
1085 return RX_DROP_UNUSABLE;
1086 }
1087
1088 /* the hdr variable is invalid after the decrypt handlers */
1089
1090 /* either the frame has been decrypted or will be dropped */
1091 status->flag |= RX_FLAG_DECRYPTED;
1092
1093 return result;
1094 }
1095
1096 static ieee80211_rx_result debug_noinline
1097 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1098 {
1099 struct ieee80211_local *local;
1100 struct ieee80211_hdr *hdr;
1101 struct sk_buff *skb;
1102
1103 local = rx->local;
1104 skb = rx->skb;
1105 hdr = (struct ieee80211_hdr *) skb->data;
1106
1107 if (!local->pspolling)
1108 return RX_CONTINUE;
1109
1110 if (!ieee80211_has_fromds(hdr->frame_control))
1111 /* this is not from AP */
1112 return RX_CONTINUE;
1113
1114 if (!ieee80211_is_data(hdr->frame_control))
1115 return RX_CONTINUE;
1116
1117 if (!ieee80211_has_moredata(hdr->frame_control)) {
1118 /* AP has no more frames buffered for us */
1119 local->pspolling = false;
1120 return RX_CONTINUE;
1121 }
1122
1123 /* more data bit is set, let's request a new frame from the AP */
1124 ieee80211_send_pspoll(local, rx->sdata);
1125
1126 return RX_CONTINUE;
1127 }
1128
1129 static void ap_sta_ps_start(struct sta_info *sta)
1130 {
1131 struct ieee80211_sub_if_data *sdata = sta->sdata;
1132 struct ieee80211_local *local = sdata->local;
1133
1134 atomic_inc(&sdata->bss->num_sta_ps);
1135 set_sta_flag(sta, WLAN_STA_PS_STA);
1136 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1137 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1138 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1139 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1140 sdata->name, sta->sta.addr, sta->sta.aid);
1141 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1142 }
1143
1144 static void ap_sta_ps_end(struct sta_info *sta)
1145 {
1146 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1147 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1148 sta->sdata->name, sta->sta.addr, sta->sta.aid);
1149 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1150
1151 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1152 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1153 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1154 sta->sdata->name, sta->sta.addr, sta->sta.aid);
1155 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1156 return;
1157 }
1158
1159 ieee80211_sta_ps_deliver_wakeup(sta);
1160 }
1161
1162 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1163 {
1164 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1165 bool in_ps;
1166
1167 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1168
1169 /* Don't let the same PS state be set twice */
1170 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1171 if ((start && in_ps) || (!start && !in_ps))
1172 return -EINVAL;
1173
1174 if (start)
1175 ap_sta_ps_start(sta_inf);
1176 else
1177 ap_sta_ps_end(sta_inf);
1178
1179 return 0;
1180 }
1181 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1182
1183 static ieee80211_rx_result debug_noinline
1184 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1185 {
1186 struct ieee80211_sub_if_data *sdata = rx->sdata;
1187 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1188 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1189 int tid, ac;
1190
1191 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1192 return RX_CONTINUE;
1193
1194 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1195 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1196 return RX_CONTINUE;
1197
1198 /*
1199 * The device handles station powersave, so don't do anything about
1200 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1201 * it to mac80211 since they're handled.)
1202 */
1203 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1204 return RX_CONTINUE;
1205
1206 /*
1207 * Don't do anything if the station isn't already asleep. In
1208 * the uAPSD case, the station will probably be marked asleep,
1209 * in the PS-Poll case the station must be confused ...
1210 */
1211 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1212 return RX_CONTINUE;
1213
1214 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1215 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1216 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1217 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1218 else
1219 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1220 }
1221
1222 /* Free PS Poll skb here instead of returning RX_DROP that would
1223 * count as an dropped frame. */
1224 dev_kfree_skb(rx->skb);
1225
1226 return RX_QUEUED;
1227 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1228 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1229 ieee80211_has_pm(hdr->frame_control) &&
1230 (ieee80211_is_data_qos(hdr->frame_control) ||
1231 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1232 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1233 ac = ieee802_1d_to_ac[tid & 7];
1234
1235 /*
1236 * If this AC is not trigger-enabled do nothing.
1237 *
1238 * NB: This could/should check a separate bitmap of trigger-
1239 * enabled queues, but for now we only implement uAPSD w/o
1240 * TSPEC changes to the ACs, so they're always the same.
1241 */
1242 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1243 return RX_CONTINUE;
1244
1245 /* if we are in a service period, do nothing */
1246 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1247 return RX_CONTINUE;
1248
1249 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1250 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1251 else
1252 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1253 }
1254
1255 return RX_CONTINUE;
1256 }
1257
1258 static ieee80211_rx_result debug_noinline
1259 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1260 {
1261 struct sta_info *sta = rx->sta;
1262 struct sk_buff *skb = rx->skb;
1263 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1264 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1265
1266 if (!sta)
1267 return RX_CONTINUE;
1268
1269 /*
1270 * Update last_rx only for IBSS packets which are for the current
1271 * BSSID to avoid keeping the current IBSS network alive in cases
1272 * where other STAs start using different BSSID.
1273 */
1274 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1275 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1276 NL80211_IFTYPE_ADHOC);
1277 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1278 sta->last_rx = jiffies;
1279 if (ieee80211_is_data(hdr->frame_control)) {
1280 sta->last_rx_rate_idx = status->rate_idx;
1281 sta->last_rx_rate_flag = status->flag;
1282 }
1283 }
1284 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1285 /*
1286 * Mesh beacons will update last_rx when if they are found to
1287 * match the current local configuration when processed.
1288 */
1289 sta->last_rx = jiffies;
1290 if (ieee80211_is_data(hdr->frame_control)) {
1291 sta->last_rx_rate_idx = status->rate_idx;
1292 sta->last_rx_rate_flag = status->flag;
1293 }
1294 }
1295
1296 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1297 return RX_CONTINUE;
1298
1299 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1300 ieee80211_sta_rx_notify(rx->sdata, hdr);
1301
1302 sta->rx_fragments++;
1303 sta->rx_bytes += rx->skb->len;
1304 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1305 sta->last_signal = status->signal;
1306 ewma_add(&sta->avg_signal, -status->signal);
1307 }
1308
1309 /*
1310 * Change STA power saving mode only at the end of a frame
1311 * exchange sequence.
1312 */
1313 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1314 !ieee80211_has_morefrags(hdr->frame_control) &&
1315 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1316 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1317 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1318 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1319 /*
1320 * Ignore doze->wake transitions that are
1321 * indicated by non-data frames, the standard
1322 * is unclear here, but for example going to
1323 * PS mode and then scanning would cause a
1324 * doze->wake transition for the probe request,
1325 * and that is clearly undesirable.
1326 */
1327 if (ieee80211_is_data(hdr->frame_control) &&
1328 !ieee80211_has_pm(hdr->frame_control))
1329 ap_sta_ps_end(sta);
1330 } else {
1331 if (ieee80211_has_pm(hdr->frame_control))
1332 ap_sta_ps_start(sta);
1333 }
1334 }
1335
1336 /*
1337 * Drop (qos-)data::nullfunc frames silently, since they
1338 * are used only to control station power saving mode.
1339 */
1340 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1341 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1342 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1343
1344 /*
1345 * If we receive a 4-addr nullfunc frame from a STA
1346 * that was not moved to a 4-addr STA vlan yet send
1347 * the event to userspace and for older hostapd drop
1348 * the frame to the monitor interface.
1349 */
1350 if (ieee80211_has_a4(hdr->frame_control) &&
1351 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1352 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1353 !rx->sdata->u.vlan.sta))) {
1354 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1355 cfg80211_rx_unexpected_4addr_frame(
1356 rx->sdata->dev, sta->sta.addr,
1357 GFP_ATOMIC);
1358 return RX_DROP_MONITOR;
1359 }
1360 /*
1361 * Update counter and free packet here to avoid
1362 * counting this as a dropped packed.
1363 */
1364 sta->rx_packets++;
1365 dev_kfree_skb(rx->skb);
1366 return RX_QUEUED;
1367 }
1368
1369 return RX_CONTINUE;
1370 } /* ieee80211_rx_h_sta_process */
1371
1372 static inline struct ieee80211_fragment_entry *
1373 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1374 unsigned int frag, unsigned int seq, int rx_queue,
1375 struct sk_buff **skb)
1376 {
1377 struct ieee80211_fragment_entry *entry;
1378 int idx;
1379
1380 idx = sdata->fragment_next;
1381 entry = &sdata->fragments[sdata->fragment_next++];
1382 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1383 sdata->fragment_next = 0;
1384
1385 if (!skb_queue_empty(&entry->skb_list)) {
1386 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1387 struct ieee80211_hdr *hdr =
1388 (struct ieee80211_hdr *) entry->skb_list.next->data;
1389 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1390 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1391 "addr1=%pM addr2=%pM\n",
1392 sdata->name, idx,
1393 jiffies - entry->first_frag_time, entry->seq,
1394 entry->last_frag, hdr->addr1, hdr->addr2);
1395 #endif
1396 __skb_queue_purge(&entry->skb_list);
1397 }
1398
1399 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1400 *skb = NULL;
1401 entry->first_frag_time = jiffies;
1402 entry->seq = seq;
1403 entry->rx_queue = rx_queue;
1404 entry->last_frag = frag;
1405 entry->ccmp = 0;
1406 entry->extra_len = 0;
1407
1408 return entry;
1409 }
1410
1411 static inline struct ieee80211_fragment_entry *
1412 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1413 unsigned int frag, unsigned int seq,
1414 int rx_queue, struct ieee80211_hdr *hdr)
1415 {
1416 struct ieee80211_fragment_entry *entry;
1417 int i, idx;
1418
1419 idx = sdata->fragment_next;
1420 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1421 struct ieee80211_hdr *f_hdr;
1422
1423 idx--;
1424 if (idx < 0)
1425 idx = IEEE80211_FRAGMENT_MAX - 1;
1426
1427 entry = &sdata->fragments[idx];
1428 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1429 entry->rx_queue != rx_queue ||
1430 entry->last_frag + 1 != frag)
1431 continue;
1432
1433 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1434
1435 /*
1436 * Check ftype and addresses are equal, else check next fragment
1437 */
1438 if (((hdr->frame_control ^ f_hdr->frame_control) &
1439 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1440 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1441 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1442 continue;
1443
1444 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1445 __skb_queue_purge(&entry->skb_list);
1446 continue;
1447 }
1448 return entry;
1449 }
1450
1451 return NULL;
1452 }
1453
1454 static ieee80211_rx_result debug_noinline
1455 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1456 {
1457 struct ieee80211_hdr *hdr;
1458 u16 sc;
1459 __le16 fc;
1460 unsigned int frag, seq;
1461 struct ieee80211_fragment_entry *entry;
1462 struct sk_buff *skb;
1463 struct ieee80211_rx_status *status;
1464
1465 hdr = (struct ieee80211_hdr *)rx->skb->data;
1466 fc = hdr->frame_control;
1467 sc = le16_to_cpu(hdr->seq_ctrl);
1468 frag = sc & IEEE80211_SCTL_FRAG;
1469
1470 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1471 (rx->skb)->len < 24 ||
1472 is_multicast_ether_addr(hdr->addr1))) {
1473 /* not fragmented */
1474 goto out;
1475 }
1476 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1477
1478 if (skb_linearize(rx->skb))
1479 return RX_DROP_UNUSABLE;
1480
1481 /*
1482 * skb_linearize() might change the skb->data and
1483 * previously cached variables (in this case, hdr) need to
1484 * be refreshed with the new data.
1485 */
1486 hdr = (struct ieee80211_hdr *)rx->skb->data;
1487 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1488
1489 if (frag == 0) {
1490 /* This is the first fragment of a new frame. */
1491 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1492 rx->seqno_idx, &(rx->skb));
1493 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1494 ieee80211_has_protected(fc)) {
1495 int queue = rx->security_idx;
1496 /* Store CCMP PN so that we can verify that the next
1497 * fragment has a sequential PN value. */
1498 entry->ccmp = 1;
1499 memcpy(entry->last_pn,
1500 rx->key->u.ccmp.rx_pn[queue],
1501 CCMP_PN_LEN);
1502 }
1503 return RX_QUEUED;
1504 }
1505
1506 /* This is a fragment for a frame that should already be pending in
1507 * fragment cache. Add this fragment to the end of the pending entry.
1508 */
1509 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1510 rx->seqno_idx, hdr);
1511 if (!entry) {
1512 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1513 return RX_DROP_MONITOR;
1514 }
1515
1516 /* Verify that MPDUs within one MSDU have sequential PN values.
1517 * (IEEE 802.11i, 8.3.3.4.5) */
1518 if (entry->ccmp) {
1519 int i;
1520 u8 pn[CCMP_PN_LEN], *rpn;
1521 int queue;
1522 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1523 return RX_DROP_UNUSABLE;
1524 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1525 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1526 pn[i]++;
1527 if (pn[i])
1528 break;
1529 }
1530 queue = rx->security_idx;
1531 rpn = rx->key->u.ccmp.rx_pn[queue];
1532 if (memcmp(pn, rpn, CCMP_PN_LEN))
1533 return RX_DROP_UNUSABLE;
1534 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1535 }
1536
1537 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1538 __skb_queue_tail(&entry->skb_list, rx->skb);
1539 entry->last_frag = frag;
1540 entry->extra_len += rx->skb->len;
1541 if (ieee80211_has_morefrags(fc)) {
1542 rx->skb = NULL;
1543 return RX_QUEUED;
1544 }
1545
1546 rx->skb = __skb_dequeue(&entry->skb_list);
1547 if (skb_tailroom(rx->skb) < entry->extra_len) {
1548 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1549 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1550 GFP_ATOMIC))) {
1551 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1552 __skb_queue_purge(&entry->skb_list);
1553 return RX_DROP_UNUSABLE;
1554 }
1555 }
1556 while ((skb = __skb_dequeue(&entry->skb_list))) {
1557 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1558 dev_kfree_skb(skb);
1559 }
1560
1561 /* Complete frame has been reassembled - process it now */
1562 status = IEEE80211_SKB_RXCB(rx->skb);
1563 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1564
1565 out:
1566 if (rx->sta)
1567 rx->sta->rx_packets++;
1568 if (is_multicast_ether_addr(hdr->addr1))
1569 rx->local->dot11MulticastReceivedFrameCount++;
1570 else
1571 ieee80211_led_rx(rx->local);
1572 return RX_CONTINUE;
1573 }
1574
1575 static int
1576 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1577 {
1578 if (unlikely(!rx->sta ||
1579 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1580 return -EACCES;
1581
1582 return 0;
1583 }
1584
1585 static int
1586 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1587 {
1588 struct sk_buff *skb = rx->skb;
1589 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1590
1591 /*
1592 * Pass through unencrypted frames if the hardware has
1593 * decrypted them already.
1594 */
1595 if (status->flag & RX_FLAG_DECRYPTED)
1596 return 0;
1597
1598 /* Drop unencrypted frames if key is set. */
1599 if (unlikely(!ieee80211_has_protected(fc) &&
1600 !ieee80211_is_nullfunc(fc) &&
1601 ieee80211_is_data(fc) &&
1602 (rx->key || rx->sdata->drop_unencrypted)))
1603 return -EACCES;
1604
1605 return 0;
1606 }
1607
1608 static int
1609 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1610 {
1611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1612 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1613 __le16 fc = hdr->frame_control;
1614
1615 /*
1616 * Pass through unencrypted frames if the hardware has
1617 * decrypted them already.
1618 */
1619 if (status->flag & RX_FLAG_DECRYPTED)
1620 return 0;
1621
1622 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1623 if (unlikely(!ieee80211_has_protected(fc) &&
1624 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1625 rx->key)) {
1626 if (ieee80211_is_deauth(fc))
1627 cfg80211_send_unprot_deauth(rx->sdata->dev,
1628 rx->skb->data,
1629 rx->skb->len);
1630 else if (ieee80211_is_disassoc(fc))
1631 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1632 rx->skb->data,
1633 rx->skb->len);
1634 return -EACCES;
1635 }
1636 /* BIP does not use Protected field, so need to check MMIE */
1637 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1638 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1639 if (ieee80211_is_deauth(fc))
1640 cfg80211_send_unprot_deauth(rx->sdata->dev,
1641 rx->skb->data,
1642 rx->skb->len);
1643 else if (ieee80211_is_disassoc(fc))
1644 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1645 rx->skb->data,
1646 rx->skb->len);
1647 return -EACCES;
1648 }
1649 /*
1650 * When using MFP, Action frames are not allowed prior to
1651 * having configured keys.
1652 */
1653 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1654 ieee80211_is_robust_mgmt_frame(
1655 (struct ieee80211_hdr *) rx->skb->data)))
1656 return -EACCES;
1657 }
1658
1659 return 0;
1660 }
1661
1662 static int
1663 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1664 {
1665 struct ieee80211_sub_if_data *sdata = rx->sdata;
1666 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1667 bool check_port_control = false;
1668 struct ethhdr *ehdr;
1669 int ret;
1670
1671 *port_control = false;
1672 if (ieee80211_has_a4(hdr->frame_control) &&
1673 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1674 return -1;
1675
1676 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1677 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1678
1679 if (!sdata->u.mgd.use_4addr)
1680 return -1;
1681 else
1682 check_port_control = true;
1683 }
1684
1685 if (is_multicast_ether_addr(hdr->addr1) &&
1686 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1687 return -1;
1688
1689 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1690 if (ret < 0)
1691 return ret;
1692
1693 ehdr = (struct ethhdr *) rx->skb->data;
1694 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1695 *port_control = true;
1696 else if (check_port_control)
1697 return -1;
1698
1699 return 0;
1700 }
1701
1702 /*
1703 * requires that rx->skb is a frame with ethernet header
1704 */
1705 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1706 {
1707 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1708 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1709 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1710
1711 /*
1712 * Allow EAPOL frames to us/the PAE group address regardless
1713 * of whether the frame was encrypted or not.
1714 */
1715 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1716 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1717 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1718 return true;
1719
1720 if (ieee80211_802_1x_port_control(rx) ||
1721 ieee80211_drop_unencrypted(rx, fc))
1722 return false;
1723
1724 return true;
1725 }
1726
1727 /*
1728 * requires that rx->skb is a frame with ethernet header
1729 */
1730 static void
1731 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1732 {
1733 struct ieee80211_sub_if_data *sdata = rx->sdata;
1734 struct net_device *dev = sdata->dev;
1735 struct sk_buff *skb, *xmit_skb;
1736 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1737 struct sta_info *dsta;
1738 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1739
1740 skb = rx->skb;
1741 xmit_skb = NULL;
1742
1743 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1744 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1745 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1746 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1747 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1748 if (is_multicast_ether_addr(ehdr->h_dest)) {
1749 /*
1750 * send multicast frames both to higher layers in
1751 * local net stack and back to the wireless medium
1752 */
1753 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1754 if (!xmit_skb && net_ratelimit())
1755 printk(KERN_DEBUG "%s: failed to clone "
1756 "multicast frame\n", dev->name);
1757 } else {
1758 dsta = sta_info_get(sdata, skb->data);
1759 if (dsta) {
1760 /*
1761 * The destination station is associated to
1762 * this AP (in this VLAN), so send the frame
1763 * directly to it and do not pass it to local
1764 * net stack.
1765 */
1766 xmit_skb = skb;
1767 skb = NULL;
1768 }
1769 }
1770 }
1771
1772 if (skb) {
1773 int align __maybe_unused;
1774
1775 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1776 /*
1777 * 'align' will only take the values 0 or 2 here
1778 * since all frames are required to be aligned
1779 * to 2-byte boundaries when being passed to
1780 * mac80211. That also explains the __skb_push()
1781 * below.
1782 */
1783 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1784 if (align) {
1785 if (WARN_ON(skb_headroom(skb) < 3)) {
1786 dev_kfree_skb(skb);
1787 skb = NULL;
1788 } else {
1789 u8 *data = skb->data;
1790 size_t len = skb_headlen(skb);
1791 skb->data -= align;
1792 memmove(skb->data, data, len);
1793 skb_set_tail_pointer(skb, len);
1794 }
1795 }
1796 #endif
1797
1798 if (skb) {
1799 /* deliver to local stack */
1800 skb->protocol = eth_type_trans(skb, dev);
1801 memset(skb->cb, 0, sizeof(skb->cb));
1802 netif_receive_skb(skb);
1803 }
1804 }
1805
1806 if (xmit_skb) {
1807 /*
1808 * Send to wireless media and increase priority by 256 to
1809 * keep the received priority instead of reclassifying
1810 * the frame (see cfg80211_classify8021d).
1811 */
1812 xmit_skb->priority += 256;
1813 xmit_skb->protocol = htons(ETH_P_802_3);
1814 skb_reset_network_header(xmit_skb);
1815 skb_reset_mac_header(xmit_skb);
1816 dev_queue_xmit(xmit_skb);
1817 }
1818 }
1819
1820 static ieee80211_rx_result debug_noinline
1821 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1822 {
1823 struct net_device *dev = rx->sdata->dev;
1824 struct sk_buff *skb = rx->skb;
1825 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1826 __le16 fc = hdr->frame_control;
1827 struct sk_buff_head frame_list;
1828 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1829
1830 if (unlikely(!ieee80211_is_data(fc)))
1831 return RX_CONTINUE;
1832
1833 if (unlikely(!ieee80211_is_data_present(fc)))
1834 return RX_DROP_MONITOR;
1835
1836 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1837 return RX_CONTINUE;
1838
1839 if (ieee80211_has_a4(hdr->frame_control) &&
1840 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1841 !rx->sdata->u.vlan.sta)
1842 return RX_DROP_UNUSABLE;
1843
1844 if (is_multicast_ether_addr(hdr->addr1) &&
1845 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1846 rx->sdata->u.vlan.sta) ||
1847 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1848 rx->sdata->u.mgd.use_4addr)))
1849 return RX_DROP_UNUSABLE;
1850
1851 skb->dev = dev;
1852 __skb_queue_head_init(&frame_list);
1853
1854 if (skb_linearize(skb))
1855 return RX_DROP_UNUSABLE;
1856
1857 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1858 rx->sdata->vif.type,
1859 rx->local->hw.extra_tx_headroom, true);
1860
1861 while (!skb_queue_empty(&frame_list)) {
1862 rx->skb = __skb_dequeue(&frame_list);
1863
1864 if (!ieee80211_frame_allowed(rx, fc)) {
1865 dev_kfree_skb(rx->skb);
1866 continue;
1867 }
1868 dev->stats.rx_packets++;
1869 dev->stats.rx_bytes += rx->skb->len;
1870
1871 ieee80211_deliver_skb(rx);
1872 }
1873
1874 return RX_QUEUED;
1875 }
1876
1877 #ifdef CONFIG_MAC80211_MESH
1878 static ieee80211_rx_result
1879 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1880 {
1881 struct ieee80211_hdr *fwd_hdr, *hdr;
1882 struct ieee80211_tx_info *info;
1883 struct ieee80211s_hdr *mesh_hdr;
1884 struct sk_buff *skb = rx->skb, *fwd_skb;
1885 struct ieee80211_local *local = rx->local;
1886 struct ieee80211_sub_if_data *sdata = rx->sdata;
1887 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1888 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
1889 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
1890 u16 q, hdrlen;
1891
1892 hdr = (struct ieee80211_hdr *) skb->data;
1893 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1894 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1895
1896 /* frame is in RMC, don't forward */
1897 if (ieee80211_is_data(hdr->frame_control) &&
1898 is_multicast_ether_addr(hdr->addr1) &&
1899 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1900 return RX_DROP_MONITOR;
1901
1902 if (!ieee80211_is_data(hdr->frame_control))
1903 return RX_CONTINUE;
1904
1905 if (!mesh_hdr->ttl)
1906 return RX_DROP_MONITOR;
1907
1908 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1909 struct mesh_path *mppath;
1910 char *proxied_addr;
1911 char *mpp_addr;
1912
1913 if (is_multicast_ether_addr(hdr->addr1)) {
1914 mpp_addr = hdr->addr3;
1915 proxied_addr = mesh_hdr->eaddr1;
1916 } else {
1917 mpp_addr = hdr->addr4;
1918 proxied_addr = mesh_hdr->eaddr2;
1919 }
1920
1921 rcu_read_lock();
1922 mppath = mpp_path_lookup(proxied_addr, sdata);
1923 if (!mppath) {
1924 mpp_path_add(proxied_addr, mpp_addr, sdata);
1925 } else {
1926 spin_lock_bh(&mppath->state_lock);
1927 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1928 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1929 spin_unlock_bh(&mppath->state_lock);
1930 }
1931 rcu_read_unlock();
1932 }
1933
1934 /* Frame has reached destination. Don't forward */
1935 if (!is_multicast_ether_addr(hdr->addr1) &&
1936 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1937 return RX_CONTINUE;
1938
1939 q = ieee80211_select_queue_80211(local, skb, hdr);
1940 if (ieee80211_queue_stopped(&local->hw, q)) {
1941 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
1942 return RX_DROP_MONITOR;
1943 }
1944 skb_set_queue_mapping(skb, q);
1945
1946 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1947 goto out;
1948
1949 if (!--mesh_hdr->ttl) {
1950 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
1951 return RX_DROP_MONITOR;
1952 }
1953
1954 if (!ifmsh->mshcfg.dot11MeshForwarding)
1955 goto out;
1956
1957 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1958 if (!fwd_skb) {
1959 if (net_ratelimit())
1960 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1961 sdata->name);
1962 goto out;
1963 }
1964
1965 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1966 info = IEEE80211_SKB_CB(fwd_skb);
1967 memset(info, 0, sizeof(*info));
1968 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1969 info->control.vif = &rx->sdata->vif;
1970 info->control.jiffies = jiffies;
1971 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
1972 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
1973 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1974 } else if (!mesh_nexthop_lookup(fwd_skb, sdata)) {
1975 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
1976 } else {
1977 /* unable to resolve next hop */
1978 mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3,
1979 0, reason, fwd_hdr->addr2, sdata);
1980 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
1981 kfree_skb(fwd_skb);
1982 return RX_DROP_MONITOR;
1983 }
1984
1985 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
1986 ieee80211_add_pending_skb(local, fwd_skb);
1987 out:
1988 if (is_multicast_ether_addr(hdr->addr1) ||
1989 sdata->dev->flags & IFF_PROMISC)
1990 return RX_CONTINUE;
1991 else
1992 return RX_DROP_MONITOR;
1993 }
1994 #endif
1995
1996 static ieee80211_rx_result debug_noinline
1997 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1998 {
1999 struct ieee80211_sub_if_data *sdata = rx->sdata;
2000 struct ieee80211_local *local = rx->local;
2001 struct net_device *dev = sdata->dev;
2002 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2003 __le16 fc = hdr->frame_control;
2004 bool port_control;
2005 int err;
2006
2007 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2008 return RX_CONTINUE;
2009
2010 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2011 return RX_DROP_MONITOR;
2012
2013 /*
2014 * Send unexpected-4addr-frame event to hostapd. For older versions,
2015 * also drop the frame to cooked monitor interfaces.
2016 */
2017 if (ieee80211_has_a4(hdr->frame_control) &&
2018 sdata->vif.type == NL80211_IFTYPE_AP) {
2019 if (rx->sta &&
2020 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2021 cfg80211_rx_unexpected_4addr_frame(
2022 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2023 return RX_DROP_MONITOR;
2024 }
2025
2026 err = __ieee80211_data_to_8023(rx, &port_control);
2027 if (unlikely(err))
2028 return RX_DROP_UNUSABLE;
2029
2030 if (!ieee80211_frame_allowed(rx, fc))
2031 return RX_DROP_MONITOR;
2032
2033 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2034 unlikely(port_control) && sdata->bss) {
2035 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2036 u.ap);
2037 dev = sdata->dev;
2038 rx->sdata = sdata;
2039 }
2040
2041 rx->skb->dev = dev;
2042
2043 dev->stats.rx_packets++;
2044 dev->stats.rx_bytes += rx->skb->len;
2045
2046 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2047 !is_multicast_ether_addr(
2048 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2049 (!local->scanning &&
2050 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2051 mod_timer(&local->dynamic_ps_timer, jiffies +
2052 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2053 }
2054
2055 ieee80211_deliver_skb(rx);
2056
2057 return RX_QUEUED;
2058 }
2059
2060 static ieee80211_rx_result debug_noinline
2061 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2062 {
2063 struct ieee80211_local *local = rx->local;
2064 struct ieee80211_hw *hw = &local->hw;
2065 struct sk_buff *skb = rx->skb;
2066 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2067 struct tid_ampdu_rx *tid_agg_rx;
2068 u16 start_seq_num;
2069 u16 tid;
2070
2071 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2072 return RX_CONTINUE;
2073
2074 if (ieee80211_is_back_req(bar->frame_control)) {
2075 struct {
2076 __le16 control, start_seq_num;
2077 } __packed bar_data;
2078
2079 if (!rx->sta)
2080 return RX_DROP_MONITOR;
2081
2082 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2083 &bar_data, sizeof(bar_data)))
2084 return RX_DROP_MONITOR;
2085
2086 tid = le16_to_cpu(bar_data.control) >> 12;
2087
2088 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2089 if (!tid_agg_rx)
2090 return RX_DROP_MONITOR;
2091
2092 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2093
2094 /* reset session timer */
2095 if (tid_agg_rx->timeout)
2096 mod_timer(&tid_agg_rx->session_timer,
2097 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2098
2099 spin_lock(&tid_agg_rx->reorder_lock);
2100 /* release stored frames up to start of BAR */
2101 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2102 spin_unlock(&tid_agg_rx->reorder_lock);
2103
2104 kfree_skb(skb);
2105 return RX_QUEUED;
2106 }
2107
2108 /*
2109 * After this point, we only want management frames,
2110 * so we can drop all remaining control frames to
2111 * cooked monitor interfaces.
2112 */
2113 return RX_DROP_MONITOR;
2114 }
2115
2116 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2117 struct ieee80211_mgmt *mgmt,
2118 size_t len)
2119 {
2120 struct ieee80211_local *local = sdata->local;
2121 struct sk_buff *skb;
2122 struct ieee80211_mgmt *resp;
2123
2124 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2125 /* Not to own unicast address */
2126 return;
2127 }
2128
2129 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2130 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2131 /* Not from the current AP or not associated yet. */
2132 return;
2133 }
2134
2135 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2136 /* Too short SA Query request frame */
2137 return;
2138 }
2139
2140 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2141 if (skb == NULL)
2142 return;
2143
2144 skb_reserve(skb, local->hw.extra_tx_headroom);
2145 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2146 memset(resp, 0, 24);
2147 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2148 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2149 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2150 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2151 IEEE80211_STYPE_ACTION);
2152 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2153 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2154 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2155 memcpy(resp->u.action.u.sa_query.trans_id,
2156 mgmt->u.action.u.sa_query.trans_id,
2157 WLAN_SA_QUERY_TR_ID_LEN);
2158
2159 ieee80211_tx_skb(sdata, skb);
2160 }
2161
2162 static ieee80211_rx_result debug_noinline
2163 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2164 {
2165 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2166 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2167
2168 /*
2169 * From here on, look only at management frames.
2170 * Data and control frames are already handled,
2171 * and unknown (reserved) frames are useless.
2172 */
2173 if (rx->skb->len < 24)
2174 return RX_DROP_MONITOR;
2175
2176 if (!ieee80211_is_mgmt(mgmt->frame_control))
2177 return RX_DROP_MONITOR;
2178
2179 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2180 ieee80211_is_beacon(mgmt->frame_control) &&
2181 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2182 int sig = 0;
2183
2184 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2185 sig = status->signal;
2186
2187 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2188 rx->skb->data, rx->skb->len,
2189 status->freq, sig, GFP_ATOMIC);
2190 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2191 }
2192
2193 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2194 return RX_DROP_MONITOR;
2195
2196 if (ieee80211_drop_unencrypted_mgmt(rx))
2197 return RX_DROP_UNUSABLE;
2198
2199 return RX_CONTINUE;
2200 }
2201
2202 static ieee80211_rx_result debug_noinline
2203 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2204 {
2205 struct ieee80211_local *local = rx->local;
2206 struct ieee80211_sub_if_data *sdata = rx->sdata;
2207 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2208 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2209 int len = rx->skb->len;
2210
2211 if (!ieee80211_is_action(mgmt->frame_control))
2212 return RX_CONTINUE;
2213
2214 /* drop too small frames */
2215 if (len < IEEE80211_MIN_ACTION_SIZE)
2216 return RX_DROP_UNUSABLE;
2217
2218 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2219 return RX_DROP_UNUSABLE;
2220
2221 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2222 return RX_DROP_UNUSABLE;
2223
2224 switch (mgmt->u.action.category) {
2225 case WLAN_CATEGORY_HT:
2226 /* reject HT action frames from stations not supporting HT */
2227 if (!rx->sta->sta.ht_cap.ht_supported)
2228 goto invalid;
2229
2230 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2231 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2232 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2233 sdata->vif.type != NL80211_IFTYPE_AP &&
2234 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2235 break;
2236
2237 /* verify action & smps_control are present */
2238 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2239 goto invalid;
2240
2241 switch (mgmt->u.action.u.ht_smps.action) {
2242 case WLAN_HT_ACTION_SMPS: {
2243 struct ieee80211_supported_band *sband;
2244 u8 smps;
2245
2246 /* convert to HT capability */
2247 switch (mgmt->u.action.u.ht_smps.smps_control) {
2248 case WLAN_HT_SMPS_CONTROL_DISABLED:
2249 smps = WLAN_HT_CAP_SM_PS_DISABLED;
2250 break;
2251 case WLAN_HT_SMPS_CONTROL_STATIC:
2252 smps = WLAN_HT_CAP_SM_PS_STATIC;
2253 break;
2254 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2255 smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
2256 break;
2257 default:
2258 goto invalid;
2259 }
2260 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
2261
2262 /* if no change do nothing */
2263 if ((rx->sta->sta.ht_cap.cap &
2264 IEEE80211_HT_CAP_SM_PS) == smps)
2265 goto handled;
2266
2267 rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS;
2268 rx->sta->sta.ht_cap.cap |= smps;
2269
2270 sband = rx->local->hw.wiphy->bands[status->band];
2271
2272 rate_control_rate_update(local, sband, rx->sta,
2273 IEEE80211_RC_SMPS_CHANGED);
2274 goto handled;
2275 }
2276 default:
2277 goto invalid;
2278 }
2279
2280 break;
2281 case WLAN_CATEGORY_BACK:
2282 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2283 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2284 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2285 sdata->vif.type != NL80211_IFTYPE_AP &&
2286 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2287 break;
2288
2289 /* verify action_code is present */
2290 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2291 break;
2292
2293 switch (mgmt->u.action.u.addba_req.action_code) {
2294 case WLAN_ACTION_ADDBA_REQ:
2295 if (len < (IEEE80211_MIN_ACTION_SIZE +
2296 sizeof(mgmt->u.action.u.addba_req)))
2297 goto invalid;
2298 break;
2299 case WLAN_ACTION_ADDBA_RESP:
2300 if (len < (IEEE80211_MIN_ACTION_SIZE +
2301 sizeof(mgmt->u.action.u.addba_resp)))
2302 goto invalid;
2303 break;
2304 case WLAN_ACTION_DELBA:
2305 if (len < (IEEE80211_MIN_ACTION_SIZE +
2306 sizeof(mgmt->u.action.u.delba)))
2307 goto invalid;
2308 break;
2309 default:
2310 goto invalid;
2311 }
2312
2313 goto queue;
2314 case WLAN_CATEGORY_SPECTRUM_MGMT:
2315 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2316 break;
2317
2318 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2319 break;
2320
2321 /* verify action_code is present */
2322 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2323 break;
2324
2325 switch (mgmt->u.action.u.measurement.action_code) {
2326 case WLAN_ACTION_SPCT_MSR_REQ:
2327 if (len < (IEEE80211_MIN_ACTION_SIZE +
2328 sizeof(mgmt->u.action.u.measurement)))
2329 break;
2330 ieee80211_process_measurement_req(sdata, mgmt, len);
2331 goto handled;
2332 case WLAN_ACTION_SPCT_CHL_SWITCH:
2333 if (len < (IEEE80211_MIN_ACTION_SIZE +
2334 sizeof(mgmt->u.action.u.chan_switch)))
2335 break;
2336
2337 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2338 break;
2339
2340 if (compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid))
2341 break;
2342
2343 goto queue;
2344 }
2345 break;
2346 case WLAN_CATEGORY_SA_QUERY:
2347 if (len < (IEEE80211_MIN_ACTION_SIZE +
2348 sizeof(mgmt->u.action.u.sa_query)))
2349 break;
2350
2351 switch (mgmt->u.action.u.sa_query.action) {
2352 case WLAN_ACTION_SA_QUERY_REQUEST:
2353 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2354 break;
2355 ieee80211_process_sa_query_req(sdata, mgmt, len);
2356 goto handled;
2357 }
2358 break;
2359 case WLAN_CATEGORY_SELF_PROTECTED:
2360 switch (mgmt->u.action.u.self_prot.action_code) {
2361 case WLAN_SP_MESH_PEERING_OPEN:
2362 case WLAN_SP_MESH_PEERING_CLOSE:
2363 case WLAN_SP_MESH_PEERING_CONFIRM:
2364 if (!ieee80211_vif_is_mesh(&sdata->vif))
2365 goto invalid;
2366 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2367 /* userspace handles this frame */
2368 break;
2369 goto queue;
2370 case WLAN_SP_MGK_INFORM:
2371 case WLAN_SP_MGK_ACK:
2372 if (!ieee80211_vif_is_mesh(&sdata->vif))
2373 goto invalid;
2374 break;
2375 }
2376 break;
2377 case WLAN_CATEGORY_MESH_ACTION:
2378 if (!ieee80211_vif_is_mesh(&sdata->vif))
2379 break;
2380 if (mesh_action_is_path_sel(mgmt) &&
2381 (!mesh_path_sel_is_hwmp(sdata)))
2382 break;
2383 goto queue;
2384 }
2385
2386 return RX_CONTINUE;
2387
2388 invalid:
2389 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2390 /* will return in the next handlers */
2391 return RX_CONTINUE;
2392
2393 handled:
2394 if (rx->sta)
2395 rx->sta->rx_packets++;
2396 dev_kfree_skb(rx->skb);
2397 return RX_QUEUED;
2398
2399 queue:
2400 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2401 skb_queue_tail(&sdata->skb_queue, rx->skb);
2402 ieee80211_queue_work(&local->hw, &sdata->work);
2403 if (rx->sta)
2404 rx->sta->rx_packets++;
2405 return RX_QUEUED;
2406 }
2407
2408 static ieee80211_rx_result debug_noinline
2409 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2410 {
2411 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2412 int sig = 0;
2413
2414 /* skip known-bad action frames and return them in the next handler */
2415 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2416 return RX_CONTINUE;
2417
2418 /*
2419 * Getting here means the kernel doesn't know how to handle
2420 * it, but maybe userspace does ... include returned frames
2421 * so userspace can register for those to know whether ones
2422 * it transmitted were processed or returned.
2423 */
2424
2425 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2426 sig = status->signal;
2427
2428 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq, sig,
2429 rx->skb->data, rx->skb->len,
2430 GFP_ATOMIC)) {
2431 if (rx->sta)
2432 rx->sta->rx_packets++;
2433 dev_kfree_skb(rx->skb);
2434 return RX_QUEUED;
2435 }
2436
2437
2438 return RX_CONTINUE;
2439 }
2440
2441 static ieee80211_rx_result debug_noinline
2442 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2443 {
2444 struct ieee80211_local *local = rx->local;
2445 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2446 struct sk_buff *nskb;
2447 struct ieee80211_sub_if_data *sdata = rx->sdata;
2448 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2449
2450 if (!ieee80211_is_action(mgmt->frame_control))
2451 return RX_CONTINUE;
2452
2453 /*
2454 * For AP mode, hostapd is responsible for handling any action
2455 * frames that we didn't handle, including returning unknown
2456 * ones. For all other modes we will return them to the sender,
2457 * setting the 0x80 bit in the action category, as required by
2458 * 802.11-2007 7.3.1.11.
2459 * Newer versions of hostapd shall also use the management frame
2460 * registration mechanisms, but older ones still use cooked
2461 * monitor interfaces so push all frames there.
2462 */
2463 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2464 (sdata->vif.type == NL80211_IFTYPE_AP ||
2465 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2466 return RX_DROP_MONITOR;
2467
2468 /* do not return rejected action frames */
2469 if (mgmt->u.action.category & 0x80)
2470 return RX_DROP_UNUSABLE;
2471
2472 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2473 GFP_ATOMIC);
2474 if (nskb) {
2475 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2476
2477 nmgmt->u.action.category |= 0x80;
2478 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2479 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2480
2481 memset(nskb->cb, 0, sizeof(nskb->cb));
2482
2483 ieee80211_tx_skb(rx->sdata, nskb);
2484 }
2485 dev_kfree_skb(rx->skb);
2486 return RX_QUEUED;
2487 }
2488
2489 static ieee80211_rx_result debug_noinline
2490 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2491 {
2492 struct ieee80211_sub_if_data *sdata = rx->sdata;
2493 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2494 __le16 stype;
2495
2496 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2497
2498 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2499 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2500 sdata->vif.type != NL80211_IFTYPE_STATION)
2501 return RX_DROP_MONITOR;
2502
2503 switch (stype) {
2504 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2505 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2506 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2507 /* process for all: mesh, mlme, ibss */
2508 break;
2509 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2510 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2511 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2512 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2513 if (is_multicast_ether_addr(mgmt->da) &&
2514 !is_broadcast_ether_addr(mgmt->da))
2515 return RX_DROP_MONITOR;
2516
2517 /* process only for station */
2518 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2519 return RX_DROP_MONITOR;
2520 break;
2521 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2522 /* process only for ibss */
2523 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2524 return RX_DROP_MONITOR;
2525 break;
2526 default:
2527 return RX_DROP_MONITOR;
2528 }
2529
2530 /* queue up frame and kick off work to process it */
2531 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2532 skb_queue_tail(&sdata->skb_queue, rx->skb);
2533 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2534 if (rx->sta)
2535 rx->sta->rx_packets++;
2536
2537 return RX_QUEUED;
2538 }
2539
2540 /* TODO: use IEEE80211_RX_FRAGMENTED */
2541 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2542 struct ieee80211_rate *rate)
2543 {
2544 struct ieee80211_sub_if_data *sdata;
2545 struct ieee80211_local *local = rx->local;
2546 struct sk_buff *skb = rx->skb, *skb2;
2547 struct net_device *prev_dev = NULL;
2548 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2549 int needed_headroom;
2550
2551 /*
2552 * If cooked monitor has been processed already, then
2553 * don't do it again. If not, set the flag.
2554 */
2555 if (rx->flags & IEEE80211_RX_CMNTR)
2556 goto out_free_skb;
2557 rx->flags |= IEEE80211_RX_CMNTR;
2558
2559 /* If there are no cooked monitor interfaces, just free the SKB */
2560 if (!local->cooked_mntrs)
2561 goto out_free_skb;
2562
2563 /* room for the radiotap header based on driver features */
2564 needed_headroom = ieee80211_rx_radiotap_len(local, status);
2565
2566 if (skb_headroom(skb) < needed_headroom &&
2567 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2568 goto out_free_skb;
2569
2570 /* prepend radiotap information */
2571 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
2572
2573 skb_set_mac_header(skb, 0);
2574 skb->ip_summed = CHECKSUM_UNNECESSARY;
2575 skb->pkt_type = PACKET_OTHERHOST;
2576 skb->protocol = htons(ETH_P_802_2);
2577
2578 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2579 if (!ieee80211_sdata_running(sdata))
2580 continue;
2581
2582 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2583 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2584 continue;
2585
2586 if (prev_dev) {
2587 skb2 = skb_clone(skb, GFP_ATOMIC);
2588 if (skb2) {
2589 skb2->dev = prev_dev;
2590 netif_receive_skb(skb2);
2591 }
2592 }
2593
2594 prev_dev = sdata->dev;
2595 sdata->dev->stats.rx_packets++;
2596 sdata->dev->stats.rx_bytes += skb->len;
2597 }
2598
2599 if (prev_dev) {
2600 skb->dev = prev_dev;
2601 netif_receive_skb(skb);
2602 return;
2603 }
2604
2605 out_free_skb:
2606 dev_kfree_skb(skb);
2607 }
2608
2609 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2610 ieee80211_rx_result res)
2611 {
2612 switch (res) {
2613 case RX_DROP_MONITOR:
2614 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2615 if (rx->sta)
2616 rx->sta->rx_dropped++;
2617 /* fall through */
2618 case RX_CONTINUE: {
2619 struct ieee80211_rate *rate = NULL;
2620 struct ieee80211_supported_band *sband;
2621 struct ieee80211_rx_status *status;
2622
2623 status = IEEE80211_SKB_RXCB((rx->skb));
2624
2625 sband = rx->local->hw.wiphy->bands[status->band];
2626 if (!(status->flag & RX_FLAG_HT))
2627 rate = &sband->bitrates[status->rate_idx];
2628
2629 ieee80211_rx_cooked_monitor(rx, rate);
2630 break;
2631 }
2632 case RX_DROP_UNUSABLE:
2633 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2634 if (rx->sta)
2635 rx->sta->rx_dropped++;
2636 dev_kfree_skb(rx->skb);
2637 break;
2638 case RX_QUEUED:
2639 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2640 break;
2641 }
2642 }
2643
2644 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2645 {
2646 ieee80211_rx_result res = RX_DROP_MONITOR;
2647 struct sk_buff *skb;
2648
2649 #define CALL_RXH(rxh) \
2650 do { \
2651 res = rxh(rx); \
2652 if (res != RX_CONTINUE) \
2653 goto rxh_next; \
2654 } while (0);
2655
2656 spin_lock(&rx->local->rx_skb_queue.lock);
2657 if (rx->local->running_rx_handler)
2658 goto unlock;
2659
2660 rx->local->running_rx_handler = true;
2661
2662 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2663 spin_unlock(&rx->local->rx_skb_queue.lock);
2664
2665 /*
2666 * all the other fields are valid across frames
2667 * that belong to an aMPDU since they are on the
2668 * same TID from the same station
2669 */
2670 rx->skb = skb;
2671
2672 CALL_RXH(ieee80211_rx_h_decrypt)
2673 CALL_RXH(ieee80211_rx_h_check_more_data)
2674 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2675 CALL_RXH(ieee80211_rx_h_sta_process)
2676 CALL_RXH(ieee80211_rx_h_defragment)
2677 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2678 /* must be after MMIC verify so header is counted in MPDU mic */
2679 #ifdef CONFIG_MAC80211_MESH
2680 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2681 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2682 #endif
2683 CALL_RXH(ieee80211_rx_h_amsdu)
2684 CALL_RXH(ieee80211_rx_h_data)
2685 CALL_RXH(ieee80211_rx_h_ctrl);
2686 CALL_RXH(ieee80211_rx_h_mgmt_check)
2687 CALL_RXH(ieee80211_rx_h_action)
2688 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2689 CALL_RXH(ieee80211_rx_h_action_return)
2690 CALL_RXH(ieee80211_rx_h_mgmt)
2691
2692 rxh_next:
2693 ieee80211_rx_handlers_result(rx, res);
2694 spin_lock(&rx->local->rx_skb_queue.lock);
2695 #undef CALL_RXH
2696 }
2697
2698 rx->local->running_rx_handler = false;
2699
2700 unlock:
2701 spin_unlock(&rx->local->rx_skb_queue.lock);
2702 }
2703
2704 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2705 {
2706 ieee80211_rx_result res = RX_DROP_MONITOR;
2707
2708 #define CALL_RXH(rxh) \
2709 do { \
2710 res = rxh(rx); \
2711 if (res != RX_CONTINUE) \
2712 goto rxh_next; \
2713 } while (0);
2714
2715 CALL_RXH(ieee80211_rx_h_passive_scan)
2716 CALL_RXH(ieee80211_rx_h_check)
2717
2718 ieee80211_rx_reorder_ampdu(rx);
2719
2720 ieee80211_rx_handlers(rx);
2721 return;
2722
2723 rxh_next:
2724 ieee80211_rx_handlers_result(rx, res);
2725
2726 #undef CALL_RXH
2727 }
2728
2729 /*
2730 * This function makes calls into the RX path, therefore
2731 * it has to be invoked under RCU read lock.
2732 */
2733 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2734 {
2735 struct ieee80211_rx_data rx = {
2736 .sta = sta,
2737 .sdata = sta->sdata,
2738 .local = sta->local,
2739 /* This is OK -- must be QoS data frame */
2740 .security_idx = tid,
2741 .seqno_idx = tid,
2742 .flags = 0,
2743 };
2744 struct tid_ampdu_rx *tid_agg_rx;
2745
2746 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2747 if (!tid_agg_rx)
2748 return;
2749
2750 spin_lock(&tid_agg_rx->reorder_lock);
2751 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2752 spin_unlock(&tid_agg_rx->reorder_lock);
2753
2754 ieee80211_rx_handlers(&rx);
2755 }
2756
2757 /* main receive path */
2758
2759 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2760 struct ieee80211_hdr *hdr)
2761 {
2762 struct ieee80211_sub_if_data *sdata = rx->sdata;
2763 struct sk_buff *skb = rx->skb;
2764 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2765 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2766 int multicast = is_multicast_ether_addr(hdr->addr1);
2767
2768 switch (sdata->vif.type) {
2769 case NL80211_IFTYPE_STATION:
2770 if (!bssid && !sdata->u.mgd.use_4addr)
2771 return 0;
2772 if (!multicast &&
2773 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2774 if (!(sdata->dev->flags & IFF_PROMISC) ||
2775 sdata->u.mgd.use_4addr)
2776 return 0;
2777 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2778 }
2779 break;
2780 case NL80211_IFTYPE_ADHOC:
2781 if (!bssid)
2782 return 0;
2783 if (ieee80211_is_beacon(hdr->frame_control)) {
2784 return 1;
2785 }
2786 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2787 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2788 return 0;
2789 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2790 } else if (!multicast &&
2791 compare_ether_addr(sdata->vif.addr,
2792 hdr->addr1) != 0) {
2793 if (!(sdata->dev->flags & IFF_PROMISC))
2794 return 0;
2795 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2796 } else if (!rx->sta) {
2797 int rate_idx;
2798 if (status->flag & RX_FLAG_HT)
2799 rate_idx = 0; /* TODO: HT rates */
2800 else
2801 rate_idx = status->rate_idx;
2802 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
2803 BIT(rate_idx));
2804 }
2805 break;
2806 case NL80211_IFTYPE_MESH_POINT:
2807 if (!multicast &&
2808 compare_ether_addr(sdata->vif.addr,
2809 hdr->addr1) != 0) {
2810 if (!(sdata->dev->flags & IFF_PROMISC))
2811 return 0;
2812
2813 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2814 }
2815 break;
2816 case NL80211_IFTYPE_AP_VLAN:
2817 case NL80211_IFTYPE_AP:
2818 if (!bssid) {
2819 if (compare_ether_addr(sdata->vif.addr,
2820 hdr->addr1))
2821 return 0;
2822 } else if (!ieee80211_bssid_match(bssid,
2823 sdata->vif.addr)) {
2824 /*
2825 * Accept public action frames even when the
2826 * BSSID doesn't match, this is used for P2P
2827 * and location updates. Note that mac80211
2828 * itself never looks at these frames.
2829 */
2830 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2831 ieee80211_is_public_action(hdr, skb->len))
2832 return 1;
2833 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2834 !ieee80211_is_beacon(hdr->frame_control))
2835 return 0;
2836 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2837 }
2838 break;
2839 case NL80211_IFTYPE_WDS:
2840 if (bssid || !ieee80211_is_data(hdr->frame_control))
2841 return 0;
2842 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2843 return 0;
2844 break;
2845 default:
2846 /* should never get here */
2847 WARN_ON(1);
2848 break;
2849 }
2850
2851 return 1;
2852 }
2853
2854 /*
2855 * This function returns whether or not the SKB
2856 * was destined for RX processing or not, which,
2857 * if consume is true, is equivalent to whether
2858 * or not the skb was consumed.
2859 */
2860 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2861 struct sk_buff *skb, bool consume)
2862 {
2863 struct ieee80211_local *local = rx->local;
2864 struct ieee80211_sub_if_data *sdata = rx->sdata;
2865 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2866 struct ieee80211_hdr *hdr = (void *)skb->data;
2867 int prepares;
2868
2869 rx->skb = skb;
2870 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2871 prepares = prepare_for_handlers(rx, hdr);
2872
2873 if (!prepares)
2874 return false;
2875
2876 if (!consume) {
2877 skb = skb_copy(skb, GFP_ATOMIC);
2878 if (!skb) {
2879 if (net_ratelimit())
2880 wiphy_debug(local->hw.wiphy,
2881 "failed to copy skb for %s\n",
2882 sdata->name);
2883 return true;
2884 }
2885
2886 rx->skb = skb;
2887 }
2888
2889 ieee80211_invoke_rx_handlers(rx);
2890 return true;
2891 }
2892
2893 /*
2894 * This is the actual Rx frames handler. as it blongs to Rx path it must
2895 * be called with rcu_read_lock protection.
2896 */
2897 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2898 struct sk_buff *skb)
2899 {
2900 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2901 struct ieee80211_local *local = hw_to_local(hw);
2902 struct ieee80211_sub_if_data *sdata;
2903 struct ieee80211_hdr *hdr;
2904 __le16 fc;
2905 struct ieee80211_rx_data rx;
2906 struct ieee80211_sub_if_data *prev;
2907 struct sta_info *sta, *tmp, *prev_sta;
2908 int err = 0;
2909
2910 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2911 memset(&rx, 0, sizeof(rx));
2912 rx.skb = skb;
2913 rx.local = local;
2914
2915 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2916 local->dot11ReceivedFragmentCount++;
2917
2918 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2919 test_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning) ||
2920 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2921 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2922
2923 if (ieee80211_is_mgmt(fc))
2924 err = skb_linearize(skb);
2925 else
2926 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2927
2928 if (err) {
2929 dev_kfree_skb(skb);
2930 return;
2931 }
2932
2933 hdr = (struct ieee80211_hdr *)skb->data;
2934 ieee80211_parse_qos(&rx);
2935 ieee80211_verify_alignment(&rx);
2936
2937 if (ieee80211_is_data(fc)) {
2938 prev_sta = NULL;
2939
2940 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2941 if (!prev_sta) {
2942 prev_sta = sta;
2943 continue;
2944 }
2945
2946 rx.sta = prev_sta;
2947 rx.sdata = prev_sta->sdata;
2948 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2949
2950 prev_sta = sta;
2951 }
2952
2953 if (prev_sta) {
2954 rx.sta = prev_sta;
2955 rx.sdata = prev_sta->sdata;
2956
2957 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2958 return;
2959 goto out;
2960 }
2961 }
2962
2963 prev = NULL;
2964
2965 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2966 if (!ieee80211_sdata_running(sdata))
2967 continue;
2968
2969 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2970 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2971 continue;
2972
2973 /*
2974 * frame is destined for this interface, but if it's
2975 * not also for the previous one we handle that after
2976 * the loop to avoid copying the SKB once too much
2977 */
2978
2979 if (!prev) {
2980 prev = sdata;
2981 continue;
2982 }
2983
2984 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2985 rx.sdata = prev;
2986 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2987
2988 prev = sdata;
2989 }
2990
2991 if (prev) {
2992 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2993 rx.sdata = prev;
2994
2995 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2996 return;
2997 }
2998
2999 out:
3000 dev_kfree_skb(skb);
3001 }
3002
3003 /*
3004 * This is the receive path handler. It is called by a low level driver when an
3005 * 802.11 MPDU is received from the hardware.
3006 */
3007 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3008 {
3009 struct ieee80211_local *local = hw_to_local(hw);
3010 struct ieee80211_rate *rate = NULL;
3011 struct ieee80211_supported_band *sband;
3012 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3013
3014 WARN_ON_ONCE(softirq_count() == 0);
3015
3016 if (WARN_ON(status->band < 0 ||
3017 status->band >= IEEE80211_NUM_BANDS))
3018 goto drop;
3019
3020 sband = local->hw.wiphy->bands[status->band];
3021 if (WARN_ON(!sband))
3022 goto drop;
3023
3024 /*
3025 * If we're suspending, it is possible although not too likely
3026 * that we'd be receiving frames after having already partially
3027 * quiesced the stack. We can't process such frames then since
3028 * that might, for example, cause stations to be added or other
3029 * driver callbacks be invoked.
3030 */
3031 if (unlikely(local->quiescing || local->suspended))
3032 goto drop;
3033
3034 /*
3035 * The same happens when we're not even started,
3036 * but that's worth a warning.
3037 */
3038 if (WARN_ON(!local->started))
3039 goto drop;
3040
3041 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3042 /*
3043 * Validate the rate, unless a PLCP error means that
3044 * we probably can't have a valid rate here anyway.
3045 */
3046
3047 if (status->flag & RX_FLAG_HT) {
3048 /*
3049 * rate_idx is MCS index, which can be [0-76]
3050 * as documented on:
3051 *
3052 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3053 *
3054 * Anything else would be some sort of driver or
3055 * hardware error. The driver should catch hardware
3056 * errors.
3057 */
3058 if (WARN((status->rate_idx < 0 ||
3059 status->rate_idx > 76),
3060 "Rate marked as an HT rate but passed "
3061 "status->rate_idx is not "
3062 "an MCS index [0-76]: %d (0x%02x)\n",
3063 status->rate_idx,
3064 status->rate_idx))
3065 goto drop;
3066 } else {
3067 if (WARN_ON(status->rate_idx < 0 ||
3068 status->rate_idx >= sband->n_bitrates))
3069 goto drop;
3070 rate = &sband->bitrates[status->rate_idx];
3071 }
3072 }
3073
3074 status->rx_flags = 0;
3075
3076 /*
3077 * key references and virtual interfaces are protected using RCU
3078 * and this requires that we are in a read-side RCU section during
3079 * receive processing
3080 */
3081 rcu_read_lock();
3082
3083 /*
3084 * Frames with failed FCS/PLCP checksum are not returned,
3085 * all other frames are returned without radiotap header
3086 * if it was previously present.
3087 * Also, frames with less than 16 bytes are dropped.
3088 */
3089 skb = ieee80211_rx_monitor(local, skb, rate);
3090 if (!skb) {
3091 rcu_read_unlock();
3092 return;
3093 }
3094
3095 ieee80211_tpt_led_trig_rx(local,
3096 ((struct ieee80211_hdr *)skb->data)->frame_control,
3097 skb->len);
3098 __ieee80211_rx_handle_packet(hw, skb);
3099
3100 rcu_read_unlock();
3101
3102 return;
3103 drop:
3104 kfree_skb(skb);
3105 }
3106 EXPORT_SYMBOL(ieee80211_rx);
3107
3108 /* This is a version of the rx handler that can be called from hard irq
3109 * context. Post the skb on the queue and schedule the tasklet */
3110 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3111 {
3112 struct ieee80211_local *local = hw_to_local(hw);
3113
3114 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3115
3116 skb->pkt_type = IEEE80211_RX_MSG;
3117 skb_queue_tail(&local->skb_queue, skb);
3118 tasklet_schedule(&local->tasklet);
3119 }
3120 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.095667 seconds and 5 git commands to generate.