Merge git://www.linux-watchdog.org/linux-watchdog
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38
39 u64_stats_update_begin(&tstats->syncp);
40 tstats->rx_packets++;
41 tstats->rx_bytes += len;
42 u64_stats_update_end(&tstats->syncp);
43 }
44
45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
46 enum nl80211_iftype type)
47 {
48 __le16 fc = hdr->frame_control;
49
50 if (ieee80211_is_data(fc)) {
51 if (len < 24) /* drop incorrect hdr len (data) */
52 return NULL;
53
54 if (ieee80211_has_a4(fc))
55 return NULL;
56 if (ieee80211_has_tods(fc))
57 return hdr->addr1;
58 if (ieee80211_has_fromds(fc))
59 return hdr->addr2;
60
61 return hdr->addr3;
62 }
63
64 if (ieee80211_is_mgmt(fc)) {
65 if (len < 24) /* drop incorrect hdr len (mgmt) */
66 return NULL;
67 return hdr->addr3;
68 }
69
70 if (ieee80211_is_ctl(fc)) {
71 if (ieee80211_is_pspoll(fc))
72 return hdr->addr1;
73
74 if (ieee80211_is_back_req(fc)) {
75 switch (type) {
76 case NL80211_IFTYPE_STATION:
77 return hdr->addr2;
78 case NL80211_IFTYPE_AP:
79 case NL80211_IFTYPE_AP_VLAN:
80 return hdr->addr1;
81 default:
82 break; /* fall through to the return */
83 }
84 }
85 }
86
87 return NULL;
88 }
89
90 /*
91 * monitor mode reception
92 *
93 * This function cleans up the SKB, i.e. it removes all the stuff
94 * only useful for monitoring.
95 */
96 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
97 struct sk_buff *skb,
98 unsigned int rtap_vendor_space)
99 {
100 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
101 if (likely(skb->len > FCS_LEN))
102 __pskb_trim(skb, skb->len - FCS_LEN);
103 else {
104 /* driver bug */
105 WARN_ON(1);
106 dev_kfree_skb(skb);
107 return NULL;
108 }
109 }
110
111 __pskb_pull(skb, rtap_vendor_space);
112
113 return skb;
114 }
115
116 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
117 unsigned int rtap_vendor_space)
118 {
119 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
120 struct ieee80211_hdr *hdr;
121
122 hdr = (void *)(skb->data + rtap_vendor_space);
123
124 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
125 RX_FLAG_FAILED_PLCP_CRC))
126 return true;
127
128 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
129 return true;
130
131 if (ieee80211_is_ctl(hdr->frame_control) &&
132 !ieee80211_is_pspoll(hdr->frame_control) &&
133 !ieee80211_is_back_req(hdr->frame_control))
134 return true;
135
136 return false;
137 }
138
139 static int
140 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
141 struct ieee80211_rx_status *status,
142 struct sk_buff *skb)
143 {
144 int len;
145
146 /* always present fields */
147 len = sizeof(struct ieee80211_radiotap_header) + 8;
148
149 /* allocate extra bitmaps */
150 if (status->chains)
151 len += 4 * hweight8(status->chains);
152
153 if (ieee80211_have_rx_timestamp(status)) {
154 len = ALIGN(len, 8);
155 len += 8;
156 }
157 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
158 len += 1;
159
160 /* antenna field, if we don't have per-chain info */
161 if (!status->chains)
162 len += 1;
163
164 /* padding for RX_FLAGS if necessary */
165 len = ALIGN(len, 2);
166
167 if (status->flag & RX_FLAG_HT) /* HT info */
168 len += 3;
169
170 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
171 len = ALIGN(len, 4);
172 len += 8;
173 }
174
175 if (status->flag & RX_FLAG_VHT) {
176 len = ALIGN(len, 2);
177 len += 12;
178 }
179
180 if (status->chains) {
181 /* antenna and antenna signal fields */
182 len += 2 * hweight8(status->chains);
183 }
184
185 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
186 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
187
188 /* vendor presence bitmap */
189 len += 4;
190 /* alignment for fixed 6-byte vendor data header */
191 len = ALIGN(len, 2);
192 /* vendor data header */
193 len += 6;
194 if (WARN_ON(rtap->align == 0))
195 rtap->align = 1;
196 len = ALIGN(len, rtap->align);
197 len += rtap->len + rtap->pad;
198 }
199
200 return len;
201 }
202
203 /*
204 * ieee80211_add_rx_radiotap_header - add radiotap header
205 *
206 * add a radiotap header containing all the fields which the hardware provided.
207 */
208 static void
209 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
210 struct sk_buff *skb,
211 struct ieee80211_rate *rate,
212 int rtap_len, bool has_fcs)
213 {
214 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
215 struct ieee80211_radiotap_header *rthdr;
216 unsigned char *pos;
217 __le32 *it_present;
218 u32 it_present_val;
219 u16 rx_flags = 0;
220 u16 channel_flags = 0;
221 int mpdulen, chain;
222 unsigned long chains = status->chains;
223 struct ieee80211_vendor_radiotap rtap = {};
224
225 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
226 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
227 /* rtap.len and rtap.pad are undone immediately */
228 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
229 }
230
231 mpdulen = skb->len;
232 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
233 mpdulen += FCS_LEN;
234
235 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
236 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
237 it_present = &rthdr->it_present;
238
239 /* radiotap header, set always present flags */
240 rthdr->it_len = cpu_to_le16(rtap_len);
241 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
242 BIT(IEEE80211_RADIOTAP_CHANNEL) |
243 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
244
245 if (!status->chains)
246 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
247
248 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
249 it_present_val |=
250 BIT(IEEE80211_RADIOTAP_EXT) |
251 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
252 put_unaligned_le32(it_present_val, it_present);
253 it_present++;
254 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
255 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
256 }
257
258 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
259 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
260 BIT(IEEE80211_RADIOTAP_EXT);
261 put_unaligned_le32(it_present_val, it_present);
262 it_present++;
263 it_present_val = rtap.present;
264 }
265
266 put_unaligned_le32(it_present_val, it_present);
267
268 pos = (void *)(it_present + 1);
269
270 /* the order of the following fields is important */
271
272 /* IEEE80211_RADIOTAP_TSFT */
273 if (ieee80211_have_rx_timestamp(status)) {
274 /* padding */
275 while ((pos - (u8 *)rthdr) & 7)
276 *pos++ = 0;
277 put_unaligned_le64(
278 ieee80211_calculate_rx_timestamp(local, status,
279 mpdulen, 0),
280 pos);
281 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
282 pos += 8;
283 }
284
285 /* IEEE80211_RADIOTAP_FLAGS */
286 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
287 *pos |= IEEE80211_RADIOTAP_F_FCS;
288 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
289 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
290 if (status->flag & RX_FLAG_SHORTPRE)
291 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
292 pos++;
293
294 /* IEEE80211_RADIOTAP_RATE */
295 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
296 /*
297 * Without rate information don't add it. If we have,
298 * MCS information is a separate field in radiotap,
299 * added below. The byte here is needed as padding
300 * for the channel though, so initialise it to 0.
301 */
302 *pos = 0;
303 } else {
304 int shift = 0;
305 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
306 if (status->flag & RX_FLAG_10MHZ)
307 shift = 1;
308 else if (status->flag & RX_FLAG_5MHZ)
309 shift = 2;
310 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
311 }
312 pos++;
313
314 /* IEEE80211_RADIOTAP_CHANNEL */
315 put_unaligned_le16(status->freq, pos);
316 pos += 2;
317 if (status->flag & RX_FLAG_10MHZ)
318 channel_flags |= IEEE80211_CHAN_HALF;
319 else if (status->flag & RX_FLAG_5MHZ)
320 channel_flags |= IEEE80211_CHAN_QUARTER;
321
322 if (status->band == IEEE80211_BAND_5GHZ)
323 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
324 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
325 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
326 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
327 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
328 else if (rate)
329 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
330 else
331 channel_flags |= IEEE80211_CHAN_2GHZ;
332 put_unaligned_le16(channel_flags, pos);
333 pos += 2;
334
335 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
336 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
337 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
338 *pos = status->signal;
339 rthdr->it_present |=
340 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
341 pos++;
342 }
343
344 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
345
346 if (!status->chains) {
347 /* IEEE80211_RADIOTAP_ANTENNA */
348 *pos = status->antenna;
349 pos++;
350 }
351
352 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
353
354 /* IEEE80211_RADIOTAP_RX_FLAGS */
355 /* ensure 2 byte alignment for the 2 byte field as required */
356 if ((pos - (u8 *)rthdr) & 1)
357 *pos++ = 0;
358 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
359 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
360 put_unaligned_le16(rx_flags, pos);
361 pos += 2;
362
363 if (status->flag & RX_FLAG_HT) {
364 unsigned int stbc;
365
366 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
367 *pos++ = local->hw.radiotap_mcs_details;
368 *pos = 0;
369 if (status->flag & RX_FLAG_SHORT_GI)
370 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
371 if (status->flag & RX_FLAG_40MHZ)
372 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
373 if (status->flag & RX_FLAG_HT_GF)
374 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
375 if (status->flag & RX_FLAG_LDPC)
376 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
377 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
378 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
379 pos++;
380 *pos++ = status->rate_idx;
381 }
382
383 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
384 u16 flags = 0;
385
386 /* ensure 4 byte alignment */
387 while ((pos - (u8 *)rthdr) & 3)
388 pos++;
389 rthdr->it_present |=
390 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
391 put_unaligned_le32(status->ampdu_reference, pos);
392 pos += 4;
393 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
394 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
395 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
396 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
397 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
398 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
399 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
400 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
401 put_unaligned_le16(flags, pos);
402 pos += 2;
403 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
404 *pos++ = status->ampdu_delimiter_crc;
405 else
406 *pos++ = 0;
407 *pos++ = 0;
408 }
409
410 if (status->flag & RX_FLAG_VHT) {
411 u16 known = local->hw.radiotap_vht_details;
412
413 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
414 put_unaligned_le16(known, pos);
415 pos += 2;
416 /* flags */
417 if (status->flag & RX_FLAG_SHORT_GI)
418 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
419 /* in VHT, STBC is binary */
420 if (status->flag & RX_FLAG_STBC_MASK)
421 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
422 if (status->vht_flag & RX_VHT_FLAG_BF)
423 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
424 pos++;
425 /* bandwidth */
426 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
427 *pos++ = 4;
428 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
429 *pos++ = 11;
430 else if (status->flag & RX_FLAG_40MHZ)
431 *pos++ = 1;
432 else /* 20 MHz */
433 *pos++ = 0;
434 /* MCS/NSS */
435 *pos = (status->rate_idx << 4) | status->vht_nss;
436 pos += 4;
437 /* coding field */
438 if (status->flag & RX_FLAG_LDPC)
439 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
440 pos++;
441 /* group ID */
442 pos++;
443 /* partial_aid */
444 pos += 2;
445 }
446
447 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
448 *pos++ = status->chain_signal[chain];
449 *pos++ = chain;
450 }
451
452 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
453 /* ensure 2 byte alignment for the vendor field as required */
454 if ((pos - (u8 *)rthdr) & 1)
455 *pos++ = 0;
456 *pos++ = rtap.oui[0];
457 *pos++ = rtap.oui[1];
458 *pos++ = rtap.oui[2];
459 *pos++ = rtap.subns;
460 put_unaligned_le16(rtap.len, pos);
461 pos += 2;
462 /* align the actual payload as requested */
463 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
464 *pos++ = 0;
465 /* data (and possible padding) already follows */
466 }
467 }
468
469 /*
470 * This function copies a received frame to all monitor interfaces and
471 * returns a cleaned-up SKB that no longer includes the FCS nor the
472 * radiotap header the driver might have added.
473 */
474 static struct sk_buff *
475 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
476 struct ieee80211_rate *rate)
477 {
478 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
479 struct ieee80211_sub_if_data *sdata;
480 int rt_hdrlen, needed_headroom;
481 struct sk_buff *skb, *skb2;
482 struct net_device *prev_dev = NULL;
483 int present_fcs_len = 0;
484 unsigned int rtap_vendor_space = 0;
485
486 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
487 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
488
489 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
490 }
491
492 /*
493 * First, we may need to make a copy of the skb because
494 * (1) we need to modify it for radiotap (if not present), and
495 * (2) the other RX handlers will modify the skb we got.
496 *
497 * We don't need to, of course, if we aren't going to return
498 * the SKB because it has a bad FCS/PLCP checksum.
499 */
500
501 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
502 present_fcs_len = FCS_LEN;
503
504 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
505 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
506 dev_kfree_skb(origskb);
507 return NULL;
508 }
509
510 if (!local->monitors) {
511 if (should_drop_frame(origskb, present_fcs_len,
512 rtap_vendor_space)) {
513 dev_kfree_skb(origskb);
514 return NULL;
515 }
516
517 return remove_monitor_info(local, origskb, rtap_vendor_space);
518 }
519
520 /* room for the radiotap header based on driver features */
521 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
522 needed_headroom = rt_hdrlen - rtap_vendor_space;
523
524 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
525 /* only need to expand headroom if necessary */
526 skb = origskb;
527 origskb = NULL;
528
529 /*
530 * This shouldn't trigger often because most devices have an
531 * RX header they pull before we get here, and that should
532 * be big enough for our radiotap information. We should
533 * probably export the length to drivers so that we can have
534 * them allocate enough headroom to start with.
535 */
536 if (skb_headroom(skb) < needed_headroom &&
537 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
538 dev_kfree_skb(skb);
539 return NULL;
540 }
541 } else {
542 /*
543 * Need to make a copy and possibly remove radiotap header
544 * and FCS from the original.
545 */
546 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
547
548 origskb = remove_monitor_info(local, origskb,
549 rtap_vendor_space);
550
551 if (!skb)
552 return origskb;
553 }
554
555 /* prepend radiotap information */
556 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
557
558 skb_reset_mac_header(skb);
559 skb->ip_summed = CHECKSUM_UNNECESSARY;
560 skb->pkt_type = PACKET_OTHERHOST;
561 skb->protocol = htons(ETH_P_802_2);
562
563 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
564 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
565 continue;
566
567 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
568 continue;
569
570 if (!ieee80211_sdata_running(sdata))
571 continue;
572
573 if (prev_dev) {
574 skb2 = skb_clone(skb, GFP_ATOMIC);
575 if (skb2) {
576 skb2->dev = prev_dev;
577 netif_receive_skb(skb2);
578 }
579 }
580
581 prev_dev = sdata->dev;
582 ieee80211_rx_stats(sdata->dev, skb->len);
583 }
584
585 if (prev_dev) {
586 skb->dev = prev_dev;
587 netif_receive_skb(skb);
588 } else
589 dev_kfree_skb(skb);
590
591 return origskb;
592 }
593
594 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
595 {
596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
597 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
598 int tid, seqno_idx, security_idx;
599
600 /* does the frame have a qos control field? */
601 if (ieee80211_is_data_qos(hdr->frame_control)) {
602 u8 *qc = ieee80211_get_qos_ctl(hdr);
603 /* frame has qos control */
604 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
605 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
606 status->rx_flags |= IEEE80211_RX_AMSDU;
607
608 seqno_idx = tid;
609 security_idx = tid;
610 } else {
611 /*
612 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
613 *
614 * Sequence numbers for management frames, QoS data
615 * frames with a broadcast/multicast address in the
616 * Address 1 field, and all non-QoS data frames sent
617 * by QoS STAs are assigned using an additional single
618 * modulo-4096 counter, [...]
619 *
620 * We also use that counter for non-QoS STAs.
621 */
622 seqno_idx = IEEE80211_NUM_TIDS;
623 security_idx = 0;
624 if (ieee80211_is_mgmt(hdr->frame_control))
625 security_idx = IEEE80211_NUM_TIDS;
626 tid = 0;
627 }
628
629 rx->seqno_idx = seqno_idx;
630 rx->security_idx = security_idx;
631 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
632 * For now, set skb->priority to 0 for other cases. */
633 rx->skb->priority = (tid > 7) ? 0 : tid;
634 }
635
636 /**
637 * DOC: Packet alignment
638 *
639 * Drivers always need to pass packets that are aligned to two-byte boundaries
640 * to the stack.
641 *
642 * Additionally, should, if possible, align the payload data in a way that
643 * guarantees that the contained IP header is aligned to a four-byte
644 * boundary. In the case of regular frames, this simply means aligning the
645 * payload to a four-byte boundary (because either the IP header is directly
646 * contained, or IV/RFC1042 headers that have a length divisible by four are
647 * in front of it). If the payload data is not properly aligned and the
648 * architecture doesn't support efficient unaligned operations, mac80211
649 * will align the data.
650 *
651 * With A-MSDU frames, however, the payload data address must yield two modulo
652 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
653 * push the IP header further back to a multiple of four again. Thankfully, the
654 * specs were sane enough this time around to require padding each A-MSDU
655 * subframe to a length that is a multiple of four.
656 *
657 * Padding like Atheros hardware adds which is between the 802.11 header and
658 * the payload is not supported, the driver is required to move the 802.11
659 * header to be directly in front of the payload in that case.
660 */
661 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
662 {
663 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
664 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
665 #endif
666 }
667
668
669 /* rx handlers */
670
671 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
672 {
673 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
674
675 if (is_multicast_ether_addr(hdr->addr1))
676 return 0;
677
678 return ieee80211_is_robust_mgmt_frame(skb);
679 }
680
681
682 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
683 {
684 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
685
686 if (!is_multicast_ether_addr(hdr->addr1))
687 return 0;
688
689 return ieee80211_is_robust_mgmt_frame(skb);
690 }
691
692
693 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
694 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
695 {
696 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
697 struct ieee80211_mmie *mmie;
698 struct ieee80211_mmie_16 *mmie16;
699
700 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
701 return -1;
702
703 if (!ieee80211_is_robust_mgmt_frame(skb))
704 return -1; /* not a robust management frame */
705
706 mmie = (struct ieee80211_mmie *)
707 (skb->data + skb->len - sizeof(*mmie));
708 if (mmie->element_id == WLAN_EID_MMIE &&
709 mmie->length == sizeof(*mmie) - 2)
710 return le16_to_cpu(mmie->key_id);
711
712 mmie16 = (struct ieee80211_mmie_16 *)
713 (skb->data + skb->len - sizeof(*mmie16));
714 if (skb->len >= 24 + sizeof(*mmie16) &&
715 mmie16->element_id == WLAN_EID_MMIE &&
716 mmie16->length == sizeof(*mmie16) - 2)
717 return le16_to_cpu(mmie16->key_id);
718
719 return -1;
720 }
721
722 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
723 struct sk_buff *skb)
724 {
725 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
726 __le16 fc;
727 int hdrlen;
728 u8 keyid;
729
730 fc = hdr->frame_control;
731 hdrlen = ieee80211_hdrlen(fc);
732
733 if (skb->len < hdrlen + cs->hdr_len)
734 return -EINVAL;
735
736 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
737 keyid &= cs->key_idx_mask;
738 keyid >>= cs->key_idx_shift;
739
740 return keyid;
741 }
742
743 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
744 {
745 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
746 char *dev_addr = rx->sdata->vif.addr;
747
748 if (ieee80211_is_data(hdr->frame_control)) {
749 if (is_multicast_ether_addr(hdr->addr1)) {
750 if (ieee80211_has_tods(hdr->frame_control) ||
751 !ieee80211_has_fromds(hdr->frame_control))
752 return RX_DROP_MONITOR;
753 if (ether_addr_equal(hdr->addr3, dev_addr))
754 return RX_DROP_MONITOR;
755 } else {
756 if (!ieee80211_has_a4(hdr->frame_control))
757 return RX_DROP_MONITOR;
758 if (ether_addr_equal(hdr->addr4, dev_addr))
759 return RX_DROP_MONITOR;
760 }
761 }
762
763 /* If there is not an established peer link and this is not a peer link
764 * establisment frame, beacon or probe, drop the frame.
765 */
766
767 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
768 struct ieee80211_mgmt *mgmt;
769
770 if (!ieee80211_is_mgmt(hdr->frame_control))
771 return RX_DROP_MONITOR;
772
773 if (ieee80211_is_action(hdr->frame_control)) {
774 u8 category;
775
776 /* make sure category field is present */
777 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
778 return RX_DROP_MONITOR;
779
780 mgmt = (struct ieee80211_mgmt *)hdr;
781 category = mgmt->u.action.category;
782 if (category != WLAN_CATEGORY_MESH_ACTION &&
783 category != WLAN_CATEGORY_SELF_PROTECTED)
784 return RX_DROP_MONITOR;
785 return RX_CONTINUE;
786 }
787
788 if (ieee80211_is_probe_req(hdr->frame_control) ||
789 ieee80211_is_probe_resp(hdr->frame_control) ||
790 ieee80211_is_beacon(hdr->frame_control) ||
791 ieee80211_is_auth(hdr->frame_control))
792 return RX_CONTINUE;
793
794 return RX_DROP_MONITOR;
795 }
796
797 return RX_CONTINUE;
798 }
799
800 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
801 struct tid_ampdu_rx *tid_agg_rx,
802 int index,
803 struct sk_buff_head *frames)
804 {
805 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
806 struct sk_buff *skb;
807 struct ieee80211_rx_status *status;
808
809 lockdep_assert_held(&tid_agg_rx->reorder_lock);
810
811 if (skb_queue_empty(skb_list))
812 goto no_frame;
813
814 if (!ieee80211_rx_reorder_ready(skb_list)) {
815 __skb_queue_purge(skb_list);
816 goto no_frame;
817 }
818
819 /* release frames from the reorder ring buffer */
820 tid_agg_rx->stored_mpdu_num--;
821 while ((skb = __skb_dequeue(skb_list))) {
822 status = IEEE80211_SKB_RXCB(skb);
823 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
824 __skb_queue_tail(frames, skb);
825 }
826
827 no_frame:
828 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
829 }
830
831 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
832 struct tid_ampdu_rx *tid_agg_rx,
833 u16 head_seq_num,
834 struct sk_buff_head *frames)
835 {
836 int index;
837
838 lockdep_assert_held(&tid_agg_rx->reorder_lock);
839
840 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
841 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
842 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
843 frames);
844 }
845 }
846
847 /*
848 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
849 * the skb was added to the buffer longer than this time ago, the earlier
850 * frames that have not yet been received are assumed to be lost and the skb
851 * can be released for processing. This may also release other skb's from the
852 * reorder buffer if there are no additional gaps between the frames.
853 *
854 * Callers must hold tid_agg_rx->reorder_lock.
855 */
856 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
857
858 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
859 struct tid_ampdu_rx *tid_agg_rx,
860 struct sk_buff_head *frames)
861 {
862 int index, i, j;
863
864 lockdep_assert_held(&tid_agg_rx->reorder_lock);
865
866 /* release the buffer until next missing frame */
867 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
868 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
869 tid_agg_rx->stored_mpdu_num) {
870 /*
871 * No buffers ready to be released, but check whether any
872 * frames in the reorder buffer have timed out.
873 */
874 int skipped = 1;
875 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
876 j = (j + 1) % tid_agg_rx->buf_size) {
877 if (!ieee80211_rx_reorder_ready(
878 &tid_agg_rx->reorder_buf[j])) {
879 skipped++;
880 continue;
881 }
882 if (skipped &&
883 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
884 HT_RX_REORDER_BUF_TIMEOUT))
885 goto set_release_timer;
886
887 /* don't leave incomplete A-MSDUs around */
888 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
889 i = (i + 1) % tid_agg_rx->buf_size)
890 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
891
892 ht_dbg_ratelimited(sdata,
893 "release an RX reorder frame due to timeout on earlier frames\n");
894 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
895 frames);
896
897 /*
898 * Increment the head seq# also for the skipped slots.
899 */
900 tid_agg_rx->head_seq_num =
901 (tid_agg_rx->head_seq_num +
902 skipped) & IEEE80211_SN_MASK;
903 skipped = 0;
904 }
905 } else while (ieee80211_rx_reorder_ready(
906 &tid_agg_rx->reorder_buf[index])) {
907 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
908 frames);
909 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
910 }
911
912 if (tid_agg_rx->stored_mpdu_num) {
913 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
914
915 for (; j != (index - 1) % tid_agg_rx->buf_size;
916 j = (j + 1) % tid_agg_rx->buf_size) {
917 if (ieee80211_rx_reorder_ready(
918 &tid_agg_rx->reorder_buf[j]))
919 break;
920 }
921
922 set_release_timer:
923
924 if (!tid_agg_rx->removed)
925 mod_timer(&tid_agg_rx->reorder_timer,
926 tid_agg_rx->reorder_time[j] + 1 +
927 HT_RX_REORDER_BUF_TIMEOUT);
928 } else {
929 del_timer(&tid_agg_rx->reorder_timer);
930 }
931 }
932
933 /*
934 * As this function belongs to the RX path it must be under
935 * rcu_read_lock protection. It returns false if the frame
936 * can be processed immediately, true if it was consumed.
937 */
938 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
939 struct tid_ampdu_rx *tid_agg_rx,
940 struct sk_buff *skb,
941 struct sk_buff_head *frames)
942 {
943 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
944 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
945 u16 sc = le16_to_cpu(hdr->seq_ctrl);
946 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
947 u16 head_seq_num, buf_size;
948 int index;
949 bool ret = true;
950
951 spin_lock(&tid_agg_rx->reorder_lock);
952
953 /*
954 * Offloaded BA sessions have no known starting sequence number so pick
955 * one from first Rxed frame for this tid after BA was started.
956 */
957 if (unlikely(tid_agg_rx->auto_seq)) {
958 tid_agg_rx->auto_seq = false;
959 tid_agg_rx->ssn = mpdu_seq_num;
960 tid_agg_rx->head_seq_num = mpdu_seq_num;
961 }
962
963 buf_size = tid_agg_rx->buf_size;
964 head_seq_num = tid_agg_rx->head_seq_num;
965
966 /* frame with out of date sequence number */
967 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
968 dev_kfree_skb(skb);
969 goto out;
970 }
971
972 /*
973 * If frame the sequence number exceeds our buffering window
974 * size release some previous frames to make room for this one.
975 */
976 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
977 head_seq_num = ieee80211_sn_inc(
978 ieee80211_sn_sub(mpdu_seq_num, buf_size));
979 /* release stored frames up to new head to stack */
980 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
981 head_seq_num, frames);
982 }
983
984 /* Now the new frame is always in the range of the reordering buffer */
985
986 index = mpdu_seq_num % tid_agg_rx->buf_size;
987
988 /* check if we already stored this frame */
989 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
990 dev_kfree_skb(skb);
991 goto out;
992 }
993
994 /*
995 * If the current MPDU is in the right order and nothing else
996 * is stored we can process it directly, no need to buffer it.
997 * If it is first but there's something stored, we may be able
998 * to release frames after this one.
999 */
1000 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1001 tid_agg_rx->stored_mpdu_num == 0) {
1002 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1003 tid_agg_rx->head_seq_num =
1004 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1005 ret = false;
1006 goto out;
1007 }
1008
1009 /* put the frame in the reordering buffer */
1010 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1011 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1012 tid_agg_rx->reorder_time[index] = jiffies;
1013 tid_agg_rx->stored_mpdu_num++;
1014 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1015 }
1016
1017 out:
1018 spin_unlock(&tid_agg_rx->reorder_lock);
1019 return ret;
1020 }
1021
1022 /*
1023 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1024 * true if the MPDU was buffered, false if it should be processed.
1025 */
1026 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1027 struct sk_buff_head *frames)
1028 {
1029 struct sk_buff *skb = rx->skb;
1030 struct ieee80211_local *local = rx->local;
1031 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1032 struct sta_info *sta = rx->sta;
1033 struct tid_ampdu_rx *tid_agg_rx;
1034 u16 sc;
1035 u8 tid, ack_policy;
1036
1037 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1038 is_multicast_ether_addr(hdr->addr1))
1039 goto dont_reorder;
1040
1041 /*
1042 * filter the QoS data rx stream according to
1043 * STA/TID and check if this STA/TID is on aggregation
1044 */
1045
1046 if (!sta)
1047 goto dont_reorder;
1048
1049 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1050 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1051 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1052
1053 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1054 if (!tid_agg_rx)
1055 goto dont_reorder;
1056
1057 /* qos null data frames are excluded */
1058 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1059 goto dont_reorder;
1060
1061 /* not part of a BA session */
1062 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1063 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1064 goto dont_reorder;
1065
1066 /* new, potentially un-ordered, ampdu frame - process it */
1067
1068 /* reset session timer */
1069 if (tid_agg_rx->timeout)
1070 tid_agg_rx->last_rx = jiffies;
1071
1072 /* if this mpdu is fragmented - terminate rx aggregation session */
1073 sc = le16_to_cpu(hdr->seq_ctrl);
1074 if (sc & IEEE80211_SCTL_FRAG) {
1075 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1076 skb_queue_tail(&rx->sdata->skb_queue, skb);
1077 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1078 return;
1079 }
1080
1081 /*
1082 * No locking needed -- we will only ever process one
1083 * RX packet at a time, and thus own tid_agg_rx. All
1084 * other code manipulating it needs to (and does) make
1085 * sure that we cannot get to it any more before doing
1086 * anything with it.
1087 */
1088 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1089 frames))
1090 return;
1091
1092 dont_reorder:
1093 __skb_queue_tail(frames, skb);
1094 }
1095
1096 static ieee80211_rx_result debug_noinline
1097 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1098 {
1099 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1100 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1101
1102 /*
1103 * Drop duplicate 802.11 retransmissions
1104 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1105 */
1106
1107 if (rx->skb->len < 24)
1108 return RX_CONTINUE;
1109
1110 if (ieee80211_is_ctl(hdr->frame_control) ||
1111 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1112 is_multicast_ether_addr(hdr->addr1))
1113 return RX_CONTINUE;
1114
1115 if (!rx->sta)
1116 return RX_CONTINUE;
1117
1118 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1119 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1120 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1121 rx->sta->rx_stats.num_duplicates++;
1122 return RX_DROP_UNUSABLE;
1123 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1124 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1125 }
1126
1127 return RX_CONTINUE;
1128 }
1129
1130 static ieee80211_rx_result debug_noinline
1131 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1132 {
1133 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1134
1135 /* Drop disallowed frame classes based on STA auth/assoc state;
1136 * IEEE 802.11, Chap 5.5.
1137 *
1138 * mac80211 filters only based on association state, i.e. it drops
1139 * Class 3 frames from not associated stations. hostapd sends
1140 * deauth/disassoc frames when needed. In addition, hostapd is
1141 * responsible for filtering on both auth and assoc states.
1142 */
1143
1144 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1145 return ieee80211_rx_mesh_check(rx);
1146
1147 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1148 ieee80211_is_pspoll(hdr->frame_control)) &&
1149 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1150 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1151 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1152 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1153 /*
1154 * accept port control frames from the AP even when it's not
1155 * yet marked ASSOC to prevent a race where we don't set the
1156 * assoc bit quickly enough before it sends the first frame
1157 */
1158 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1159 ieee80211_is_data_present(hdr->frame_control)) {
1160 unsigned int hdrlen;
1161 __be16 ethertype;
1162
1163 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1164
1165 if (rx->skb->len < hdrlen + 8)
1166 return RX_DROP_MONITOR;
1167
1168 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1169 if (ethertype == rx->sdata->control_port_protocol)
1170 return RX_CONTINUE;
1171 }
1172
1173 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1174 cfg80211_rx_spurious_frame(rx->sdata->dev,
1175 hdr->addr2,
1176 GFP_ATOMIC))
1177 return RX_DROP_UNUSABLE;
1178
1179 return RX_DROP_MONITOR;
1180 }
1181
1182 return RX_CONTINUE;
1183 }
1184
1185
1186 static ieee80211_rx_result debug_noinline
1187 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1188 {
1189 struct ieee80211_local *local;
1190 struct ieee80211_hdr *hdr;
1191 struct sk_buff *skb;
1192
1193 local = rx->local;
1194 skb = rx->skb;
1195 hdr = (struct ieee80211_hdr *) skb->data;
1196
1197 if (!local->pspolling)
1198 return RX_CONTINUE;
1199
1200 if (!ieee80211_has_fromds(hdr->frame_control))
1201 /* this is not from AP */
1202 return RX_CONTINUE;
1203
1204 if (!ieee80211_is_data(hdr->frame_control))
1205 return RX_CONTINUE;
1206
1207 if (!ieee80211_has_moredata(hdr->frame_control)) {
1208 /* AP has no more frames buffered for us */
1209 local->pspolling = false;
1210 return RX_CONTINUE;
1211 }
1212
1213 /* more data bit is set, let's request a new frame from the AP */
1214 ieee80211_send_pspoll(local, rx->sdata);
1215
1216 return RX_CONTINUE;
1217 }
1218
1219 static void sta_ps_start(struct sta_info *sta)
1220 {
1221 struct ieee80211_sub_if_data *sdata = sta->sdata;
1222 struct ieee80211_local *local = sdata->local;
1223 struct ps_data *ps;
1224 int tid;
1225
1226 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1227 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1228 ps = &sdata->bss->ps;
1229 else
1230 return;
1231
1232 atomic_inc(&ps->num_sta_ps);
1233 set_sta_flag(sta, WLAN_STA_PS_STA);
1234 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1235 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1236 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1237 sta->sta.addr, sta->sta.aid);
1238
1239 ieee80211_clear_fast_xmit(sta);
1240
1241 if (!sta->sta.txq[0])
1242 return;
1243
1244 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1245 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1246
1247 if (!skb_queue_len(&txqi->queue))
1248 set_bit(tid, &sta->txq_buffered_tids);
1249 else
1250 clear_bit(tid, &sta->txq_buffered_tids);
1251 }
1252 }
1253
1254 static void sta_ps_end(struct sta_info *sta)
1255 {
1256 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1257 sta->sta.addr, sta->sta.aid);
1258
1259 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1260 /*
1261 * Clear the flag only if the other one is still set
1262 * so that the TX path won't start TX'ing new frames
1263 * directly ... In the case that the driver flag isn't
1264 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1265 */
1266 clear_sta_flag(sta, WLAN_STA_PS_STA);
1267 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1268 sta->sta.addr, sta->sta.aid);
1269 return;
1270 }
1271
1272 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1273 clear_sta_flag(sta, WLAN_STA_PS_STA);
1274 ieee80211_sta_ps_deliver_wakeup(sta);
1275 }
1276
1277 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1278 {
1279 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1280 bool in_ps;
1281
1282 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1283
1284 /* Don't let the same PS state be set twice */
1285 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1286 if ((start && in_ps) || (!start && !in_ps))
1287 return -EINVAL;
1288
1289 if (start)
1290 sta_ps_start(sta);
1291 else
1292 sta_ps_end(sta);
1293
1294 return 0;
1295 }
1296 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1297
1298 static ieee80211_rx_result debug_noinline
1299 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1300 {
1301 struct ieee80211_sub_if_data *sdata = rx->sdata;
1302 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1303 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1304 int tid, ac;
1305
1306 if (!rx->sta)
1307 return RX_CONTINUE;
1308
1309 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1310 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1311 return RX_CONTINUE;
1312
1313 /*
1314 * The device handles station powersave, so don't do anything about
1315 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1316 * it to mac80211 since they're handled.)
1317 */
1318 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1319 return RX_CONTINUE;
1320
1321 /*
1322 * Don't do anything if the station isn't already asleep. In
1323 * the uAPSD case, the station will probably be marked asleep,
1324 * in the PS-Poll case the station must be confused ...
1325 */
1326 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1327 return RX_CONTINUE;
1328
1329 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1330 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1331 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1332 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1333 else
1334 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1335 }
1336
1337 /* Free PS Poll skb here instead of returning RX_DROP that would
1338 * count as an dropped frame. */
1339 dev_kfree_skb(rx->skb);
1340
1341 return RX_QUEUED;
1342 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1343 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1344 ieee80211_has_pm(hdr->frame_control) &&
1345 (ieee80211_is_data_qos(hdr->frame_control) ||
1346 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1347 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1348 ac = ieee802_1d_to_ac[tid & 7];
1349
1350 /*
1351 * If this AC is not trigger-enabled do nothing.
1352 *
1353 * NB: This could/should check a separate bitmap of trigger-
1354 * enabled queues, but for now we only implement uAPSD w/o
1355 * TSPEC changes to the ACs, so they're always the same.
1356 */
1357 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1358 return RX_CONTINUE;
1359
1360 /* if we are in a service period, do nothing */
1361 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1362 return RX_CONTINUE;
1363
1364 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1365 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1366 else
1367 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1368 }
1369
1370 return RX_CONTINUE;
1371 }
1372
1373 static ieee80211_rx_result debug_noinline
1374 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1375 {
1376 struct sta_info *sta = rx->sta;
1377 struct sk_buff *skb = rx->skb;
1378 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1379 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1380 int i;
1381
1382 if (!sta)
1383 return RX_CONTINUE;
1384
1385 /*
1386 * Update last_rx only for IBSS packets which are for the current
1387 * BSSID and for station already AUTHORIZED to avoid keeping the
1388 * current IBSS network alive in cases where other STAs start
1389 * using different BSSID. This will also give the station another
1390 * chance to restart the authentication/authorization in case
1391 * something went wrong the first time.
1392 */
1393 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1394 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1395 NL80211_IFTYPE_ADHOC);
1396 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1397 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1398 sta->rx_stats.last_rx = jiffies;
1399 if (ieee80211_is_data(hdr->frame_control) &&
1400 !is_multicast_ether_addr(hdr->addr1)) {
1401 sta->rx_stats.last_rate_idx =
1402 status->rate_idx;
1403 sta->rx_stats.last_rate_flag =
1404 status->flag;
1405 sta->rx_stats.last_rate_vht_flag =
1406 status->vht_flag;
1407 sta->rx_stats.last_rate_vht_nss =
1408 status->vht_nss;
1409 }
1410 }
1411 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1412 sta->rx_stats.last_rx = jiffies;
1413 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1414 /*
1415 * Mesh beacons will update last_rx when if they are found to
1416 * match the current local configuration when processed.
1417 */
1418 sta->rx_stats.last_rx = jiffies;
1419 if (ieee80211_is_data(hdr->frame_control)) {
1420 sta->rx_stats.last_rate_idx = status->rate_idx;
1421 sta->rx_stats.last_rate_flag = status->flag;
1422 sta->rx_stats.last_rate_vht_flag = status->vht_flag;
1423 sta->rx_stats.last_rate_vht_nss = status->vht_nss;
1424 }
1425 }
1426
1427 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1428 ieee80211_sta_rx_notify(rx->sdata, hdr);
1429
1430 sta->rx_stats.fragments++;
1431 sta->rx_stats.bytes += rx->skb->len;
1432 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1433 sta->rx_stats.last_signal = status->signal;
1434 ewma_signal_add(&sta->rx_stats.avg_signal, -status->signal);
1435 }
1436
1437 if (status->chains) {
1438 sta->rx_stats.chains = status->chains;
1439 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1440 int signal = status->chain_signal[i];
1441
1442 if (!(status->chains & BIT(i)))
1443 continue;
1444
1445 sta->rx_stats.chain_signal_last[i] = signal;
1446 ewma_signal_add(&sta->rx_stats.chain_signal_avg[i],
1447 -signal);
1448 }
1449 }
1450
1451 /*
1452 * Change STA power saving mode only at the end of a frame
1453 * exchange sequence.
1454 */
1455 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1456 !ieee80211_has_morefrags(hdr->frame_control) &&
1457 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1458 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1459 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1460 /* PM bit is only checked in frames where it isn't reserved,
1461 * in AP mode it's reserved in non-bufferable management frames
1462 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1463 */
1464 (!ieee80211_is_mgmt(hdr->frame_control) ||
1465 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1466 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1467 if (!ieee80211_has_pm(hdr->frame_control))
1468 sta_ps_end(sta);
1469 } else {
1470 if (ieee80211_has_pm(hdr->frame_control))
1471 sta_ps_start(sta);
1472 }
1473 }
1474
1475 /* mesh power save support */
1476 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1477 ieee80211_mps_rx_h_sta_process(sta, hdr);
1478
1479 /*
1480 * Drop (qos-)data::nullfunc frames silently, since they
1481 * are used only to control station power saving mode.
1482 */
1483 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1484 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1485 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1486
1487 /*
1488 * If we receive a 4-addr nullfunc frame from a STA
1489 * that was not moved to a 4-addr STA vlan yet send
1490 * the event to userspace and for older hostapd drop
1491 * the frame to the monitor interface.
1492 */
1493 if (ieee80211_has_a4(hdr->frame_control) &&
1494 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1495 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1496 !rx->sdata->u.vlan.sta))) {
1497 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1498 cfg80211_rx_unexpected_4addr_frame(
1499 rx->sdata->dev, sta->sta.addr,
1500 GFP_ATOMIC);
1501 return RX_DROP_MONITOR;
1502 }
1503 /*
1504 * Update counter and free packet here to avoid
1505 * counting this as a dropped packed.
1506 */
1507 sta->rx_stats.packets++;
1508 dev_kfree_skb(rx->skb);
1509 return RX_QUEUED;
1510 }
1511
1512 return RX_CONTINUE;
1513 } /* ieee80211_rx_h_sta_process */
1514
1515 static ieee80211_rx_result debug_noinline
1516 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1517 {
1518 struct sk_buff *skb = rx->skb;
1519 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1520 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1521 int keyidx;
1522 int hdrlen;
1523 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1524 struct ieee80211_key *sta_ptk = NULL;
1525 int mmie_keyidx = -1;
1526 __le16 fc;
1527 const struct ieee80211_cipher_scheme *cs = NULL;
1528
1529 /*
1530 * Key selection 101
1531 *
1532 * There are four types of keys:
1533 * - GTK (group keys)
1534 * - IGTK (group keys for management frames)
1535 * - PTK (pairwise keys)
1536 * - STK (station-to-station pairwise keys)
1537 *
1538 * When selecting a key, we have to distinguish between multicast
1539 * (including broadcast) and unicast frames, the latter can only
1540 * use PTKs and STKs while the former always use GTKs and IGTKs.
1541 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1542 * unicast frames can also use key indices like GTKs. Hence, if we
1543 * don't have a PTK/STK we check the key index for a WEP key.
1544 *
1545 * Note that in a regular BSS, multicast frames are sent by the
1546 * AP only, associated stations unicast the frame to the AP first
1547 * which then multicasts it on their behalf.
1548 *
1549 * There is also a slight problem in IBSS mode: GTKs are negotiated
1550 * with each station, that is something we don't currently handle.
1551 * The spec seems to expect that one negotiates the same key with
1552 * every station but there's no such requirement; VLANs could be
1553 * possible.
1554 */
1555
1556 /* start without a key */
1557 rx->key = NULL;
1558 fc = hdr->frame_control;
1559
1560 if (rx->sta) {
1561 int keyid = rx->sta->ptk_idx;
1562
1563 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1564 cs = rx->sta->cipher_scheme;
1565 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1566 if (unlikely(keyid < 0))
1567 return RX_DROP_UNUSABLE;
1568 }
1569 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1570 }
1571
1572 if (!ieee80211_has_protected(fc))
1573 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1574
1575 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1576 rx->key = sta_ptk;
1577 if ((status->flag & RX_FLAG_DECRYPTED) &&
1578 (status->flag & RX_FLAG_IV_STRIPPED))
1579 return RX_CONTINUE;
1580 /* Skip decryption if the frame is not protected. */
1581 if (!ieee80211_has_protected(fc))
1582 return RX_CONTINUE;
1583 } else if (mmie_keyidx >= 0) {
1584 /* Broadcast/multicast robust management frame / BIP */
1585 if ((status->flag & RX_FLAG_DECRYPTED) &&
1586 (status->flag & RX_FLAG_IV_STRIPPED))
1587 return RX_CONTINUE;
1588
1589 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1590 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1591 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1592 if (rx->sta)
1593 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1594 if (!rx->key)
1595 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1596 } else if (!ieee80211_has_protected(fc)) {
1597 /*
1598 * The frame was not protected, so skip decryption. However, we
1599 * need to set rx->key if there is a key that could have been
1600 * used so that the frame may be dropped if encryption would
1601 * have been expected.
1602 */
1603 struct ieee80211_key *key = NULL;
1604 struct ieee80211_sub_if_data *sdata = rx->sdata;
1605 int i;
1606
1607 if (ieee80211_is_mgmt(fc) &&
1608 is_multicast_ether_addr(hdr->addr1) &&
1609 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1610 rx->key = key;
1611 else {
1612 if (rx->sta) {
1613 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1614 key = rcu_dereference(rx->sta->gtk[i]);
1615 if (key)
1616 break;
1617 }
1618 }
1619 if (!key) {
1620 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1621 key = rcu_dereference(sdata->keys[i]);
1622 if (key)
1623 break;
1624 }
1625 }
1626 if (key)
1627 rx->key = key;
1628 }
1629 return RX_CONTINUE;
1630 } else {
1631 u8 keyid;
1632
1633 /*
1634 * The device doesn't give us the IV so we won't be
1635 * able to look up the key. That's ok though, we
1636 * don't need to decrypt the frame, we just won't
1637 * be able to keep statistics accurate.
1638 * Except for key threshold notifications, should
1639 * we somehow allow the driver to tell us which key
1640 * the hardware used if this flag is set?
1641 */
1642 if ((status->flag & RX_FLAG_DECRYPTED) &&
1643 (status->flag & RX_FLAG_IV_STRIPPED))
1644 return RX_CONTINUE;
1645
1646 hdrlen = ieee80211_hdrlen(fc);
1647
1648 if (cs) {
1649 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1650
1651 if (unlikely(keyidx < 0))
1652 return RX_DROP_UNUSABLE;
1653 } else {
1654 if (rx->skb->len < 8 + hdrlen)
1655 return RX_DROP_UNUSABLE; /* TODO: count this? */
1656 /*
1657 * no need to call ieee80211_wep_get_keyidx,
1658 * it verifies a bunch of things we've done already
1659 */
1660 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1661 keyidx = keyid >> 6;
1662 }
1663
1664 /* check per-station GTK first, if multicast packet */
1665 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1666 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1667
1668 /* if not found, try default key */
1669 if (!rx->key) {
1670 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1671
1672 /*
1673 * RSNA-protected unicast frames should always be
1674 * sent with pairwise or station-to-station keys,
1675 * but for WEP we allow using a key index as well.
1676 */
1677 if (rx->key &&
1678 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1679 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1680 !is_multicast_ether_addr(hdr->addr1))
1681 rx->key = NULL;
1682 }
1683 }
1684
1685 if (rx->key) {
1686 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1687 return RX_DROP_MONITOR;
1688
1689 /* TODO: add threshold stuff again */
1690 } else {
1691 return RX_DROP_MONITOR;
1692 }
1693
1694 switch (rx->key->conf.cipher) {
1695 case WLAN_CIPHER_SUITE_WEP40:
1696 case WLAN_CIPHER_SUITE_WEP104:
1697 result = ieee80211_crypto_wep_decrypt(rx);
1698 break;
1699 case WLAN_CIPHER_SUITE_TKIP:
1700 result = ieee80211_crypto_tkip_decrypt(rx);
1701 break;
1702 case WLAN_CIPHER_SUITE_CCMP:
1703 result = ieee80211_crypto_ccmp_decrypt(
1704 rx, IEEE80211_CCMP_MIC_LEN);
1705 break;
1706 case WLAN_CIPHER_SUITE_CCMP_256:
1707 result = ieee80211_crypto_ccmp_decrypt(
1708 rx, IEEE80211_CCMP_256_MIC_LEN);
1709 break;
1710 case WLAN_CIPHER_SUITE_AES_CMAC:
1711 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1712 break;
1713 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1714 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1715 break;
1716 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1717 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1718 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1719 break;
1720 case WLAN_CIPHER_SUITE_GCMP:
1721 case WLAN_CIPHER_SUITE_GCMP_256:
1722 result = ieee80211_crypto_gcmp_decrypt(rx);
1723 break;
1724 default:
1725 result = ieee80211_crypto_hw_decrypt(rx);
1726 }
1727
1728 /* the hdr variable is invalid after the decrypt handlers */
1729
1730 /* either the frame has been decrypted or will be dropped */
1731 status->flag |= RX_FLAG_DECRYPTED;
1732
1733 return result;
1734 }
1735
1736 static inline struct ieee80211_fragment_entry *
1737 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1738 unsigned int frag, unsigned int seq, int rx_queue,
1739 struct sk_buff **skb)
1740 {
1741 struct ieee80211_fragment_entry *entry;
1742
1743 entry = &sdata->fragments[sdata->fragment_next++];
1744 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1745 sdata->fragment_next = 0;
1746
1747 if (!skb_queue_empty(&entry->skb_list))
1748 __skb_queue_purge(&entry->skb_list);
1749
1750 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1751 *skb = NULL;
1752 entry->first_frag_time = jiffies;
1753 entry->seq = seq;
1754 entry->rx_queue = rx_queue;
1755 entry->last_frag = frag;
1756 entry->ccmp = 0;
1757 entry->extra_len = 0;
1758
1759 return entry;
1760 }
1761
1762 static inline struct ieee80211_fragment_entry *
1763 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1764 unsigned int frag, unsigned int seq,
1765 int rx_queue, struct ieee80211_hdr *hdr)
1766 {
1767 struct ieee80211_fragment_entry *entry;
1768 int i, idx;
1769
1770 idx = sdata->fragment_next;
1771 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1772 struct ieee80211_hdr *f_hdr;
1773
1774 idx--;
1775 if (idx < 0)
1776 idx = IEEE80211_FRAGMENT_MAX - 1;
1777
1778 entry = &sdata->fragments[idx];
1779 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1780 entry->rx_queue != rx_queue ||
1781 entry->last_frag + 1 != frag)
1782 continue;
1783
1784 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1785
1786 /*
1787 * Check ftype and addresses are equal, else check next fragment
1788 */
1789 if (((hdr->frame_control ^ f_hdr->frame_control) &
1790 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1791 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1792 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1793 continue;
1794
1795 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1796 __skb_queue_purge(&entry->skb_list);
1797 continue;
1798 }
1799 return entry;
1800 }
1801
1802 return NULL;
1803 }
1804
1805 static ieee80211_rx_result debug_noinline
1806 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1807 {
1808 struct ieee80211_hdr *hdr;
1809 u16 sc;
1810 __le16 fc;
1811 unsigned int frag, seq;
1812 struct ieee80211_fragment_entry *entry;
1813 struct sk_buff *skb;
1814 struct ieee80211_rx_status *status;
1815
1816 hdr = (struct ieee80211_hdr *)rx->skb->data;
1817 fc = hdr->frame_control;
1818
1819 if (ieee80211_is_ctl(fc))
1820 return RX_CONTINUE;
1821
1822 sc = le16_to_cpu(hdr->seq_ctrl);
1823 frag = sc & IEEE80211_SCTL_FRAG;
1824
1825 if (is_multicast_ether_addr(hdr->addr1)) {
1826 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1827 goto out_no_led;
1828 }
1829
1830 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1831 goto out;
1832
1833 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1834
1835 if (skb_linearize(rx->skb))
1836 return RX_DROP_UNUSABLE;
1837
1838 /*
1839 * skb_linearize() might change the skb->data and
1840 * previously cached variables (in this case, hdr) need to
1841 * be refreshed with the new data.
1842 */
1843 hdr = (struct ieee80211_hdr *)rx->skb->data;
1844 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1845
1846 if (frag == 0) {
1847 /* This is the first fragment of a new frame. */
1848 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1849 rx->seqno_idx, &(rx->skb));
1850 if (rx->key &&
1851 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1852 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) &&
1853 ieee80211_has_protected(fc)) {
1854 int queue = rx->security_idx;
1855 /* Store CCMP PN so that we can verify that the next
1856 * fragment has a sequential PN value. */
1857 entry->ccmp = 1;
1858 memcpy(entry->last_pn,
1859 rx->key->u.ccmp.rx_pn[queue],
1860 IEEE80211_CCMP_PN_LEN);
1861 }
1862 return RX_QUEUED;
1863 }
1864
1865 /* This is a fragment for a frame that should already be pending in
1866 * fragment cache. Add this fragment to the end of the pending entry.
1867 */
1868 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1869 rx->seqno_idx, hdr);
1870 if (!entry) {
1871 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1872 return RX_DROP_MONITOR;
1873 }
1874
1875 /* Verify that MPDUs within one MSDU have sequential PN values.
1876 * (IEEE 802.11i, 8.3.3.4.5) */
1877 if (entry->ccmp) {
1878 int i;
1879 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1880 int queue;
1881 if (!rx->key ||
1882 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1883 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256))
1884 return RX_DROP_UNUSABLE;
1885 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1886 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1887 pn[i]++;
1888 if (pn[i])
1889 break;
1890 }
1891 queue = rx->security_idx;
1892 rpn = rx->key->u.ccmp.rx_pn[queue];
1893 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1894 return RX_DROP_UNUSABLE;
1895 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1896 }
1897
1898 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1899 __skb_queue_tail(&entry->skb_list, rx->skb);
1900 entry->last_frag = frag;
1901 entry->extra_len += rx->skb->len;
1902 if (ieee80211_has_morefrags(fc)) {
1903 rx->skb = NULL;
1904 return RX_QUEUED;
1905 }
1906
1907 rx->skb = __skb_dequeue(&entry->skb_list);
1908 if (skb_tailroom(rx->skb) < entry->extra_len) {
1909 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1910 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1911 GFP_ATOMIC))) {
1912 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1913 __skb_queue_purge(&entry->skb_list);
1914 return RX_DROP_UNUSABLE;
1915 }
1916 }
1917 while ((skb = __skb_dequeue(&entry->skb_list))) {
1918 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1919 dev_kfree_skb(skb);
1920 }
1921
1922 /* Complete frame has been reassembled - process it now */
1923 status = IEEE80211_SKB_RXCB(rx->skb);
1924
1925 out:
1926 ieee80211_led_rx(rx->local);
1927 out_no_led:
1928 if (rx->sta)
1929 rx->sta->rx_stats.packets++;
1930 return RX_CONTINUE;
1931 }
1932
1933 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1934 {
1935 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1936 return -EACCES;
1937
1938 return 0;
1939 }
1940
1941 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1942 {
1943 struct sk_buff *skb = rx->skb;
1944 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1945
1946 /*
1947 * Pass through unencrypted frames if the hardware has
1948 * decrypted them already.
1949 */
1950 if (status->flag & RX_FLAG_DECRYPTED)
1951 return 0;
1952
1953 /* Drop unencrypted frames if key is set. */
1954 if (unlikely(!ieee80211_has_protected(fc) &&
1955 !ieee80211_is_nullfunc(fc) &&
1956 ieee80211_is_data(fc) && rx->key))
1957 return -EACCES;
1958
1959 return 0;
1960 }
1961
1962 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1963 {
1964 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1965 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1966 __le16 fc = hdr->frame_control;
1967
1968 /*
1969 * Pass through unencrypted frames if the hardware has
1970 * decrypted them already.
1971 */
1972 if (status->flag & RX_FLAG_DECRYPTED)
1973 return 0;
1974
1975 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1976 if (unlikely(!ieee80211_has_protected(fc) &&
1977 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1978 rx->key)) {
1979 if (ieee80211_is_deauth(fc) ||
1980 ieee80211_is_disassoc(fc))
1981 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1982 rx->skb->data,
1983 rx->skb->len);
1984 return -EACCES;
1985 }
1986 /* BIP does not use Protected field, so need to check MMIE */
1987 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1988 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1989 if (ieee80211_is_deauth(fc) ||
1990 ieee80211_is_disassoc(fc))
1991 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1992 rx->skb->data,
1993 rx->skb->len);
1994 return -EACCES;
1995 }
1996 /*
1997 * When using MFP, Action frames are not allowed prior to
1998 * having configured keys.
1999 */
2000 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2001 ieee80211_is_robust_mgmt_frame(rx->skb)))
2002 return -EACCES;
2003 }
2004
2005 return 0;
2006 }
2007
2008 static int
2009 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2010 {
2011 struct ieee80211_sub_if_data *sdata = rx->sdata;
2012 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2013 bool check_port_control = false;
2014 struct ethhdr *ehdr;
2015 int ret;
2016
2017 *port_control = false;
2018 if (ieee80211_has_a4(hdr->frame_control) &&
2019 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2020 return -1;
2021
2022 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2023 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2024
2025 if (!sdata->u.mgd.use_4addr)
2026 return -1;
2027 else
2028 check_port_control = true;
2029 }
2030
2031 if (is_multicast_ether_addr(hdr->addr1) &&
2032 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2033 return -1;
2034
2035 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2036 if (ret < 0)
2037 return ret;
2038
2039 ehdr = (struct ethhdr *) rx->skb->data;
2040 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2041 *port_control = true;
2042 else if (check_port_control)
2043 return -1;
2044
2045 return 0;
2046 }
2047
2048 /*
2049 * requires that rx->skb is a frame with ethernet header
2050 */
2051 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2052 {
2053 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2054 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2055 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2056
2057 /*
2058 * Allow EAPOL frames to us/the PAE group address regardless
2059 * of whether the frame was encrypted or not.
2060 */
2061 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2062 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2063 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2064 return true;
2065
2066 if (ieee80211_802_1x_port_control(rx) ||
2067 ieee80211_drop_unencrypted(rx, fc))
2068 return false;
2069
2070 return true;
2071 }
2072
2073 /*
2074 * requires that rx->skb is a frame with ethernet header
2075 */
2076 static void
2077 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2078 {
2079 struct ieee80211_sub_if_data *sdata = rx->sdata;
2080 struct net_device *dev = sdata->dev;
2081 struct sk_buff *skb, *xmit_skb;
2082 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2083 struct sta_info *dsta;
2084
2085 skb = rx->skb;
2086 xmit_skb = NULL;
2087
2088 ieee80211_rx_stats(dev, skb->len);
2089
2090 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2091 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2092 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2093 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2094 if (is_multicast_ether_addr(ehdr->h_dest)) {
2095 /*
2096 * send multicast frames both to higher layers in
2097 * local net stack and back to the wireless medium
2098 */
2099 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2100 if (!xmit_skb)
2101 net_info_ratelimited("%s: failed to clone multicast frame\n",
2102 dev->name);
2103 } else {
2104 dsta = sta_info_get(sdata, skb->data);
2105 if (dsta) {
2106 /*
2107 * The destination station is associated to
2108 * this AP (in this VLAN), so send the frame
2109 * directly to it and do not pass it to local
2110 * net stack.
2111 */
2112 xmit_skb = skb;
2113 skb = NULL;
2114 }
2115 }
2116 }
2117
2118 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2119 if (skb) {
2120 /* 'align' will only take the values 0 or 2 here since all
2121 * frames are required to be aligned to 2-byte boundaries
2122 * when being passed to mac80211; the code here works just
2123 * as well if that isn't true, but mac80211 assumes it can
2124 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2125 */
2126 int align;
2127
2128 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2129 if (align) {
2130 if (WARN_ON(skb_headroom(skb) < 3)) {
2131 dev_kfree_skb(skb);
2132 skb = NULL;
2133 } else {
2134 u8 *data = skb->data;
2135 size_t len = skb_headlen(skb);
2136 skb->data -= align;
2137 memmove(skb->data, data, len);
2138 skb_set_tail_pointer(skb, len);
2139 }
2140 }
2141 }
2142 #endif
2143
2144 if (skb) {
2145 /* deliver to local stack */
2146 skb->protocol = eth_type_trans(skb, dev);
2147 memset(skb->cb, 0, sizeof(skb->cb));
2148 if (rx->napi)
2149 napi_gro_receive(rx->napi, skb);
2150 else
2151 netif_receive_skb(skb);
2152 }
2153
2154 if (xmit_skb) {
2155 /*
2156 * Send to wireless media and increase priority by 256 to
2157 * keep the received priority instead of reclassifying
2158 * the frame (see cfg80211_classify8021d).
2159 */
2160 xmit_skb->priority += 256;
2161 xmit_skb->protocol = htons(ETH_P_802_3);
2162 skb_reset_network_header(xmit_skb);
2163 skb_reset_mac_header(xmit_skb);
2164 dev_queue_xmit(xmit_skb);
2165 }
2166 }
2167
2168 static ieee80211_rx_result debug_noinline
2169 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2170 {
2171 struct net_device *dev = rx->sdata->dev;
2172 struct sk_buff *skb = rx->skb;
2173 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2174 __le16 fc = hdr->frame_control;
2175 struct sk_buff_head frame_list;
2176 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2177
2178 if (unlikely(!ieee80211_is_data(fc)))
2179 return RX_CONTINUE;
2180
2181 if (unlikely(!ieee80211_is_data_present(fc)))
2182 return RX_DROP_MONITOR;
2183
2184 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2185 return RX_CONTINUE;
2186
2187 if (ieee80211_has_a4(hdr->frame_control) &&
2188 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2189 !rx->sdata->u.vlan.sta)
2190 return RX_DROP_UNUSABLE;
2191
2192 if (is_multicast_ether_addr(hdr->addr1) &&
2193 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2194 rx->sdata->u.vlan.sta) ||
2195 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2196 rx->sdata->u.mgd.use_4addr)))
2197 return RX_DROP_UNUSABLE;
2198
2199 skb->dev = dev;
2200 __skb_queue_head_init(&frame_list);
2201
2202 if (skb_linearize(skb))
2203 return RX_DROP_UNUSABLE;
2204
2205 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2206 rx->sdata->vif.type,
2207 rx->local->hw.extra_tx_headroom, true);
2208
2209 while (!skb_queue_empty(&frame_list)) {
2210 rx->skb = __skb_dequeue(&frame_list);
2211
2212 if (!ieee80211_frame_allowed(rx, fc)) {
2213 dev_kfree_skb(rx->skb);
2214 continue;
2215 }
2216
2217 ieee80211_deliver_skb(rx);
2218 }
2219
2220 return RX_QUEUED;
2221 }
2222
2223 #ifdef CONFIG_MAC80211_MESH
2224 static ieee80211_rx_result
2225 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2226 {
2227 struct ieee80211_hdr *fwd_hdr, *hdr;
2228 struct ieee80211_tx_info *info;
2229 struct ieee80211s_hdr *mesh_hdr;
2230 struct sk_buff *skb = rx->skb, *fwd_skb;
2231 struct ieee80211_local *local = rx->local;
2232 struct ieee80211_sub_if_data *sdata = rx->sdata;
2233 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2234 u16 q, hdrlen;
2235
2236 hdr = (struct ieee80211_hdr *) skb->data;
2237 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2238
2239 /* make sure fixed part of mesh header is there, also checks skb len */
2240 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2241 return RX_DROP_MONITOR;
2242
2243 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2244
2245 /* make sure full mesh header is there, also checks skb len */
2246 if (!pskb_may_pull(rx->skb,
2247 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2248 return RX_DROP_MONITOR;
2249
2250 /* reload pointers */
2251 hdr = (struct ieee80211_hdr *) skb->data;
2252 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2253
2254 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2255 return RX_DROP_MONITOR;
2256
2257 /* frame is in RMC, don't forward */
2258 if (ieee80211_is_data(hdr->frame_control) &&
2259 is_multicast_ether_addr(hdr->addr1) &&
2260 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2261 return RX_DROP_MONITOR;
2262
2263 if (!ieee80211_is_data(hdr->frame_control))
2264 return RX_CONTINUE;
2265
2266 if (!mesh_hdr->ttl)
2267 return RX_DROP_MONITOR;
2268
2269 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2270 struct mesh_path *mppath;
2271 char *proxied_addr;
2272 char *mpp_addr;
2273
2274 if (is_multicast_ether_addr(hdr->addr1)) {
2275 mpp_addr = hdr->addr3;
2276 proxied_addr = mesh_hdr->eaddr1;
2277 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2278 /* has_a4 already checked in ieee80211_rx_mesh_check */
2279 mpp_addr = hdr->addr4;
2280 proxied_addr = mesh_hdr->eaddr2;
2281 } else {
2282 return RX_DROP_MONITOR;
2283 }
2284
2285 rcu_read_lock();
2286 mppath = mpp_path_lookup(sdata, proxied_addr);
2287 if (!mppath) {
2288 mpp_path_add(sdata, proxied_addr, mpp_addr);
2289 } else {
2290 spin_lock_bh(&mppath->state_lock);
2291 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2292 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2293 spin_unlock_bh(&mppath->state_lock);
2294 }
2295 rcu_read_unlock();
2296 }
2297
2298 /* Frame has reached destination. Don't forward */
2299 if (!is_multicast_ether_addr(hdr->addr1) &&
2300 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2301 return RX_CONTINUE;
2302
2303 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2304 if (ieee80211_queue_stopped(&local->hw, q)) {
2305 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2306 return RX_DROP_MONITOR;
2307 }
2308 skb_set_queue_mapping(skb, q);
2309
2310 if (!--mesh_hdr->ttl) {
2311 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2312 goto out;
2313 }
2314
2315 if (!ifmsh->mshcfg.dot11MeshForwarding)
2316 goto out;
2317
2318 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2319 if (!fwd_skb) {
2320 net_info_ratelimited("%s: failed to clone mesh frame\n",
2321 sdata->name);
2322 goto out;
2323 }
2324
2325 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2326 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2327 info = IEEE80211_SKB_CB(fwd_skb);
2328 memset(info, 0, sizeof(*info));
2329 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2330 info->control.vif = &rx->sdata->vif;
2331 info->control.jiffies = jiffies;
2332 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2333 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2334 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2335 /* update power mode indication when forwarding */
2336 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2337 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2338 /* mesh power mode flags updated in mesh_nexthop_lookup */
2339 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2340 } else {
2341 /* unable to resolve next hop */
2342 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2343 fwd_hdr->addr3, 0,
2344 WLAN_REASON_MESH_PATH_NOFORWARD,
2345 fwd_hdr->addr2);
2346 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2347 kfree_skb(fwd_skb);
2348 return RX_DROP_MONITOR;
2349 }
2350
2351 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2352 ieee80211_add_pending_skb(local, fwd_skb);
2353 out:
2354 if (is_multicast_ether_addr(hdr->addr1))
2355 return RX_CONTINUE;
2356 return RX_DROP_MONITOR;
2357 }
2358 #endif
2359
2360 static ieee80211_rx_result debug_noinline
2361 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2362 {
2363 struct ieee80211_sub_if_data *sdata = rx->sdata;
2364 struct ieee80211_local *local = rx->local;
2365 struct net_device *dev = sdata->dev;
2366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2367 __le16 fc = hdr->frame_control;
2368 bool port_control;
2369 int err;
2370
2371 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2372 return RX_CONTINUE;
2373
2374 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2375 return RX_DROP_MONITOR;
2376
2377 if (rx->sta) {
2378 /* The seqno index has the same property as needed
2379 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2380 * for non-QoS-data frames. Here we know it's a data
2381 * frame, so count MSDUs.
2382 */
2383 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2384 }
2385
2386 /*
2387 * Send unexpected-4addr-frame event to hostapd. For older versions,
2388 * also drop the frame to cooked monitor interfaces.
2389 */
2390 if (ieee80211_has_a4(hdr->frame_control) &&
2391 sdata->vif.type == NL80211_IFTYPE_AP) {
2392 if (rx->sta &&
2393 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2394 cfg80211_rx_unexpected_4addr_frame(
2395 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2396 return RX_DROP_MONITOR;
2397 }
2398
2399 err = __ieee80211_data_to_8023(rx, &port_control);
2400 if (unlikely(err))
2401 return RX_DROP_UNUSABLE;
2402
2403 if (!ieee80211_frame_allowed(rx, fc))
2404 return RX_DROP_MONITOR;
2405
2406 /* directly handle TDLS channel switch requests/responses */
2407 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2408 cpu_to_be16(ETH_P_TDLS))) {
2409 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2410
2411 if (pskb_may_pull(rx->skb,
2412 offsetof(struct ieee80211_tdls_data, u)) &&
2413 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2414 tf->category == WLAN_CATEGORY_TDLS &&
2415 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2416 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2417 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2418 schedule_work(&local->tdls_chsw_work);
2419 if (rx->sta)
2420 rx->sta->rx_stats.packets++;
2421
2422 return RX_QUEUED;
2423 }
2424 }
2425
2426 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2427 unlikely(port_control) && sdata->bss) {
2428 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2429 u.ap);
2430 dev = sdata->dev;
2431 rx->sdata = sdata;
2432 }
2433
2434 rx->skb->dev = dev;
2435
2436 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2437 !is_multicast_ether_addr(
2438 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2439 (!local->scanning &&
2440 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2441 mod_timer(&local->dynamic_ps_timer, jiffies +
2442 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2443 }
2444
2445 ieee80211_deliver_skb(rx);
2446
2447 return RX_QUEUED;
2448 }
2449
2450 static ieee80211_rx_result debug_noinline
2451 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2452 {
2453 struct sk_buff *skb = rx->skb;
2454 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2455 struct tid_ampdu_rx *tid_agg_rx;
2456 u16 start_seq_num;
2457 u16 tid;
2458
2459 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2460 return RX_CONTINUE;
2461
2462 if (ieee80211_is_back_req(bar->frame_control)) {
2463 struct {
2464 __le16 control, start_seq_num;
2465 } __packed bar_data;
2466 struct ieee80211_event event = {
2467 .type = BAR_RX_EVENT,
2468 };
2469
2470 if (!rx->sta)
2471 return RX_DROP_MONITOR;
2472
2473 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2474 &bar_data, sizeof(bar_data)))
2475 return RX_DROP_MONITOR;
2476
2477 tid = le16_to_cpu(bar_data.control) >> 12;
2478
2479 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2480 if (!tid_agg_rx)
2481 return RX_DROP_MONITOR;
2482
2483 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2484 event.u.ba.tid = tid;
2485 event.u.ba.ssn = start_seq_num;
2486 event.u.ba.sta = &rx->sta->sta;
2487
2488 /* reset session timer */
2489 if (tid_agg_rx->timeout)
2490 mod_timer(&tid_agg_rx->session_timer,
2491 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2492
2493 spin_lock(&tid_agg_rx->reorder_lock);
2494 /* release stored frames up to start of BAR */
2495 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2496 start_seq_num, frames);
2497 spin_unlock(&tid_agg_rx->reorder_lock);
2498
2499 drv_event_callback(rx->local, rx->sdata, &event);
2500
2501 kfree_skb(skb);
2502 return RX_QUEUED;
2503 }
2504
2505 /*
2506 * After this point, we only want management frames,
2507 * so we can drop all remaining control frames to
2508 * cooked monitor interfaces.
2509 */
2510 return RX_DROP_MONITOR;
2511 }
2512
2513 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2514 struct ieee80211_mgmt *mgmt,
2515 size_t len)
2516 {
2517 struct ieee80211_local *local = sdata->local;
2518 struct sk_buff *skb;
2519 struct ieee80211_mgmt *resp;
2520
2521 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2522 /* Not to own unicast address */
2523 return;
2524 }
2525
2526 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2527 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2528 /* Not from the current AP or not associated yet. */
2529 return;
2530 }
2531
2532 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2533 /* Too short SA Query request frame */
2534 return;
2535 }
2536
2537 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2538 if (skb == NULL)
2539 return;
2540
2541 skb_reserve(skb, local->hw.extra_tx_headroom);
2542 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2543 memset(resp, 0, 24);
2544 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2545 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2546 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2547 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2548 IEEE80211_STYPE_ACTION);
2549 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2550 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2551 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2552 memcpy(resp->u.action.u.sa_query.trans_id,
2553 mgmt->u.action.u.sa_query.trans_id,
2554 WLAN_SA_QUERY_TR_ID_LEN);
2555
2556 ieee80211_tx_skb(sdata, skb);
2557 }
2558
2559 static ieee80211_rx_result debug_noinline
2560 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2561 {
2562 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2563 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2564
2565 /*
2566 * From here on, look only at management frames.
2567 * Data and control frames are already handled,
2568 * and unknown (reserved) frames are useless.
2569 */
2570 if (rx->skb->len < 24)
2571 return RX_DROP_MONITOR;
2572
2573 if (!ieee80211_is_mgmt(mgmt->frame_control))
2574 return RX_DROP_MONITOR;
2575
2576 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2577 ieee80211_is_beacon(mgmt->frame_control) &&
2578 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2579 int sig = 0;
2580
2581 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2582 sig = status->signal;
2583
2584 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2585 rx->skb->data, rx->skb->len,
2586 status->freq, sig);
2587 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2588 }
2589
2590 if (ieee80211_drop_unencrypted_mgmt(rx))
2591 return RX_DROP_UNUSABLE;
2592
2593 return RX_CONTINUE;
2594 }
2595
2596 static ieee80211_rx_result debug_noinline
2597 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2598 {
2599 struct ieee80211_local *local = rx->local;
2600 struct ieee80211_sub_if_data *sdata = rx->sdata;
2601 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2602 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2603 int len = rx->skb->len;
2604
2605 if (!ieee80211_is_action(mgmt->frame_control))
2606 return RX_CONTINUE;
2607
2608 /* drop too small frames */
2609 if (len < IEEE80211_MIN_ACTION_SIZE)
2610 return RX_DROP_UNUSABLE;
2611
2612 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2613 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2614 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2615 return RX_DROP_UNUSABLE;
2616
2617 switch (mgmt->u.action.category) {
2618 case WLAN_CATEGORY_HT:
2619 /* reject HT action frames from stations not supporting HT */
2620 if (!rx->sta->sta.ht_cap.ht_supported)
2621 goto invalid;
2622
2623 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2624 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2625 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2626 sdata->vif.type != NL80211_IFTYPE_AP &&
2627 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2628 break;
2629
2630 /* verify action & smps_control/chanwidth are present */
2631 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2632 goto invalid;
2633
2634 switch (mgmt->u.action.u.ht_smps.action) {
2635 case WLAN_HT_ACTION_SMPS: {
2636 struct ieee80211_supported_band *sband;
2637 enum ieee80211_smps_mode smps_mode;
2638
2639 /* convert to HT capability */
2640 switch (mgmt->u.action.u.ht_smps.smps_control) {
2641 case WLAN_HT_SMPS_CONTROL_DISABLED:
2642 smps_mode = IEEE80211_SMPS_OFF;
2643 break;
2644 case WLAN_HT_SMPS_CONTROL_STATIC:
2645 smps_mode = IEEE80211_SMPS_STATIC;
2646 break;
2647 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2648 smps_mode = IEEE80211_SMPS_DYNAMIC;
2649 break;
2650 default:
2651 goto invalid;
2652 }
2653
2654 /* if no change do nothing */
2655 if (rx->sta->sta.smps_mode == smps_mode)
2656 goto handled;
2657 rx->sta->sta.smps_mode = smps_mode;
2658
2659 sband = rx->local->hw.wiphy->bands[status->band];
2660
2661 rate_control_rate_update(local, sband, rx->sta,
2662 IEEE80211_RC_SMPS_CHANGED);
2663 goto handled;
2664 }
2665 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2666 struct ieee80211_supported_band *sband;
2667 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2668 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2669
2670 /* If it doesn't support 40 MHz it can't change ... */
2671 if (!(rx->sta->sta.ht_cap.cap &
2672 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2673 goto handled;
2674
2675 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2676 max_bw = IEEE80211_STA_RX_BW_20;
2677 else
2678 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2679
2680 /* set cur_max_bandwidth and recalc sta bw */
2681 rx->sta->cur_max_bandwidth = max_bw;
2682 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2683
2684 if (rx->sta->sta.bandwidth == new_bw)
2685 goto handled;
2686
2687 rx->sta->sta.bandwidth = new_bw;
2688 sband = rx->local->hw.wiphy->bands[status->band];
2689
2690 rate_control_rate_update(local, sband, rx->sta,
2691 IEEE80211_RC_BW_CHANGED);
2692 goto handled;
2693 }
2694 default:
2695 goto invalid;
2696 }
2697
2698 break;
2699 case WLAN_CATEGORY_PUBLIC:
2700 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2701 goto invalid;
2702 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2703 break;
2704 if (!rx->sta)
2705 break;
2706 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2707 break;
2708 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2709 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2710 break;
2711 if (len < offsetof(struct ieee80211_mgmt,
2712 u.action.u.ext_chan_switch.variable))
2713 goto invalid;
2714 goto queue;
2715 case WLAN_CATEGORY_VHT:
2716 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2717 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2718 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2719 sdata->vif.type != NL80211_IFTYPE_AP &&
2720 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2721 break;
2722
2723 /* verify action code is present */
2724 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2725 goto invalid;
2726
2727 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2728 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2729 u8 opmode;
2730
2731 /* verify opmode is present */
2732 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2733 goto invalid;
2734
2735 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2736
2737 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2738 opmode, status->band);
2739 goto handled;
2740 }
2741 default:
2742 break;
2743 }
2744 break;
2745 case WLAN_CATEGORY_BACK:
2746 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2747 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2748 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2749 sdata->vif.type != NL80211_IFTYPE_AP &&
2750 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2751 break;
2752
2753 /* verify action_code is present */
2754 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2755 break;
2756
2757 switch (mgmt->u.action.u.addba_req.action_code) {
2758 case WLAN_ACTION_ADDBA_REQ:
2759 if (len < (IEEE80211_MIN_ACTION_SIZE +
2760 sizeof(mgmt->u.action.u.addba_req)))
2761 goto invalid;
2762 break;
2763 case WLAN_ACTION_ADDBA_RESP:
2764 if (len < (IEEE80211_MIN_ACTION_SIZE +
2765 sizeof(mgmt->u.action.u.addba_resp)))
2766 goto invalid;
2767 break;
2768 case WLAN_ACTION_DELBA:
2769 if (len < (IEEE80211_MIN_ACTION_SIZE +
2770 sizeof(mgmt->u.action.u.delba)))
2771 goto invalid;
2772 break;
2773 default:
2774 goto invalid;
2775 }
2776
2777 goto queue;
2778 case WLAN_CATEGORY_SPECTRUM_MGMT:
2779 /* verify action_code is present */
2780 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2781 break;
2782
2783 switch (mgmt->u.action.u.measurement.action_code) {
2784 case WLAN_ACTION_SPCT_MSR_REQ:
2785 if (status->band != IEEE80211_BAND_5GHZ)
2786 break;
2787
2788 if (len < (IEEE80211_MIN_ACTION_SIZE +
2789 sizeof(mgmt->u.action.u.measurement)))
2790 break;
2791
2792 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2793 break;
2794
2795 ieee80211_process_measurement_req(sdata, mgmt, len);
2796 goto handled;
2797 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2798 u8 *bssid;
2799 if (len < (IEEE80211_MIN_ACTION_SIZE +
2800 sizeof(mgmt->u.action.u.chan_switch)))
2801 break;
2802
2803 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2804 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2805 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2806 break;
2807
2808 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2809 bssid = sdata->u.mgd.bssid;
2810 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2811 bssid = sdata->u.ibss.bssid;
2812 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2813 bssid = mgmt->sa;
2814 else
2815 break;
2816
2817 if (!ether_addr_equal(mgmt->bssid, bssid))
2818 break;
2819
2820 goto queue;
2821 }
2822 }
2823 break;
2824 case WLAN_CATEGORY_SA_QUERY:
2825 if (len < (IEEE80211_MIN_ACTION_SIZE +
2826 sizeof(mgmt->u.action.u.sa_query)))
2827 break;
2828
2829 switch (mgmt->u.action.u.sa_query.action) {
2830 case WLAN_ACTION_SA_QUERY_REQUEST:
2831 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2832 break;
2833 ieee80211_process_sa_query_req(sdata, mgmt, len);
2834 goto handled;
2835 }
2836 break;
2837 case WLAN_CATEGORY_SELF_PROTECTED:
2838 if (len < (IEEE80211_MIN_ACTION_SIZE +
2839 sizeof(mgmt->u.action.u.self_prot.action_code)))
2840 break;
2841
2842 switch (mgmt->u.action.u.self_prot.action_code) {
2843 case WLAN_SP_MESH_PEERING_OPEN:
2844 case WLAN_SP_MESH_PEERING_CLOSE:
2845 case WLAN_SP_MESH_PEERING_CONFIRM:
2846 if (!ieee80211_vif_is_mesh(&sdata->vif))
2847 goto invalid;
2848 if (sdata->u.mesh.user_mpm)
2849 /* userspace handles this frame */
2850 break;
2851 goto queue;
2852 case WLAN_SP_MGK_INFORM:
2853 case WLAN_SP_MGK_ACK:
2854 if (!ieee80211_vif_is_mesh(&sdata->vif))
2855 goto invalid;
2856 break;
2857 }
2858 break;
2859 case WLAN_CATEGORY_MESH_ACTION:
2860 if (len < (IEEE80211_MIN_ACTION_SIZE +
2861 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2862 break;
2863
2864 if (!ieee80211_vif_is_mesh(&sdata->vif))
2865 break;
2866 if (mesh_action_is_path_sel(mgmt) &&
2867 !mesh_path_sel_is_hwmp(sdata))
2868 break;
2869 goto queue;
2870 }
2871
2872 return RX_CONTINUE;
2873
2874 invalid:
2875 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2876 /* will return in the next handlers */
2877 return RX_CONTINUE;
2878
2879 handled:
2880 if (rx->sta)
2881 rx->sta->rx_stats.packets++;
2882 dev_kfree_skb(rx->skb);
2883 return RX_QUEUED;
2884
2885 queue:
2886 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2887 skb_queue_tail(&sdata->skb_queue, rx->skb);
2888 ieee80211_queue_work(&local->hw, &sdata->work);
2889 if (rx->sta)
2890 rx->sta->rx_stats.packets++;
2891 return RX_QUEUED;
2892 }
2893
2894 static ieee80211_rx_result debug_noinline
2895 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2896 {
2897 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2898 int sig = 0;
2899
2900 /* skip known-bad action frames and return them in the next handler */
2901 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2902 return RX_CONTINUE;
2903
2904 /*
2905 * Getting here means the kernel doesn't know how to handle
2906 * it, but maybe userspace does ... include returned frames
2907 * so userspace can register for those to know whether ones
2908 * it transmitted were processed or returned.
2909 */
2910
2911 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2912 sig = status->signal;
2913
2914 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2915 rx->skb->data, rx->skb->len, 0)) {
2916 if (rx->sta)
2917 rx->sta->rx_stats.packets++;
2918 dev_kfree_skb(rx->skb);
2919 return RX_QUEUED;
2920 }
2921
2922 return RX_CONTINUE;
2923 }
2924
2925 static ieee80211_rx_result debug_noinline
2926 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2927 {
2928 struct ieee80211_local *local = rx->local;
2929 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2930 struct sk_buff *nskb;
2931 struct ieee80211_sub_if_data *sdata = rx->sdata;
2932 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2933
2934 if (!ieee80211_is_action(mgmt->frame_control))
2935 return RX_CONTINUE;
2936
2937 /*
2938 * For AP mode, hostapd is responsible for handling any action
2939 * frames that we didn't handle, including returning unknown
2940 * ones. For all other modes we will return them to the sender,
2941 * setting the 0x80 bit in the action category, as required by
2942 * 802.11-2012 9.24.4.
2943 * Newer versions of hostapd shall also use the management frame
2944 * registration mechanisms, but older ones still use cooked
2945 * monitor interfaces so push all frames there.
2946 */
2947 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2948 (sdata->vif.type == NL80211_IFTYPE_AP ||
2949 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2950 return RX_DROP_MONITOR;
2951
2952 if (is_multicast_ether_addr(mgmt->da))
2953 return RX_DROP_MONITOR;
2954
2955 /* do not return rejected action frames */
2956 if (mgmt->u.action.category & 0x80)
2957 return RX_DROP_UNUSABLE;
2958
2959 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2960 GFP_ATOMIC);
2961 if (nskb) {
2962 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2963
2964 nmgmt->u.action.category |= 0x80;
2965 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2966 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2967
2968 memset(nskb->cb, 0, sizeof(nskb->cb));
2969
2970 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2971 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2972
2973 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2974 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2975 IEEE80211_TX_CTL_NO_CCK_RATE;
2976 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
2977 info->hw_queue =
2978 local->hw.offchannel_tx_hw_queue;
2979 }
2980
2981 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2982 status->band);
2983 }
2984 dev_kfree_skb(rx->skb);
2985 return RX_QUEUED;
2986 }
2987
2988 static ieee80211_rx_result debug_noinline
2989 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2990 {
2991 struct ieee80211_sub_if_data *sdata = rx->sdata;
2992 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2993 __le16 stype;
2994
2995 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2996
2997 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2998 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2999 sdata->vif.type != NL80211_IFTYPE_OCB &&
3000 sdata->vif.type != NL80211_IFTYPE_STATION)
3001 return RX_DROP_MONITOR;
3002
3003 switch (stype) {
3004 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3005 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3006 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3007 /* process for all: mesh, mlme, ibss */
3008 break;
3009 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3010 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3011 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3012 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3013 if (is_multicast_ether_addr(mgmt->da) &&
3014 !is_broadcast_ether_addr(mgmt->da))
3015 return RX_DROP_MONITOR;
3016
3017 /* process only for station */
3018 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3019 return RX_DROP_MONITOR;
3020 break;
3021 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3022 /* process only for ibss and mesh */
3023 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3024 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3025 return RX_DROP_MONITOR;
3026 break;
3027 default:
3028 return RX_DROP_MONITOR;
3029 }
3030
3031 /* queue up frame and kick off work to process it */
3032 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3033 skb_queue_tail(&sdata->skb_queue, rx->skb);
3034 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3035 if (rx->sta)
3036 rx->sta->rx_stats.packets++;
3037
3038 return RX_QUEUED;
3039 }
3040
3041 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3042 struct ieee80211_rate *rate)
3043 {
3044 struct ieee80211_sub_if_data *sdata;
3045 struct ieee80211_local *local = rx->local;
3046 struct sk_buff *skb = rx->skb, *skb2;
3047 struct net_device *prev_dev = NULL;
3048 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3049 int needed_headroom;
3050
3051 /*
3052 * If cooked monitor has been processed already, then
3053 * don't do it again. If not, set the flag.
3054 */
3055 if (rx->flags & IEEE80211_RX_CMNTR)
3056 goto out_free_skb;
3057 rx->flags |= IEEE80211_RX_CMNTR;
3058
3059 /* If there are no cooked monitor interfaces, just free the SKB */
3060 if (!local->cooked_mntrs)
3061 goto out_free_skb;
3062
3063 /* vendor data is long removed here */
3064 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3065 /* room for the radiotap header based on driver features */
3066 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3067
3068 if (skb_headroom(skb) < needed_headroom &&
3069 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3070 goto out_free_skb;
3071
3072 /* prepend radiotap information */
3073 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3074 false);
3075
3076 skb_set_mac_header(skb, 0);
3077 skb->ip_summed = CHECKSUM_UNNECESSARY;
3078 skb->pkt_type = PACKET_OTHERHOST;
3079 skb->protocol = htons(ETH_P_802_2);
3080
3081 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3082 if (!ieee80211_sdata_running(sdata))
3083 continue;
3084
3085 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3086 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3087 continue;
3088
3089 if (prev_dev) {
3090 skb2 = skb_clone(skb, GFP_ATOMIC);
3091 if (skb2) {
3092 skb2->dev = prev_dev;
3093 netif_receive_skb(skb2);
3094 }
3095 }
3096
3097 prev_dev = sdata->dev;
3098 ieee80211_rx_stats(sdata->dev, skb->len);
3099 }
3100
3101 if (prev_dev) {
3102 skb->dev = prev_dev;
3103 netif_receive_skb(skb);
3104 return;
3105 }
3106
3107 out_free_skb:
3108 dev_kfree_skb(skb);
3109 }
3110
3111 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3112 ieee80211_rx_result res)
3113 {
3114 switch (res) {
3115 case RX_DROP_MONITOR:
3116 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3117 if (rx->sta)
3118 rx->sta->rx_stats.dropped++;
3119 /* fall through */
3120 case RX_CONTINUE: {
3121 struct ieee80211_rate *rate = NULL;
3122 struct ieee80211_supported_band *sband;
3123 struct ieee80211_rx_status *status;
3124
3125 status = IEEE80211_SKB_RXCB((rx->skb));
3126
3127 sband = rx->local->hw.wiphy->bands[status->band];
3128 if (!(status->flag & RX_FLAG_HT) &&
3129 !(status->flag & RX_FLAG_VHT))
3130 rate = &sband->bitrates[status->rate_idx];
3131
3132 ieee80211_rx_cooked_monitor(rx, rate);
3133 break;
3134 }
3135 case RX_DROP_UNUSABLE:
3136 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3137 if (rx->sta)
3138 rx->sta->rx_stats.dropped++;
3139 dev_kfree_skb(rx->skb);
3140 break;
3141 case RX_QUEUED:
3142 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3143 break;
3144 }
3145 }
3146
3147 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3148 struct sk_buff_head *frames)
3149 {
3150 ieee80211_rx_result res = RX_DROP_MONITOR;
3151 struct sk_buff *skb;
3152
3153 #define CALL_RXH(rxh) \
3154 do { \
3155 res = rxh(rx); \
3156 if (res != RX_CONTINUE) \
3157 goto rxh_next; \
3158 } while (0);
3159
3160 /* Lock here to avoid hitting all of the data used in the RX
3161 * path (e.g. key data, station data, ...) concurrently when
3162 * a frame is released from the reorder buffer due to timeout
3163 * from the timer, potentially concurrently with RX from the
3164 * driver.
3165 */
3166 spin_lock_bh(&rx->local->rx_path_lock);
3167
3168 while ((skb = __skb_dequeue(frames))) {
3169 /*
3170 * all the other fields are valid across frames
3171 * that belong to an aMPDU since they are on the
3172 * same TID from the same station
3173 */
3174 rx->skb = skb;
3175
3176 CALL_RXH(ieee80211_rx_h_check_more_data)
3177 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3178 CALL_RXH(ieee80211_rx_h_sta_process)
3179 CALL_RXH(ieee80211_rx_h_decrypt)
3180 CALL_RXH(ieee80211_rx_h_defragment)
3181 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3182 /* must be after MMIC verify so header is counted in MPDU mic */
3183 #ifdef CONFIG_MAC80211_MESH
3184 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3185 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3186 #endif
3187 CALL_RXH(ieee80211_rx_h_amsdu)
3188 CALL_RXH(ieee80211_rx_h_data)
3189
3190 /* special treatment -- needs the queue */
3191 res = ieee80211_rx_h_ctrl(rx, frames);
3192 if (res != RX_CONTINUE)
3193 goto rxh_next;
3194
3195 CALL_RXH(ieee80211_rx_h_mgmt_check)
3196 CALL_RXH(ieee80211_rx_h_action)
3197 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3198 CALL_RXH(ieee80211_rx_h_action_return)
3199 CALL_RXH(ieee80211_rx_h_mgmt)
3200
3201 rxh_next:
3202 ieee80211_rx_handlers_result(rx, res);
3203
3204 #undef CALL_RXH
3205 }
3206
3207 spin_unlock_bh(&rx->local->rx_path_lock);
3208 }
3209
3210 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3211 {
3212 struct sk_buff_head reorder_release;
3213 ieee80211_rx_result res = RX_DROP_MONITOR;
3214
3215 __skb_queue_head_init(&reorder_release);
3216
3217 #define CALL_RXH(rxh) \
3218 do { \
3219 res = rxh(rx); \
3220 if (res != RX_CONTINUE) \
3221 goto rxh_next; \
3222 } while (0);
3223
3224 CALL_RXH(ieee80211_rx_h_check_dup)
3225 CALL_RXH(ieee80211_rx_h_check)
3226
3227 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3228
3229 ieee80211_rx_handlers(rx, &reorder_release);
3230 return;
3231
3232 rxh_next:
3233 ieee80211_rx_handlers_result(rx, res);
3234
3235 #undef CALL_RXH
3236 }
3237
3238 /*
3239 * This function makes calls into the RX path, therefore
3240 * it has to be invoked under RCU read lock.
3241 */
3242 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3243 {
3244 struct sk_buff_head frames;
3245 struct ieee80211_rx_data rx = {
3246 .sta = sta,
3247 .sdata = sta->sdata,
3248 .local = sta->local,
3249 /* This is OK -- must be QoS data frame */
3250 .security_idx = tid,
3251 .seqno_idx = tid,
3252 .napi = NULL, /* must be NULL to not have races */
3253 };
3254 struct tid_ampdu_rx *tid_agg_rx;
3255
3256 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3257 if (!tid_agg_rx)
3258 return;
3259
3260 __skb_queue_head_init(&frames);
3261
3262 spin_lock(&tid_agg_rx->reorder_lock);
3263 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3264 spin_unlock(&tid_agg_rx->reorder_lock);
3265
3266 if (!skb_queue_empty(&frames)) {
3267 struct ieee80211_event event = {
3268 .type = BA_FRAME_TIMEOUT,
3269 .u.ba.tid = tid,
3270 .u.ba.sta = &sta->sta,
3271 };
3272 drv_event_callback(rx.local, rx.sdata, &event);
3273 }
3274
3275 ieee80211_rx_handlers(&rx, &frames);
3276 }
3277
3278 /* main receive path */
3279
3280 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3281 {
3282 struct ieee80211_sub_if_data *sdata = rx->sdata;
3283 struct sk_buff *skb = rx->skb;
3284 struct ieee80211_hdr *hdr = (void *)skb->data;
3285 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3286 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3287 int multicast = is_multicast_ether_addr(hdr->addr1);
3288
3289 switch (sdata->vif.type) {
3290 case NL80211_IFTYPE_STATION:
3291 if (!bssid && !sdata->u.mgd.use_4addr)
3292 return false;
3293 if (multicast)
3294 return true;
3295 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3296 case NL80211_IFTYPE_ADHOC:
3297 if (!bssid)
3298 return false;
3299 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3300 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3301 return false;
3302 if (ieee80211_is_beacon(hdr->frame_control))
3303 return true;
3304 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3305 return false;
3306 if (!multicast &&
3307 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3308 return false;
3309 if (!rx->sta) {
3310 int rate_idx;
3311 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3312 rate_idx = 0; /* TODO: HT/VHT rates */
3313 else
3314 rate_idx = status->rate_idx;
3315 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3316 BIT(rate_idx));
3317 }
3318 return true;
3319 case NL80211_IFTYPE_OCB:
3320 if (!bssid)
3321 return false;
3322 if (!ieee80211_is_data_present(hdr->frame_control))
3323 return false;
3324 if (!is_broadcast_ether_addr(bssid))
3325 return false;
3326 if (!multicast &&
3327 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3328 return false;
3329 if (!rx->sta) {
3330 int rate_idx;
3331 if (status->flag & RX_FLAG_HT)
3332 rate_idx = 0; /* TODO: HT rates */
3333 else
3334 rate_idx = status->rate_idx;
3335 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3336 BIT(rate_idx));
3337 }
3338 return true;
3339 case NL80211_IFTYPE_MESH_POINT:
3340 if (multicast)
3341 return true;
3342 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3343 case NL80211_IFTYPE_AP_VLAN:
3344 case NL80211_IFTYPE_AP:
3345 if (!bssid)
3346 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3347
3348 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3349 /*
3350 * Accept public action frames even when the
3351 * BSSID doesn't match, this is used for P2P
3352 * and location updates. Note that mac80211
3353 * itself never looks at these frames.
3354 */
3355 if (!multicast &&
3356 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3357 return false;
3358 if (ieee80211_is_public_action(hdr, skb->len))
3359 return true;
3360 return ieee80211_is_beacon(hdr->frame_control);
3361 }
3362
3363 if (!ieee80211_has_tods(hdr->frame_control)) {
3364 /* ignore data frames to TDLS-peers */
3365 if (ieee80211_is_data(hdr->frame_control))
3366 return false;
3367 /* ignore action frames to TDLS-peers */
3368 if (ieee80211_is_action(hdr->frame_control) &&
3369 !ether_addr_equal(bssid, hdr->addr1))
3370 return false;
3371 }
3372 return true;
3373 case NL80211_IFTYPE_WDS:
3374 if (bssid || !ieee80211_is_data(hdr->frame_control))
3375 return false;
3376 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3377 case NL80211_IFTYPE_P2P_DEVICE:
3378 return ieee80211_is_public_action(hdr, skb->len) ||
3379 ieee80211_is_probe_req(hdr->frame_control) ||
3380 ieee80211_is_probe_resp(hdr->frame_control) ||
3381 ieee80211_is_beacon(hdr->frame_control);
3382 default:
3383 break;
3384 }
3385
3386 WARN_ON_ONCE(1);
3387 return false;
3388 }
3389
3390 /*
3391 * This function returns whether or not the SKB
3392 * was destined for RX processing or not, which,
3393 * if consume is true, is equivalent to whether
3394 * or not the skb was consumed.
3395 */
3396 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3397 struct sk_buff *skb, bool consume)
3398 {
3399 struct ieee80211_local *local = rx->local;
3400 struct ieee80211_sub_if_data *sdata = rx->sdata;
3401
3402 rx->skb = skb;
3403
3404 if (!ieee80211_accept_frame(rx))
3405 return false;
3406
3407 if (!consume) {
3408 skb = skb_copy(skb, GFP_ATOMIC);
3409 if (!skb) {
3410 if (net_ratelimit())
3411 wiphy_debug(local->hw.wiphy,
3412 "failed to copy skb for %s\n",
3413 sdata->name);
3414 return true;
3415 }
3416
3417 rx->skb = skb;
3418 }
3419
3420 ieee80211_invoke_rx_handlers(rx);
3421 return true;
3422 }
3423
3424 /*
3425 * This is the actual Rx frames handler. as it belongs to Rx path it must
3426 * be called with rcu_read_lock protection.
3427 */
3428 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3429 struct sk_buff *skb,
3430 struct napi_struct *napi)
3431 {
3432 struct ieee80211_local *local = hw_to_local(hw);
3433 struct ieee80211_sub_if_data *sdata;
3434 struct ieee80211_hdr *hdr;
3435 __le16 fc;
3436 struct ieee80211_rx_data rx;
3437 struct ieee80211_sub_if_data *prev;
3438 struct sta_info *sta, *prev_sta;
3439 struct rhash_head *tmp;
3440 int err = 0;
3441
3442 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3443 memset(&rx, 0, sizeof(rx));
3444 rx.skb = skb;
3445 rx.local = local;
3446 rx.napi = napi;
3447
3448 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3449 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3450
3451 if (ieee80211_is_mgmt(fc)) {
3452 /* drop frame if too short for header */
3453 if (skb->len < ieee80211_hdrlen(fc))
3454 err = -ENOBUFS;
3455 else
3456 err = skb_linearize(skb);
3457 } else {
3458 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3459 }
3460
3461 if (err) {
3462 dev_kfree_skb(skb);
3463 return;
3464 }
3465
3466 hdr = (struct ieee80211_hdr *)skb->data;
3467 ieee80211_parse_qos(&rx);
3468 ieee80211_verify_alignment(&rx);
3469
3470 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3471 ieee80211_is_beacon(hdr->frame_control)))
3472 ieee80211_scan_rx(local, skb);
3473
3474 if (ieee80211_is_data(fc)) {
3475 const struct bucket_table *tbl;
3476
3477 prev_sta = NULL;
3478
3479 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3480
3481 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3482 if (!prev_sta) {
3483 prev_sta = sta;
3484 continue;
3485 }
3486
3487 rx.sta = prev_sta;
3488 rx.sdata = prev_sta->sdata;
3489 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3490
3491 prev_sta = sta;
3492 }
3493
3494 if (prev_sta) {
3495 rx.sta = prev_sta;
3496 rx.sdata = prev_sta->sdata;
3497
3498 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3499 return;
3500 goto out;
3501 }
3502 }
3503
3504 prev = NULL;
3505
3506 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3507 if (!ieee80211_sdata_running(sdata))
3508 continue;
3509
3510 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3511 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3512 continue;
3513
3514 /*
3515 * frame is destined for this interface, but if it's
3516 * not also for the previous one we handle that after
3517 * the loop to avoid copying the SKB once too much
3518 */
3519
3520 if (!prev) {
3521 prev = sdata;
3522 continue;
3523 }
3524
3525 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3526 rx.sdata = prev;
3527 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3528
3529 prev = sdata;
3530 }
3531
3532 if (prev) {
3533 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3534 rx.sdata = prev;
3535
3536 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3537 return;
3538 }
3539
3540 out:
3541 dev_kfree_skb(skb);
3542 }
3543
3544 /*
3545 * This is the receive path handler. It is called by a low level driver when an
3546 * 802.11 MPDU is received from the hardware.
3547 */
3548 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct sk_buff *skb,
3549 struct napi_struct *napi)
3550 {
3551 struct ieee80211_local *local = hw_to_local(hw);
3552 struct ieee80211_rate *rate = NULL;
3553 struct ieee80211_supported_band *sband;
3554 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3555
3556 WARN_ON_ONCE(softirq_count() == 0);
3557
3558 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3559 goto drop;
3560
3561 sband = local->hw.wiphy->bands[status->band];
3562 if (WARN_ON(!sband))
3563 goto drop;
3564
3565 /*
3566 * If we're suspending, it is possible although not too likely
3567 * that we'd be receiving frames after having already partially
3568 * quiesced the stack. We can't process such frames then since
3569 * that might, for example, cause stations to be added or other
3570 * driver callbacks be invoked.
3571 */
3572 if (unlikely(local->quiescing || local->suspended))
3573 goto drop;
3574
3575 /* We might be during a HW reconfig, prevent Rx for the same reason */
3576 if (unlikely(local->in_reconfig))
3577 goto drop;
3578
3579 /*
3580 * The same happens when we're not even started,
3581 * but that's worth a warning.
3582 */
3583 if (WARN_ON(!local->started))
3584 goto drop;
3585
3586 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3587 /*
3588 * Validate the rate, unless a PLCP error means that
3589 * we probably can't have a valid rate here anyway.
3590 */
3591
3592 if (status->flag & RX_FLAG_HT) {
3593 /*
3594 * rate_idx is MCS index, which can be [0-76]
3595 * as documented on:
3596 *
3597 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3598 *
3599 * Anything else would be some sort of driver or
3600 * hardware error. The driver should catch hardware
3601 * errors.
3602 */
3603 if (WARN(status->rate_idx > 76,
3604 "Rate marked as an HT rate but passed "
3605 "status->rate_idx is not "
3606 "an MCS index [0-76]: %d (0x%02x)\n",
3607 status->rate_idx,
3608 status->rate_idx))
3609 goto drop;
3610 } else if (status->flag & RX_FLAG_VHT) {
3611 if (WARN_ONCE(status->rate_idx > 9 ||
3612 !status->vht_nss ||
3613 status->vht_nss > 8,
3614 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3615 status->rate_idx, status->vht_nss))
3616 goto drop;
3617 } else {
3618 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3619 goto drop;
3620 rate = &sband->bitrates[status->rate_idx];
3621 }
3622 }
3623
3624 status->rx_flags = 0;
3625
3626 /*
3627 * key references and virtual interfaces are protected using RCU
3628 * and this requires that we are in a read-side RCU section during
3629 * receive processing
3630 */
3631 rcu_read_lock();
3632
3633 /*
3634 * Frames with failed FCS/PLCP checksum are not returned,
3635 * all other frames are returned without radiotap header
3636 * if it was previously present.
3637 * Also, frames with less than 16 bytes are dropped.
3638 */
3639 skb = ieee80211_rx_monitor(local, skb, rate);
3640 if (!skb) {
3641 rcu_read_unlock();
3642 return;
3643 }
3644
3645 ieee80211_tpt_led_trig_rx(local,
3646 ((struct ieee80211_hdr *)skb->data)->frame_control,
3647 skb->len);
3648 __ieee80211_rx_handle_packet(hw, skb, napi);
3649
3650 rcu_read_unlock();
3651
3652 return;
3653 drop:
3654 kfree_skb(skb);
3655 }
3656 EXPORT_SYMBOL(ieee80211_rx_napi);
3657
3658 /* This is a version of the rx handler that can be called from hard irq
3659 * context. Post the skb on the queue and schedule the tasklet */
3660 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3661 {
3662 struct ieee80211_local *local = hw_to_local(hw);
3663
3664 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3665
3666 skb->pkt_type = IEEE80211_RX_MSG;
3667 skb_queue_tail(&local->skb_queue, skb);
3668 tasklet_schedule(&local->tasklet);
3669 }
3670 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.100292 seconds and 6 git commands to generate.