mac80211: make master iface not wireless
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
20
21 #include "ieee80211_i.h"
22 #include "led.h"
23 #include "mesh.h"
24 #include "wep.h"
25 #include "wpa.h"
26 #include "tkip.h"
27 #include "wme.h"
28
29 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
30 struct tid_ampdu_rx *tid_agg_rx,
31 struct sk_buff *skb, u16 mpdu_seq_num,
32 int bar_req);
33 /*
34 * monitor mode reception
35 *
36 * This function cleans up the SKB, i.e. it removes all the stuff
37 * only useful for monitoring.
38 */
39 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
40 struct sk_buff *skb,
41 int rtap_len)
42 {
43 skb_pull(skb, rtap_len);
44
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 skb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 skb = NULL;
53 }
54 }
55
56 return skb;
57 }
58
59 static inline int should_drop_frame(struct ieee80211_rx_status *status,
60 struct sk_buff *skb,
61 int present_fcs_len,
62 int radiotap_len)
63 {
64 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
65
66 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
67 return 1;
68 if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
69 return 1;
70 if (ieee80211_is_ctl(hdr->frame_control) &&
71 !ieee80211_is_pspoll(hdr->frame_control) &&
72 !ieee80211_is_back_req(hdr->frame_control))
73 return 1;
74 return 0;
75 }
76
77 static int
78 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
79 struct ieee80211_rx_status *status)
80 {
81 int len;
82
83 /* always present fields */
84 len = sizeof(struct ieee80211_radiotap_header) + 9;
85
86 if (status->flag & RX_FLAG_TSFT)
87 len += 8;
88 if (local->hw.flags & IEEE80211_HW_SIGNAL_DB ||
89 local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
90 len += 1;
91 if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
92 len += 1;
93
94 if (len & 1) /* padding for RX_FLAGS if necessary */
95 len++;
96
97 /* make sure radiotap starts at a naturally aligned address */
98 if (len % 8)
99 len = roundup(len, 8);
100
101 return len;
102 }
103
104 /**
105 * ieee80211_add_rx_radiotap_header - add radiotap header
106 *
107 * add a radiotap header containing all the fields which the hardware provided.
108 */
109 static void
110 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
111 struct sk_buff *skb,
112 struct ieee80211_rx_status *status,
113 struct ieee80211_rate *rate,
114 int rtap_len)
115 {
116 struct ieee80211_radiotap_header *rthdr;
117 unsigned char *pos;
118
119 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
120 memset(rthdr, 0, rtap_len);
121
122 /* radiotap header, set always present flags */
123 rthdr->it_present =
124 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
125 (1 << IEEE80211_RADIOTAP_RATE) |
126 (1 << IEEE80211_RADIOTAP_CHANNEL) |
127 (1 << IEEE80211_RADIOTAP_ANTENNA) |
128 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
129 rthdr->it_len = cpu_to_le16(rtap_len);
130
131 pos = (unsigned char *)(rthdr+1);
132
133 /* the order of the following fields is important */
134
135 /* IEEE80211_RADIOTAP_TSFT */
136 if (status->flag & RX_FLAG_TSFT) {
137 *(__le64 *)pos = cpu_to_le64(status->mactime);
138 rthdr->it_present |=
139 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
140 pos += 8;
141 }
142
143 /* IEEE80211_RADIOTAP_FLAGS */
144 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
145 *pos |= IEEE80211_RADIOTAP_F_FCS;
146 if (status->flag & RX_FLAG_SHORTPRE)
147 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
148 pos++;
149
150 /* IEEE80211_RADIOTAP_RATE */
151 *pos = rate->bitrate / 5;
152 pos++;
153
154 /* IEEE80211_RADIOTAP_CHANNEL */
155 *(__le16 *)pos = cpu_to_le16(status->freq);
156 pos += 2;
157 if (status->band == IEEE80211_BAND_5GHZ)
158 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM |
159 IEEE80211_CHAN_5GHZ);
160 else if (rate->flags & IEEE80211_RATE_ERP_G)
161 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM |
162 IEEE80211_CHAN_2GHZ);
163 else
164 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_CCK |
165 IEEE80211_CHAN_2GHZ);
166 pos += 2;
167
168 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
169 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
170 *pos = status->signal;
171 rthdr->it_present |=
172 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
173 pos++;
174 }
175
176 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
177 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) {
178 *pos = status->noise;
179 rthdr->it_present |=
180 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE);
181 pos++;
182 }
183
184 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
185
186 /* IEEE80211_RADIOTAP_ANTENNA */
187 *pos = status->antenna;
188 pos++;
189
190 /* IEEE80211_RADIOTAP_DB_ANTSIGNAL */
191 if (local->hw.flags & IEEE80211_HW_SIGNAL_DB) {
192 *pos = status->signal;
193 rthdr->it_present |=
194 cpu_to_le32(1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL);
195 pos++;
196 }
197
198 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
199
200 /* IEEE80211_RADIOTAP_RX_FLAGS */
201 /* ensure 2 byte alignment for the 2 byte field as required */
202 if ((pos - (unsigned char *)rthdr) & 1)
203 pos++;
204 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
205 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
206 *(__le16 *)pos |= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
207 pos += 2;
208 }
209
210 /*
211 * This function copies a received frame to all monitor interfaces and
212 * returns a cleaned-up SKB that no longer includes the FCS nor the
213 * radiotap header the driver might have added.
214 */
215 static struct sk_buff *
216 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
217 struct ieee80211_rx_status *status,
218 struct ieee80211_rate *rate)
219 {
220 struct ieee80211_sub_if_data *sdata;
221 int needed_headroom = 0;
222 struct sk_buff *skb, *skb2;
223 struct net_device *prev_dev = NULL;
224 int present_fcs_len = 0;
225 int rtap_len = 0;
226
227 /*
228 * First, we may need to make a copy of the skb because
229 * (1) we need to modify it for radiotap (if not present), and
230 * (2) the other RX handlers will modify the skb we got.
231 *
232 * We don't need to, of course, if we aren't going to return
233 * the SKB because it has a bad FCS/PLCP checksum.
234 */
235 if (status->flag & RX_FLAG_RADIOTAP)
236 rtap_len = ieee80211_get_radiotap_len(origskb->data);
237 else
238 /* room for the radiotap header based on driver features */
239 needed_headroom = ieee80211_rx_radiotap_len(local, status);
240
241 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242 present_fcs_len = FCS_LEN;
243
244 if (!local->monitors) {
245 if (should_drop_frame(status, origskb, present_fcs_len,
246 rtap_len)) {
247 dev_kfree_skb(origskb);
248 return NULL;
249 }
250
251 return remove_monitor_info(local, origskb, rtap_len);
252 }
253
254 if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
255 /* only need to expand headroom if necessary */
256 skb = origskb;
257 origskb = NULL;
258
259 /*
260 * This shouldn't trigger often because most devices have an
261 * RX header they pull before we get here, and that should
262 * be big enough for our radiotap information. We should
263 * probably export the length to drivers so that we can have
264 * them allocate enough headroom to start with.
265 */
266 if (skb_headroom(skb) < needed_headroom &&
267 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
268 dev_kfree_skb(skb);
269 return NULL;
270 }
271 } else {
272 /*
273 * Need to make a copy and possibly remove radiotap header
274 * and FCS from the original.
275 */
276 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
277
278 origskb = remove_monitor_info(local, origskb, rtap_len);
279
280 if (!skb)
281 return origskb;
282 }
283
284 /* if necessary, prepend radiotap information */
285 if (!(status->flag & RX_FLAG_RADIOTAP))
286 ieee80211_add_rx_radiotap_header(local, skb, status, rate,
287 needed_headroom);
288
289 skb_reset_mac_header(skb);
290 skb->ip_summed = CHECKSUM_UNNECESSARY;
291 skb->pkt_type = PACKET_OTHERHOST;
292 skb->protocol = htons(ETH_P_802_2);
293
294 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
295 if (!netif_running(sdata->dev))
296 continue;
297
298 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299 continue;
300
301 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302 continue;
303
304 if (prev_dev) {
305 skb2 = skb_clone(skb, GFP_ATOMIC);
306 if (skb2) {
307 skb2->dev = prev_dev;
308 netif_rx(skb2);
309 }
310 }
311
312 prev_dev = sdata->dev;
313 sdata->dev->stats.rx_packets++;
314 sdata->dev->stats.rx_bytes += skb->len;
315 }
316
317 if (prev_dev) {
318 skb->dev = prev_dev;
319 netif_rx(skb);
320 } else
321 dev_kfree_skb(skb);
322
323 return origskb;
324 }
325
326
327 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
328 {
329 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
330 int tid;
331
332 /* does the frame have a qos control field? */
333 if (ieee80211_is_data_qos(hdr->frame_control)) {
334 u8 *qc = ieee80211_get_qos_ctl(hdr);
335 /* frame has qos control */
336 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
337 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
338 rx->flags |= IEEE80211_RX_AMSDU;
339 else
340 rx->flags &= ~IEEE80211_RX_AMSDU;
341 } else {
342 /*
343 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
344 *
345 * Sequence numbers for management frames, QoS data
346 * frames with a broadcast/multicast address in the
347 * Address 1 field, and all non-QoS data frames sent
348 * by QoS STAs are assigned using an additional single
349 * modulo-4096 counter, [...]
350 *
351 * We also use that counter for non-QoS STAs.
352 */
353 tid = NUM_RX_DATA_QUEUES - 1;
354 }
355
356 rx->queue = tid;
357 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
358 * For now, set skb->priority to 0 for other cases. */
359 rx->skb->priority = (tid > 7) ? 0 : tid;
360 }
361
362 static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data *rx)
363 {
364 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
366 int hdrlen;
367
368 if (!ieee80211_is_data_present(hdr->frame_control))
369 return;
370
371 /*
372 * Drivers are required to align the payload data in a way that
373 * guarantees that the contained IP header is aligned to a four-
374 * byte boundary. In the case of regular frames, this simply means
375 * aligning the payload to a four-byte boundary (because either
376 * the IP header is directly contained, or IV/RFC1042 headers that
377 * have a length divisible by four are in front of it.
378 *
379 * With A-MSDU frames, however, the payload data address must
380 * yield two modulo four because there are 14-byte 802.3 headers
381 * within the A-MSDU frames that push the IP header further back
382 * to a multiple of four again. Thankfully, the specs were sane
383 * enough this time around to require padding each A-MSDU subframe
384 * to a length that is a multiple of four.
385 *
386 * Padding like atheros hardware adds which is inbetween the 802.11
387 * header and the payload is not supported, the driver is required
388 * to move the 802.11 header further back in that case.
389 */
390 hdrlen = ieee80211_hdrlen(hdr->frame_control);
391 if (rx->flags & IEEE80211_RX_AMSDU)
392 hdrlen += ETH_HLEN;
393 WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
394 #endif
395 }
396
397
398 /* rx handlers */
399
400 static ieee80211_rx_result debug_noinline
401 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
402 {
403 struct ieee80211_local *local = rx->local;
404 struct sk_buff *skb = rx->skb;
405
406 if (unlikely(local->hw_scanning))
407 return ieee80211_scan_rx(rx->sdata, skb, rx->status);
408
409 if (unlikely(local->sw_scanning)) {
410 /* drop all the other packets during a software scan anyway */
411 if (ieee80211_scan_rx(rx->sdata, skb, rx->status)
412 != RX_QUEUED)
413 dev_kfree_skb(skb);
414 return RX_QUEUED;
415 }
416
417 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
418 /* scanning finished during invoking of handlers */
419 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
420 return RX_DROP_UNUSABLE;
421 }
422
423 return RX_CONTINUE;
424 }
425
426 static ieee80211_rx_result
427 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
428 {
429 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
430 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
431
432 if (ieee80211_is_data(hdr->frame_control)) {
433 if (!ieee80211_has_a4(hdr->frame_control))
434 return RX_DROP_MONITOR;
435 if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0)
436 return RX_DROP_MONITOR;
437 }
438
439 /* If there is not an established peer link and this is not a peer link
440 * establisment frame, beacon or probe, drop the frame.
441 */
442
443 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
444 struct ieee80211_mgmt *mgmt;
445
446 if (!ieee80211_is_mgmt(hdr->frame_control))
447 return RX_DROP_MONITOR;
448
449 if (ieee80211_is_action(hdr->frame_control)) {
450 mgmt = (struct ieee80211_mgmt *)hdr;
451 if (mgmt->u.action.category != PLINK_CATEGORY)
452 return RX_DROP_MONITOR;
453 return RX_CONTINUE;
454 }
455
456 if (ieee80211_is_probe_req(hdr->frame_control) ||
457 ieee80211_is_probe_resp(hdr->frame_control) ||
458 ieee80211_is_beacon(hdr->frame_control))
459 return RX_CONTINUE;
460
461 return RX_DROP_MONITOR;
462
463 }
464
465 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
466
467 if (ieee80211_is_data(hdr->frame_control) &&
468 is_multicast_ether_addr(hdr->addr1) &&
469 mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->sdata))
470 return RX_DROP_MONITOR;
471 #undef msh_h_get
472
473 return RX_CONTINUE;
474 }
475
476
477 static ieee80211_rx_result debug_noinline
478 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
479 {
480 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
481
482 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
483 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
484 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
485 rx->sta->last_seq_ctrl[rx->queue] ==
486 hdr->seq_ctrl)) {
487 if (rx->flags & IEEE80211_RX_RA_MATCH) {
488 rx->local->dot11FrameDuplicateCount++;
489 rx->sta->num_duplicates++;
490 }
491 return RX_DROP_MONITOR;
492 } else
493 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
494 }
495
496 if (unlikely(rx->skb->len < 16)) {
497 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
498 return RX_DROP_MONITOR;
499 }
500
501 /* Drop disallowed frame classes based on STA auth/assoc state;
502 * IEEE 802.11, Chap 5.5.
503 *
504 * mac80211 filters only based on association state, i.e. it drops
505 * Class 3 frames from not associated stations. hostapd sends
506 * deauth/disassoc frames when needed. In addition, hostapd is
507 * responsible for filtering on both auth and assoc states.
508 */
509
510 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
511 return ieee80211_rx_mesh_check(rx);
512
513 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
514 ieee80211_is_pspoll(hdr->frame_control)) &&
515 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
516 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
517 if ((!ieee80211_has_fromds(hdr->frame_control) &&
518 !ieee80211_has_tods(hdr->frame_control) &&
519 ieee80211_is_data(hdr->frame_control)) ||
520 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
521 /* Drop IBSS frames and frames for other hosts
522 * silently. */
523 return RX_DROP_MONITOR;
524 }
525
526 return RX_DROP_MONITOR;
527 }
528
529 return RX_CONTINUE;
530 }
531
532
533 static ieee80211_rx_result debug_noinline
534 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
535 {
536 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
537 int keyidx;
538 int hdrlen;
539 ieee80211_rx_result result = RX_DROP_UNUSABLE;
540 struct ieee80211_key *stakey = NULL;
541
542 /*
543 * Key selection 101
544 *
545 * There are three types of keys:
546 * - GTK (group keys)
547 * - PTK (pairwise keys)
548 * - STK (station-to-station pairwise keys)
549 *
550 * When selecting a key, we have to distinguish between multicast
551 * (including broadcast) and unicast frames, the latter can only
552 * use PTKs and STKs while the former always use GTKs. Unless, of
553 * course, actual WEP keys ("pre-RSNA") are used, then unicast
554 * frames can also use key indizes like GTKs. Hence, if we don't
555 * have a PTK/STK we check the key index for a WEP key.
556 *
557 * Note that in a regular BSS, multicast frames are sent by the
558 * AP only, associated stations unicast the frame to the AP first
559 * which then multicasts it on their behalf.
560 *
561 * There is also a slight problem in IBSS mode: GTKs are negotiated
562 * with each station, that is something we don't currently handle.
563 * The spec seems to expect that one negotiates the same key with
564 * every station but there's no such requirement; VLANs could be
565 * possible.
566 */
567
568 if (!ieee80211_has_protected(hdr->frame_control))
569 return RX_CONTINUE;
570
571 /*
572 * No point in finding a key and decrypting if the frame is neither
573 * addressed to us nor a multicast frame.
574 */
575 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
576 return RX_CONTINUE;
577
578 if (rx->sta)
579 stakey = rcu_dereference(rx->sta->key);
580
581 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
582 rx->key = stakey;
583 } else {
584 /*
585 * The device doesn't give us the IV so we won't be
586 * able to look up the key. That's ok though, we
587 * don't need to decrypt the frame, we just won't
588 * be able to keep statistics accurate.
589 * Except for key threshold notifications, should
590 * we somehow allow the driver to tell us which key
591 * the hardware used if this flag is set?
592 */
593 if ((rx->status->flag & RX_FLAG_DECRYPTED) &&
594 (rx->status->flag & RX_FLAG_IV_STRIPPED))
595 return RX_CONTINUE;
596
597 hdrlen = ieee80211_hdrlen(hdr->frame_control);
598
599 if (rx->skb->len < 8 + hdrlen)
600 return RX_DROP_UNUSABLE; /* TODO: count this? */
601
602 /*
603 * no need to call ieee80211_wep_get_keyidx,
604 * it verifies a bunch of things we've done already
605 */
606 keyidx = rx->skb->data[hdrlen + 3] >> 6;
607
608 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
609
610 /*
611 * RSNA-protected unicast frames should always be sent with
612 * pairwise or station-to-station keys, but for WEP we allow
613 * using a key index as well.
614 */
615 if (rx->key && rx->key->conf.alg != ALG_WEP &&
616 !is_multicast_ether_addr(hdr->addr1))
617 rx->key = NULL;
618 }
619
620 if (rx->key) {
621 rx->key->tx_rx_count++;
622 /* TODO: add threshold stuff again */
623 } else {
624 return RX_DROP_MONITOR;
625 }
626
627 /* Check for weak IVs if possible */
628 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
629 ieee80211_is_data(hdr->frame_control) &&
630 (!(rx->status->flag & RX_FLAG_IV_STRIPPED) ||
631 !(rx->status->flag & RX_FLAG_DECRYPTED)) &&
632 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
633 rx->sta->wep_weak_iv_count++;
634
635 switch (rx->key->conf.alg) {
636 case ALG_WEP:
637 result = ieee80211_crypto_wep_decrypt(rx);
638 break;
639 case ALG_TKIP:
640 result = ieee80211_crypto_tkip_decrypt(rx);
641 break;
642 case ALG_CCMP:
643 result = ieee80211_crypto_ccmp_decrypt(rx);
644 break;
645 }
646
647 /* either the frame has been decrypted or will be dropped */
648 rx->status->flag |= RX_FLAG_DECRYPTED;
649
650 return result;
651 }
652
653 static void ap_sta_ps_start(struct sta_info *sta)
654 {
655 struct ieee80211_sub_if_data *sdata = sta->sdata;
656 DECLARE_MAC_BUF(mac);
657
658 atomic_inc(&sdata->bss->num_sta_ps);
659 set_and_clear_sta_flags(sta, WLAN_STA_PS, WLAN_STA_PSPOLL);
660 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
661 printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
662 sdata->dev->name, print_mac(mac, sta->sta.addr), sta->sta.aid);
663 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
664 }
665
666 static int ap_sta_ps_end(struct sta_info *sta)
667 {
668 struct ieee80211_sub_if_data *sdata = sta->sdata;
669 struct ieee80211_local *local = sdata->local;
670 struct sk_buff *skb;
671 int sent = 0;
672 struct ieee80211_tx_info *info;
673 DECLARE_MAC_BUF(mac);
674
675 atomic_dec(&sdata->bss->num_sta_ps);
676
677 clear_sta_flags(sta, WLAN_STA_PS | WLAN_STA_PSPOLL);
678
679 if (!skb_queue_empty(&sta->ps_tx_buf))
680 sta_info_clear_tim_bit(sta);
681
682 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
683 printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
684 sdata->dev->name, print_mac(mac, sta->sta.addr), sta->sta.aid);
685 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
686
687 /* Send all buffered frames to the station */
688 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
689 info = IEEE80211_SKB_CB(skb);
690 sent++;
691 info->flags |= IEEE80211_TX_CTL_REQUEUE;
692 dev_queue_xmit(skb);
693 }
694 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
695 info = IEEE80211_SKB_CB(skb);
696 local->total_ps_buffered--;
697 sent++;
698 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
699 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
700 "since STA not sleeping anymore\n", sdata->dev->name,
701 print_mac(mac, sta->sta.addr), sta->sta.aid);
702 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
703 info->flags |= IEEE80211_TX_CTL_REQUEUE;
704 dev_queue_xmit(skb);
705 }
706
707 return sent;
708 }
709
710 static ieee80211_rx_result debug_noinline
711 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
712 {
713 struct sta_info *sta = rx->sta;
714 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
715
716 if (!sta)
717 return RX_CONTINUE;
718
719 /* Update last_rx only for IBSS packets which are for the current
720 * BSSID to avoid keeping the current IBSS network alive in cases where
721 * other STAs are using different BSSID. */
722 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
723 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
724 NL80211_IFTYPE_ADHOC);
725 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
726 sta->last_rx = jiffies;
727 } else
728 if (!is_multicast_ether_addr(hdr->addr1) ||
729 rx->sdata->vif.type == NL80211_IFTYPE_STATION) {
730 /* Update last_rx only for unicast frames in order to prevent
731 * the Probe Request frames (the only broadcast frames from a
732 * STA in infrastructure mode) from keeping a connection alive.
733 * Mesh beacons will update last_rx when if they are found to
734 * match the current local configuration when processed.
735 */
736 sta->last_rx = jiffies;
737 }
738
739 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
740 return RX_CONTINUE;
741
742 sta->rx_fragments++;
743 sta->rx_bytes += rx->skb->len;
744 sta->last_signal = rx->status->signal;
745 sta->last_qual = rx->status->qual;
746 sta->last_noise = rx->status->noise;
747
748 if (!ieee80211_has_morefrags(hdr->frame_control) &&
749 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
750 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
751 /* Change STA power saving mode only in the end of a frame
752 * exchange sequence */
753 if (test_sta_flags(sta, WLAN_STA_PS) &&
754 !ieee80211_has_pm(hdr->frame_control))
755 rx->sent_ps_buffered += ap_sta_ps_end(sta);
756 else if (!test_sta_flags(sta, WLAN_STA_PS) &&
757 ieee80211_has_pm(hdr->frame_control))
758 ap_sta_ps_start(sta);
759 }
760
761 /* Drop data::nullfunc frames silently, since they are used only to
762 * control station power saving mode. */
763 if (ieee80211_is_nullfunc(hdr->frame_control)) {
764 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
765 /* Update counter and free packet here to avoid counting this
766 * as a dropped packed. */
767 sta->rx_packets++;
768 dev_kfree_skb(rx->skb);
769 return RX_QUEUED;
770 }
771
772 return RX_CONTINUE;
773 } /* ieee80211_rx_h_sta_process */
774
775 static inline struct ieee80211_fragment_entry *
776 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
777 unsigned int frag, unsigned int seq, int rx_queue,
778 struct sk_buff **skb)
779 {
780 struct ieee80211_fragment_entry *entry;
781 int idx;
782
783 idx = sdata->fragment_next;
784 entry = &sdata->fragments[sdata->fragment_next++];
785 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
786 sdata->fragment_next = 0;
787
788 if (!skb_queue_empty(&entry->skb_list)) {
789 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
790 struct ieee80211_hdr *hdr =
791 (struct ieee80211_hdr *) entry->skb_list.next->data;
792 DECLARE_MAC_BUF(mac);
793 DECLARE_MAC_BUF(mac2);
794 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
795 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
796 "addr1=%s addr2=%s\n",
797 sdata->dev->name, idx,
798 jiffies - entry->first_frag_time, entry->seq,
799 entry->last_frag, print_mac(mac, hdr->addr1),
800 print_mac(mac2, hdr->addr2));
801 #endif
802 __skb_queue_purge(&entry->skb_list);
803 }
804
805 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
806 *skb = NULL;
807 entry->first_frag_time = jiffies;
808 entry->seq = seq;
809 entry->rx_queue = rx_queue;
810 entry->last_frag = frag;
811 entry->ccmp = 0;
812 entry->extra_len = 0;
813
814 return entry;
815 }
816
817 static inline struct ieee80211_fragment_entry *
818 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
819 unsigned int frag, unsigned int seq,
820 int rx_queue, struct ieee80211_hdr *hdr)
821 {
822 struct ieee80211_fragment_entry *entry;
823 int i, idx;
824
825 idx = sdata->fragment_next;
826 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
827 struct ieee80211_hdr *f_hdr;
828
829 idx--;
830 if (idx < 0)
831 idx = IEEE80211_FRAGMENT_MAX - 1;
832
833 entry = &sdata->fragments[idx];
834 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
835 entry->rx_queue != rx_queue ||
836 entry->last_frag + 1 != frag)
837 continue;
838
839 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
840
841 /*
842 * Check ftype and addresses are equal, else check next fragment
843 */
844 if (((hdr->frame_control ^ f_hdr->frame_control) &
845 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
846 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
847 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
848 continue;
849
850 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
851 __skb_queue_purge(&entry->skb_list);
852 continue;
853 }
854 return entry;
855 }
856
857 return NULL;
858 }
859
860 static ieee80211_rx_result debug_noinline
861 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
862 {
863 struct ieee80211_hdr *hdr;
864 u16 sc;
865 __le16 fc;
866 unsigned int frag, seq;
867 struct ieee80211_fragment_entry *entry;
868 struct sk_buff *skb;
869 DECLARE_MAC_BUF(mac);
870
871 hdr = (struct ieee80211_hdr *)rx->skb->data;
872 fc = hdr->frame_control;
873 sc = le16_to_cpu(hdr->seq_ctrl);
874 frag = sc & IEEE80211_SCTL_FRAG;
875
876 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
877 (rx->skb)->len < 24 ||
878 is_multicast_ether_addr(hdr->addr1))) {
879 /* not fragmented */
880 goto out;
881 }
882 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
883
884 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
885
886 if (frag == 0) {
887 /* This is the first fragment of a new frame. */
888 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
889 rx->queue, &(rx->skb));
890 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
891 ieee80211_has_protected(fc)) {
892 /* Store CCMP PN so that we can verify that the next
893 * fragment has a sequential PN value. */
894 entry->ccmp = 1;
895 memcpy(entry->last_pn,
896 rx->key->u.ccmp.rx_pn[rx->queue],
897 CCMP_PN_LEN);
898 }
899 return RX_QUEUED;
900 }
901
902 /* This is a fragment for a frame that should already be pending in
903 * fragment cache. Add this fragment to the end of the pending entry.
904 */
905 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
906 if (!entry) {
907 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
908 return RX_DROP_MONITOR;
909 }
910
911 /* Verify that MPDUs within one MSDU have sequential PN values.
912 * (IEEE 802.11i, 8.3.3.4.5) */
913 if (entry->ccmp) {
914 int i;
915 u8 pn[CCMP_PN_LEN], *rpn;
916 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
917 return RX_DROP_UNUSABLE;
918 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
919 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
920 pn[i]++;
921 if (pn[i])
922 break;
923 }
924 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
925 if (memcmp(pn, rpn, CCMP_PN_LEN))
926 return RX_DROP_UNUSABLE;
927 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
928 }
929
930 skb_pull(rx->skb, ieee80211_hdrlen(fc));
931 __skb_queue_tail(&entry->skb_list, rx->skb);
932 entry->last_frag = frag;
933 entry->extra_len += rx->skb->len;
934 if (ieee80211_has_morefrags(fc)) {
935 rx->skb = NULL;
936 return RX_QUEUED;
937 }
938
939 rx->skb = __skb_dequeue(&entry->skb_list);
940 if (skb_tailroom(rx->skb) < entry->extra_len) {
941 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
942 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
943 GFP_ATOMIC))) {
944 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
945 __skb_queue_purge(&entry->skb_list);
946 return RX_DROP_UNUSABLE;
947 }
948 }
949 while ((skb = __skb_dequeue(&entry->skb_list))) {
950 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
951 dev_kfree_skb(skb);
952 }
953
954 /* Complete frame has been reassembled - process it now */
955 rx->flags |= IEEE80211_RX_FRAGMENTED;
956
957 out:
958 if (rx->sta)
959 rx->sta->rx_packets++;
960 if (is_multicast_ether_addr(hdr->addr1))
961 rx->local->dot11MulticastReceivedFrameCount++;
962 else
963 ieee80211_led_rx(rx->local);
964 return RX_CONTINUE;
965 }
966
967 static ieee80211_rx_result debug_noinline
968 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
969 {
970 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
971 struct sk_buff *skb;
972 int no_pending_pkts;
973 DECLARE_MAC_BUF(mac);
974 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
975
976 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
977 !(rx->flags & IEEE80211_RX_RA_MATCH)))
978 return RX_CONTINUE;
979
980 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
981 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
982 return RX_DROP_UNUSABLE;
983
984 skb = skb_dequeue(&rx->sta->tx_filtered);
985 if (!skb) {
986 skb = skb_dequeue(&rx->sta->ps_tx_buf);
987 if (skb)
988 rx->local->total_ps_buffered--;
989 }
990 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
991 skb_queue_empty(&rx->sta->ps_tx_buf);
992
993 if (skb) {
994 struct ieee80211_hdr *hdr =
995 (struct ieee80211_hdr *) skb->data;
996
997 /*
998 * Tell TX path to send one frame even though the STA may
999 * still remain is PS mode after this frame exchange.
1000 */
1001 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1002
1003 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1004 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
1005 print_mac(mac, rx->sta->sta.addr), rx->sta->sta.aid,
1006 skb_queue_len(&rx->sta->ps_tx_buf));
1007 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1008
1009 /* Use MoreData flag to indicate whether there are more
1010 * buffered frames for this STA */
1011 if (no_pending_pkts)
1012 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1013 else
1014 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1015
1016 dev_queue_xmit(skb);
1017
1018 if (no_pending_pkts)
1019 sta_info_clear_tim_bit(rx->sta);
1020 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1021 } else if (!rx->sent_ps_buffered) {
1022 /*
1023 * FIXME: This can be the result of a race condition between
1024 * us expiring a frame and the station polling for it.
1025 * Should we send it a null-func frame indicating we
1026 * have nothing buffered for it?
1027 */
1028 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
1029 "though there are no buffered frames for it\n",
1030 rx->dev->name, print_mac(mac, rx->sta->sta.addr));
1031 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1032 }
1033
1034 /* Free PS Poll skb here instead of returning RX_DROP that would
1035 * count as an dropped frame. */
1036 dev_kfree_skb(rx->skb);
1037
1038 return RX_QUEUED;
1039 }
1040
1041 static ieee80211_rx_result debug_noinline
1042 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1043 {
1044 u8 *data = rx->skb->data;
1045 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1046
1047 if (!ieee80211_is_data_qos(hdr->frame_control))
1048 return RX_CONTINUE;
1049
1050 /* remove the qos control field, update frame type and meta-data */
1051 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1052 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1053 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1054 /* change frame type to non QOS */
1055 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1056
1057 return RX_CONTINUE;
1058 }
1059
1060 static int
1061 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1062 {
1063 if (unlikely(!rx->sta ||
1064 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1065 return -EACCES;
1066
1067 return 0;
1068 }
1069
1070 static int
1071 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1072 {
1073 /*
1074 * Pass through unencrypted frames if the hardware has
1075 * decrypted them already.
1076 */
1077 if (rx->status->flag & RX_FLAG_DECRYPTED)
1078 return 0;
1079
1080 /* Drop unencrypted frames if key is set. */
1081 if (unlikely(!ieee80211_has_protected(fc) &&
1082 !ieee80211_is_nullfunc(fc) &&
1083 (rx->key || rx->sdata->drop_unencrypted)))
1084 return -EACCES;
1085
1086 return 0;
1087 }
1088
1089 static int
1090 ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1091 {
1092 struct net_device *dev = rx->dev;
1093 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1094 u16 hdrlen, ethertype;
1095 u8 *payload;
1096 u8 dst[ETH_ALEN];
1097 u8 src[ETH_ALEN] __aligned(2);
1098 struct sk_buff *skb = rx->skb;
1099 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1100 DECLARE_MAC_BUF(mac);
1101 DECLARE_MAC_BUF(mac2);
1102 DECLARE_MAC_BUF(mac3);
1103 DECLARE_MAC_BUF(mac4);
1104
1105 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1106 return -1;
1107
1108 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1109
1110 if (ieee80211_vif_is_mesh(&sdata->vif))
1111 hdrlen += ieee80211_get_mesh_hdrlen(
1112 (struct ieee80211s_hdr *) (skb->data + hdrlen));
1113
1114 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1115 * header
1116 * IEEE 802.11 address fields:
1117 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1118 * 0 0 DA SA BSSID n/a
1119 * 0 1 DA BSSID SA n/a
1120 * 1 0 BSSID SA DA n/a
1121 * 1 1 RA TA DA SA
1122 */
1123 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
1124 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
1125
1126 switch (hdr->frame_control &
1127 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1128 case __constant_cpu_to_le16(IEEE80211_FCTL_TODS):
1129 if (unlikely(sdata->vif.type != NL80211_IFTYPE_AP &&
1130 sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1131 return -1;
1132 break;
1133 case __constant_cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1134 if (unlikely(sdata->vif.type != NL80211_IFTYPE_WDS &&
1135 sdata->vif.type != NL80211_IFTYPE_MESH_POINT))
1136 return -1;
1137 break;
1138 case __constant_cpu_to_le16(IEEE80211_FCTL_FROMDS):
1139 if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1140 (is_multicast_ether_addr(dst) &&
1141 !compare_ether_addr(src, dev->dev_addr)))
1142 return -1;
1143 break;
1144 case __constant_cpu_to_le16(0):
1145 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
1146 return -1;
1147 break;
1148 }
1149
1150 if (unlikely(skb->len - hdrlen < 8))
1151 return -1;
1152
1153 payload = skb->data + hdrlen;
1154 ethertype = (payload[6] << 8) | payload[7];
1155
1156 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1157 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1158 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1159 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1160 * replace EtherType */
1161 skb_pull(skb, hdrlen + 6);
1162 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1163 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1164 } else {
1165 struct ethhdr *ehdr;
1166 __be16 len;
1167
1168 skb_pull(skb, hdrlen);
1169 len = htons(skb->len);
1170 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1171 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1172 memcpy(ehdr->h_source, src, ETH_ALEN);
1173 ehdr->h_proto = len;
1174 }
1175 return 0;
1176 }
1177
1178 /*
1179 * requires that rx->skb is a frame with ethernet header
1180 */
1181 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1182 {
1183 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1184 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1185 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1186
1187 /*
1188 * Allow EAPOL frames to us/the PAE group address regardless
1189 * of whether the frame was encrypted or not.
1190 */
1191 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1192 (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1193 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1194 return true;
1195
1196 if (ieee80211_802_1x_port_control(rx) ||
1197 ieee80211_drop_unencrypted(rx, fc))
1198 return false;
1199
1200 return true;
1201 }
1202
1203 /*
1204 * requires that rx->skb is a frame with ethernet header
1205 */
1206 static void
1207 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1208 {
1209 struct net_device *dev = rx->dev;
1210 struct ieee80211_local *local = rx->local;
1211 struct sk_buff *skb, *xmit_skb;
1212 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1213 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1214 struct sta_info *dsta;
1215
1216 skb = rx->skb;
1217 xmit_skb = NULL;
1218
1219 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1220 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1221 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1222 (rx->flags & IEEE80211_RX_RA_MATCH)) {
1223 if (is_multicast_ether_addr(ehdr->h_dest)) {
1224 /*
1225 * send multicast frames both to higher layers in
1226 * local net stack and back to the wireless medium
1227 */
1228 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1229 if (!xmit_skb && net_ratelimit())
1230 printk(KERN_DEBUG "%s: failed to clone "
1231 "multicast frame\n", dev->name);
1232 } else {
1233 dsta = sta_info_get(local, skb->data);
1234 if (dsta && dsta->sdata->dev == dev) {
1235 /*
1236 * The destination station is associated to
1237 * this AP (in this VLAN), so send the frame
1238 * directly to it and do not pass it to local
1239 * net stack.
1240 */
1241 xmit_skb = skb;
1242 skb = NULL;
1243 }
1244 }
1245 }
1246
1247 if (skb) {
1248 /* deliver to local stack */
1249 skb->protocol = eth_type_trans(skb, dev);
1250 memset(skb->cb, 0, sizeof(skb->cb));
1251 netif_rx(skb);
1252 }
1253
1254 if (xmit_skb) {
1255 /* send to wireless media */
1256 xmit_skb->protocol = htons(ETH_P_802_3);
1257 skb_reset_network_header(xmit_skb);
1258 skb_reset_mac_header(xmit_skb);
1259 dev_queue_xmit(xmit_skb);
1260 }
1261 }
1262
1263 static ieee80211_rx_result debug_noinline
1264 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1265 {
1266 struct net_device *dev = rx->dev;
1267 struct ieee80211_local *local = rx->local;
1268 u16 ethertype;
1269 u8 *payload;
1270 struct sk_buff *skb = rx->skb, *frame = NULL;
1271 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1272 __le16 fc = hdr->frame_control;
1273 const struct ethhdr *eth;
1274 int remaining, err;
1275 u8 dst[ETH_ALEN];
1276 u8 src[ETH_ALEN];
1277 DECLARE_MAC_BUF(mac);
1278
1279 if (unlikely(!ieee80211_is_data(fc)))
1280 return RX_CONTINUE;
1281
1282 if (unlikely(!ieee80211_is_data_present(fc)))
1283 return RX_DROP_MONITOR;
1284
1285 if (!(rx->flags & IEEE80211_RX_AMSDU))
1286 return RX_CONTINUE;
1287
1288 err = ieee80211_data_to_8023(rx);
1289 if (unlikely(err))
1290 return RX_DROP_UNUSABLE;
1291
1292 skb->dev = dev;
1293
1294 dev->stats.rx_packets++;
1295 dev->stats.rx_bytes += skb->len;
1296
1297 /* skip the wrapping header */
1298 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1299 if (!eth)
1300 return RX_DROP_UNUSABLE;
1301
1302 while (skb != frame) {
1303 u8 padding;
1304 __be16 len = eth->h_proto;
1305 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1306
1307 remaining = skb->len;
1308 memcpy(dst, eth->h_dest, ETH_ALEN);
1309 memcpy(src, eth->h_source, ETH_ALEN);
1310
1311 padding = ((4 - subframe_len) & 0x3);
1312 /* the last MSDU has no padding */
1313 if (subframe_len > remaining)
1314 return RX_DROP_UNUSABLE;
1315
1316 skb_pull(skb, sizeof(struct ethhdr));
1317 /* if last subframe reuse skb */
1318 if (remaining <= subframe_len + padding)
1319 frame = skb;
1320 else {
1321 frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1322 subframe_len);
1323
1324 if (frame == NULL)
1325 return RX_DROP_UNUSABLE;
1326
1327 skb_reserve(frame, local->hw.extra_tx_headroom +
1328 sizeof(struct ethhdr));
1329 memcpy(skb_put(frame, ntohs(len)), skb->data,
1330 ntohs(len));
1331
1332 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1333 padding);
1334 if (!eth) {
1335 dev_kfree_skb(frame);
1336 return RX_DROP_UNUSABLE;
1337 }
1338 }
1339
1340 skb_reset_network_header(frame);
1341 frame->dev = dev;
1342 frame->priority = skb->priority;
1343 rx->skb = frame;
1344
1345 payload = frame->data;
1346 ethertype = (payload[6] << 8) | payload[7];
1347
1348 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1349 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1350 compare_ether_addr(payload,
1351 bridge_tunnel_header) == 0)) {
1352 /* remove RFC1042 or Bridge-Tunnel
1353 * encapsulation and replace EtherType */
1354 skb_pull(frame, 6);
1355 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1356 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1357 } else {
1358 memcpy(skb_push(frame, sizeof(__be16)),
1359 &len, sizeof(__be16));
1360 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1361 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1362 }
1363
1364 if (!ieee80211_frame_allowed(rx, fc)) {
1365 if (skb == frame) /* last frame */
1366 return RX_DROP_UNUSABLE;
1367 dev_kfree_skb(frame);
1368 continue;
1369 }
1370
1371 ieee80211_deliver_skb(rx);
1372 }
1373
1374 return RX_QUEUED;
1375 }
1376
1377 static ieee80211_rx_result debug_noinline
1378 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1379 {
1380 struct ieee80211_hdr *hdr;
1381 struct ieee80211s_hdr *mesh_hdr;
1382 unsigned int hdrlen;
1383 struct sk_buff *skb = rx->skb, *fwd_skb;
1384
1385 hdr = (struct ieee80211_hdr *) skb->data;
1386 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1387 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1388
1389 if (!ieee80211_is_data(hdr->frame_control))
1390 return RX_CONTINUE;
1391
1392 if (!mesh_hdr->ttl)
1393 /* illegal frame */
1394 return RX_DROP_MONITOR;
1395
1396 if (compare_ether_addr(rx->dev->dev_addr, hdr->addr3) == 0)
1397 return RX_CONTINUE;
1398
1399 mesh_hdr->ttl--;
1400
1401 if (rx->flags & IEEE80211_RX_RA_MATCH) {
1402 if (!mesh_hdr->ttl)
1403 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1404 dropped_frames_ttl);
1405 else {
1406 struct ieee80211_hdr *fwd_hdr;
1407 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1408
1409 if (!fwd_skb && net_ratelimit())
1410 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1411 rx->dev->name);
1412
1413 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1414 /*
1415 * Save TA to addr1 to send TA a path error if a
1416 * suitable next hop is not found
1417 */
1418 memcpy(fwd_hdr->addr1, fwd_hdr->addr2, ETH_ALEN);
1419 memcpy(fwd_hdr->addr2, rx->dev->dev_addr, ETH_ALEN);
1420 fwd_skb->dev = rx->local->mdev;
1421 fwd_skb->iif = rx->dev->ifindex;
1422 dev_queue_xmit(fwd_skb);
1423 }
1424 }
1425
1426 if (is_multicast_ether_addr(hdr->addr3) ||
1427 rx->dev->flags & IFF_PROMISC)
1428 return RX_CONTINUE;
1429 else
1430 return RX_DROP_MONITOR;
1431 }
1432
1433
1434 static ieee80211_rx_result debug_noinline
1435 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1436 {
1437 struct net_device *dev = rx->dev;
1438 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1439 __le16 fc = hdr->frame_control;
1440 int err;
1441
1442 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1443 return RX_CONTINUE;
1444
1445 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1446 return RX_DROP_MONITOR;
1447
1448 err = ieee80211_data_to_8023(rx);
1449 if (unlikely(err))
1450 return RX_DROP_UNUSABLE;
1451
1452 if (!ieee80211_frame_allowed(rx, fc))
1453 return RX_DROP_MONITOR;
1454
1455 rx->skb->dev = dev;
1456
1457 dev->stats.rx_packets++;
1458 dev->stats.rx_bytes += rx->skb->len;
1459
1460 ieee80211_deliver_skb(rx);
1461
1462 return RX_QUEUED;
1463 }
1464
1465 static ieee80211_rx_result debug_noinline
1466 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1467 {
1468 struct ieee80211_local *local = rx->local;
1469 struct ieee80211_hw *hw = &local->hw;
1470 struct sk_buff *skb = rx->skb;
1471 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1472 struct tid_ampdu_rx *tid_agg_rx;
1473 u16 start_seq_num;
1474 u16 tid;
1475
1476 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1477 return RX_CONTINUE;
1478
1479 if (ieee80211_is_back_req(bar->frame_control)) {
1480 if (!rx->sta)
1481 return RX_CONTINUE;
1482 tid = le16_to_cpu(bar->control) >> 12;
1483 if (rx->sta->ampdu_mlme.tid_state_rx[tid]
1484 != HT_AGG_STATE_OPERATIONAL)
1485 return RX_CONTINUE;
1486 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1487
1488 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1489
1490 /* reset session timer */
1491 if (tid_agg_rx->timeout) {
1492 unsigned long expires =
1493 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1494 mod_timer(&tid_agg_rx->session_timer, expires);
1495 }
1496
1497 /* manage reordering buffer according to requested */
1498 /* sequence number */
1499 rcu_read_lock();
1500 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1501 start_seq_num, 1);
1502 rcu_read_unlock();
1503 return RX_DROP_UNUSABLE;
1504 }
1505
1506 return RX_CONTINUE;
1507 }
1508
1509 static ieee80211_rx_result debug_noinline
1510 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
1511 {
1512 struct ieee80211_local *local = rx->local;
1513 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1514 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1515 int len = rx->skb->len;
1516
1517 if (!ieee80211_is_action(mgmt->frame_control))
1518 return RX_CONTINUE;
1519
1520 if (!rx->sta)
1521 return RX_DROP_MONITOR;
1522
1523 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1524 return RX_DROP_MONITOR;
1525
1526 /* all categories we currently handle have action_code */
1527 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1528 return RX_DROP_MONITOR;
1529
1530 /*
1531 * FIXME: revisit this, I'm sure we should handle most
1532 * of these frames in other modes as well!
1533 */
1534 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
1535 sdata->vif.type != NL80211_IFTYPE_ADHOC)
1536 return RX_DROP_MONITOR;
1537
1538 switch (mgmt->u.action.category) {
1539 case WLAN_CATEGORY_BACK:
1540 switch (mgmt->u.action.u.addba_req.action_code) {
1541 case WLAN_ACTION_ADDBA_REQ:
1542 if (len < (IEEE80211_MIN_ACTION_SIZE +
1543 sizeof(mgmt->u.action.u.addba_req)))
1544 return RX_DROP_MONITOR;
1545 ieee80211_process_addba_request(local, rx->sta, mgmt, len);
1546 break;
1547 case WLAN_ACTION_ADDBA_RESP:
1548 if (len < (IEEE80211_MIN_ACTION_SIZE +
1549 sizeof(mgmt->u.action.u.addba_resp)))
1550 return RX_DROP_MONITOR;
1551 ieee80211_process_addba_resp(local, rx->sta, mgmt, len);
1552 break;
1553 case WLAN_ACTION_DELBA:
1554 if (len < (IEEE80211_MIN_ACTION_SIZE +
1555 sizeof(mgmt->u.action.u.delba)))
1556 return RX_DROP_MONITOR;
1557 ieee80211_process_delba(sdata, rx->sta, mgmt, len);
1558 break;
1559 }
1560 break;
1561 case WLAN_CATEGORY_SPECTRUM_MGMT:
1562 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
1563 return RX_DROP_MONITOR;
1564 switch (mgmt->u.action.u.measurement.action_code) {
1565 case WLAN_ACTION_SPCT_MSR_REQ:
1566 if (len < (IEEE80211_MIN_ACTION_SIZE +
1567 sizeof(mgmt->u.action.u.measurement)))
1568 return RX_DROP_MONITOR;
1569 ieee80211_process_measurement_req(sdata, mgmt, len);
1570 break;
1571 }
1572 break;
1573 default:
1574 return RX_CONTINUE;
1575 }
1576
1577 rx->sta->rx_packets++;
1578 dev_kfree_skb(rx->skb);
1579 return RX_QUEUED;
1580 }
1581
1582 static ieee80211_rx_result debug_noinline
1583 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
1584 {
1585 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1586
1587 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1588 return RX_DROP_MONITOR;
1589
1590 if (ieee80211_vif_is_mesh(&sdata->vif))
1591 return ieee80211_mesh_rx_mgmt(sdata, rx->skb, rx->status);
1592
1593 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
1594 sdata->vif.type != NL80211_IFTYPE_ADHOC)
1595 return RX_DROP_MONITOR;
1596
1597 if (sdata->flags & IEEE80211_SDATA_USERSPACE_MLME)
1598 return RX_DROP_MONITOR;
1599
1600 ieee80211_sta_rx_mgmt(sdata, rx->skb, rx->status);
1601 return RX_QUEUED;
1602 }
1603
1604 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1605 struct ieee80211_hdr *hdr,
1606 struct ieee80211_rx_data *rx)
1607 {
1608 int keyidx;
1609 unsigned int hdrlen;
1610 DECLARE_MAC_BUF(mac);
1611 DECLARE_MAC_BUF(mac2);
1612
1613 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1614 if (rx->skb->len >= hdrlen + 4)
1615 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1616 else
1617 keyidx = -1;
1618
1619 if (!rx->sta) {
1620 /*
1621 * Some hardware seem to generate incorrect Michael MIC
1622 * reports; ignore them to avoid triggering countermeasures.
1623 */
1624 goto ignore;
1625 }
1626
1627 if (!ieee80211_has_protected(hdr->frame_control))
1628 goto ignore;
1629
1630 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
1631 /*
1632 * APs with pairwise keys should never receive Michael MIC
1633 * errors for non-zero keyidx because these are reserved for
1634 * group keys and only the AP is sending real multicast
1635 * frames in the BSS.
1636 */
1637 goto ignore;
1638 }
1639
1640 if (!ieee80211_is_data(hdr->frame_control) &&
1641 !ieee80211_is_auth(hdr->frame_control))
1642 goto ignore;
1643
1644 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr);
1645 ignore:
1646 dev_kfree_skb(rx->skb);
1647 rx->skb = NULL;
1648 }
1649
1650 /* TODO: use IEEE80211_RX_FRAGMENTED */
1651 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx)
1652 {
1653 struct ieee80211_sub_if_data *sdata;
1654 struct ieee80211_local *local = rx->local;
1655 struct ieee80211_rtap_hdr {
1656 struct ieee80211_radiotap_header hdr;
1657 u8 flags;
1658 u8 rate;
1659 __le16 chan_freq;
1660 __le16 chan_flags;
1661 } __attribute__ ((packed)) *rthdr;
1662 struct sk_buff *skb = rx->skb, *skb2;
1663 struct net_device *prev_dev = NULL;
1664 struct ieee80211_rx_status *status = rx->status;
1665
1666 if (rx->flags & IEEE80211_RX_CMNTR_REPORTED)
1667 goto out_free_skb;
1668
1669 if (skb_headroom(skb) < sizeof(*rthdr) &&
1670 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
1671 goto out_free_skb;
1672
1673 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
1674 memset(rthdr, 0, sizeof(*rthdr));
1675 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
1676 rthdr->hdr.it_present =
1677 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
1678 (1 << IEEE80211_RADIOTAP_RATE) |
1679 (1 << IEEE80211_RADIOTAP_CHANNEL));
1680
1681 rthdr->rate = rx->rate->bitrate / 5;
1682 rthdr->chan_freq = cpu_to_le16(status->freq);
1683
1684 if (status->band == IEEE80211_BAND_5GHZ)
1685 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
1686 IEEE80211_CHAN_5GHZ);
1687 else
1688 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
1689 IEEE80211_CHAN_2GHZ);
1690
1691 skb_set_mac_header(skb, 0);
1692 skb->ip_summed = CHECKSUM_UNNECESSARY;
1693 skb->pkt_type = PACKET_OTHERHOST;
1694 skb->protocol = htons(ETH_P_802_2);
1695
1696 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1697 if (!netif_running(sdata->dev))
1698 continue;
1699
1700 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
1701 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
1702 continue;
1703
1704 if (prev_dev) {
1705 skb2 = skb_clone(skb, GFP_ATOMIC);
1706 if (skb2) {
1707 skb2->dev = prev_dev;
1708 netif_rx(skb2);
1709 }
1710 }
1711
1712 prev_dev = sdata->dev;
1713 sdata->dev->stats.rx_packets++;
1714 sdata->dev->stats.rx_bytes += skb->len;
1715 }
1716
1717 if (prev_dev) {
1718 skb->dev = prev_dev;
1719 netif_rx(skb);
1720 skb = NULL;
1721 } else
1722 goto out_free_skb;
1723
1724 rx->flags |= IEEE80211_RX_CMNTR_REPORTED;
1725 return;
1726
1727 out_free_skb:
1728 dev_kfree_skb(skb);
1729 }
1730
1731
1732 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
1733 struct ieee80211_rx_data *rx,
1734 struct sk_buff *skb)
1735 {
1736 ieee80211_rx_result res = RX_DROP_MONITOR;
1737
1738 rx->skb = skb;
1739 rx->sdata = sdata;
1740 rx->dev = sdata->dev;
1741
1742 #define CALL_RXH(rxh) \
1743 do { \
1744 res = rxh(rx); \
1745 if (res != RX_CONTINUE) \
1746 goto rxh_done; \
1747 } while (0);
1748
1749 CALL_RXH(ieee80211_rx_h_passive_scan)
1750 CALL_RXH(ieee80211_rx_h_check)
1751 CALL_RXH(ieee80211_rx_h_decrypt)
1752 CALL_RXH(ieee80211_rx_h_sta_process)
1753 CALL_RXH(ieee80211_rx_h_defragment)
1754 CALL_RXH(ieee80211_rx_h_ps_poll)
1755 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
1756 /* must be after MMIC verify so header is counted in MPDU mic */
1757 CALL_RXH(ieee80211_rx_h_remove_qos_control)
1758 CALL_RXH(ieee80211_rx_h_amsdu)
1759 if (ieee80211_vif_is_mesh(&sdata->vif))
1760 CALL_RXH(ieee80211_rx_h_mesh_fwding);
1761 CALL_RXH(ieee80211_rx_h_data)
1762 CALL_RXH(ieee80211_rx_h_ctrl)
1763 CALL_RXH(ieee80211_rx_h_action)
1764 CALL_RXH(ieee80211_rx_h_mgmt)
1765
1766 #undef CALL_RXH
1767
1768 rxh_done:
1769 switch (res) {
1770 case RX_DROP_MONITOR:
1771 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1772 if (rx->sta)
1773 rx->sta->rx_dropped++;
1774 /* fall through */
1775 case RX_CONTINUE:
1776 ieee80211_rx_cooked_monitor(rx);
1777 break;
1778 case RX_DROP_UNUSABLE:
1779 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1780 if (rx->sta)
1781 rx->sta->rx_dropped++;
1782 dev_kfree_skb(rx->skb);
1783 break;
1784 case RX_QUEUED:
1785 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
1786 break;
1787 }
1788 }
1789
1790 /* main receive path */
1791
1792 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1793 u8 *bssid, struct ieee80211_rx_data *rx,
1794 struct ieee80211_hdr *hdr)
1795 {
1796 int multicast = is_multicast_ether_addr(hdr->addr1);
1797
1798 switch (sdata->vif.type) {
1799 case NL80211_IFTYPE_STATION:
1800 if (!bssid)
1801 return 0;
1802 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1803 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1804 return 0;
1805 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1806 } else if (!multicast &&
1807 compare_ether_addr(sdata->dev->dev_addr,
1808 hdr->addr1) != 0) {
1809 if (!(sdata->dev->flags & IFF_PROMISC))
1810 return 0;
1811 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1812 }
1813 break;
1814 case NL80211_IFTYPE_ADHOC:
1815 if (!bssid)
1816 return 0;
1817 if (ieee80211_is_beacon(hdr->frame_control)) {
1818 return 1;
1819 }
1820 else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1821 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1822 return 0;
1823 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1824 } else if (!multicast &&
1825 compare_ether_addr(sdata->dev->dev_addr,
1826 hdr->addr1) != 0) {
1827 if (!(sdata->dev->flags & IFF_PROMISC))
1828 return 0;
1829 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1830 } else if (!rx->sta)
1831 rx->sta = ieee80211_ibss_add_sta(sdata, rx->skb,
1832 bssid, hdr->addr2,
1833 BIT(rx->status->rate_idx));
1834 break;
1835 case NL80211_IFTYPE_MESH_POINT:
1836 if (!multicast &&
1837 compare_ether_addr(sdata->dev->dev_addr,
1838 hdr->addr1) != 0) {
1839 if (!(sdata->dev->flags & IFF_PROMISC))
1840 return 0;
1841
1842 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1843 }
1844 break;
1845 case NL80211_IFTYPE_AP_VLAN:
1846 case NL80211_IFTYPE_AP:
1847 if (!bssid) {
1848 if (compare_ether_addr(sdata->dev->dev_addr,
1849 hdr->addr1))
1850 return 0;
1851 } else if (!ieee80211_bssid_match(bssid,
1852 sdata->dev->dev_addr)) {
1853 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1854 return 0;
1855 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1856 }
1857 break;
1858 case NL80211_IFTYPE_WDS:
1859 if (bssid || !ieee80211_is_data(hdr->frame_control))
1860 return 0;
1861 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1862 return 0;
1863 break;
1864 case NL80211_IFTYPE_MONITOR:
1865 /* take everything */
1866 break;
1867 case NL80211_IFTYPE_UNSPECIFIED:
1868 case __NL80211_IFTYPE_AFTER_LAST:
1869 /* should never get here */
1870 WARN_ON(1);
1871 break;
1872 }
1873
1874 return 1;
1875 }
1876
1877 /*
1878 * This is the actual Rx frames handler. as it blongs to Rx path it must
1879 * be called with rcu_read_lock protection.
1880 */
1881 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1882 struct sk_buff *skb,
1883 struct ieee80211_rx_status *status,
1884 struct ieee80211_rate *rate)
1885 {
1886 struct ieee80211_local *local = hw_to_local(hw);
1887 struct ieee80211_sub_if_data *sdata;
1888 struct ieee80211_hdr *hdr;
1889 struct ieee80211_rx_data rx;
1890 int prepares;
1891 struct ieee80211_sub_if_data *prev = NULL;
1892 struct sk_buff *skb_new;
1893 u8 *bssid;
1894
1895 hdr = (struct ieee80211_hdr *)skb->data;
1896 memset(&rx, 0, sizeof(rx));
1897 rx.skb = skb;
1898 rx.local = local;
1899
1900 rx.status = status;
1901 rx.rate = rate;
1902
1903 if (ieee80211_is_data(hdr->frame_control) || ieee80211_is_mgmt(hdr->frame_control))
1904 local->dot11ReceivedFragmentCount++;
1905
1906 rx.sta = sta_info_get(local, hdr->addr2);
1907 if (rx.sta) {
1908 rx.sdata = rx.sta->sdata;
1909 rx.dev = rx.sta->sdata->dev;
1910 }
1911
1912 if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1913 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
1914 return;
1915 }
1916
1917 if (unlikely(local->sw_scanning || local->hw_scanning))
1918 rx.flags |= IEEE80211_RX_IN_SCAN;
1919
1920 ieee80211_parse_qos(&rx);
1921 ieee80211_verify_ip_alignment(&rx);
1922
1923 skb = rx.skb;
1924
1925 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1926 if (!netif_running(sdata->dev))
1927 continue;
1928
1929 if (sdata->vif.type == NL80211_IFTYPE_MONITOR)
1930 continue;
1931
1932 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1933 rx.flags |= IEEE80211_RX_RA_MATCH;
1934 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1935
1936 if (!prepares)
1937 continue;
1938
1939 /*
1940 * frame is destined for this interface, but if it's not
1941 * also for the previous one we handle that after the
1942 * loop to avoid copying the SKB once too much
1943 */
1944
1945 if (!prev) {
1946 prev = sdata;
1947 continue;
1948 }
1949
1950 /*
1951 * frame was destined for the previous interface
1952 * so invoke RX handlers for it
1953 */
1954
1955 skb_new = skb_copy(skb, GFP_ATOMIC);
1956 if (!skb_new) {
1957 if (net_ratelimit())
1958 printk(KERN_DEBUG "%s: failed to copy "
1959 "multicast frame for %s\n",
1960 wiphy_name(local->hw.wiphy),
1961 prev->dev->name);
1962 continue;
1963 }
1964 ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
1965 prev = sdata;
1966 }
1967 if (prev)
1968 ieee80211_invoke_rx_handlers(prev, &rx, skb);
1969 else
1970 dev_kfree_skb(skb);
1971 }
1972
1973 #define SEQ_MODULO 0x1000
1974 #define SEQ_MASK 0xfff
1975
1976 static inline int seq_less(u16 sq1, u16 sq2)
1977 {
1978 return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
1979 }
1980
1981 static inline u16 seq_inc(u16 sq)
1982 {
1983 return ((sq + 1) & SEQ_MASK);
1984 }
1985
1986 static inline u16 seq_sub(u16 sq1, u16 sq2)
1987 {
1988 return ((sq1 - sq2) & SEQ_MASK);
1989 }
1990
1991
1992 /*
1993 * As it function blongs to Rx path it must be called with
1994 * the proper rcu_read_lock protection for its flow.
1995 */
1996 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
1997 struct tid_ampdu_rx *tid_agg_rx,
1998 struct sk_buff *skb, u16 mpdu_seq_num,
1999 int bar_req)
2000 {
2001 struct ieee80211_local *local = hw_to_local(hw);
2002 struct ieee80211_rx_status status;
2003 u16 head_seq_num, buf_size;
2004 int index;
2005 struct ieee80211_supported_band *sband;
2006 struct ieee80211_rate *rate;
2007
2008 buf_size = tid_agg_rx->buf_size;
2009 head_seq_num = tid_agg_rx->head_seq_num;
2010
2011 /* frame with out of date sequence number */
2012 if (seq_less(mpdu_seq_num, head_seq_num)) {
2013 dev_kfree_skb(skb);
2014 return 1;
2015 }
2016
2017 /* if frame sequence number exceeds our buffering window size or
2018 * block Ack Request arrived - release stored frames */
2019 if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
2020 /* new head to the ordering buffer */
2021 if (bar_req)
2022 head_seq_num = mpdu_seq_num;
2023 else
2024 head_seq_num =
2025 seq_inc(seq_sub(mpdu_seq_num, buf_size));
2026 /* release stored frames up to new head to stack */
2027 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
2028 index = seq_sub(tid_agg_rx->head_seq_num,
2029 tid_agg_rx->ssn)
2030 % tid_agg_rx->buf_size;
2031
2032 if (tid_agg_rx->reorder_buf[index]) {
2033 /* release the reordered frames to stack */
2034 memcpy(&status,
2035 tid_agg_rx->reorder_buf[index]->cb,
2036 sizeof(status));
2037 sband = local->hw.wiphy->bands[status.band];
2038 rate = &sband->bitrates[status.rate_idx];
2039 __ieee80211_rx_handle_packet(hw,
2040 tid_agg_rx->reorder_buf[index],
2041 &status, rate);
2042 tid_agg_rx->stored_mpdu_num--;
2043 tid_agg_rx->reorder_buf[index] = NULL;
2044 }
2045 tid_agg_rx->head_seq_num =
2046 seq_inc(tid_agg_rx->head_seq_num);
2047 }
2048 if (bar_req)
2049 return 1;
2050 }
2051
2052 /* now the new frame is always in the range of the reordering */
2053 /* buffer window */
2054 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
2055 % tid_agg_rx->buf_size;
2056 /* check if we already stored this frame */
2057 if (tid_agg_rx->reorder_buf[index]) {
2058 dev_kfree_skb(skb);
2059 return 1;
2060 }
2061
2062 /* if arrived mpdu is in the right order and nothing else stored */
2063 /* release it immediately */
2064 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
2065 tid_agg_rx->stored_mpdu_num == 0) {
2066 tid_agg_rx->head_seq_num =
2067 seq_inc(tid_agg_rx->head_seq_num);
2068 return 0;
2069 }
2070
2071 /* put the frame in the reordering buffer */
2072 tid_agg_rx->reorder_buf[index] = skb;
2073 tid_agg_rx->stored_mpdu_num++;
2074 /* release the buffer until next missing frame */
2075 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
2076 % tid_agg_rx->buf_size;
2077 while (tid_agg_rx->reorder_buf[index]) {
2078 /* release the reordered frame back to stack */
2079 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
2080 sizeof(status));
2081 sband = local->hw.wiphy->bands[status.band];
2082 rate = &sband->bitrates[status.rate_idx];
2083 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
2084 &status, rate);
2085 tid_agg_rx->stored_mpdu_num--;
2086 tid_agg_rx->reorder_buf[index] = NULL;
2087 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
2088 index = seq_sub(tid_agg_rx->head_seq_num,
2089 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
2090 }
2091 return 1;
2092 }
2093
2094 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
2095 struct sk_buff *skb)
2096 {
2097 struct ieee80211_hw *hw = &local->hw;
2098 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2099 struct sta_info *sta;
2100 struct tid_ampdu_rx *tid_agg_rx;
2101 u16 sc;
2102 u16 mpdu_seq_num;
2103 u8 ret = 0;
2104 int tid;
2105
2106 sta = sta_info_get(local, hdr->addr2);
2107 if (!sta)
2108 return ret;
2109
2110 /* filter the QoS data rx stream according to
2111 * STA/TID and check if this STA/TID is on aggregation */
2112 if (!ieee80211_is_data_qos(hdr->frame_control))
2113 goto end_reorder;
2114
2115 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
2116
2117 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
2118 goto end_reorder;
2119
2120 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
2121
2122 /* qos null data frames are excluded */
2123 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
2124 goto end_reorder;
2125
2126 /* new un-ordered ampdu frame - process it */
2127
2128 /* reset session timer */
2129 if (tid_agg_rx->timeout) {
2130 unsigned long expires =
2131 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
2132 mod_timer(&tid_agg_rx->session_timer, expires);
2133 }
2134
2135 /* if this mpdu is fragmented - terminate rx aggregation session */
2136 sc = le16_to_cpu(hdr->seq_ctrl);
2137 if (sc & IEEE80211_SCTL_FRAG) {
2138 ieee80211_sta_stop_rx_ba_session(sta->sdata, sta->sta.addr,
2139 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
2140 ret = 1;
2141 goto end_reorder;
2142 }
2143
2144 /* according to mpdu sequence number deal with reordering buffer */
2145 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
2146 ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
2147 mpdu_seq_num, 0);
2148 end_reorder:
2149 return ret;
2150 }
2151
2152 /*
2153 * This is the receive path handler. It is called by a low level driver when an
2154 * 802.11 MPDU is received from the hardware.
2155 */
2156 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2157 struct ieee80211_rx_status *status)
2158 {
2159 struct ieee80211_local *local = hw_to_local(hw);
2160 struct ieee80211_rate *rate = NULL;
2161 struct ieee80211_supported_band *sband;
2162
2163 if (status->band < 0 ||
2164 status->band >= IEEE80211_NUM_BANDS) {
2165 WARN_ON(1);
2166 return;
2167 }
2168
2169 sband = local->hw.wiphy->bands[status->band];
2170
2171 if (!sband ||
2172 status->rate_idx < 0 ||
2173 status->rate_idx >= sband->n_bitrates) {
2174 WARN_ON(1);
2175 return;
2176 }
2177
2178 rate = &sband->bitrates[status->rate_idx];
2179
2180 /*
2181 * key references and virtual interfaces are protected using RCU
2182 * and this requires that we are in a read-side RCU section during
2183 * receive processing
2184 */
2185 rcu_read_lock();
2186
2187 /*
2188 * Frames with failed FCS/PLCP checksum are not returned,
2189 * all other frames are returned without radiotap header
2190 * if it was previously present.
2191 * Also, frames with less than 16 bytes are dropped.
2192 */
2193 skb = ieee80211_rx_monitor(local, skb, status, rate);
2194 if (!skb) {
2195 rcu_read_unlock();
2196 return;
2197 }
2198
2199 if (!ieee80211_rx_reorder_ampdu(local, skb))
2200 __ieee80211_rx_handle_packet(hw, skb, status, rate);
2201
2202 rcu_read_unlock();
2203 }
2204 EXPORT_SYMBOL(__ieee80211_rx);
2205
2206 /* This is a version of the rx handler that can be called from hard irq
2207 * context. Post the skb on the queue and schedule the tasklet */
2208 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2209 struct ieee80211_rx_status *status)
2210 {
2211 struct ieee80211_local *local = hw_to_local(hw);
2212
2213 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2214
2215 skb->dev = local->mdev;
2216 /* copy status into skb->cb for use by tasklet */
2217 memcpy(skb->cb, status, sizeof(*status));
2218 skb->pkt_type = IEEE80211_RX_MSG;
2219 skb_queue_tail(&local->skb_queue, skb);
2220 tasklet_schedule(&local->tasklet);
2221 }
2222 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.223321 seconds and 6 git commands to generate.