mac80211: check if mesh frame is in RMC after decrypt
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
90
91 return len;
92 }
93
94 /*
95 * ieee80211_add_rx_radiotap_header - add radiotap header
96 *
97 * add a radiotap header containing all the fields which the hardware provided.
98 */
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
104 {
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
109
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
112
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
120
121 pos = (unsigned char *)(rthdr+1);
122
123 /* the order of the following fields is important */
124
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
131 }
132
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
141
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status->flag & RX_FLAG_HT) {
144 /*
145 * MCS information is a separate field in radiotap,
146 * added below. The byte here is needed as padding
147 * for the channel though, so initialise it to 0.
148 */
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
153 }
154 pos++;
155
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
172
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
179 }
180
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos = status->antenna;
185 pos++;
186
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos - (u8 *)rthdr) & 1)
192 pos++;
193 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195 put_unaligned_le16(rx_flags, pos);
196 pos += 2;
197
198 if (status->flag & RX_FLAG_HT) {
199 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
200 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
201 IEEE80211_RADIOTAP_MCS_HAVE_GI |
202 IEEE80211_RADIOTAP_MCS_HAVE_BW;
203 *pos = 0;
204 if (status->flag & RX_FLAG_SHORT_GI)
205 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
206 if (status->flag & RX_FLAG_40MHZ)
207 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
208 pos++;
209 *pos++ = status->rate_idx;
210 }
211 }
212
213 /*
214 * This function copies a received frame to all monitor interfaces and
215 * returns a cleaned-up SKB that no longer includes the FCS nor the
216 * radiotap header the driver might have added.
217 */
218 static struct sk_buff *
219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
220 struct ieee80211_rate *rate)
221 {
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
223 struct ieee80211_sub_if_data *sdata;
224 int needed_headroom = 0;
225 struct sk_buff *skb, *skb2;
226 struct net_device *prev_dev = NULL;
227 int present_fcs_len = 0;
228
229 /*
230 * First, we may need to make a copy of the skb because
231 * (1) we need to modify it for radiotap (if not present), and
232 * (2) the other RX handlers will modify the skb we got.
233 *
234 * We don't need to, of course, if we aren't going to return
235 * the SKB because it has a bad FCS/PLCP checksum.
236 */
237
238 /* room for the radiotap header based on driver features */
239 needed_headroom = ieee80211_rx_radiotap_len(local, status);
240
241 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242 present_fcs_len = FCS_LEN;
243
244 /* make sure hdr->frame_control is on the linear part */
245 if (!pskb_may_pull(origskb, 2)) {
246 dev_kfree_skb(origskb);
247 return NULL;
248 }
249
250 if (!local->monitors) {
251 if (should_drop_frame(origskb, present_fcs_len)) {
252 dev_kfree_skb(origskb);
253 return NULL;
254 }
255
256 return remove_monitor_info(local, origskb);
257 }
258
259 if (should_drop_frame(origskb, present_fcs_len)) {
260 /* only need to expand headroom if necessary */
261 skb = origskb;
262 origskb = NULL;
263
264 /*
265 * This shouldn't trigger often because most devices have an
266 * RX header they pull before we get here, and that should
267 * be big enough for our radiotap information. We should
268 * probably export the length to drivers so that we can have
269 * them allocate enough headroom to start with.
270 */
271 if (skb_headroom(skb) < needed_headroom &&
272 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
273 dev_kfree_skb(skb);
274 return NULL;
275 }
276 } else {
277 /*
278 * Need to make a copy and possibly remove radiotap header
279 * and FCS from the original.
280 */
281 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
282
283 origskb = remove_monitor_info(local, origskb);
284
285 if (!skb)
286 return origskb;
287 }
288
289 /* prepend radiotap information */
290 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
291
292 skb_reset_mac_header(skb);
293 skb->ip_summed = CHECKSUM_UNNECESSARY;
294 skb->pkt_type = PACKET_OTHERHOST;
295 skb->protocol = htons(ETH_P_802_2);
296
297 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
298 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299 continue;
300
301 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302 continue;
303
304 if (!ieee80211_sdata_running(sdata))
305 continue;
306
307 if (prev_dev) {
308 skb2 = skb_clone(skb, GFP_ATOMIC);
309 if (skb2) {
310 skb2->dev = prev_dev;
311 netif_receive_skb(skb2);
312 }
313 }
314
315 prev_dev = sdata->dev;
316 sdata->dev->stats.rx_packets++;
317 sdata->dev->stats.rx_bytes += skb->len;
318 }
319
320 if (prev_dev) {
321 skb->dev = prev_dev;
322 netif_receive_skb(skb);
323 } else
324 dev_kfree_skb(skb);
325
326 return origskb;
327 }
328
329
330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
331 {
332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
333 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
334 int tid, seqno_idx, security_idx;
335
336 /* does the frame have a qos control field? */
337 if (ieee80211_is_data_qos(hdr->frame_control)) {
338 u8 *qc = ieee80211_get_qos_ctl(hdr);
339 /* frame has qos control */
340 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
341 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
342 status->rx_flags |= IEEE80211_RX_AMSDU;
343
344 seqno_idx = tid;
345 security_idx = tid;
346 } else {
347 /*
348 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
349 *
350 * Sequence numbers for management frames, QoS data
351 * frames with a broadcast/multicast address in the
352 * Address 1 field, and all non-QoS data frames sent
353 * by QoS STAs are assigned using an additional single
354 * modulo-4096 counter, [...]
355 *
356 * We also use that counter for non-QoS STAs.
357 */
358 seqno_idx = NUM_RX_DATA_QUEUES;
359 security_idx = 0;
360 if (ieee80211_is_mgmt(hdr->frame_control))
361 security_idx = NUM_RX_DATA_QUEUES;
362 tid = 0;
363 }
364
365 rx->seqno_idx = seqno_idx;
366 rx->security_idx = security_idx;
367 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
368 * For now, set skb->priority to 0 for other cases. */
369 rx->skb->priority = (tid > 7) ? 0 : tid;
370 }
371
372 /**
373 * DOC: Packet alignment
374 *
375 * Drivers always need to pass packets that are aligned to two-byte boundaries
376 * to the stack.
377 *
378 * Additionally, should, if possible, align the payload data in a way that
379 * guarantees that the contained IP header is aligned to a four-byte
380 * boundary. In the case of regular frames, this simply means aligning the
381 * payload to a four-byte boundary (because either the IP header is directly
382 * contained, or IV/RFC1042 headers that have a length divisible by four are
383 * in front of it). If the payload data is not properly aligned and the
384 * architecture doesn't support efficient unaligned operations, mac80211
385 * will align the data.
386 *
387 * With A-MSDU frames, however, the payload data address must yield two modulo
388 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
389 * push the IP header further back to a multiple of four again. Thankfully, the
390 * specs were sane enough this time around to require padding each A-MSDU
391 * subframe to a length that is a multiple of four.
392 *
393 * Padding like Atheros hardware adds which is between the 802.11 header and
394 * the payload is not supported, the driver is required to move the 802.11
395 * header to be directly in front of the payload in that case.
396 */
397 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
398 {
399 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
400 WARN_ONCE((unsigned long)rx->skb->data & 1,
401 "unaligned packet at 0x%p\n", rx->skb->data);
402 #endif
403 }
404
405
406 /* rx handlers */
407
408 static ieee80211_rx_result debug_noinline
409 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
410 {
411 struct ieee80211_local *local = rx->local;
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
413 struct sk_buff *skb = rx->skb;
414
415 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
416 !local->sched_scanning))
417 return RX_CONTINUE;
418
419 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
420 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
421 local->sched_scanning)
422 return ieee80211_scan_rx(rx->sdata, skb);
423
424 /* scanning finished during invoking of handlers */
425 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
426 return RX_DROP_UNUSABLE;
427 }
428
429
430 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
431 {
432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
433
434 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
435 return 0;
436
437 return ieee80211_is_robust_mgmt_frame(hdr);
438 }
439
440
441 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
442 {
443 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
444
445 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
446 return 0;
447
448 return ieee80211_is_robust_mgmt_frame(hdr);
449 }
450
451
452 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
453 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
454 {
455 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
456 struct ieee80211_mmie *mmie;
457
458 if (skb->len < 24 + sizeof(*mmie) ||
459 !is_multicast_ether_addr(hdr->da))
460 return -1;
461
462 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
463 return -1; /* not a robust management frame */
464
465 mmie = (struct ieee80211_mmie *)
466 (skb->data + skb->len - sizeof(*mmie));
467 if (mmie->element_id != WLAN_EID_MMIE ||
468 mmie->length != sizeof(*mmie) - 2)
469 return -1;
470
471 return le16_to_cpu(mmie->key_id);
472 }
473
474
475 static ieee80211_rx_result
476 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
477 {
478 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
479 char *dev_addr = rx->sdata->vif.addr;
480
481 if (ieee80211_is_data(hdr->frame_control)) {
482 if (is_multicast_ether_addr(hdr->addr1)) {
483 if (ieee80211_has_tods(hdr->frame_control) ||
484 !ieee80211_has_fromds(hdr->frame_control))
485 return RX_DROP_MONITOR;
486 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
487 return RX_DROP_MONITOR;
488 } else {
489 if (!ieee80211_has_a4(hdr->frame_control))
490 return RX_DROP_MONITOR;
491 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
492 return RX_DROP_MONITOR;
493 }
494 }
495
496 /* If there is not an established peer link and this is not a peer link
497 * establisment frame, beacon or probe, drop the frame.
498 */
499
500 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
501 struct ieee80211_mgmt *mgmt;
502
503 if (!ieee80211_is_mgmt(hdr->frame_control))
504 return RX_DROP_MONITOR;
505
506 if (ieee80211_is_action(hdr->frame_control)) {
507 u8 category;
508 mgmt = (struct ieee80211_mgmt *)hdr;
509 category = mgmt->u.action.category;
510 if (category != WLAN_CATEGORY_MESH_ACTION &&
511 category != WLAN_CATEGORY_SELF_PROTECTED)
512 return RX_DROP_MONITOR;
513 return RX_CONTINUE;
514 }
515
516 if (ieee80211_is_probe_req(hdr->frame_control) ||
517 ieee80211_is_probe_resp(hdr->frame_control) ||
518 ieee80211_is_beacon(hdr->frame_control) ||
519 ieee80211_is_auth(hdr->frame_control))
520 return RX_CONTINUE;
521
522 return RX_DROP_MONITOR;
523
524 }
525
526 return RX_CONTINUE;
527 }
528
529 #define SEQ_MODULO 0x1000
530 #define SEQ_MASK 0xfff
531
532 static inline int seq_less(u16 sq1, u16 sq2)
533 {
534 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
535 }
536
537 static inline u16 seq_inc(u16 sq)
538 {
539 return (sq + 1) & SEQ_MASK;
540 }
541
542 static inline u16 seq_sub(u16 sq1, u16 sq2)
543 {
544 return (sq1 - sq2) & SEQ_MASK;
545 }
546
547
548 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
549 struct tid_ampdu_rx *tid_agg_rx,
550 int index)
551 {
552 struct ieee80211_local *local = hw_to_local(hw);
553 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
554 struct ieee80211_rx_status *status;
555
556 lockdep_assert_held(&tid_agg_rx->reorder_lock);
557
558 if (!skb)
559 goto no_frame;
560
561 /* release the frame from the reorder ring buffer */
562 tid_agg_rx->stored_mpdu_num--;
563 tid_agg_rx->reorder_buf[index] = NULL;
564 status = IEEE80211_SKB_RXCB(skb);
565 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
566 skb_queue_tail(&local->rx_skb_queue, skb);
567
568 no_frame:
569 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
570 }
571
572 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
573 struct tid_ampdu_rx *tid_agg_rx,
574 u16 head_seq_num)
575 {
576 int index;
577
578 lockdep_assert_held(&tid_agg_rx->reorder_lock);
579
580 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
581 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
582 tid_agg_rx->buf_size;
583 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
584 }
585 }
586
587 /*
588 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
589 * the skb was added to the buffer longer than this time ago, the earlier
590 * frames that have not yet been received are assumed to be lost and the skb
591 * can be released for processing. This may also release other skb's from the
592 * reorder buffer if there are no additional gaps between the frames.
593 *
594 * Callers must hold tid_agg_rx->reorder_lock.
595 */
596 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
597
598 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
599 struct tid_ampdu_rx *tid_agg_rx)
600 {
601 int index, j;
602
603 lockdep_assert_held(&tid_agg_rx->reorder_lock);
604
605 /* release the buffer until next missing frame */
606 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
607 tid_agg_rx->buf_size;
608 if (!tid_agg_rx->reorder_buf[index] &&
609 tid_agg_rx->stored_mpdu_num > 1) {
610 /*
611 * No buffers ready to be released, but check whether any
612 * frames in the reorder buffer have timed out.
613 */
614 int skipped = 1;
615 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
616 j = (j + 1) % tid_agg_rx->buf_size) {
617 if (!tid_agg_rx->reorder_buf[j]) {
618 skipped++;
619 continue;
620 }
621 if (skipped &&
622 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
623 HT_RX_REORDER_BUF_TIMEOUT))
624 goto set_release_timer;
625
626 #ifdef CONFIG_MAC80211_HT_DEBUG
627 if (net_ratelimit())
628 wiphy_debug(hw->wiphy,
629 "release an RX reorder frame due to timeout on earlier frames\n");
630 #endif
631 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
632
633 /*
634 * Increment the head seq# also for the skipped slots.
635 */
636 tid_agg_rx->head_seq_num =
637 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
638 skipped = 0;
639 }
640 } else while (tid_agg_rx->reorder_buf[index]) {
641 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
642 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
643 tid_agg_rx->buf_size;
644 }
645
646 if (tid_agg_rx->stored_mpdu_num) {
647 j = index = seq_sub(tid_agg_rx->head_seq_num,
648 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
649
650 for (; j != (index - 1) % tid_agg_rx->buf_size;
651 j = (j + 1) % tid_agg_rx->buf_size) {
652 if (tid_agg_rx->reorder_buf[j])
653 break;
654 }
655
656 set_release_timer:
657
658 mod_timer(&tid_agg_rx->reorder_timer,
659 tid_agg_rx->reorder_time[j] + 1 +
660 HT_RX_REORDER_BUF_TIMEOUT);
661 } else {
662 del_timer(&tid_agg_rx->reorder_timer);
663 }
664 }
665
666 /*
667 * As this function belongs to the RX path it must be under
668 * rcu_read_lock protection. It returns false if the frame
669 * can be processed immediately, true if it was consumed.
670 */
671 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
672 struct tid_ampdu_rx *tid_agg_rx,
673 struct sk_buff *skb)
674 {
675 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
676 u16 sc = le16_to_cpu(hdr->seq_ctrl);
677 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
678 u16 head_seq_num, buf_size;
679 int index;
680 bool ret = true;
681
682 spin_lock(&tid_agg_rx->reorder_lock);
683
684 buf_size = tid_agg_rx->buf_size;
685 head_seq_num = tid_agg_rx->head_seq_num;
686
687 /* frame with out of date sequence number */
688 if (seq_less(mpdu_seq_num, head_seq_num)) {
689 dev_kfree_skb(skb);
690 goto out;
691 }
692
693 /*
694 * If frame the sequence number exceeds our buffering window
695 * size release some previous frames to make room for this one.
696 */
697 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
698 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
699 /* release stored frames up to new head to stack */
700 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
701 }
702
703 /* Now the new frame is always in the range of the reordering buffer */
704
705 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
706
707 /* check if we already stored this frame */
708 if (tid_agg_rx->reorder_buf[index]) {
709 dev_kfree_skb(skb);
710 goto out;
711 }
712
713 /*
714 * If the current MPDU is in the right order and nothing else
715 * is stored we can process it directly, no need to buffer it.
716 * If it is first but there's something stored, we may be able
717 * to release frames after this one.
718 */
719 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
720 tid_agg_rx->stored_mpdu_num == 0) {
721 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
722 ret = false;
723 goto out;
724 }
725
726 /* put the frame in the reordering buffer */
727 tid_agg_rx->reorder_buf[index] = skb;
728 tid_agg_rx->reorder_time[index] = jiffies;
729 tid_agg_rx->stored_mpdu_num++;
730 ieee80211_sta_reorder_release(hw, tid_agg_rx);
731
732 out:
733 spin_unlock(&tid_agg_rx->reorder_lock);
734 return ret;
735 }
736
737 /*
738 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
739 * true if the MPDU was buffered, false if it should be processed.
740 */
741 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
742 {
743 struct sk_buff *skb = rx->skb;
744 struct ieee80211_local *local = rx->local;
745 struct ieee80211_hw *hw = &local->hw;
746 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
747 struct sta_info *sta = rx->sta;
748 struct tid_ampdu_rx *tid_agg_rx;
749 u16 sc;
750 int tid;
751
752 if (!ieee80211_is_data_qos(hdr->frame_control))
753 goto dont_reorder;
754
755 /*
756 * filter the QoS data rx stream according to
757 * STA/TID and check if this STA/TID is on aggregation
758 */
759
760 if (!sta)
761 goto dont_reorder;
762
763 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
764
765 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
766 if (!tid_agg_rx)
767 goto dont_reorder;
768
769 /* qos null data frames are excluded */
770 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
771 goto dont_reorder;
772
773 /* new, potentially un-ordered, ampdu frame - process it */
774
775 /* reset session timer */
776 if (tid_agg_rx->timeout)
777 mod_timer(&tid_agg_rx->session_timer,
778 TU_TO_EXP_TIME(tid_agg_rx->timeout));
779
780 /* if this mpdu is fragmented - terminate rx aggregation session */
781 sc = le16_to_cpu(hdr->seq_ctrl);
782 if (sc & IEEE80211_SCTL_FRAG) {
783 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
784 skb_queue_tail(&rx->sdata->skb_queue, skb);
785 ieee80211_queue_work(&local->hw, &rx->sdata->work);
786 return;
787 }
788
789 /*
790 * No locking needed -- we will only ever process one
791 * RX packet at a time, and thus own tid_agg_rx. All
792 * other code manipulating it needs to (and does) make
793 * sure that we cannot get to it any more before doing
794 * anything with it.
795 */
796 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
797 return;
798
799 dont_reorder:
800 skb_queue_tail(&local->rx_skb_queue, skb);
801 }
802
803 static ieee80211_rx_result debug_noinline
804 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
805 {
806 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
807 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
808
809 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
810 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
811 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
812 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
813 hdr->seq_ctrl)) {
814 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
815 rx->local->dot11FrameDuplicateCount++;
816 rx->sta->num_duplicates++;
817 }
818 return RX_DROP_UNUSABLE;
819 } else
820 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
821 }
822
823 if (unlikely(rx->skb->len < 16)) {
824 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
825 return RX_DROP_MONITOR;
826 }
827
828 /* Drop disallowed frame classes based on STA auth/assoc state;
829 * IEEE 802.11, Chap 5.5.
830 *
831 * mac80211 filters only based on association state, i.e. it drops
832 * Class 3 frames from not associated stations. hostapd sends
833 * deauth/disassoc frames when needed. In addition, hostapd is
834 * responsible for filtering on both auth and assoc states.
835 */
836
837 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
838 return ieee80211_rx_mesh_check(rx);
839
840 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
841 ieee80211_is_pspoll(hdr->frame_control)) &&
842 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
843 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
844 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
845 if (rx->sta && rx->sta->dummy &&
846 ieee80211_is_data_present(hdr->frame_control)) {
847 u16 ethertype;
848 u8 *payload;
849
850 payload = rx->skb->data +
851 ieee80211_hdrlen(hdr->frame_control);
852 ethertype = (payload[6] << 8) | payload[7];
853 if (cpu_to_be16(ethertype) ==
854 rx->sdata->control_port_protocol)
855 return RX_CONTINUE;
856 }
857 return RX_DROP_MONITOR;
858 }
859
860 return RX_CONTINUE;
861 }
862
863
864 static ieee80211_rx_result debug_noinline
865 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
866 {
867 struct sk_buff *skb = rx->skb;
868 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
869 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
870 int keyidx;
871 int hdrlen;
872 ieee80211_rx_result result = RX_DROP_UNUSABLE;
873 struct ieee80211_key *sta_ptk = NULL;
874 int mmie_keyidx = -1;
875 __le16 fc;
876
877 /*
878 * Key selection 101
879 *
880 * There are four types of keys:
881 * - GTK (group keys)
882 * - IGTK (group keys for management frames)
883 * - PTK (pairwise keys)
884 * - STK (station-to-station pairwise keys)
885 *
886 * When selecting a key, we have to distinguish between multicast
887 * (including broadcast) and unicast frames, the latter can only
888 * use PTKs and STKs while the former always use GTKs and IGTKs.
889 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
890 * unicast frames can also use key indices like GTKs. Hence, if we
891 * don't have a PTK/STK we check the key index for a WEP key.
892 *
893 * Note that in a regular BSS, multicast frames are sent by the
894 * AP only, associated stations unicast the frame to the AP first
895 * which then multicasts it on their behalf.
896 *
897 * There is also a slight problem in IBSS mode: GTKs are negotiated
898 * with each station, that is something we don't currently handle.
899 * The spec seems to expect that one negotiates the same key with
900 * every station but there's no such requirement; VLANs could be
901 * possible.
902 */
903
904 /*
905 * No point in finding a key and decrypting if the frame is neither
906 * addressed to us nor a multicast frame.
907 */
908 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
909 return RX_CONTINUE;
910
911 /* start without a key */
912 rx->key = NULL;
913
914 if (rx->sta)
915 sta_ptk = rcu_dereference(rx->sta->ptk);
916
917 fc = hdr->frame_control;
918
919 if (!ieee80211_has_protected(fc))
920 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
921
922 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
923 rx->key = sta_ptk;
924 if ((status->flag & RX_FLAG_DECRYPTED) &&
925 (status->flag & RX_FLAG_IV_STRIPPED))
926 return RX_CONTINUE;
927 /* Skip decryption if the frame is not protected. */
928 if (!ieee80211_has_protected(fc))
929 return RX_CONTINUE;
930 } else if (mmie_keyidx >= 0) {
931 /* Broadcast/multicast robust management frame / BIP */
932 if ((status->flag & RX_FLAG_DECRYPTED) &&
933 (status->flag & RX_FLAG_IV_STRIPPED))
934 return RX_CONTINUE;
935
936 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
937 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
938 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
939 if (rx->sta)
940 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
941 if (!rx->key)
942 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
943 } else if (!ieee80211_has_protected(fc)) {
944 /*
945 * The frame was not protected, so skip decryption. However, we
946 * need to set rx->key if there is a key that could have been
947 * used so that the frame may be dropped if encryption would
948 * have been expected.
949 */
950 struct ieee80211_key *key = NULL;
951 struct ieee80211_sub_if_data *sdata = rx->sdata;
952 int i;
953
954 if (ieee80211_is_mgmt(fc) &&
955 is_multicast_ether_addr(hdr->addr1) &&
956 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
957 rx->key = key;
958 else {
959 if (rx->sta) {
960 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
961 key = rcu_dereference(rx->sta->gtk[i]);
962 if (key)
963 break;
964 }
965 }
966 if (!key) {
967 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
968 key = rcu_dereference(sdata->keys[i]);
969 if (key)
970 break;
971 }
972 }
973 if (key)
974 rx->key = key;
975 }
976 return RX_CONTINUE;
977 } else {
978 u8 keyid;
979 /*
980 * The device doesn't give us the IV so we won't be
981 * able to look up the key. That's ok though, we
982 * don't need to decrypt the frame, we just won't
983 * be able to keep statistics accurate.
984 * Except for key threshold notifications, should
985 * we somehow allow the driver to tell us which key
986 * the hardware used if this flag is set?
987 */
988 if ((status->flag & RX_FLAG_DECRYPTED) &&
989 (status->flag & RX_FLAG_IV_STRIPPED))
990 return RX_CONTINUE;
991
992 hdrlen = ieee80211_hdrlen(fc);
993
994 if (rx->skb->len < 8 + hdrlen)
995 return RX_DROP_UNUSABLE; /* TODO: count this? */
996
997 /*
998 * no need to call ieee80211_wep_get_keyidx,
999 * it verifies a bunch of things we've done already
1000 */
1001 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1002 keyidx = keyid >> 6;
1003
1004 /* check per-station GTK first, if multicast packet */
1005 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1006 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1007
1008 /* if not found, try default key */
1009 if (!rx->key) {
1010 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1011
1012 /*
1013 * RSNA-protected unicast frames should always be
1014 * sent with pairwise or station-to-station keys,
1015 * but for WEP we allow using a key index as well.
1016 */
1017 if (rx->key &&
1018 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1019 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1020 !is_multicast_ether_addr(hdr->addr1))
1021 rx->key = NULL;
1022 }
1023 }
1024
1025 if (rx->key) {
1026 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1027 return RX_DROP_MONITOR;
1028
1029 rx->key->tx_rx_count++;
1030 /* TODO: add threshold stuff again */
1031 } else {
1032 return RX_DROP_MONITOR;
1033 }
1034
1035 if (skb_linearize(rx->skb))
1036 return RX_DROP_UNUSABLE;
1037 /* the hdr variable is invalid now! */
1038
1039 switch (rx->key->conf.cipher) {
1040 case WLAN_CIPHER_SUITE_WEP40:
1041 case WLAN_CIPHER_SUITE_WEP104:
1042 /* Check for weak IVs if possible */
1043 if (rx->sta && ieee80211_is_data(fc) &&
1044 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1045 !(status->flag & RX_FLAG_DECRYPTED)) &&
1046 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1047 rx->sta->wep_weak_iv_count++;
1048
1049 result = ieee80211_crypto_wep_decrypt(rx);
1050 break;
1051 case WLAN_CIPHER_SUITE_TKIP:
1052 result = ieee80211_crypto_tkip_decrypt(rx);
1053 break;
1054 case WLAN_CIPHER_SUITE_CCMP:
1055 result = ieee80211_crypto_ccmp_decrypt(rx);
1056 break;
1057 case WLAN_CIPHER_SUITE_AES_CMAC:
1058 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1059 break;
1060 default:
1061 /*
1062 * We can reach here only with HW-only algorithms
1063 * but why didn't it decrypt the frame?!
1064 */
1065 return RX_DROP_UNUSABLE;
1066 }
1067
1068 /* either the frame has been decrypted or will be dropped */
1069 status->flag |= RX_FLAG_DECRYPTED;
1070
1071 return result;
1072 }
1073
1074 static ieee80211_rx_result debug_noinline
1075 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1076 {
1077 struct ieee80211_local *local;
1078 struct ieee80211_hdr *hdr;
1079 struct sk_buff *skb;
1080
1081 local = rx->local;
1082 skb = rx->skb;
1083 hdr = (struct ieee80211_hdr *) skb->data;
1084
1085 if (!local->pspolling)
1086 return RX_CONTINUE;
1087
1088 if (!ieee80211_has_fromds(hdr->frame_control))
1089 /* this is not from AP */
1090 return RX_CONTINUE;
1091
1092 if (!ieee80211_is_data(hdr->frame_control))
1093 return RX_CONTINUE;
1094
1095 if (!ieee80211_has_moredata(hdr->frame_control)) {
1096 /* AP has no more frames buffered for us */
1097 local->pspolling = false;
1098 return RX_CONTINUE;
1099 }
1100
1101 /* more data bit is set, let's request a new frame from the AP */
1102 ieee80211_send_pspoll(local, rx->sdata);
1103
1104 return RX_CONTINUE;
1105 }
1106
1107 static void ap_sta_ps_start(struct sta_info *sta)
1108 {
1109 struct ieee80211_sub_if_data *sdata = sta->sdata;
1110 struct ieee80211_local *local = sdata->local;
1111
1112 atomic_inc(&sdata->bss->num_sta_ps);
1113 set_sta_flags(sta, WLAN_STA_PS_STA);
1114 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1115 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1116 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1117 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1118 sdata->name, sta->sta.addr, sta->sta.aid);
1119 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1120 }
1121
1122 static void ap_sta_ps_end(struct sta_info *sta)
1123 {
1124 struct ieee80211_sub_if_data *sdata = sta->sdata;
1125
1126 atomic_dec(&sdata->bss->num_sta_ps);
1127
1128 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1129 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1130 sdata->name, sta->sta.addr, sta->sta.aid);
1131 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1132
1133 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1134 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1135 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1136 sdata->name, sta->sta.addr, sta->sta.aid);
1137 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1138 return;
1139 }
1140
1141 ieee80211_sta_ps_deliver_wakeup(sta);
1142 }
1143
1144 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1145 {
1146 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1147 bool in_ps;
1148
1149 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1150
1151 /* Don't let the same PS state be set twice */
1152 in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1153 if ((start && in_ps) || (!start && !in_ps))
1154 return -EINVAL;
1155
1156 if (start)
1157 ap_sta_ps_start(sta_inf);
1158 else
1159 ap_sta_ps_end(sta_inf);
1160
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1164
1165 static ieee80211_rx_result debug_noinline
1166 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1167 {
1168 struct sta_info *sta = rx->sta;
1169 struct sk_buff *skb = rx->skb;
1170 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1171 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1172
1173 if (!sta)
1174 return RX_CONTINUE;
1175
1176 /*
1177 * Update last_rx only for IBSS packets which are for the current
1178 * BSSID to avoid keeping the current IBSS network alive in cases
1179 * where other STAs start using different BSSID.
1180 */
1181 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1182 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1183 NL80211_IFTYPE_ADHOC);
1184 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1185 sta->last_rx = jiffies;
1186 if (ieee80211_is_data(hdr->frame_control)) {
1187 sta->last_rx_rate_idx = status->rate_idx;
1188 sta->last_rx_rate_flag = status->flag;
1189 }
1190 }
1191 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1192 /*
1193 * Mesh beacons will update last_rx when if they are found to
1194 * match the current local configuration when processed.
1195 */
1196 sta->last_rx = jiffies;
1197 if (ieee80211_is_data(hdr->frame_control)) {
1198 sta->last_rx_rate_idx = status->rate_idx;
1199 sta->last_rx_rate_flag = status->flag;
1200 }
1201 }
1202
1203 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1204 return RX_CONTINUE;
1205
1206 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1207 ieee80211_sta_rx_notify(rx->sdata, hdr);
1208
1209 sta->rx_fragments++;
1210 sta->rx_bytes += rx->skb->len;
1211 sta->last_signal = status->signal;
1212 ewma_add(&sta->avg_signal, -status->signal);
1213
1214 /*
1215 * Change STA power saving mode only at the end of a frame
1216 * exchange sequence.
1217 */
1218 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1219 !ieee80211_has_morefrags(hdr->frame_control) &&
1220 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1221 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1222 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1223 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1224 /*
1225 * Ignore doze->wake transitions that are
1226 * indicated by non-data frames, the standard
1227 * is unclear here, but for example going to
1228 * PS mode and then scanning would cause a
1229 * doze->wake transition for the probe request,
1230 * and that is clearly undesirable.
1231 */
1232 if (ieee80211_is_data(hdr->frame_control) &&
1233 !ieee80211_has_pm(hdr->frame_control))
1234 ap_sta_ps_end(sta);
1235 } else {
1236 if (ieee80211_has_pm(hdr->frame_control))
1237 ap_sta_ps_start(sta);
1238 }
1239 }
1240
1241 /*
1242 * Drop (qos-)data::nullfunc frames silently, since they
1243 * are used only to control station power saving mode.
1244 */
1245 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1246 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1247 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1248
1249 /*
1250 * If we receive a 4-addr nullfunc frame from a STA
1251 * that was not moved to a 4-addr STA vlan yet, drop
1252 * the frame to the monitor interface, to make sure
1253 * that hostapd sees it
1254 */
1255 if (ieee80211_has_a4(hdr->frame_control) &&
1256 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1257 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1258 !rx->sdata->u.vlan.sta)))
1259 return RX_DROP_MONITOR;
1260 /*
1261 * Update counter and free packet here to avoid
1262 * counting this as a dropped packed.
1263 */
1264 sta->rx_packets++;
1265 dev_kfree_skb(rx->skb);
1266 return RX_QUEUED;
1267 }
1268
1269 return RX_CONTINUE;
1270 } /* ieee80211_rx_h_sta_process */
1271
1272 static inline struct ieee80211_fragment_entry *
1273 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1274 unsigned int frag, unsigned int seq, int rx_queue,
1275 struct sk_buff **skb)
1276 {
1277 struct ieee80211_fragment_entry *entry;
1278 int idx;
1279
1280 idx = sdata->fragment_next;
1281 entry = &sdata->fragments[sdata->fragment_next++];
1282 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1283 sdata->fragment_next = 0;
1284
1285 if (!skb_queue_empty(&entry->skb_list)) {
1286 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1287 struct ieee80211_hdr *hdr =
1288 (struct ieee80211_hdr *) entry->skb_list.next->data;
1289 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1290 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1291 "addr1=%pM addr2=%pM\n",
1292 sdata->name, idx,
1293 jiffies - entry->first_frag_time, entry->seq,
1294 entry->last_frag, hdr->addr1, hdr->addr2);
1295 #endif
1296 __skb_queue_purge(&entry->skb_list);
1297 }
1298
1299 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1300 *skb = NULL;
1301 entry->first_frag_time = jiffies;
1302 entry->seq = seq;
1303 entry->rx_queue = rx_queue;
1304 entry->last_frag = frag;
1305 entry->ccmp = 0;
1306 entry->extra_len = 0;
1307
1308 return entry;
1309 }
1310
1311 static inline struct ieee80211_fragment_entry *
1312 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1313 unsigned int frag, unsigned int seq,
1314 int rx_queue, struct ieee80211_hdr *hdr)
1315 {
1316 struct ieee80211_fragment_entry *entry;
1317 int i, idx;
1318
1319 idx = sdata->fragment_next;
1320 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1321 struct ieee80211_hdr *f_hdr;
1322
1323 idx--;
1324 if (idx < 0)
1325 idx = IEEE80211_FRAGMENT_MAX - 1;
1326
1327 entry = &sdata->fragments[idx];
1328 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1329 entry->rx_queue != rx_queue ||
1330 entry->last_frag + 1 != frag)
1331 continue;
1332
1333 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1334
1335 /*
1336 * Check ftype and addresses are equal, else check next fragment
1337 */
1338 if (((hdr->frame_control ^ f_hdr->frame_control) &
1339 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1340 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1341 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1342 continue;
1343
1344 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1345 __skb_queue_purge(&entry->skb_list);
1346 continue;
1347 }
1348 return entry;
1349 }
1350
1351 return NULL;
1352 }
1353
1354 static ieee80211_rx_result debug_noinline
1355 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1356 {
1357 struct ieee80211_hdr *hdr;
1358 u16 sc;
1359 __le16 fc;
1360 unsigned int frag, seq;
1361 struct ieee80211_fragment_entry *entry;
1362 struct sk_buff *skb;
1363 struct ieee80211_rx_status *status;
1364
1365 hdr = (struct ieee80211_hdr *)rx->skb->data;
1366 fc = hdr->frame_control;
1367 sc = le16_to_cpu(hdr->seq_ctrl);
1368 frag = sc & IEEE80211_SCTL_FRAG;
1369
1370 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1371 (rx->skb)->len < 24 ||
1372 is_multicast_ether_addr(hdr->addr1))) {
1373 /* not fragmented */
1374 goto out;
1375 }
1376 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1377
1378 if (skb_linearize(rx->skb))
1379 return RX_DROP_UNUSABLE;
1380
1381 /*
1382 * skb_linearize() might change the skb->data and
1383 * previously cached variables (in this case, hdr) need to
1384 * be refreshed with the new data.
1385 */
1386 hdr = (struct ieee80211_hdr *)rx->skb->data;
1387 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1388
1389 if (frag == 0) {
1390 /* This is the first fragment of a new frame. */
1391 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1392 rx->seqno_idx, &(rx->skb));
1393 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1394 ieee80211_has_protected(fc)) {
1395 int queue = rx->security_idx;
1396 /* Store CCMP PN so that we can verify that the next
1397 * fragment has a sequential PN value. */
1398 entry->ccmp = 1;
1399 memcpy(entry->last_pn,
1400 rx->key->u.ccmp.rx_pn[queue],
1401 CCMP_PN_LEN);
1402 }
1403 return RX_QUEUED;
1404 }
1405
1406 /* This is a fragment for a frame that should already be pending in
1407 * fragment cache. Add this fragment to the end of the pending entry.
1408 */
1409 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1410 rx->seqno_idx, hdr);
1411 if (!entry) {
1412 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1413 return RX_DROP_MONITOR;
1414 }
1415
1416 /* Verify that MPDUs within one MSDU have sequential PN values.
1417 * (IEEE 802.11i, 8.3.3.4.5) */
1418 if (entry->ccmp) {
1419 int i;
1420 u8 pn[CCMP_PN_LEN], *rpn;
1421 int queue;
1422 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1423 return RX_DROP_UNUSABLE;
1424 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1425 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1426 pn[i]++;
1427 if (pn[i])
1428 break;
1429 }
1430 queue = rx->security_idx;
1431 rpn = rx->key->u.ccmp.rx_pn[queue];
1432 if (memcmp(pn, rpn, CCMP_PN_LEN))
1433 return RX_DROP_UNUSABLE;
1434 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1435 }
1436
1437 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1438 __skb_queue_tail(&entry->skb_list, rx->skb);
1439 entry->last_frag = frag;
1440 entry->extra_len += rx->skb->len;
1441 if (ieee80211_has_morefrags(fc)) {
1442 rx->skb = NULL;
1443 return RX_QUEUED;
1444 }
1445
1446 rx->skb = __skb_dequeue(&entry->skb_list);
1447 if (skb_tailroom(rx->skb) < entry->extra_len) {
1448 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1449 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1450 GFP_ATOMIC))) {
1451 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1452 __skb_queue_purge(&entry->skb_list);
1453 return RX_DROP_UNUSABLE;
1454 }
1455 }
1456 while ((skb = __skb_dequeue(&entry->skb_list))) {
1457 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1458 dev_kfree_skb(skb);
1459 }
1460
1461 /* Complete frame has been reassembled - process it now */
1462 status = IEEE80211_SKB_RXCB(rx->skb);
1463 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1464
1465 out:
1466 if (rx->sta)
1467 rx->sta->rx_packets++;
1468 if (is_multicast_ether_addr(hdr->addr1))
1469 rx->local->dot11MulticastReceivedFrameCount++;
1470 else
1471 ieee80211_led_rx(rx->local);
1472 return RX_CONTINUE;
1473 }
1474
1475 static ieee80211_rx_result debug_noinline
1476 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1477 {
1478 struct ieee80211_sub_if_data *sdata = rx->sdata;
1479 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1480 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1481
1482 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1483 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1484 return RX_CONTINUE;
1485
1486 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1487 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1488 return RX_DROP_UNUSABLE;
1489
1490 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1491 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1492 else
1493 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1494
1495 /* Free PS Poll skb here instead of returning RX_DROP that would
1496 * count as an dropped frame. */
1497 dev_kfree_skb(rx->skb);
1498
1499 return RX_QUEUED;
1500 }
1501
1502 static ieee80211_rx_result debug_noinline
1503 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1504 {
1505 u8 *data = rx->skb->data;
1506 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1507
1508 if (!ieee80211_is_data_qos(hdr->frame_control))
1509 return RX_CONTINUE;
1510
1511 /* remove the qos control field, update frame type and meta-data */
1512 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1513 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1514 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1515 /* change frame type to non QOS */
1516 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1517
1518 return RX_CONTINUE;
1519 }
1520
1521 static int
1522 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1523 {
1524 if (unlikely(!rx->sta ||
1525 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1526 return -EACCES;
1527
1528 return 0;
1529 }
1530
1531 static int
1532 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1533 {
1534 struct sk_buff *skb = rx->skb;
1535 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1536
1537 /*
1538 * Pass through unencrypted frames if the hardware has
1539 * decrypted them already.
1540 */
1541 if (status->flag & RX_FLAG_DECRYPTED)
1542 return 0;
1543
1544 /* Drop unencrypted frames if key is set. */
1545 if (unlikely(!ieee80211_has_protected(fc) &&
1546 !ieee80211_is_nullfunc(fc) &&
1547 ieee80211_is_data(fc) &&
1548 (rx->key || rx->sdata->drop_unencrypted)))
1549 return -EACCES;
1550
1551 return 0;
1552 }
1553
1554 static int
1555 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1556 {
1557 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1558 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1559 __le16 fc = hdr->frame_control;
1560
1561 /*
1562 * Pass through unencrypted frames if the hardware has
1563 * decrypted them already.
1564 */
1565 if (status->flag & RX_FLAG_DECRYPTED)
1566 return 0;
1567
1568 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1569 if (unlikely(!ieee80211_has_protected(fc) &&
1570 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1571 rx->key)) {
1572 if (ieee80211_is_deauth(fc))
1573 cfg80211_send_unprot_deauth(rx->sdata->dev,
1574 rx->skb->data,
1575 rx->skb->len);
1576 else if (ieee80211_is_disassoc(fc))
1577 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1578 rx->skb->data,
1579 rx->skb->len);
1580 return -EACCES;
1581 }
1582 /* BIP does not use Protected field, so need to check MMIE */
1583 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1584 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1585 if (ieee80211_is_deauth(fc))
1586 cfg80211_send_unprot_deauth(rx->sdata->dev,
1587 rx->skb->data,
1588 rx->skb->len);
1589 else if (ieee80211_is_disassoc(fc))
1590 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1591 rx->skb->data,
1592 rx->skb->len);
1593 return -EACCES;
1594 }
1595 /*
1596 * When using MFP, Action frames are not allowed prior to
1597 * having configured keys.
1598 */
1599 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1600 ieee80211_is_robust_mgmt_frame(
1601 (struct ieee80211_hdr *) rx->skb->data)))
1602 return -EACCES;
1603 }
1604
1605 return 0;
1606 }
1607
1608 static int
1609 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1610 {
1611 struct ieee80211_sub_if_data *sdata = rx->sdata;
1612 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1613 bool check_port_control = false;
1614 struct ethhdr *ehdr;
1615 int ret;
1616
1617 *port_control = false;
1618 if (ieee80211_has_a4(hdr->frame_control) &&
1619 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1620 return -1;
1621
1622 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1623 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1624
1625 if (!sdata->u.mgd.use_4addr)
1626 return -1;
1627 else
1628 check_port_control = true;
1629 }
1630
1631 if (is_multicast_ether_addr(hdr->addr1) &&
1632 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1633 return -1;
1634
1635 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1636 if (ret < 0)
1637 return ret;
1638
1639 ehdr = (struct ethhdr *) rx->skb->data;
1640 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1641 *port_control = true;
1642 else if (check_port_control)
1643 return -1;
1644
1645 return 0;
1646 }
1647
1648 /*
1649 * requires that rx->skb is a frame with ethernet header
1650 */
1651 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1652 {
1653 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1654 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1655 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1656
1657 /*
1658 * Allow EAPOL frames to us/the PAE group address regardless
1659 * of whether the frame was encrypted or not.
1660 */
1661 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1662 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1663 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1664 return true;
1665
1666 if (ieee80211_802_1x_port_control(rx) ||
1667 ieee80211_drop_unencrypted(rx, fc))
1668 return false;
1669
1670 return true;
1671 }
1672
1673 /*
1674 * requires that rx->skb is a frame with ethernet header
1675 */
1676 static void
1677 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1678 {
1679 struct ieee80211_sub_if_data *sdata = rx->sdata;
1680 struct net_device *dev = sdata->dev;
1681 struct sk_buff *skb, *xmit_skb;
1682 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1683 struct sta_info *dsta;
1684 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1685
1686 skb = rx->skb;
1687 xmit_skb = NULL;
1688
1689 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1690 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1691 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1692 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1693 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1694 if (is_multicast_ether_addr(ehdr->h_dest)) {
1695 /*
1696 * send multicast frames both to higher layers in
1697 * local net stack and back to the wireless medium
1698 */
1699 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1700 if (!xmit_skb && net_ratelimit())
1701 printk(KERN_DEBUG "%s: failed to clone "
1702 "multicast frame\n", dev->name);
1703 } else {
1704 dsta = sta_info_get(sdata, skb->data);
1705 if (dsta) {
1706 /*
1707 * The destination station is associated to
1708 * this AP (in this VLAN), so send the frame
1709 * directly to it and do not pass it to local
1710 * net stack.
1711 */
1712 xmit_skb = skb;
1713 skb = NULL;
1714 }
1715 }
1716 }
1717
1718 if (skb) {
1719 int align __maybe_unused;
1720
1721 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1722 /*
1723 * 'align' will only take the values 0 or 2 here
1724 * since all frames are required to be aligned
1725 * to 2-byte boundaries when being passed to
1726 * mac80211. That also explains the __skb_push()
1727 * below.
1728 */
1729 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1730 if (align) {
1731 if (WARN_ON(skb_headroom(skb) < 3)) {
1732 dev_kfree_skb(skb);
1733 skb = NULL;
1734 } else {
1735 u8 *data = skb->data;
1736 size_t len = skb_headlen(skb);
1737 skb->data -= align;
1738 memmove(skb->data, data, len);
1739 skb_set_tail_pointer(skb, len);
1740 }
1741 }
1742 #endif
1743
1744 if (skb) {
1745 /* deliver to local stack */
1746 skb->protocol = eth_type_trans(skb, dev);
1747 memset(skb->cb, 0, sizeof(skb->cb));
1748 netif_receive_skb(skb);
1749 }
1750 }
1751
1752 if (xmit_skb) {
1753 /* send to wireless media */
1754 xmit_skb->protocol = htons(ETH_P_802_3);
1755 skb_reset_network_header(xmit_skb);
1756 skb_reset_mac_header(xmit_skb);
1757 dev_queue_xmit(xmit_skb);
1758 }
1759 }
1760
1761 static ieee80211_rx_result debug_noinline
1762 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1763 {
1764 struct net_device *dev = rx->sdata->dev;
1765 struct sk_buff *skb = rx->skb;
1766 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1767 __le16 fc = hdr->frame_control;
1768 struct sk_buff_head frame_list;
1769 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1770
1771 if (unlikely(!ieee80211_is_data(fc)))
1772 return RX_CONTINUE;
1773
1774 if (unlikely(!ieee80211_is_data_present(fc)))
1775 return RX_DROP_MONITOR;
1776
1777 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1778 return RX_CONTINUE;
1779
1780 if (ieee80211_has_a4(hdr->frame_control) &&
1781 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1782 !rx->sdata->u.vlan.sta)
1783 return RX_DROP_UNUSABLE;
1784
1785 if (is_multicast_ether_addr(hdr->addr1) &&
1786 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1787 rx->sdata->u.vlan.sta) ||
1788 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1789 rx->sdata->u.mgd.use_4addr)))
1790 return RX_DROP_UNUSABLE;
1791
1792 skb->dev = dev;
1793 __skb_queue_head_init(&frame_list);
1794
1795 if (skb_linearize(skb))
1796 return RX_DROP_UNUSABLE;
1797
1798 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1799 rx->sdata->vif.type,
1800 rx->local->hw.extra_tx_headroom, true);
1801
1802 while (!skb_queue_empty(&frame_list)) {
1803 rx->skb = __skb_dequeue(&frame_list);
1804
1805 if (!ieee80211_frame_allowed(rx, fc)) {
1806 dev_kfree_skb(rx->skb);
1807 continue;
1808 }
1809 dev->stats.rx_packets++;
1810 dev->stats.rx_bytes += rx->skb->len;
1811
1812 ieee80211_deliver_skb(rx);
1813 }
1814
1815 return RX_QUEUED;
1816 }
1817
1818 #ifdef CONFIG_MAC80211_MESH
1819 static ieee80211_rx_result
1820 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1821 {
1822 struct ieee80211_hdr *hdr;
1823 struct ieee80211s_hdr *mesh_hdr;
1824 unsigned int hdrlen;
1825 struct sk_buff *skb = rx->skb, *fwd_skb;
1826 struct ieee80211_local *local = rx->local;
1827 struct ieee80211_sub_if_data *sdata = rx->sdata;
1828 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1829
1830 hdr = (struct ieee80211_hdr *) skb->data;
1831 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1832 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1833
1834 /* frame is in RMC, don't forward */
1835 if (ieee80211_is_data(hdr->frame_control) &&
1836 is_multicast_ether_addr(hdr->addr1) &&
1837 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1838 return RX_DROP_MONITOR;
1839
1840 if (!ieee80211_is_data(hdr->frame_control))
1841 return RX_CONTINUE;
1842
1843 if (!mesh_hdr->ttl)
1844 /* illegal frame */
1845 return RX_DROP_MONITOR;
1846
1847 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1848 struct mesh_path *mppath;
1849 char *proxied_addr;
1850 char *mpp_addr;
1851
1852 if (is_multicast_ether_addr(hdr->addr1)) {
1853 mpp_addr = hdr->addr3;
1854 proxied_addr = mesh_hdr->eaddr1;
1855 } else {
1856 mpp_addr = hdr->addr4;
1857 proxied_addr = mesh_hdr->eaddr2;
1858 }
1859
1860 rcu_read_lock();
1861 mppath = mpp_path_lookup(proxied_addr, sdata);
1862 if (!mppath) {
1863 mpp_path_add(proxied_addr, mpp_addr, sdata);
1864 } else {
1865 spin_lock_bh(&mppath->state_lock);
1866 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1867 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1868 spin_unlock_bh(&mppath->state_lock);
1869 }
1870 rcu_read_unlock();
1871 }
1872
1873 /* Frame has reached destination. Don't forward */
1874 if (!is_multicast_ether_addr(hdr->addr1) &&
1875 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1876 return RX_CONTINUE;
1877
1878 mesh_hdr->ttl--;
1879
1880 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1881 if (!mesh_hdr->ttl)
1882 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1883 dropped_frames_ttl);
1884 else {
1885 struct ieee80211_hdr *fwd_hdr;
1886 struct ieee80211_tx_info *info;
1887
1888 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1889
1890 if (!fwd_skb && net_ratelimit())
1891 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1892 sdata->name);
1893 if (!fwd_skb)
1894 goto out;
1895
1896 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1897 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1898 info = IEEE80211_SKB_CB(fwd_skb);
1899 memset(info, 0, sizeof(*info));
1900 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1901 info->control.vif = &rx->sdata->vif;
1902 skb_set_queue_mapping(skb,
1903 ieee80211_select_queue(rx->sdata, fwd_skb));
1904 ieee80211_set_qos_hdr(local, skb);
1905 if (is_multicast_ether_addr(fwd_hdr->addr1))
1906 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1907 fwded_mcast);
1908 else {
1909 int err;
1910 /*
1911 * Save TA to addr1 to send TA a path error if a
1912 * suitable next hop is not found
1913 */
1914 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1915 ETH_ALEN);
1916 err = mesh_nexthop_lookup(fwd_skb, sdata);
1917 /* Failed to immediately resolve next hop:
1918 * fwded frame was dropped or will be added
1919 * later to the pending skb queue. */
1920 if (err)
1921 return RX_DROP_MONITOR;
1922
1923 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1924 fwded_unicast);
1925 }
1926 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1927 fwded_frames);
1928 ieee80211_add_pending_skb(local, fwd_skb);
1929 }
1930 }
1931
1932 out:
1933 if (is_multicast_ether_addr(hdr->addr1) ||
1934 sdata->dev->flags & IFF_PROMISC)
1935 return RX_CONTINUE;
1936 else
1937 return RX_DROP_MONITOR;
1938 }
1939 #endif
1940
1941 static ieee80211_rx_result debug_noinline
1942 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1943 {
1944 struct ieee80211_sub_if_data *sdata = rx->sdata;
1945 struct ieee80211_local *local = rx->local;
1946 struct net_device *dev = sdata->dev;
1947 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1948 __le16 fc = hdr->frame_control;
1949 bool port_control;
1950 int err;
1951
1952 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1953 return RX_CONTINUE;
1954
1955 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1956 return RX_DROP_MONITOR;
1957
1958 /*
1959 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1960 * that a 4-addr station can be detected and moved into a separate VLAN
1961 */
1962 if (ieee80211_has_a4(hdr->frame_control) &&
1963 sdata->vif.type == NL80211_IFTYPE_AP)
1964 return RX_DROP_MONITOR;
1965
1966 err = __ieee80211_data_to_8023(rx, &port_control);
1967 if (unlikely(err))
1968 return RX_DROP_UNUSABLE;
1969
1970 if (!ieee80211_frame_allowed(rx, fc))
1971 return RX_DROP_MONITOR;
1972
1973 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1974 unlikely(port_control) && sdata->bss) {
1975 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1976 u.ap);
1977 dev = sdata->dev;
1978 rx->sdata = sdata;
1979 }
1980
1981 rx->skb->dev = dev;
1982
1983 dev->stats.rx_packets++;
1984 dev->stats.rx_bytes += rx->skb->len;
1985
1986 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1987 !is_multicast_ether_addr(
1988 ((struct ethhdr *)rx->skb->data)->h_dest) &&
1989 (!local->scanning &&
1990 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1991 mod_timer(&local->dynamic_ps_timer, jiffies +
1992 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1993 }
1994
1995 ieee80211_deliver_skb(rx);
1996
1997 return RX_QUEUED;
1998 }
1999
2000 static ieee80211_rx_result debug_noinline
2001 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2002 {
2003 struct ieee80211_local *local = rx->local;
2004 struct ieee80211_hw *hw = &local->hw;
2005 struct sk_buff *skb = rx->skb;
2006 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2007 struct tid_ampdu_rx *tid_agg_rx;
2008 u16 start_seq_num;
2009 u16 tid;
2010
2011 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2012 return RX_CONTINUE;
2013
2014 if (ieee80211_is_back_req(bar->frame_control)) {
2015 struct {
2016 __le16 control, start_seq_num;
2017 } __packed bar_data;
2018
2019 if (!rx->sta)
2020 return RX_DROP_MONITOR;
2021
2022 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2023 &bar_data, sizeof(bar_data)))
2024 return RX_DROP_MONITOR;
2025
2026 tid = le16_to_cpu(bar_data.control) >> 12;
2027
2028 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2029 if (!tid_agg_rx)
2030 return RX_DROP_MONITOR;
2031
2032 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2033
2034 /* reset session timer */
2035 if (tid_agg_rx->timeout)
2036 mod_timer(&tid_agg_rx->session_timer,
2037 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2038
2039 spin_lock(&tid_agg_rx->reorder_lock);
2040 /* release stored frames up to start of BAR */
2041 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2042 spin_unlock(&tid_agg_rx->reorder_lock);
2043
2044 kfree_skb(skb);
2045 return RX_QUEUED;
2046 }
2047
2048 /*
2049 * After this point, we only want management frames,
2050 * so we can drop all remaining control frames to
2051 * cooked monitor interfaces.
2052 */
2053 return RX_DROP_MONITOR;
2054 }
2055
2056 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2057 struct ieee80211_mgmt *mgmt,
2058 size_t len)
2059 {
2060 struct ieee80211_local *local = sdata->local;
2061 struct sk_buff *skb;
2062 struct ieee80211_mgmt *resp;
2063
2064 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2065 /* Not to own unicast address */
2066 return;
2067 }
2068
2069 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2070 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2071 /* Not from the current AP or not associated yet. */
2072 return;
2073 }
2074
2075 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2076 /* Too short SA Query request frame */
2077 return;
2078 }
2079
2080 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2081 if (skb == NULL)
2082 return;
2083
2084 skb_reserve(skb, local->hw.extra_tx_headroom);
2085 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2086 memset(resp, 0, 24);
2087 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2088 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2089 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2090 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2091 IEEE80211_STYPE_ACTION);
2092 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2093 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2094 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2095 memcpy(resp->u.action.u.sa_query.trans_id,
2096 mgmt->u.action.u.sa_query.trans_id,
2097 WLAN_SA_QUERY_TR_ID_LEN);
2098
2099 ieee80211_tx_skb(sdata, skb);
2100 }
2101
2102 static ieee80211_rx_result debug_noinline
2103 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2104 {
2105 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2106 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2107
2108 /*
2109 * From here on, look only at management frames.
2110 * Data and control frames are already handled,
2111 * and unknown (reserved) frames are useless.
2112 */
2113 if (rx->skb->len < 24)
2114 return RX_DROP_MONITOR;
2115
2116 if (!ieee80211_is_mgmt(mgmt->frame_control))
2117 return RX_DROP_MONITOR;
2118
2119 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2120 return RX_DROP_MONITOR;
2121
2122 if (ieee80211_drop_unencrypted_mgmt(rx))
2123 return RX_DROP_UNUSABLE;
2124
2125 return RX_CONTINUE;
2126 }
2127
2128 static ieee80211_rx_result debug_noinline
2129 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2130 {
2131 struct ieee80211_local *local = rx->local;
2132 struct ieee80211_sub_if_data *sdata = rx->sdata;
2133 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2134 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2135 int len = rx->skb->len;
2136
2137 if (!ieee80211_is_action(mgmt->frame_control))
2138 return RX_CONTINUE;
2139
2140 /* drop too small frames */
2141 if (len < IEEE80211_MIN_ACTION_SIZE)
2142 return RX_DROP_UNUSABLE;
2143
2144 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2145 return RX_DROP_UNUSABLE;
2146
2147 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2148 return RX_DROP_UNUSABLE;
2149
2150 switch (mgmt->u.action.category) {
2151 case WLAN_CATEGORY_BACK:
2152 /*
2153 * The aggregation code is not prepared to handle
2154 * anything but STA/AP due to the BSSID handling;
2155 * IBSS could work in the code but isn't supported
2156 * by drivers or the standard.
2157 */
2158 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2159 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2160 sdata->vif.type != NL80211_IFTYPE_AP)
2161 break;
2162
2163 /* verify action_code is present */
2164 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2165 break;
2166
2167 switch (mgmt->u.action.u.addba_req.action_code) {
2168 case WLAN_ACTION_ADDBA_REQ:
2169 if (len < (IEEE80211_MIN_ACTION_SIZE +
2170 sizeof(mgmt->u.action.u.addba_req)))
2171 goto invalid;
2172 break;
2173 case WLAN_ACTION_ADDBA_RESP:
2174 if (len < (IEEE80211_MIN_ACTION_SIZE +
2175 sizeof(mgmt->u.action.u.addba_resp)))
2176 goto invalid;
2177 break;
2178 case WLAN_ACTION_DELBA:
2179 if (len < (IEEE80211_MIN_ACTION_SIZE +
2180 sizeof(mgmt->u.action.u.delba)))
2181 goto invalid;
2182 break;
2183 default:
2184 goto invalid;
2185 }
2186
2187 goto queue;
2188 case WLAN_CATEGORY_SPECTRUM_MGMT:
2189 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2190 break;
2191
2192 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2193 break;
2194
2195 /* verify action_code is present */
2196 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2197 break;
2198
2199 switch (mgmt->u.action.u.measurement.action_code) {
2200 case WLAN_ACTION_SPCT_MSR_REQ:
2201 if (len < (IEEE80211_MIN_ACTION_SIZE +
2202 sizeof(mgmt->u.action.u.measurement)))
2203 break;
2204 ieee80211_process_measurement_req(sdata, mgmt, len);
2205 goto handled;
2206 case WLAN_ACTION_SPCT_CHL_SWITCH:
2207 if (len < (IEEE80211_MIN_ACTION_SIZE +
2208 sizeof(mgmt->u.action.u.chan_switch)))
2209 break;
2210
2211 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2212 break;
2213
2214 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2215 break;
2216
2217 goto queue;
2218 }
2219 break;
2220 case WLAN_CATEGORY_SA_QUERY:
2221 if (len < (IEEE80211_MIN_ACTION_SIZE +
2222 sizeof(mgmt->u.action.u.sa_query)))
2223 break;
2224
2225 switch (mgmt->u.action.u.sa_query.action) {
2226 case WLAN_ACTION_SA_QUERY_REQUEST:
2227 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2228 break;
2229 ieee80211_process_sa_query_req(sdata, mgmt, len);
2230 goto handled;
2231 }
2232 break;
2233 case WLAN_CATEGORY_SELF_PROTECTED:
2234 switch (mgmt->u.action.u.self_prot.action_code) {
2235 case WLAN_SP_MESH_PEERING_OPEN:
2236 case WLAN_SP_MESH_PEERING_CLOSE:
2237 case WLAN_SP_MESH_PEERING_CONFIRM:
2238 if (!ieee80211_vif_is_mesh(&sdata->vif))
2239 goto invalid;
2240 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2241 /* userspace handles this frame */
2242 break;
2243 goto queue;
2244 case WLAN_SP_MGK_INFORM:
2245 case WLAN_SP_MGK_ACK:
2246 if (!ieee80211_vif_is_mesh(&sdata->vif))
2247 goto invalid;
2248 break;
2249 }
2250 break;
2251 case WLAN_CATEGORY_MESH_ACTION:
2252 if (!ieee80211_vif_is_mesh(&sdata->vif))
2253 break;
2254 if (mesh_action_is_path_sel(mgmt) &&
2255 (!mesh_path_sel_is_hwmp(sdata)))
2256 break;
2257 goto queue;
2258 }
2259
2260 return RX_CONTINUE;
2261
2262 invalid:
2263 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2264 /* will return in the next handlers */
2265 return RX_CONTINUE;
2266
2267 handled:
2268 if (rx->sta)
2269 rx->sta->rx_packets++;
2270 dev_kfree_skb(rx->skb);
2271 return RX_QUEUED;
2272
2273 queue:
2274 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2275 skb_queue_tail(&sdata->skb_queue, rx->skb);
2276 ieee80211_queue_work(&local->hw, &sdata->work);
2277 if (rx->sta)
2278 rx->sta->rx_packets++;
2279 return RX_QUEUED;
2280 }
2281
2282 static ieee80211_rx_result debug_noinline
2283 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2284 {
2285 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2286
2287 /* skip known-bad action frames and return them in the next handler */
2288 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2289 return RX_CONTINUE;
2290
2291 /*
2292 * Getting here means the kernel doesn't know how to handle
2293 * it, but maybe userspace does ... include returned frames
2294 * so userspace can register for those to know whether ones
2295 * it transmitted were processed or returned.
2296 */
2297
2298 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2299 rx->skb->data, rx->skb->len,
2300 GFP_ATOMIC)) {
2301 if (rx->sta)
2302 rx->sta->rx_packets++;
2303 dev_kfree_skb(rx->skb);
2304 return RX_QUEUED;
2305 }
2306
2307
2308 return RX_CONTINUE;
2309 }
2310
2311 static ieee80211_rx_result debug_noinline
2312 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2313 {
2314 struct ieee80211_local *local = rx->local;
2315 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2316 struct sk_buff *nskb;
2317 struct ieee80211_sub_if_data *sdata = rx->sdata;
2318 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2319
2320 if (!ieee80211_is_action(mgmt->frame_control))
2321 return RX_CONTINUE;
2322
2323 /*
2324 * For AP mode, hostapd is responsible for handling any action
2325 * frames that we didn't handle, including returning unknown
2326 * ones. For all other modes we will return them to the sender,
2327 * setting the 0x80 bit in the action category, as required by
2328 * 802.11-2007 7.3.1.11.
2329 * Newer versions of hostapd shall also use the management frame
2330 * registration mechanisms, but older ones still use cooked
2331 * monitor interfaces so push all frames there.
2332 */
2333 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2334 (sdata->vif.type == NL80211_IFTYPE_AP ||
2335 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2336 return RX_DROP_MONITOR;
2337
2338 /* do not return rejected action frames */
2339 if (mgmt->u.action.category & 0x80)
2340 return RX_DROP_UNUSABLE;
2341
2342 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2343 GFP_ATOMIC);
2344 if (nskb) {
2345 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2346
2347 nmgmt->u.action.category |= 0x80;
2348 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2349 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2350
2351 memset(nskb->cb, 0, sizeof(nskb->cb));
2352
2353 ieee80211_tx_skb(rx->sdata, nskb);
2354 }
2355 dev_kfree_skb(rx->skb);
2356 return RX_QUEUED;
2357 }
2358
2359 static ieee80211_rx_result debug_noinline
2360 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2361 {
2362 struct ieee80211_sub_if_data *sdata = rx->sdata;
2363 ieee80211_rx_result rxs;
2364 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2365 __le16 stype;
2366
2367 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2368 if (rxs != RX_CONTINUE)
2369 return rxs;
2370
2371 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2372
2373 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2374 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2375 sdata->vif.type != NL80211_IFTYPE_STATION)
2376 return RX_DROP_MONITOR;
2377
2378 switch (stype) {
2379 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2380 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2381 /* process for all: mesh, mlme, ibss */
2382 break;
2383 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2384 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2385 if (is_multicast_ether_addr(mgmt->da) &&
2386 !is_broadcast_ether_addr(mgmt->da))
2387 return RX_DROP_MONITOR;
2388
2389 /* process only for station */
2390 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2391 return RX_DROP_MONITOR;
2392 break;
2393 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2394 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2395 /* process only for ibss */
2396 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2397 return RX_DROP_MONITOR;
2398 break;
2399 default:
2400 return RX_DROP_MONITOR;
2401 }
2402
2403 /* queue up frame and kick off work to process it */
2404 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2405 skb_queue_tail(&sdata->skb_queue, rx->skb);
2406 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2407 if (rx->sta)
2408 rx->sta->rx_packets++;
2409
2410 return RX_QUEUED;
2411 }
2412
2413 /* TODO: use IEEE80211_RX_FRAGMENTED */
2414 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2415 struct ieee80211_rate *rate)
2416 {
2417 struct ieee80211_sub_if_data *sdata;
2418 struct ieee80211_local *local = rx->local;
2419 struct ieee80211_rtap_hdr {
2420 struct ieee80211_radiotap_header hdr;
2421 u8 flags;
2422 u8 rate_or_pad;
2423 __le16 chan_freq;
2424 __le16 chan_flags;
2425 } __packed *rthdr;
2426 struct sk_buff *skb = rx->skb, *skb2;
2427 struct net_device *prev_dev = NULL;
2428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2429
2430 /*
2431 * If cooked monitor has been processed already, then
2432 * don't do it again. If not, set the flag.
2433 */
2434 if (rx->flags & IEEE80211_RX_CMNTR)
2435 goto out_free_skb;
2436 rx->flags |= IEEE80211_RX_CMNTR;
2437
2438 if (skb_headroom(skb) < sizeof(*rthdr) &&
2439 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2440 goto out_free_skb;
2441
2442 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2443 memset(rthdr, 0, sizeof(*rthdr));
2444 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2445 rthdr->hdr.it_present =
2446 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2447 (1 << IEEE80211_RADIOTAP_CHANNEL));
2448
2449 if (rate) {
2450 rthdr->rate_or_pad = rate->bitrate / 5;
2451 rthdr->hdr.it_present |=
2452 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2453 }
2454 rthdr->chan_freq = cpu_to_le16(status->freq);
2455
2456 if (status->band == IEEE80211_BAND_5GHZ)
2457 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2458 IEEE80211_CHAN_5GHZ);
2459 else
2460 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2461 IEEE80211_CHAN_2GHZ);
2462
2463 skb_set_mac_header(skb, 0);
2464 skb->ip_summed = CHECKSUM_UNNECESSARY;
2465 skb->pkt_type = PACKET_OTHERHOST;
2466 skb->protocol = htons(ETH_P_802_2);
2467
2468 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2469 if (!ieee80211_sdata_running(sdata))
2470 continue;
2471
2472 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2473 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2474 continue;
2475
2476 if (prev_dev) {
2477 skb2 = skb_clone(skb, GFP_ATOMIC);
2478 if (skb2) {
2479 skb2->dev = prev_dev;
2480 netif_receive_skb(skb2);
2481 }
2482 }
2483
2484 prev_dev = sdata->dev;
2485 sdata->dev->stats.rx_packets++;
2486 sdata->dev->stats.rx_bytes += skb->len;
2487 }
2488
2489 if (prev_dev) {
2490 skb->dev = prev_dev;
2491 netif_receive_skb(skb);
2492 return;
2493 }
2494
2495 out_free_skb:
2496 dev_kfree_skb(skb);
2497 }
2498
2499 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2500 ieee80211_rx_result res)
2501 {
2502 switch (res) {
2503 case RX_DROP_MONITOR:
2504 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2505 if (rx->sta)
2506 rx->sta->rx_dropped++;
2507 /* fall through */
2508 case RX_CONTINUE: {
2509 struct ieee80211_rate *rate = NULL;
2510 struct ieee80211_supported_band *sband;
2511 struct ieee80211_rx_status *status;
2512
2513 status = IEEE80211_SKB_RXCB((rx->skb));
2514
2515 sband = rx->local->hw.wiphy->bands[status->band];
2516 if (!(status->flag & RX_FLAG_HT))
2517 rate = &sband->bitrates[status->rate_idx];
2518
2519 ieee80211_rx_cooked_monitor(rx, rate);
2520 break;
2521 }
2522 case RX_DROP_UNUSABLE:
2523 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2524 if (rx->sta)
2525 rx->sta->rx_dropped++;
2526 dev_kfree_skb(rx->skb);
2527 break;
2528 case RX_QUEUED:
2529 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2530 break;
2531 }
2532 }
2533
2534 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2535 {
2536 ieee80211_rx_result res = RX_DROP_MONITOR;
2537 struct sk_buff *skb;
2538
2539 #define CALL_RXH(rxh) \
2540 do { \
2541 res = rxh(rx); \
2542 if (res != RX_CONTINUE) \
2543 goto rxh_next; \
2544 } while (0);
2545
2546 spin_lock(&rx->local->rx_skb_queue.lock);
2547 if (rx->local->running_rx_handler)
2548 goto unlock;
2549
2550 rx->local->running_rx_handler = true;
2551
2552 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2553 spin_unlock(&rx->local->rx_skb_queue.lock);
2554
2555 /*
2556 * all the other fields are valid across frames
2557 * that belong to an aMPDU since they are on the
2558 * same TID from the same station
2559 */
2560 rx->skb = skb;
2561
2562 CALL_RXH(ieee80211_rx_h_decrypt)
2563 CALL_RXH(ieee80211_rx_h_check_more_data)
2564 CALL_RXH(ieee80211_rx_h_sta_process)
2565 CALL_RXH(ieee80211_rx_h_defragment)
2566 CALL_RXH(ieee80211_rx_h_ps_poll)
2567 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2568 /* must be after MMIC verify so header is counted in MPDU mic */
2569 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2570 CALL_RXH(ieee80211_rx_h_amsdu)
2571 #ifdef CONFIG_MAC80211_MESH
2572 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2573 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2574 #endif
2575 CALL_RXH(ieee80211_rx_h_data)
2576 CALL_RXH(ieee80211_rx_h_ctrl);
2577 CALL_RXH(ieee80211_rx_h_mgmt_check)
2578 CALL_RXH(ieee80211_rx_h_action)
2579 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2580 CALL_RXH(ieee80211_rx_h_action_return)
2581 CALL_RXH(ieee80211_rx_h_mgmt)
2582
2583 rxh_next:
2584 ieee80211_rx_handlers_result(rx, res);
2585 spin_lock(&rx->local->rx_skb_queue.lock);
2586 #undef CALL_RXH
2587 }
2588
2589 rx->local->running_rx_handler = false;
2590
2591 unlock:
2592 spin_unlock(&rx->local->rx_skb_queue.lock);
2593 }
2594
2595 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2596 {
2597 ieee80211_rx_result res = RX_DROP_MONITOR;
2598
2599 #define CALL_RXH(rxh) \
2600 do { \
2601 res = rxh(rx); \
2602 if (res != RX_CONTINUE) \
2603 goto rxh_next; \
2604 } while (0);
2605
2606 CALL_RXH(ieee80211_rx_h_passive_scan)
2607 CALL_RXH(ieee80211_rx_h_check)
2608
2609 ieee80211_rx_reorder_ampdu(rx);
2610
2611 ieee80211_rx_handlers(rx);
2612 return;
2613
2614 rxh_next:
2615 ieee80211_rx_handlers_result(rx, res);
2616
2617 #undef CALL_RXH
2618 }
2619
2620 /*
2621 * This function makes calls into the RX path, therefore
2622 * it has to be invoked under RCU read lock.
2623 */
2624 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2625 {
2626 struct ieee80211_rx_data rx = {
2627 .sta = sta,
2628 .sdata = sta->sdata,
2629 .local = sta->local,
2630 /* This is OK -- must be QoS data frame */
2631 .security_idx = tid,
2632 .seqno_idx = tid,
2633 .flags = 0,
2634 };
2635 struct tid_ampdu_rx *tid_agg_rx;
2636
2637 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2638 if (!tid_agg_rx)
2639 return;
2640
2641 spin_lock(&tid_agg_rx->reorder_lock);
2642 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2643 spin_unlock(&tid_agg_rx->reorder_lock);
2644
2645 ieee80211_rx_handlers(&rx);
2646 }
2647
2648 /* main receive path */
2649
2650 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2651 struct ieee80211_hdr *hdr)
2652 {
2653 struct ieee80211_sub_if_data *sdata = rx->sdata;
2654 struct sk_buff *skb = rx->skb;
2655 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2656 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2657 int multicast = is_multicast_ether_addr(hdr->addr1);
2658
2659 switch (sdata->vif.type) {
2660 case NL80211_IFTYPE_STATION:
2661 if (!bssid && !sdata->u.mgd.use_4addr)
2662 return 0;
2663 if (!multicast &&
2664 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2665 if (!(sdata->dev->flags & IFF_PROMISC) ||
2666 sdata->u.mgd.use_4addr)
2667 return 0;
2668 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2669 }
2670 break;
2671 case NL80211_IFTYPE_ADHOC:
2672 if (!bssid)
2673 return 0;
2674 if (ieee80211_is_beacon(hdr->frame_control)) {
2675 return 1;
2676 }
2677 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2678 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2679 return 0;
2680 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2681 } else if (!multicast &&
2682 compare_ether_addr(sdata->vif.addr,
2683 hdr->addr1) != 0) {
2684 if (!(sdata->dev->flags & IFF_PROMISC))
2685 return 0;
2686 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2687 } else if (!rx->sta) {
2688 int rate_idx;
2689 if (status->flag & RX_FLAG_HT)
2690 rate_idx = 0; /* TODO: HT rates */
2691 else
2692 rate_idx = status->rate_idx;
2693 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2694 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2695 }
2696 break;
2697 case NL80211_IFTYPE_MESH_POINT:
2698 if (!multicast &&
2699 compare_ether_addr(sdata->vif.addr,
2700 hdr->addr1) != 0) {
2701 if (!(sdata->dev->flags & IFF_PROMISC))
2702 return 0;
2703
2704 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2705 }
2706 break;
2707 case NL80211_IFTYPE_AP_VLAN:
2708 case NL80211_IFTYPE_AP:
2709 if (!bssid) {
2710 if (compare_ether_addr(sdata->vif.addr,
2711 hdr->addr1))
2712 return 0;
2713 } else if (!ieee80211_bssid_match(bssid,
2714 sdata->vif.addr)) {
2715 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2716 !ieee80211_is_beacon(hdr->frame_control) &&
2717 !(ieee80211_is_action(hdr->frame_control) &&
2718 sdata->vif.p2p))
2719 return 0;
2720 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2721 }
2722 break;
2723 case NL80211_IFTYPE_WDS:
2724 if (bssid || !ieee80211_is_data(hdr->frame_control))
2725 return 0;
2726 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2727 return 0;
2728 break;
2729 default:
2730 /* should never get here */
2731 WARN_ON(1);
2732 break;
2733 }
2734
2735 return 1;
2736 }
2737
2738 /*
2739 * This function returns whether or not the SKB
2740 * was destined for RX processing or not, which,
2741 * if consume is true, is equivalent to whether
2742 * or not the skb was consumed.
2743 */
2744 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2745 struct sk_buff *skb, bool consume)
2746 {
2747 struct ieee80211_local *local = rx->local;
2748 struct ieee80211_sub_if_data *sdata = rx->sdata;
2749 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2750 struct ieee80211_hdr *hdr = (void *)skb->data;
2751 int prepares;
2752
2753 rx->skb = skb;
2754 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2755 prepares = prepare_for_handlers(rx, hdr);
2756
2757 if (!prepares)
2758 return false;
2759
2760 if (!consume) {
2761 skb = skb_copy(skb, GFP_ATOMIC);
2762 if (!skb) {
2763 if (net_ratelimit())
2764 wiphy_debug(local->hw.wiphy,
2765 "failed to copy skb for %s\n",
2766 sdata->name);
2767 return true;
2768 }
2769
2770 rx->skb = skb;
2771 }
2772
2773 ieee80211_invoke_rx_handlers(rx);
2774 return true;
2775 }
2776
2777 /*
2778 * This is the actual Rx frames handler. as it blongs to Rx path it must
2779 * be called with rcu_read_lock protection.
2780 */
2781 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2782 struct sk_buff *skb)
2783 {
2784 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2785 struct ieee80211_local *local = hw_to_local(hw);
2786 struct ieee80211_sub_if_data *sdata;
2787 struct ieee80211_hdr *hdr;
2788 __le16 fc;
2789 struct ieee80211_rx_data rx;
2790 struct ieee80211_sub_if_data *prev;
2791 struct sta_info *sta, *tmp, *prev_sta;
2792 int err = 0;
2793
2794 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2795 memset(&rx, 0, sizeof(rx));
2796 rx.skb = skb;
2797 rx.local = local;
2798
2799 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2800 local->dot11ReceivedFragmentCount++;
2801
2802 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2803 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2804 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2805
2806 if (ieee80211_is_mgmt(fc))
2807 err = skb_linearize(skb);
2808 else
2809 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2810
2811 if (err) {
2812 dev_kfree_skb(skb);
2813 return;
2814 }
2815
2816 hdr = (struct ieee80211_hdr *)skb->data;
2817 ieee80211_parse_qos(&rx);
2818 ieee80211_verify_alignment(&rx);
2819
2820 if (ieee80211_is_data(fc)) {
2821 prev_sta = NULL;
2822
2823 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) {
2824 if (!prev_sta) {
2825 prev_sta = sta;
2826 continue;
2827 }
2828
2829 rx.sta = prev_sta;
2830 rx.sdata = prev_sta->sdata;
2831 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2832
2833 prev_sta = sta;
2834 }
2835
2836 if (prev_sta) {
2837 rx.sta = prev_sta;
2838 rx.sdata = prev_sta->sdata;
2839
2840 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2841 return;
2842 goto out;
2843 }
2844 }
2845
2846 prev = NULL;
2847
2848 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2849 if (!ieee80211_sdata_running(sdata))
2850 continue;
2851
2852 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2853 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2854 continue;
2855
2856 /*
2857 * frame is destined for this interface, but if it's
2858 * not also for the previous one we handle that after
2859 * the loop to avoid copying the SKB once too much
2860 */
2861
2862 if (!prev) {
2863 prev = sdata;
2864 continue;
2865 }
2866
2867 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2868 rx.sdata = prev;
2869 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2870
2871 prev = sdata;
2872 }
2873
2874 if (prev) {
2875 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2876 rx.sdata = prev;
2877
2878 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2879 return;
2880 }
2881
2882 out:
2883 dev_kfree_skb(skb);
2884 }
2885
2886 /*
2887 * This is the receive path handler. It is called by a low level driver when an
2888 * 802.11 MPDU is received from the hardware.
2889 */
2890 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2891 {
2892 struct ieee80211_local *local = hw_to_local(hw);
2893 struct ieee80211_rate *rate = NULL;
2894 struct ieee80211_supported_band *sband;
2895 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2896
2897 WARN_ON_ONCE(softirq_count() == 0);
2898
2899 if (WARN_ON(status->band < 0 ||
2900 status->band >= IEEE80211_NUM_BANDS))
2901 goto drop;
2902
2903 sband = local->hw.wiphy->bands[status->band];
2904 if (WARN_ON(!sband))
2905 goto drop;
2906
2907 /*
2908 * If we're suspending, it is possible although not too likely
2909 * that we'd be receiving frames after having already partially
2910 * quiesced the stack. We can't process such frames then since
2911 * that might, for example, cause stations to be added or other
2912 * driver callbacks be invoked.
2913 */
2914 if (unlikely(local->quiescing || local->suspended))
2915 goto drop;
2916
2917 /*
2918 * The same happens when we're not even started,
2919 * but that's worth a warning.
2920 */
2921 if (WARN_ON(!local->started))
2922 goto drop;
2923
2924 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2925 /*
2926 * Validate the rate, unless a PLCP error means that
2927 * we probably can't have a valid rate here anyway.
2928 */
2929
2930 if (status->flag & RX_FLAG_HT) {
2931 /*
2932 * rate_idx is MCS index, which can be [0-76]
2933 * as documented on:
2934 *
2935 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2936 *
2937 * Anything else would be some sort of driver or
2938 * hardware error. The driver should catch hardware
2939 * errors.
2940 */
2941 if (WARN((status->rate_idx < 0 ||
2942 status->rate_idx > 76),
2943 "Rate marked as an HT rate but passed "
2944 "status->rate_idx is not "
2945 "an MCS index [0-76]: %d (0x%02x)\n",
2946 status->rate_idx,
2947 status->rate_idx))
2948 goto drop;
2949 } else {
2950 if (WARN_ON(status->rate_idx < 0 ||
2951 status->rate_idx >= sband->n_bitrates))
2952 goto drop;
2953 rate = &sband->bitrates[status->rate_idx];
2954 }
2955 }
2956
2957 status->rx_flags = 0;
2958
2959 /*
2960 * key references and virtual interfaces are protected using RCU
2961 * and this requires that we are in a read-side RCU section during
2962 * receive processing
2963 */
2964 rcu_read_lock();
2965
2966 /*
2967 * Frames with failed FCS/PLCP checksum are not returned,
2968 * all other frames are returned without radiotap header
2969 * if it was previously present.
2970 * Also, frames with less than 16 bytes are dropped.
2971 */
2972 skb = ieee80211_rx_monitor(local, skb, rate);
2973 if (!skb) {
2974 rcu_read_unlock();
2975 return;
2976 }
2977
2978 ieee80211_tpt_led_trig_rx(local,
2979 ((struct ieee80211_hdr *)skb->data)->frame_control,
2980 skb->len);
2981 __ieee80211_rx_handle_packet(hw, skb);
2982
2983 rcu_read_unlock();
2984
2985 return;
2986 drop:
2987 kfree_skb(skb);
2988 }
2989 EXPORT_SYMBOL(ieee80211_rx);
2990
2991 /* This is a version of the rx handler that can be called from hard irq
2992 * context. Post the skb on the queue and schedule the tasklet */
2993 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2994 {
2995 struct ieee80211_local *local = hw_to_local(hw);
2996
2997 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2998
2999 skb->pkt_type = IEEE80211_RX_MSG;
3000 skb_queue_tail(&local->skb_queue, skb);
3001 tasklet_schedule(&local->tasklet);
3002 }
3003 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.315419 seconds and 6 git commands to generate.