Merge branches 'acpi-soc', 'acpi-misc', 'acpi-pci' and 'device-properties'
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38
39 u64_stats_update_begin(&tstats->syncp);
40 tstats->rx_packets++;
41 tstats->rx_bytes += len;
42 u64_stats_update_end(&tstats->syncp);
43 }
44
45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
46 enum nl80211_iftype type)
47 {
48 __le16 fc = hdr->frame_control;
49
50 if (ieee80211_is_data(fc)) {
51 if (len < 24) /* drop incorrect hdr len (data) */
52 return NULL;
53
54 if (ieee80211_has_a4(fc))
55 return NULL;
56 if (ieee80211_has_tods(fc))
57 return hdr->addr1;
58 if (ieee80211_has_fromds(fc))
59 return hdr->addr2;
60
61 return hdr->addr3;
62 }
63
64 if (ieee80211_is_mgmt(fc)) {
65 if (len < 24) /* drop incorrect hdr len (mgmt) */
66 return NULL;
67 return hdr->addr3;
68 }
69
70 if (ieee80211_is_ctl(fc)) {
71 if (ieee80211_is_pspoll(fc))
72 return hdr->addr1;
73
74 if (ieee80211_is_back_req(fc)) {
75 switch (type) {
76 case NL80211_IFTYPE_STATION:
77 return hdr->addr2;
78 case NL80211_IFTYPE_AP:
79 case NL80211_IFTYPE_AP_VLAN:
80 return hdr->addr1;
81 default:
82 break; /* fall through to the return */
83 }
84 }
85 }
86
87 return NULL;
88 }
89
90 /*
91 * monitor mode reception
92 *
93 * This function cleans up the SKB, i.e. it removes all the stuff
94 * only useful for monitoring.
95 */
96 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
97 struct sk_buff *skb,
98 unsigned int rtap_vendor_space)
99 {
100 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
101 if (likely(skb->len > FCS_LEN))
102 __pskb_trim(skb, skb->len - FCS_LEN);
103 else {
104 /* driver bug */
105 WARN_ON(1);
106 dev_kfree_skb(skb);
107 return NULL;
108 }
109 }
110
111 __pskb_pull(skb, rtap_vendor_space);
112
113 return skb;
114 }
115
116 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
117 unsigned int rtap_vendor_space)
118 {
119 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
120 struct ieee80211_hdr *hdr;
121
122 hdr = (void *)(skb->data + rtap_vendor_space);
123
124 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
125 RX_FLAG_FAILED_PLCP_CRC))
126 return true;
127
128 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
129 return true;
130
131 if (ieee80211_is_ctl(hdr->frame_control) &&
132 !ieee80211_is_pspoll(hdr->frame_control) &&
133 !ieee80211_is_back_req(hdr->frame_control))
134 return true;
135
136 return false;
137 }
138
139 static int
140 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
141 struct ieee80211_rx_status *status,
142 struct sk_buff *skb)
143 {
144 int len;
145
146 /* always present fields */
147 len = sizeof(struct ieee80211_radiotap_header) + 8;
148
149 /* allocate extra bitmaps */
150 if (status->chains)
151 len += 4 * hweight8(status->chains);
152
153 if (ieee80211_have_rx_timestamp(status)) {
154 len = ALIGN(len, 8);
155 len += 8;
156 }
157 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
158 len += 1;
159
160 /* antenna field, if we don't have per-chain info */
161 if (!status->chains)
162 len += 1;
163
164 /* padding for RX_FLAGS if necessary */
165 len = ALIGN(len, 2);
166
167 if (status->flag & RX_FLAG_HT) /* HT info */
168 len += 3;
169
170 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
171 len = ALIGN(len, 4);
172 len += 8;
173 }
174
175 if (status->flag & RX_FLAG_VHT) {
176 len = ALIGN(len, 2);
177 len += 12;
178 }
179
180 if (status->chains) {
181 /* antenna and antenna signal fields */
182 len += 2 * hweight8(status->chains);
183 }
184
185 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
186 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
187
188 /* vendor presence bitmap */
189 len += 4;
190 /* alignment for fixed 6-byte vendor data header */
191 len = ALIGN(len, 2);
192 /* vendor data header */
193 len += 6;
194 if (WARN_ON(rtap->align == 0))
195 rtap->align = 1;
196 len = ALIGN(len, rtap->align);
197 len += rtap->len + rtap->pad;
198 }
199
200 return len;
201 }
202
203 /*
204 * ieee80211_add_rx_radiotap_header - add radiotap header
205 *
206 * add a radiotap header containing all the fields which the hardware provided.
207 */
208 static void
209 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
210 struct sk_buff *skb,
211 struct ieee80211_rate *rate,
212 int rtap_len, bool has_fcs)
213 {
214 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
215 struct ieee80211_radiotap_header *rthdr;
216 unsigned char *pos;
217 __le32 *it_present;
218 u32 it_present_val;
219 u16 rx_flags = 0;
220 u16 channel_flags = 0;
221 int mpdulen, chain;
222 unsigned long chains = status->chains;
223 struct ieee80211_vendor_radiotap rtap = {};
224
225 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
226 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
227 /* rtap.len and rtap.pad are undone immediately */
228 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
229 }
230
231 mpdulen = skb->len;
232 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
233 mpdulen += FCS_LEN;
234
235 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
236 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
237 it_present = &rthdr->it_present;
238
239 /* radiotap header, set always present flags */
240 rthdr->it_len = cpu_to_le16(rtap_len);
241 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
242 BIT(IEEE80211_RADIOTAP_CHANNEL) |
243 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
244
245 if (!status->chains)
246 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
247
248 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
249 it_present_val |=
250 BIT(IEEE80211_RADIOTAP_EXT) |
251 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
252 put_unaligned_le32(it_present_val, it_present);
253 it_present++;
254 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
255 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
256 }
257
258 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
259 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
260 BIT(IEEE80211_RADIOTAP_EXT);
261 put_unaligned_le32(it_present_val, it_present);
262 it_present++;
263 it_present_val = rtap.present;
264 }
265
266 put_unaligned_le32(it_present_val, it_present);
267
268 pos = (void *)(it_present + 1);
269
270 /* the order of the following fields is important */
271
272 /* IEEE80211_RADIOTAP_TSFT */
273 if (ieee80211_have_rx_timestamp(status)) {
274 /* padding */
275 while ((pos - (u8 *)rthdr) & 7)
276 *pos++ = 0;
277 put_unaligned_le64(
278 ieee80211_calculate_rx_timestamp(local, status,
279 mpdulen, 0),
280 pos);
281 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
282 pos += 8;
283 }
284
285 /* IEEE80211_RADIOTAP_FLAGS */
286 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
287 *pos |= IEEE80211_RADIOTAP_F_FCS;
288 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
289 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
290 if (status->flag & RX_FLAG_SHORTPRE)
291 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
292 pos++;
293
294 /* IEEE80211_RADIOTAP_RATE */
295 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
296 /*
297 * Without rate information don't add it. If we have,
298 * MCS information is a separate field in radiotap,
299 * added below. The byte here is needed as padding
300 * for the channel though, so initialise it to 0.
301 */
302 *pos = 0;
303 } else {
304 int shift = 0;
305 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
306 if (status->flag & RX_FLAG_10MHZ)
307 shift = 1;
308 else if (status->flag & RX_FLAG_5MHZ)
309 shift = 2;
310 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
311 }
312 pos++;
313
314 /* IEEE80211_RADIOTAP_CHANNEL */
315 put_unaligned_le16(status->freq, pos);
316 pos += 2;
317 if (status->flag & RX_FLAG_10MHZ)
318 channel_flags |= IEEE80211_CHAN_HALF;
319 else if (status->flag & RX_FLAG_5MHZ)
320 channel_flags |= IEEE80211_CHAN_QUARTER;
321
322 if (status->band == IEEE80211_BAND_5GHZ)
323 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
324 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
325 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
326 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
327 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
328 else if (rate)
329 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
330 else
331 channel_flags |= IEEE80211_CHAN_2GHZ;
332 put_unaligned_le16(channel_flags, pos);
333 pos += 2;
334
335 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
336 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
337 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
338 *pos = status->signal;
339 rthdr->it_present |=
340 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
341 pos++;
342 }
343
344 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
345
346 if (!status->chains) {
347 /* IEEE80211_RADIOTAP_ANTENNA */
348 *pos = status->antenna;
349 pos++;
350 }
351
352 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
353
354 /* IEEE80211_RADIOTAP_RX_FLAGS */
355 /* ensure 2 byte alignment for the 2 byte field as required */
356 if ((pos - (u8 *)rthdr) & 1)
357 *pos++ = 0;
358 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
359 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
360 put_unaligned_le16(rx_flags, pos);
361 pos += 2;
362
363 if (status->flag & RX_FLAG_HT) {
364 unsigned int stbc;
365
366 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
367 *pos++ = local->hw.radiotap_mcs_details;
368 *pos = 0;
369 if (status->flag & RX_FLAG_SHORT_GI)
370 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
371 if (status->flag & RX_FLAG_40MHZ)
372 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
373 if (status->flag & RX_FLAG_HT_GF)
374 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
375 if (status->flag & RX_FLAG_LDPC)
376 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
377 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
378 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
379 pos++;
380 *pos++ = status->rate_idx;
381 }
382
383 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
384 u16 flags = 0;
385
386 /* ensure 4 byte alignment */
387 while ((pos - (u8 *)rthdr) & 3)
388 pos++;
389 rthdr->it_present |=
390 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
391 put_unaligned_le32(status->ampdu_reference, pos);
392 pos += 4;
393 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
394 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
395 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
396 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
397 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
398 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
399 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
400 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
401 put_unaligned_le16(flags, pos);
402 pos += 2;
403 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
404 *pos++ = status->ampdu_delimiter_crc;
405 else
406 *pos++ = 0;
407 *pos++ = 0;
408 }
409
410 if (status->flag & RX_FLAG_VHT) {
411 u16 known = local->hw.radiotap_vht_details;
412
413 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
414 put_unaligned_le16(known, pos);
415 pos += 2;
416 /* flags */
417 if (status->flag & RX_FLAG_SHORT_GI)
418 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
419 /* in VHT, STBC is binary */
420 if (status->flag & RX_FLAG_STBC_MASK)
421 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
422 if (status->vht_flag & RX_VHT_FLAG_BF)
423 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
424 pos++;
425 /* bandwidth */
426 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
427 *pos++ = 4;
428 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
429 *pos++ = 11;
430 else if (status->flag & RX_FLAG_40MHZ)
431 *pos++ = 1;
432 else /* 20 MHz */
433 *pos++ = 0;
434 /* MCS/NSS */
435 *pos = (status->rate_idx << 4) | status->vht_nss;
436 pos += 4;
437 /* coding field */
438 if (status->flag & RX_FLAG_LDPC)
439 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
440 pos++;
441 /* group ID */
442 pos++;
443 /* partial_aid */
444 pos += 2;
445 }
446
447 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
448 *pos++ = status->chain_signal[chain];
449 *pos++ = chain;
450 }
451
452 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
453 /* ensure 2 byte alignment for the vendor field as required */
454 if ((pos - (u8 *)rthdr) & 1)
455 *pos++ = 0;
456 *pos++ = rtap.oui[0];
457 *pos++ = rtap.oui[1];
458 *pos++ = rtap.oui[2];
459 *pos++ = rtap.subns;
460 put_unaligned_le16(rtap.len, pos);
461 pos += 2;
462 /* align the actual payload as requested */
463 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
464 *pos++ = 0;
465 /* data (and possible padding) already follows */
466 }
467 }
468
469 /*
470 * This function copies a received frame to all monitor interfaces and
471 * returns a cleaned-up SKB that no longer includes the FCS nor the
472 * radiotap header the driver might have added.
473 */
474 static struct sk_buff *
475 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
476 struct ieee80211_rate *rate)
477 {
478 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
479 struct ieee80211_sub_if_data *sdata;
480 int rt_hdrlen, needed_headroom;
481 struct sk_buff *skb, *skb2;
482 struct net_device *prev_dev = NULL;
483 int present_fcs_len = 0;
484 unsigned int rtap_vendor_space = 0;
485
486 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
487 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
488
489 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
490 }
491
492 /*
493 * First, we may need to make a copy of the skb because
494 * (1) we need to modify it for radiotap (if not present), and
495 * (2) the other RX handlers will modify the skb we got.
496 *
497 * We don't need to, of course, if we aren't going to return
498 * the SKB because it has a bad FCS/PLCP checksum.
499 */
500
501 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
502 present_fcs_len = FCS_LEN;
503
504 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
505 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
506 dev_kfree_skb(origskb);
507 return NULL;
508 }
509
510 if (!local->monitors) {
511 if (should_drop_frame(origskb, present_fcs_len,
512 rtap_vendor_space)) {
513 dev_kfree_skb(origskb);
514 return NULL;
515 }
516
517 return remove_monitor_info(local, origskb, rtap_vendor_space);
518 }
519
520 /* room for the radiotap header based on driver features */
521 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
522 needed_headroom = rt_hdrlen - rtap_vendor_space;
523
524 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
525 /* only need to expand headroom if necessary */
526 skb = origskb;
527 origskb = NULL;
528
529 /*
530 * This shouldn't trigger often because most devices have an
531 * RX header they pull before we get here, and that should
532 * be big enough for our radiotap information. We should
533 * probably export the length to drivers so that we can have
534 * them allocate enough headroom to start with.
535 */
536 if (skb_headroom(skb) < needed_headroom &&
537 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
538 dev_kfree_skb(skb);
539 return NULL;
540 }
541 } else {
542 /*
543 * Need to make a copy and possibly remove radiotap header
544 * and FCS from the original.
545 */
546 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
547
548 origskb = remove_monitor_info(local, origskb,
549 rtap_vendor_space);
550
551 if (!skb)
552 return origskb;
553 }
554
555 /* prepend radiotap information */
556 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
557
558 skb_reset_mac_header(skb);
559 skb->ip_summed = CHECKSUM_UNNECESSARY;
560 skb->pkt_type = PACKET_OTHERHOST;
561 skb->protocol = htons(ETH_P_802_2);
562
563 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
564 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
565 continue;
566
567 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
568 continue;
569
570 if (!ieee80211_sdata_running(sdata))
571 continue;
572
573 if (prev_dev) {
574 skb2 = skb_clone(skb, GFP_ATOMIC);
575 if (skb2) {
576 skb2->dev = prev_dev;
577 netif_receive_skb(skb2);
578 }
579 }
580
581 prev_dev = sdata->dev;
582 ieee80211_rx_stats(sdata->dev, skb->len);
583 }
584
585 if (prev_dev) {
586 skb->dev = prev_dev;
587 netif_receive_skb(skb);
588 } else
589 dev_kfree_skb(skb);
590
591 return origskb;
592 }
593
594 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
595 {
596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
597 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
598 int tid, seqno_idx, security_idx;
599
600 /* does the frame have a qos control field? */
601 if (ieee80211_is_data_qos(hdr->frame_control)) {
602 u8 *qc = ieee80211_get_qos_ctl(hdr);
603 /* frame has qos control */
604 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
605 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
606 status->rx_flags |= IEEE80211_RX_AMSDU;
607
608 seqno_idx = tid;
609 security_idx = tid;
610 } else {
611 /*
612 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
613 *
614 * Sequence numbers for management frames, QoS data
615 * frames with a broadcast/multicast address in the
616 * Address 1 field, and all non-QoS data frames sent
617 * by QoS STAs are assigned using an additional single
618 * modulo-4096 counter, [...]
619 *
620 * We also use that counter for non-QoS STAs.
621 */
622 seqno_idx = IEEE80211_NUM_TIDS;
623 security_idx = 0;
624 if (ieee80211_is_mgmt(hdr->frame_control))
625 security_idx = IEEE80211_NUM_TIDS;
626 tid = 0;
627 }
628
629 rx->seqno_idx = seqno_idx;
630 rx->security_idx = security_idx;
631 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
632 * For now, set skb->priority to 0 for other cases. */
633 rx->skb->priority = (tid > 7) ? 0 : tid;
634 }
635
636 /**
637 * DOC: Packet alignment
638 *
639 * Drivers always need to pass packets that are aligned to two-byte boundaries
640 * to the stack.
641 *
642 * Additionally, should, if possible, align the payload data in a way that
643 * guarantees that the contained IP header is aligned to a four-byte
644 * boundary. In the case of regular frames, this simply means aligning the
645 * payload to a four-byte boundary (because either the IP header is directly
646 * contained, or IV/RFC1042 headers that have a length divisible by four are
647 * in front of it). If the payload data is not properly aligned and the
648 * architecture doesn't support efficient unaligned operations, mac80211
649 * will align the data.
650 *
651 * With A-MSDU frames, however, the payload data address must yield two modulo
652 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
653 * push the IP header further back to a multiple of four again. Thankfully, the
654 * specs were sane enough this time around to require padding each A-MSDU
655 * subframe to a length that is a multiple of four.
656 *
657 * Padding like Atheros hardware adds which is between the 802.11 header and
658 * the payload is not supported, the driver is required to move the 802.11
659 * header to be directly in front of the payload in that case.
660 */
661 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
662 {
663 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
664 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
665 #endif
666 }
667
668
669 /* rx handlers */
670
671 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
672 {
673 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
674
675 if (is_multicast_ether_addr(hdr->addr1))
676 return 0;
677
678 return ieee80211_is_robust_mgmt_frame(skb);
679 }
680
681
682 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
683 {
684 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
685
686 if (!is_multicast_ether_addr(hdr->addr1))
687 return 0;
688
689 return ieee80211_is_robust_mgmt_frame(skb);
690 }
691
692
693 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
694 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
695 {
696 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
697 struct ieee80211_mmie *mmie;
698 struct ieee80211_mmie_16 *mmie16;
699
700 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
701 return -1;
702
703 if (!ieee80211_is_robust_mgmt_frame(skb))
704 return -1; /* not a robust management frame */
705
706 mmie = (struct ieee80211_mmie *)
707 (skb->data + skb->len - sizeof(*mmie));
708 if (mmie->element_id == WLAN_EID_MMIE &&
709 mmie->length == sizeof(*mmie) - 2)
710 return le16_to_cpu(mmie->key_id);
711
712 mmie16 = (struct ieee80211_mmie_16 *)
713 (skb->data + skb->len - sizeof(*mmie16));
714 if (skb->len >= 24 + sizeof(*mmie16) &&
715 mmie16->element_id == WLAN_EID_MMIE &&
716 mmie16->length == sizeof(*mmie16) - 2)
717 return le16_to_cpu(mmie16->key_id);
718
719 return -1;
720 }
721
722 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
723 struct sk_buff *skb)
724 {
725 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
726 __le16 fc;
727 int hdrlen;
728 u8 keyid;
729
730 fc = hdr->frame_control;
731 hdrlen = ieee80211_hdrlen(fc);
732
733 if (skb->len < hdrlen + cs->hdr_len)
734 return -EINVAL;
735
736 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
737 keyid &= cs->key_idx_mask;
738 keyid >>= cs->key_idx_shift;
739
740 return keyid;
741 }
742
743 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
744 {
745 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
746 char *dev_addr = rx->sdata->vif.addr;
747
748 if (ieee80211_is_data(hdr->frame_control)) {
749 if (is_multicast_ether_addr(hdr->addr1)) {
750 if (ieee80211_has_tods(hdr->frame_control) ||
751 !ieee80211_has_fromds(hdr->frame_control))
752 return RX_DROP_MONITOR;
753 if (ether_addr_equal(hdr->addr3, dev_addr))
754 return RX_DROP_MONITOR;
755 } else {
756 if (!ieee80211_has_a4(hdr->frame_control))
757 return RX_DROP_MONITOR;
758 if (ether_addr_equal(hdr->addr4, dev_addr))
759 return RX_DROP_MONITOR;
760 }
761 }
762
763 /* If there is not an established peer link and this is not a peer link
764 * establisment frame, beacon or probe, drop the frame.
765 */
766
767 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
768 struct ieee80211_mgmt *mgmt;
769
770 if (!ieee80211_is_mgmt(hdr->frame_control))
771 return RX_DROP_MONITOR;
772
773 if (ieee80211_is_action(hdr->frame_control)) {
774 u8 category;
775
776 /* make sure category field is present */
777 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
778 return RX_DROP_MONITOR;
779
780 mgmt = (struct ieee80211_mgmt *)hdr;
781 category = mgmt->u.action.category;
782 if (category != WLAN_CATEGORY_MESH_ACTION &&
783 category != WLAN_CATEGORY_SELF_PROTECTED)
784 return RX_DROP_MONITOR;
785 return RX_CONTINUE;
786 }
787
788 if (ieee80211_is_probe_req(hdr->frame_control) ||
789 ieee80211_is_probe_resp(hdr->frame_control) ||
790 ieee80211_is_beacon(hdr->frame_control) ||
791 ieee80211_is_auth(hdr->frame_control))
792 return RX_CONTINUE;
793
794 return RX_DROP_MONITOR;
795 }
796
797 return RX_CONTINUE;
798 }
799
800 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
801 struct tid_ampdu_rx *tid_agg_rx,
802 int index,
803 struct sk_buff_head *frames)
804 {
805 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
806 struct sk_buff *skb;
807 struct ieee80211_rx_status *status;
808
809 lockdep_assert_held(&tid_agg_rx->reorder_lock);
810
811 if (skb_queue_empty(skb_list))
812 goto no_frame;
813
814 if (!ieee80211_rx_reorder_ready(skb_list)) {
815 __skb_queue_purge(skb_list);
816 goto no_frame;
817 }
818
819 /* release frames from the reorder ring buffer */
820 tid_agg_rx->stored_mpdu_num--;
821 while ((skb = __skb_dequeue(skb_list))) {
822 status = IEEE80211_SKB_RXCB(skb);
823 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
824 __skb_queue_tail(frames, skb);
825 }
826
827 no_frame:
828 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
829 }
830
831 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
832 struct tid_ampdu_rx *tid_agg_rx,
833 u16 head_seq_num,
834 struct sk_buff_head *frames)
835 {
836 int index;
837
838 lockdep_assert_held(&tid_agg_rx->reorder_lock);
839
840 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
841 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
842 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
843 frames);
844 }
845 }
846
847 /*
848 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
849 * the skb was added to the buffer longer than this time ago, the earlier
850 * frames that have not yet been received are assumed to be lost and the skb
851 * can be released for processing. This may also release other skb's from the
852 * reorder buffer if there are no additional gaps between the frames.
853 *
854 * Callers must hold tid_agg_rx->reorder_lock.
855 */
856 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
857
858 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
859 struct tid_ampdu_rx *tid_agg_rx,
860 struct sk_buff_head *frames)
861 {
862 int index, i, j;
863
864 lockdep_assert_held(&tid_agg_rx->reorder_lock);
865
866 /* release the buffer until next missing frame */
867 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
868 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
869 tid_agg_rx->stored_mpdu_num) {
870 /*
871 * No buffers ready to be released, but check whether any
872 * frames in the reorder buffer have timed out.
873 */
874 int skipped = 1;
875 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
876 j = (j + 1) % tid_agg_rx->buf_size) {
877 if (!ieee80211_rx_reorder_ready(
878 &tid_agg_rx->reorder_buf[j])) {
879 skipped++;
880 continue;
881 }
882 if (skipped &&
883 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
884 HT_RX_REORDER_BUF_TIMEOUT))
885 goto set_release_timer;
886
887 /* don't leave incomplete A-MSDUs around */
888 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
889 i = (i + 1) % tid_agg_rx->buf_size)
890 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
891
892 ht_dbg_ratelimited(sdata,
893 "release an RX reorder frame due to timeout on earlier frames\n");
894 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
895 frames);
896
897 /*
898 * Increment the head seq# also for the skipped slots.
899 */
900 tid_agg_rx->head_seq_num =
901 (tid_agg_rx->head_seq_num +
902 skipped) & IEEE80211_SN_MASK;
903 skipped = 0;
904 }
905 } else while (ieee80211_rx_reorder_ready(
906 &tid_agg_rx->reorder_buf[index])) {
907 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
908 frames);
909 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
910 }
911
912 if (tid_agg_rx->stored_mpdu_num) {
913 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
914
915 for (; j != (index - 1) % tid_agg_rx->buf_size;
916 j = (j + 1) % tid_agg_rx->buf_size) {
917 if (ieee80211_rx_reorder_ready(
918 &tid_agg_rx->reorder_buf[j]))
919 break;
920 }
921
922 set_release_timer:
923
924 if (!tid_agg_rx->removed)
925 mod_timer(&tid_agg_rx->reorder_timer,
926 tid_agg_rx->reorder_time[j] + 1 +
927 HT_RX_REORDER_BUF_TIMEOUT);
928 } else {
929 del_timer(&tid_agg_rx->reorder_timer);
930 }
931 }
932
933 /*
934 * As this function belongs to the RX path it must be under
935 * rcu_read_lock protection. It returns false if the frame
936 * can be processed immediately, true if it was consumed.
937 */
938 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
939 struct tid_ampdu_rx *tid_agg_rx,
940 struct sk_buff *skb,
941 struct sk_buff_head *frames)
942 {
943 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
944 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
945 u16 sc = le16_to_cpu(hdr->seq_ctrl);
946 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
947 u16 head_seq_num, buf_size;
948 int index;
949 bool ret = true;
950
951 spin_lock(&tid_agg_rx->reorder_lock);
952
953 /*
954 * Offloaded BA sessions have no known starting sequence number so pick
955 * one from first Rxed frame for this tid after BA was started.
956 */
957 if (unlikely(tid_agg_rx->auto_seq)) {
958 tid_agg_rx->auto_seq = false;
959 tid_agg_rx->ssn = mpdu_seq_num;
960 tid_agg_rx->head_seq_num = mpdu_seq_num;
961 }
962
963 buf_size = tid_agg_rx->buf_size;
964 head_seq_num = tid_agg_rx->head_seq_num;
965
966 /* frame with out of date sequence number */
967 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
968 dev_kfree_skb(skb);
969 goto out;
970 }
971
972 /*
973 * If frame the sequence number exceeds our buffering window
974 * size release some previous frames to make room for this one.
975 */
976 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
977 head_seq_num = ieee80211_sn_inc(
978 ieee80211_sn_sub(mpdu_seq_num, buf_size));
979 /* release stored frames up to new head to stack */
980 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
981 head_seq_num, frames);
982 }
983
984 /* Now the new frame is always in the range of the reordering buffer */
985
986 index = mpdu_seq_num % tid_agg_rx->buf_size;
987
988 /* check if we already stored this frame */
989 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
990 dev_kfree_skb(skb);
991 goto out;
992 }
993
994 /*
995 * If the current MPDU is in the right order and nothing else
996 * is stored we can process it directly, no need to buffer it.
997 * If it is first but there's something stored, we may be able
998 * to release frames after this one.
999 */
1000 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1001 tid_agg_rx->stored_mpdu_num == 0) {
1002 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1003 tid_agg_rx->head_seq_num =
1004 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1005 ret = false;
1006 goto out;
1007 }
1008
1009 /* put the frame in the reordering buffer */
1010 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1011 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1012 tid_agg_rx->reorder_time[index] = jiffies;
1013 tid_agg_rx->stored_mpdu_num++;
1014 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1015 }
1016
1017 out:
1018 spin_unlock(&tid_agg_rx->reorder_lock);
1019 return ret;
1020 }
1021
1022 /*
1023 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1024 * true if the MPDU was buffered, false if it should be processed.
1025 */
1026 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1027 struct sk_buff_head *frames)
1028 {
1029 struct sk_buff *skb = rx->skb;
1030 struct ieee80211_local *local = rx->local;
1031 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1032 struct sta_info *sta = rx->sta;
1033 struct tid_ampdu_rx *tid_agg_rx;
1034 u16 sc;
1035 u8 tid, ack_policy;
1036
1037 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1038 is_multicast_ether_addr(hdr->addr1))
1039 goto dont_reorder;
1040
1041 /*
1042 * filter the QoS data rx stream according to
1043 * STA/TID and check if this STA/TID is on aggregation
1044 */
1045
1046 if (!sta)
1047 goto dont_reorder;
1048
1049 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1050 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1051 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1052
1053 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1054 if (!tid_agg_rx)
1055 goto dont_reorder;
1056
1057 /* qos null data frames are excluded */
1058 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1059 goto dont_reorder;
1060
1061 /* not part of a BA session */
1062 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1063 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1064 goto dont_reorder;
1065
1066 /* new, potentially un-ordered, ampdu frame - process it */
1067
1068 /* reset session timer */
1069 if (tid_agg_rx->timeout)
1070 tid_agg_rx->last_rx = jiffies;
1071
1072 /* if this mpdu is fragmented - terminate rx aggregation session */
1073 sc = le16_to_cpu(hdr->seq_ctrl);
1074 if (sc & IEEE80211_SCTL_FRAG) {
1075 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1076 skb_queue_tail(&rx->sdata->skb_queue, skb);
1077 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1078 return;
1079 }
1080
1081 /*
1082 * No locking needed -- we will only ever process one
1083 * RX packet at a time, and thus own tid_agg_rx. All
1084 * other code manipulating it needs to (and does) make
1085 * sure that we cannot get to it any more before doing
1086 * anything with it.
1087 */
1088 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1089 frames))
1090 return;
1091
1092 dont_reorder:
1093 __skb_queue_tail(frames, skb);
1094 }
1095
1096 static ieee80211_rx_result debug_noinline
1097 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1098 {
1099 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1100 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1101
1102 /*
1103 * Drop duplicate 802.11 retransmissions
1104 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1105 */
1106
1107 if (rx->skb->len < 24)
1108 return RX_CONTINUE;
1109
1110 if (ieee80211_is_ctl(hdr->frame_control) ||
1111 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1112 is_multicast_ether_addr(hdr->addr1))
1113 return RX_CONTINUE;
1114
1115 if (!rx->sta)
1116 return RX_CONTINUE;
1117
1118 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1119 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1120 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1121 rx->sta->rx_stats.num_duplicates++;
1122 return RX_DROP_UNUSABLE;
1123 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1124 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1125 }
1126
1127 return RX_CONTINUE;
1128 }
1129
1130 static ieee80211_rx_result debug_noinline
1131 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1132 {
1133 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1134
1135 /* Drop disallowed frame classes based on STA auth/assoc state;
1136 * IEEE 802.11, Chap 5.5.
1137 *
1138 * mac80211 filters only based on association state, i.e. it drops
1139 * Class 3 frames from not associated stations. hostapd sends
1140 * deauth/disassoc frames when needed. In addition, hostapd is
1141 * responsible for filtering on both auth and assoc states.
1142 */
1143
1144 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1145 return ieee80211_rx_mesh_check(rx);
1146
1147 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1148 ieee80211_is_pspoll(hdr->frame_control)) &&
1149 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1150 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1151 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1152 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1153 /*
1154 * accept port control frames from the AP even when it's not
1155 * yet marked ASSOC to prevent a race where we don't set the
1156 * assoc bit quickly enough before it sends the first frame
1157 */
1158 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1159 ieee80211_is_data_present(hdr->frame_control)) {
1160 unsigned int hdrlen;
1161 __be16 ethertype;
1162
1163 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1164
1165 if (rx->skb->len < hdrlen + 8)
1166 return RX_DROP_MONITOR;
1167
1168 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1169 if (ethertype == rx->sdata->control_port_protocol)
1170 return RX_CONTINUE;
1171 }
1172
1173 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1174 cfg80211_rx_spurious_frame(rx->sdata->dev,
1175 hdr->addr2,
1176 GFP_ATOMIC))
1177 return RX_DROP_UNUSABLE;
1178
1179 return RX_DROP_MONITOR;
1180 }
1181
1182 return RX_CONTINUE;
1183 }
1184
1185
1186 static ieee80211_rx_result debug_noinline
1187 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1188 {
1189 struct ieee80211_local *local;
1190 struct ieee80211_hdr *hdr;
1191 struct sk_buff *skb;
1192
1193 local = rx->local;
1194 skb = rx->skb;
1195 hdr = (struct ieee80211_hdr *) skb->data;
1196
1197 if (!local->pspolling)
1198 return RX_CONTINUE;
1199
1200 if (!ieee80211_has_fromds(hdr->frame_control))
1201 /* this is not from AP */
1202 return RX_CONTINUE;
1203
1204 if (!ieee80211_is_data(hdr->frame_control))
1205 return RX_CONTINUE;
1206
1207 if (!ieee80211_has_moredata(hdr->frame_control)) {
1208 /* AP has no more frames buffered for us */
1209 local->pspolling = false;
1210 return RX_CONTINUE;
1211 }
1212
1213 /* more data bit is set, let's request a new frame from the AP */
1214 ieee80211_send_pspoll(local, rx->sdata);
1215
1216 return RX_CONTINUE;
1217 }
1218
1219 static void sta_ps_start(struct sta_info *sta)
1220 {
1221 struct ieee80211_sub_if_data *sdata = sta->sdata;
1222 struct ieee80211_local *local = sdata->local;
1223 struct ps_data *ps;
1224 int tid;
1225
1226 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1227 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1228 ps = &sdata->bss->ps;
1229 else
1230 return;
1231
1232 atomic_inc(&ps->num_sta_ps);
1233 set_sta_flag(sta, WLAN_STA_PS_STA);
1234 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1235 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1236 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1237 sta->sta.addr, sta->sta.aid);
1238
1239 ieee80211_clear_fast_xmit(sta);
1240
1241 if (!sta->sta.txq[0])
1242 return;
1243
1244 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1245 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1246
1247 if (!skb_queue_len(&txqi->queue))
1248 set_bit(tid, &sta->txq_buffered_tids);
1249 else
1250 clear_bit(tid, &sta->txq_buffered_tids);
1251 }
1252 }
1253
1254 static void sta_ps_end(struct sta_info *sta)
1255 {
1256 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1257 sta->sta.addr, sta->sta.aid);
1258
1259 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1260 /*
1261 * Clear the flag only if the other one is still set
1262 * so that the TX path won't start TX'ing new frames
1263 * directly ... In the case that the driver flag isn't
1264 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1265 */
1266 clear_sta_flag(sta, WLAN_STA_PS_STA);
1267 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1268 sta->sta.addr, sta->sta.aid);
1269 return;
1270 }
1271
1272 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1273 clear_sta_flag(sta, WLAN_STA_PS_STA);
1274 ieee80211_sta_ps_deliver_wakeup(sta);
1275 }
1276
1277 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1278 {
1279 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1280 bool in_ps;
1281
1282 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1283
1284 /* Don't let the same PS state be set twice */
1285 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1286 if ((start && in_ps) || (!start && !in_ps))
1287 return -EINVAL;
1288
1289 if (start)
1290 sta_ps_start(sta);
1291 else
1292 sta_ps_end(sta);
1293
1294 return 0;
1295 }
1296 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1297
1298 static ieee80211_rx_result debug_noinline
1299 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1300 {
1301 struct ieee80211_sub_if_data *sdata = rx->sdata;
1302 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1303 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1304 int tid, ac;
1305
1306 if (!rx->sta)
1307 return RX_CONTINUE;
1308
1309 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1310 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1311 return RX_CONTINUE;
1312
1313 /*
1314 * The device handles station powersave, so don't do anything about
1315 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1316 * it to mac80211 since they're handled.)
1317 */
1318 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1319 return RX_CONTINUE;
1320
1321 /*
1322 * Don't do anything if the station isn't already asleep. In
1323 * the uAPSD case, the station will probably be marked asleep,
1324 * in the PS-Poll case the station must be confused ...
1325 */
1326 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1327 return RX_CONTINUE;
1328
1329 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1330 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1331 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1332 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1333 else
1334 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1335 }
1336
1337 /* Free PS Poll skb here instead of returning RX_DROP that would
1338 * count as an dropped frame. */
1339 dev_kfree_skb(rx->skb);
1340
1341 return RX_QUEUED;
1342 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1343 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1344 ieee80211_has_pm(hdr->frame_control) &&
1345 (ieee80211_is_data_qos(hdr->frame_control) ||
1346 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1347 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1348 ac = ieee802_1d_to_ac[tid & 7];
1349
1350 /*
1351 * If this AC is not trigger-enabled do nothing.
1352 *
1353 * NB: This could/should check a separate bitmap of trigger-
1354 * enabled queues, but for now we only implement uAPSD w/o
1355 * TSPEC changes to the ACs, so they're always the same.
1356 */
1357 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1358 return RX_CONTINUE;
1359
1360 /* if we are in a service period, do nothing */
1361 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1362 return RX_CONTINUE;
1363
1364 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1365 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1366 else
1367 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1368 }
1369
1370 return RX_CONTINUE;
1371 }
1372
1373 static ieee80211_rx_result debug_noinline
1374 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1375 {
1376 struct sta_info *sta = rx->sta;
1377 struct sk_buff *skb = rx->skb;
1378 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1379 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1380 int i;
1381
1382 if (!sta)
1383 return RX_CONTINUE;
1384
1385 /*
1386 * Update last_rx only for IBSS packets which are for the current
1387 * BSSID and for station already AUTHORIZED to avoid keeping the
1388 * current IBSS network alive in cases where other STAs start
1389 * using different BSSID. This will also give the station another
1390 * chance to restart the authentication/authorization in case
1391 * something went wrong the first time.
1392 */
1393 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1394 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1395 NL80211_IFTYPE_ADHOC);
1396 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1397 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1398 sta->rx_stats.last_rx = jiffies;
1399 if (ieee80211_is_data(hdr->frame_control) &&
1400 !is_multicast_ether_addr(hdr->addr1)) {
1401 sta->rx_stats.last_rate_idx =
1402 status->rate_idx;
1403 sta->rx_stats.last_rate_flag =
1404 status->flag;
1405 sta->rx_stats.last_rate_vht_flag =
1406 status->vht_flag;
1407 sta->rx_stats.last_rate_vht_nss =
1408 status->vht_nss;
1409 }
1410 }
1411 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1412 sta->rx_stats.last_rx = jiffies;
1413 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1414 /*
1415 * Mesh beacons will update last_rx when if they are found to
1416 * match the current local configuration when processed.
1417 */
1418 sta->rx_stats.last_rx = jiffies;
1419 if (ieee80211_is_data(hdr->frame_control)) {
1420 sta->rx_stats.last_rate_idx = status->rate_idx;
1421 sta->rx_stats.last_rate_flag = status->flag;
1422 sta->rx_stats.last_rate_vht_flag = status->vht_flag;
1423 sta->rx_stats.last_rate_vht_nss = status->vht_nss;
1424 }
1425 }
1426
1427 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1428 ieee80211_sta_rx_notify(rx->sdata, hdr);
1429
1430 sta->rx_stats.fragments++;
1431 sta->rx_stats.bytes += rx->skb->len;
1432 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1433 sta->rx_stats.last_signal = status->signal;
1434 ewma_signal_add(&sta->rx_stats.avg_signal, -status->signal);
1435 }
1436
1437 if (status->chains) {
1438 sta->rx_stats.chains = status->chains;
1439 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1440 int signal = status->chain_signal[i];
1441
1442 if (!(status->chains & BIT(i)))
1443 continue;
1444
1445 sta->rx_stats.chain_signal_last[i] = signal;
1446 ewma_signal_add(&sta->rx_stats.chain_signal_avg[i],
1447 -signal);
1448 }
1449 }
1450
1451 /*
1452 * Change STA power saving mode only at the end of a frame
1453 * exchange sequence.
1454 */
1455 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1456 !ieee80211_has_morefrags(hdr->frame_control) &&
1457 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1458 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1459 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1460 /* PM bit is only checked in frames where it isn't reserved,
1461 * in AP mode it's reserved in non-bufferable management frames
1462 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1463 */
1464 (!ieee80211_is_mgmt(hdr->frame_control) ||
1465 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1466 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1467 if (!ieee80211_has_pm(hdr->frame_control))
1468 sta_ps_end(sta);
1469 } else {
1470 if (ieee80211_has_pm(hdr->frame_control))
1471 sta_ps_start(sta);
1472 }
1473 }
1474
1475 /* mesh power save support */
1476 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1477 ieee80211_mps_rx_h_sta_process(sta, hdr);
1478
1479 /*
1480 * Drop (qos-)data::nullfunc frames silently, since they
1481 * are used only to control station power saving mode.
1482 */
1483 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1484 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1485 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1486
1487 /*
1488 * If we receive a 4-addr nullfunc frame from a STA
1489 * that was not moved to a 4-addr STA vlan yet send
1490 * the event to userspace and for older hostapd drop
1491 * the frame to the monitor interface.
1492 */
1493 if (ieee80211_has_a4(hdr->frame_control) &&
1494 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1495 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1496 !rx->sdata->u.vlan.sta))) {
1497 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1498 cfg80211_rx_unexpected_4addr_frame(
1499 rx->sdata->dev, sta->sta.addr,
1500 GFP_ATOMIC);
1501 return RX_DROP_MONITOR;
1502 }
1503 /*
1504 * Update counter and free packet here to avoid
1505 * counting this as a dropped packed.
1506 */
1507 sta->rx_stats.packets++;
1508 dev_kfree_skb(rx->skb);
1509 return RX_QUEUED;
1510 }
1511
1512 return RX_CONTINUE;
1513 } /* ieee80211_rx_h_sta_process */
1514
1515 static ieee80211_rx_result debug_noinline
1516 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1517 {
1518 struct sk_buff *skb = rx->skb;
1519 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1520 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1521 int keyidx;
1522 int hdrlen;
1523 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1524 struct ieee80211_key *sta_ptk = NULL;
1525 int mmie_keyidx = -1;
1526 __le16 fc;
1527 const struct ieee80211_cipher_scheme *cs = NULL;
1528
1529 /*
1530 * Key selection 101
1531 *
1532 * There are four types of keys:
1533 * - GTK (group keys)
1534 * - IGTK (group keys for management frames)
1535 * - PTK (pairwise keys)
1536 * - STK (station-to-station pairwise keys)
1537 *
1538 * When selecting a key, we have to distinguish between multicast
1539 * (including broadcast) and unicast frames, the latter can only
1540 * use PTKs and STKs while the former always use GTKs and IGTKs.
1541 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1542 * unicast frames can also use key indices like GTKs. Hence, if we
1543 * don't have a PTK/STK we check the key index for a WEP key.
1544 *
1545 * Note that in a regular BSS, multicast frames are sent by the
1546 * AP only, associated stations unicast the frame to the AP first
1547 * which then multicasts it on their behalf.
1548 *
1549 * There is also a slight problem in IBSS mode: GTKs are negotiated
1550 * with each station, that is something we don't currently handle.
1551 * The spec seems to expect that one negotiates the same key with
1552 * every station but there's no such requirement; VLANs could be
1553 * possible.
1554 */
1555
1556 /* start without a key */
1557 rx->key = NULL;
1558 fc = hdr->frame_control;
1559
1560 if (rx->sta) {
1561 int keyid = rx->sta->ptk_idx;
1562
1563 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1564 cs = rx->sta->cipher_scheme;
1565 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1566 if (unlikely(keyid < 0))
1567 return RX_DROP_UNUSABLE;
1568 }
1569 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1570 }
1571
1572 if (!ieee80211_has_protected(fc))
1573 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1574
1575 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1576 rx->key = sta_ptk;
1577 if ((status->flag & RX_FLAG_DECRYPTED) &&
1578 (status->flag & RX_FLAG_IV_STRIPPED))
1579 return RX_CONTINUE;
1580 /* Skip decryption if the frame is not protected. */
1581 if (!ieee80211_has_protected(fc))
1582 return RX_CONTINUE;
1583 } else if (mmie_keyidx >= 0) {
1584 /* Broadcast/multicast robust management frame / BIP */
1585 if ((status->flag & RX_FLAG_DECRYPTED) &&
1586 (status->flag & RX_FLAG_IV_STRIPPED))
1587 return RX_CONTINUE;
1588
1589 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1590 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1591 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1592 if (rx->sta)
1593 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1594 if (!rx->key)
1595 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1596 } else if (!ieee80211_has_protected(fc)) {
1597 /*
1598 * The frame was not protected, so skip decryption. However, we
1599 * need to set rx->key if there is a key that could have been
1600 * used so that the frame may be dropped if encryption would
1601 * have been expected.
1602 */
1603 struct ieee80211_key *key = NULL;
1604 struct ieee80211_sub_if_data *sdata = rx->sdata;
1605 int i;
1606
1607 if (ieee80211_is_mgmt(fc) &&
1608 is_multicast_ether_addr(hdr->addr1) &&
1609 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1610 rx->key = key;
1611 else {
1612 if (rx->sta) {
1613 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1614 key = rcu_dereference(rx->sta->gtk[i]);
1615 if (key)
1616 break;
1617 }
1618 }
1619 if (!key) {
1620 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1621 key = rcu_dereference(sdata->keys[i]);
1622 if (key)
1623 break;
1624 }
1625 }
1626 if (key)
1627 rx->key = key;
1628 }
1629 return RX_CONTINUE;
1630 } else {
1631 u8 keyid;
1632
1633 /*
1634 * The device doesn't give us the IV so we won't be
1635 * able to look up the key. That's ok though, we
1636 * don't need to decrypt the frame, we just won't
1637 * be able to keep statistics accurate.
1638 * Except for key threshold notifications, should
1639 * we somehow allow the driver to tell us which key
1640 * the hardware used if this flag is set?
1641 */
1642 if ((status->flag & RX_FLAG_DECRYPTED) &&
1643 (status->flag & RX_FLAG_IV_STRIPPED))
1644 return RX_CONTINUE;
1645
1646 hdrlen = ieee80211_hdrlen(fc);
1647
1648 if (cs) {
1649 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1650
1651 if (unlikely(keyidx < 0))
1652 return RX_DROP_UNUSABLE;
1653 } else {
1654 if (rx->skb->len < 8 + hdrlen)
1655 return RX_DROP_UNUSABLE; /* TODO: count this? */
1656 /*
1657 * no need to call ieee80211_wep_get_keyidx,
1658 * it verifies a bunch of things we've done already
1659 */
1660 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1661 keyidx = keyid >> 6;
1662 }
1663
1664 /* check per-station GTK first, if multicast packet */
1665 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1666 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1667
1668 /* if not found, try default key */
1669 if (!rx->key) {
1670 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1671
1672 /*
1673 * RSNA-protected unicast frames should always be
1674 * sent with pairwise or station-to-station keys,
1675 * but for WEP we allow using a key index as well.
1676 */
1677 if (rx->key &&
1678 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1679 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1680 !is_multicast_ether_addr(hdr->addr1))
1681 rx->key = NULL;
1682 }
1683 }
1684
1685 if (rx->key) {
1686 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1687 return RX_DROP_MONITOR;
1688
1689 /* TODO: add threshold stuff again */
1690 } else {
1691 return RX_DROP_MONITOR;
1692 }
1693
1694 switch (rx->key->conf.cipher) {
1695 case WLAN_CIPHER_SUITE_WEP40:
1696 case WLAN_CIPHER_SUITE_WEP104:
1697 result = ieee80211_crypto_wep_decrypt(rx);
1698 break;
1699 case WLAN_CIPHER_SUITE_TKIP:
1700 result = ieee80211_crypto_tkip_decrypt(rx);
1701 break;
1702 case WLAN_CIPHER_SUITE_CCMP:
1703 result = ieee80211_crypto_ccmp_decrypt(
1704 rx, IEEE80211_CCMP_MIC_LEN);
1705 break;
1706 case WLAN_CIPHER_SUITE_CCMP_256:
1707 result = ieee80211_crypto_ccmp_decrypt(
1708 rx, IEEE80211_CCMP_256_MIC_LEN);
1709 break;
1710 case WLAN_CIPHER_SUITE_AES_CMAC:
1711 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1712 break;
1713 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1714 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1715 break;
1716 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1717 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1718 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1719 break;
1720 case WLAN_CIPHER_SUITE_GCMP:
1721 case WLAN_CIPHER_SUITE_GCMP_256:
1722 result = ieee80211_crypto_gcmp_decrypt(rx);
1723 break;
1724 default:
1725 result = ieee80211_crypto_hw_decrypt(rx);
1726 }
1727
1728 /* the hdr variable is invalid after the decrypt handlers */
1729
1730 /* either the frame has been decrypted or will be dropped */
1731 status->flag |= RX_FLAG_DECRYPTED;
1732
1733 return result;
1734 }
1735
1736 static inline struct ieee80211_fragment_entry *
1737 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1738 unsigned int frag, unsigned int seq, int rx_queue,
1739 struct sk_buff **skb)
1740 {
1741 struct ieee80211_fragment_entry *entry;
1742
1743 entry = &sdata->fragments[sdata->fragment_next++];
1744 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1745 sdata->fragment_next = 0;
1746
1747 if (!skb_queue_empty(&entry->skb_list))
1748 __skb_queue_purge(&entry->skb_list);
1749
1750 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1751 *skb = NULL;
1752 entry->first_frag_time = jiffies;
1753 entry->seq = seq;
1754 entry->rx_queue = rx_queue;
1755 entry->last_frag = frag;
1756 entry->check_sequential_pn = false;
1757 entry->extra_len = 0;
1758
1759 return entry;
1760 }
1761
1762 static inline struct ieee80211_fragment_entry *
1763 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1764 unsigned int frag, unsigned int seq,
1765 int rx_queue, struct ieee80211_hdr *hdr)
1766 {
1767 struct ieee80211_fragment_entry *entry;
1768 int i, idx;
1769
1770 idx = sdata->fragment_next;
1771 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1772 struct ieee80211_hdr *f_hdr;
1773
1774 idx--;
1775 if (idx < 0)
1776 idx = IEEE80211_FRAGMENT_MAX - 1;
1777
1778 entry = &sdata->fragments[idx];
1779 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1780 entry->rx_queue != rx_queue ||
1781 entry->last_frag + 1 != frag)
1782 continue;
1783
1784 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1785
1786 /*
1787 * Check ftype and addresses are equal, else check next fragment
1788 */
1789 if (((hdr->frame_control ^ f_hdr->frame_control) &
1790 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1791 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1792 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1793 continue;
1794
1795 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1796 __skb_queue_purge(&entry->skb_list);
1797 continue;
1798 }
1799 return entry;
1800 }
1801
1802 return NULL;
1803 }
1804
1805 static ieee80211_rx_result debug_noinline
1806 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1807 {
1808 struct ieee80211_hdr *hdr;
1809 u16 sc;
1810 __le16 fc;
1811 unsigned int frag, seq;
1812 struct ieee80211_fragment_entry *entry;
1813 struct sk_buff *skb;
1814 struct ieee80211_rx_status *status;
1815
1816 hdr = (struct ieee80211_hdr *)rx->skb->data;
1817 fc = hdr->frame_control;
1818
1819 if (ieee80211_is_ctl(fc))
1820 return RX_CONTINUE;
1821
1822 sc = le16_to_cpu(hdr->seq_ctrl);
1823 frag = sc & IEEE80211_SCTL_FRAG;
1824
1825 if (is_multicast_ether_addr(hdr->addr1)) {
1826 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1827 goto out_no_led;
1828 }
1829
1830 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1831 goto out;
1832
1833 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1834
1835 if (skb_linearize(rx->skb))
1836 return RX_DROP_UNUSABLE;
1837
1838 /*
1839 * skb_linearize() might change the skb->data and
1840 * previously cached variables (in this case, hdr) need to
1841 * be refreshed with the new data.
1842 */
1843 hdr = (struct ieee80211_hdr *)rx->skb->data;
1844 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1845
1846 if (frag == 0) {
1847 /* This is the first fragment of a new frame. */
1848 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1849 rx->seqno_idx, &(rx->skb));
1850 if (rx->key &&
1851 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1852 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1853 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1854 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1855 ieee80211_has_protected(fc)) {
1856 int queue = rx->security_idx;
1857
1858 /* Store CCMP/GCMP PN so that we can verify that the
1859 * next fragment has a sequential PN value.
1860 */
1861 entry->check_sequential_pn = true;
1862 memcpy(entry->last_pn,
1863 rx->key->u.ccmp.rx_pn[queue],
1864 IEEE80211_CCMP_PN_LEN);
1865 BUILD_BUG_ON(offsetof(struct ieee80211_key,
1866 u.ccmp.rx_pn) !=
1867 offsetof(struct ieee80211_key,
1868 u.gcmp.rx_pn));
1869 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1870 sizeof(rx->key->u.gcmp.rx_pn[queue]));
1871 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1872 IEEE80211_GCMP_PN_LEN);
1873 }
1874 return RX_QUEUED;
1875 }
1876
1877 /* This is a fragment for a frame that should already be pending in
1878 * fragment cache. Add this fragment to the end of the pending entry.
1879 */
1880 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1881 rx->seqno_idx, hdr);
1882 if (!entry) {
1883 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1884 return RX_DROP_MONITOR;
1885 }
1886
1887 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
1888 * MPDU PN values are not incrementing in steps of 1."
1889 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1890 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1891 */
1892 if (entry->check_sequential_pn) {
1893 int i;
1894 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1895 int queue;
1896
1897 if (!rx->key ||
1898 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1899 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1900 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1901 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1902 return RX_DROP_UNUSABLE;
1903 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1904 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1905 pn[i]++;
1906 if (pn[i])
1907 break;
1908 }
1909 queue = rx->security_idx;
1910 rpn = rx->key->u.ccmp.rx_pn[queue];
1911 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1912 return RX_DROP_UNUSABLE;
1913 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1914 }
1915
1916 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1917 __skb_queue_tail(&entry->skb_list, rx->skb);
1918 entry->last_frag = frag;
1919 entry->extra_len += rx->skb->len;
1920 if (ieee80211_has_morefrags(fc)) {
1921 rx->skb = NULL;
1922 return RX_QUEUED;
1923 }
1924
1925 rx->skb = __skb_dequeue(&entry->skb_list);
1926 if (skb_tailroom(rx->skb) < entry->extra_len) {
1927 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1928 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1929 GFP_ATOMIC))) {
1930 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1931 __skb_queue_purge(&entry->skb_list);
1932 return RX_DROP_UNUSABLE;
1933 }
1934 }
1935 while ((skb = __skb_dequeue(&entry->skb_list))) {
1936 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1937 dev_kfree_skb(skb);
1938 }
1939
1940 /* Complete frame has been reassembled - process it now */
1941 status = IEEE80211_SKB_RXCB(rx->skb);
1942
1943 out:
1944 ieee80211_led_rx(rx->local);
1945 out_no_led:
1946 if (rx->sta)
1947 rx->sta->rx_stats.packets++;
1948 return RX_CONTINUE;
1949 }
1950
1951 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1952 {
1953 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1954 return -EACCES;
1955
1956 return 0;
1957 }
1958
1959 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1960 {
1961 struct sk_buff *skb = rx->skb;
1962 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1963
1964 /*
1965 * Pass through unencrypted frames if the hardware has
1966 * decrypted them already.
1967 */
1968 if (status->flag & RX_FLAG_DECRYPTED)
1969 return 0;
1970
1971 /* Drop unencrypted frames if key is set. */
1972 if (unlikely(!ieee80211_has_protected(fc) &&
1973 !ieee80211_is_nullfunc(fc) &&
1974 ieee80211_is_data(fc) && rx->key))
1975 return -EACCES;
1976
1977 return 0;
1978 }
1979
1980 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1981 {
1982 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1983 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1984 __le16 fc = hdr->frame_control;
1985
1986 /*
1987 * Pass through unencrypted frames if the hardware has
1988 * decrypted them already.
1989 */
1990 if (status->flag & RX_FLAG_DECRYPTED)
1991 return 0;
1992
1993 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1994 if (unlikely(!ieee80211_has_protected(fc) &&
1995 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1996 rx->key)) {
1997 if (ieee80211_is_deauth(fc) ||
1998 ieee80211_is_disassoc(fc))
1999 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2000 rx->skb->data,
2001 rx->skb->len);
2002 return -EACCES;
2003 }
2004 /* BIP does not use Protected field, so need to check MMIE */
2005 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2006 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2007 if (ieee80211_is_deauth(fc) ||
2008 ieee80211_is_disassoc(fc))
2009 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2010 rx->skb->data,
2011 rx->skb->len);
2012 return -EACCES;
2013 }
2014 /*
2015 * When using MFP, Action frames are not allowed prior to
2016 * having configured keys.
2017 */
2018 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2019 ieee80211_is_robust_mgmt_frame(rx->skb)))
2020 return -EACCES;
2021 }
2022
2023 return 0;
2024 }
2025
2026 static int
2027 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2028 {
2029 struct ieee80211_sub_if_data *sdata = rx->sdata;
2030 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2031 bool check_port_control = false;
2032 struct ethhdr *ehdr;
2033 int ret;
2034
2035 *port_control = false;
2036 if (ieee80211_has_a4(hdr->frame_control) &&
2037 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2038 return -1;
2039
2040 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2041 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2042
2043 if (!sdata->u.mgd.use_4addr)
2044 return -1;
2045 else
2046 check_port_control = true;
2047 }
2048
2049 if (is_multicast_ether_addr(hdr->addr1) &&
2050 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2051 return -1;
2052
2053 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2054 if (ret < 0)
2055 return ret;
2056
2057 ehdr = (struct ethhdr *) rx->skb->data;
2058 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2059 *port_control = true;
2060 else if (check_port_control)
2061 return -1;
2062
2063 return 0;
2064 }
2065
2066 /*
2067 * requires that rx->skb is a frame with ethernet header
2068 */
2069 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2070 {
2071 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2072 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2073 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2074
2075 /*
2076 * Allow EAPOL frames to us/the PAE group address regardless
2077 * of whether the frame was encrypted or not.
2078 */
2079 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2080 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2081 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2082 return true;
2083
2084 if (ieee80211_802_1x_port_control(rx) ||
2085 ieee80211_drop_unencrypted(rx, fc))
2086 return false;
2087
2088 return true;
2089 }
2090
2091 /*
2092 * requires that rx->skb is a frame with ethernet header
2093 */
2094 static void
2095 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2096 {
2097 struct ieee80211_sub_if_data *sdata = rx->sdata;
2098 struct net_device *dev = sdata->dev;
2099 struct sk_buff *skb, *xmit_skb;
2100 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2101 struct sta_info *dsta;
2102
2103 skb = rx->skb;
2104 xmit_skb = NULL;
2105
2106 ieee80211_rx_stats(dev, skb->len);
2107
2108 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2109 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2110 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2111 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2112 if (is_multicast_ether_addr(ehdr->h_dest)) {
2113 /*
2114 * send multicast frames both to higher layers in
2115 * local net stack and back to the wireless medium
2116 */
2117 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2118 if (!xmit_skb)
2119 net_info_ratelimited("%s: failed to clone multicast frame\n",
2120 dev->name);
2121 } else {
2122 dsta = sta_info_get(sdata, skb->data);
2123 if (dsta) {
2124 /*
2125 * The destination station is associated to
2126 * this AP (in this VLAN), so send the frame
2127 * directly to it and do not pass it to local
2128 * net stack.
2129 */
2130 xmit_skb = skb;
2131 skb = NULL;
2132 }
2133 }
2134 }
2135
2136 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2137 if (skb) {
2138 /* 'align' will only take the values 0 or 2 here since all
2139 * frames are required to be aligned to 2-byte boundaries
2140 * when being passed to mac80211; the code here works just
2141 * as well if that isn't true, but mac80211 assumes it can
2142 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2143 */
2144 int align;
2145
2146 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2147 if (align) {
2148 if (WARN_ON(skb_headroom(skb) < 3)) {
2149 dev_kfree_skb(skb);
2150 skb = NULL;
2151 } else {
2152 u8 *data = skb->data;
2153 size_t len = skb_headlen(skb);
2154 skb->data -= align;
2155 memmove(skb->data, data, len);
2156 skb_set_tail_pointer(skb, len);
2157 }
2158 }
2159 }
2160 #endif
2161
2162 if (skb) {
2163 /* deliver to local stack */
2164 skb->protocol = eth_type_trans(skb, dev);
2165 memset(skb->cb, 0, sizeof(skb->cb));
2166 if (rx->napi)
2167 napi_gro_receive(rx->napi, skb);
2168 else
2169 netif_receive_skb(skb);
2170 }
2171
2172 if (xmit_skb) {
2173 /*
2174 * Send to wireless media and increase priority by 256 to
2175 * keep the received priority instead of reclassifying
2176 * the frame (see cfg80211_classify8021d).
2177 */
2178 xmit_skb->priority += 256;
2179 xmit_skb->protocol = htons(ETH_P_802_3);
2180 skb_reset_network_header(xmit_skb);
2181 skb_reset_mac_header(xmit_skb);
2182 dev_queue_xmit(xmit_skb);
2183 }
2184 }
2185
2186 static ieee80211_rx_result debug_noinline
2187 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2188 {
2189 struct net_device *dev = rx->sdata->dev;
2190 struct sk_buff *skb = rx->skb;
2191 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2192 __le16 fc = hdr->frame_control;
2193 struct sk_buff_head frame_list;
2194 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2195
2196 if (unlikely(!ieee80211_is_data(fc)))
2197 return RX_CONTINUE;
2198
2199 if (unlikely(!ieee80211_is_data_present(fc)))
2200 return RX_DROP_MONITOR;
2201
2202 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2203 return RX_CONTINUE;
2204
2205 if (ieee80211_has_a4(hdr->frame_control) &&
2206 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2207 !rx->sdata->u.vlan.sta)
2208 return RX_DROP_UNUSABLE;
2209
2210 if (is_multicast_ether_addr(hdr->addr1) &&
2211 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2212 rx->sdata->u.vlan.sta) ||
2213 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2214 rx->sdata->u.mgd.use_4addr)))
2215 return RX_DROP_UNUSABLE;
2216
2217 skb->dev = dev;
2218 __skb_queue_head_init(&frame_list);
2219
2220 if (skb_linearize(skb))
2221 return RX_DROP_UNUSABLE;
2222
2223 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2224 rx->sdata->vif.type,
2225 rx->local->hw.extra_tx_headroom, true);
2226
2227 while (!skb_queue_empty(&frame_list)) {
2228 rx->skb = __skb_dequeue(&frame_list);
2229
2230 if (!ieee80211_frame_allowed(rx, fc)) {
2231 dev_kfree_skb(rx->skb);
2232 continue;
2233 }
2234
2235 ieee80211_deliver_skb(rx);
2236 }
2237
2238 return RX_QUEUED;
2239 }
2240
2241 #ifdef CONFIG_MAC80211_MESH
2242 static ieee80211_rx_result
2243 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2244 {
2245 struct ieee80211_hdr *fwd_hdr, *hdr;
2246 struct ieee80211_tx_info *info;
2247 struct ieee80211s_hdr *mesh_hdr;
2248 struct sk_buff *skb = rx->skb, *fwd_skb;
2249 struct ieee80211_local *local = rx->local;
2250 struct ieee80211_sub_if_data *sdata = rx->sdata;
2251 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2252 u16 q, hdrlen;
2253
2254 hdr = (struct ieee80211_hdr *) skb->data;
2255 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2256
2257 /* make sure fixed part of mesh header is there, also checks skb len */
2258 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2259 return RX_DROP_MONITOR;
2260
2261 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2262
2263 /* make sure full mesh header is there, also checks skb len */
2264 if (!pskb_may_pull(rx->skb,
2265 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2266 return RX_DROP_MONITOR;
2267
2268 /* reload pointers */
2269 hdr = (struct ieee80211_hdr *) skb->data;
2270 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2271
2272 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2273 return RX_DROP_MONITOR;
2274
2275 /* frame is in RMC, don't forward */
2276 if (ieee80211_is_data(hdr->frame_control) &&
2277 is_multicast_ether_addr(hdr->addr1) &&
2278 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2279 return RX_DROP_MONITOR;
2280
2281 if (!ieee80211_is_data(hdr->frame_control))
2282 return RX_CONTINUE;
2283
2284 if (!mesh_hdr->ttl)
2285 return RX_DROP_MONITOR;
2286
2287 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2288 struct mesh_path *mppath;
2289 char *proxied_addr;
2290 char *mpp_addr;
2291
2292 if (is_multicast_ether_addr(hdr->addr1)) {
2293 mpp_addr = hdr->addr3;
2294 proxied_addr = mesh_hdr->eaddr1;
2295 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2296 /* has_a4 already checked in ieee80211_rx_mesh_check */
2297 mpp_addr = hdr->addr4;
2298 proxied_addr = mesh_hdr->eaddr2;
2299 } else {
2300 return RX_DROP_MONITOR;
2301 }
2302
2303 rcu_read_lock();
2304 mppath = mpp_path_lookup(sdata, proxied_addr);
2305 if (!mppath) {
2306 mpp_path_add(sdata, proxied_addr, mpp_addr);
2307 } else {
2308 spin_lock_bh(&mppath->state_lock);
2309 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2310 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2311 spin_unlock_bh(&mppath->state_lock);
2312 }
2313 rcu_read_unlock();
2314 }
2315
2316 /* Frame has reached destination. Don't forward */
2317 if (!is_multicast_ether_addr(hdr->addr1) &&
2318 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2319 return RX_CONTINUE;
2320
2321 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2322 if (ieee80211_queue_stopped(&local->hw, q)) {
2323 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2324 return RX_DROP_MONITOR;
2325 }
2326 skb_set_queue_mapping(skb, q);
2327
2328 if (!--mesh_hdr->ttl) {
2329 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2330 goto out;
2331 }
2332
2333 if (!ifmsh->mshcfg.dot11MeshForwarding)
2334 goto out;
2335
2336 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2337 if (!fwd_skb) {
2338 net_info_ratelimited("%s: failed to clone mesh frame\n",
2339 sdata->name);
2340 goto out;
2341 }
2342
2343 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2344 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2345 info = IEEE80211_SKB_CB(fwd_skb);
2346 memset(info, 0, sizeof(*info));
2347 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2348 info->control.vif = &rx->sdata->vif;
2349 info->control.jiffies = jiffies;
2350 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2351 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2352 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2353 /* update power mode indication when forwarding */
2354 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2355 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2356 /* mesh power mode flags updated in mesh_nexthop_lookup */
2357 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2358 } else {
2359 /* unable to resolve next hop */
2360 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2361 fwd_hdr->addr3, 0,
2362 WLAN_REASON_MESH_PATH_NOFORWARD,
2363 fwd_hdr->addr2);
2364 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2365 kfree_skb(fwd_skb);
2366 return RX_DROP_MONITOR;
2367 }
2368
2369 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2370 ieee80211_add_pending_skb(local, fwd_skb);
2371 out:
2372 if (is_multicast_ether_addr(hdr->addr1))
2373 return RX_CONTINUE;
2374 return RX_DROP_MONITOR;
2375 }
2376 #endif
2377
2378 static ieee80211_rx_result debug_noinline
2379 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2380 {
2381 struct ieee80211_sub_if_data *sdata = rx->sdata;
2382 struct ieee80211_local *local = rx->local;
2383 struct net_device *dev = sdata->dev;
2384 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2385 __le16 fc = hdr->frame_control;
2386 bool port_control;
2387 int err;
2388
2389 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2390 return RX_CONTINUE;
2391
2392 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2393 return RX_DROP_MONITOR;
2394
2395 if (rx->sta) {
2396 /* The seqno index has the same property as needed
2397 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2398 * for non-QoS-data frames. Here we know it's a data
2399 * frame, so count MSDUs.
2400 */
2401 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2402 }
2403
2404 /*
2405 * Send unexpected-4addr-frame event to hostapd. For older versions,
2406 * also drop the frame to cooked monitor interfaces.
2407 */
2408 if (ieee80211_has_a4(hdr->frame_control) &&
2409 sdata->vif.type == NL80211_IFTYPE_AP) {
2410 if (rx->sta &&
2411 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2412 cfg80211_rx_unexpected_4addr_frame(
2413 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2414 return RX_DROP_MONITOR;
2415 }
2416
2417 err = __ieee80211_data_to_8023(rx, &port_control);
2418 if (unlikely(err))
2419 return RX_DROP_UNUSABLE;
2420
2421 if (!ieee80211_frame_allowed(rx, fc))
2422 return RX_DROP_MONITOR;
2423
2424 /* directly handle TDLS channel switch requests/responses */
2425 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2426 cpu_to_be16(ETH_P_TDLS))) {
2427 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2428
2429 if (pskb_may_pull(rx->skb,
2430 offsetof(struct ieee80211_tdls_data, u)) &&
2431 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2432 tf->category == WLAN_CATEGORY_TDLS &&
2433 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2434 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2435 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2436 schedule_work(&local->tdls_chsw_work);
2437 if (rx->sta)
2438 rx->sta->rx_stats.packets++;
2439
2440 return RX_QUEUED;
2441 }
2442 }
2443
2444 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2445 unlikely(port_control) && sdata->bss) {
2446 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2447 u.ap);
2448 dev = sdata->dev;
2449 rx->sdata = sdata;
2450 }
2451
2452 rx->skb->dev = dev;
2453
2454 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2455 !is_multicast_ether_addr(
2456 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2457 (!local->scanning &&
2458 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2459 mod_timer(&local->dynamic_ps_timer, jiffies +
2460 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2461 }
2462
2463 ieee80211_deliver_skb(rx);
2464
2465 return RX_QUEUED;
2466 }
2467
2468 static ieee80211_rx_result debug_noinline
2469 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2470 {
2471 struct sk_buff *skb = rx->skb;
2472 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2473 struct tid_ampdu_rx *tid_agg_rx;
2474 u16 start_seq_num;
2475 u16 tid;
2476
2477 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2478 return RX_CONTINUE;
2479
2480 if (ieee80211_is_back_req(bar->frame_control)) {
2481 struct {
2482 __le16 control, start_seq_num;
2483 } __packed bar_data;
2484 struct ieee80211_event event = {
2485 .type = BAR_RX_EVENT,
2486 };
2487
2488 if (!rx->sta)
2489 return RX_DROP_MONITOR;
2490
2491 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2492 &bar_data, sizeof(bar_data)))
2493 return RX_DROP_MONITOR;
2494
2495 tid = le16_to_cpu(bar_data.control) >> 12;
2496
2497 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2498 if (!tid_agg_rx)
2499 return RX_DROP_MONITOR;
2500
2501 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2502 event.u.ba.tid = tid;
2503 event.u.ba.ssn = start_seq_num;
2504 event.u.ba.sta = &rx->sta->sta;
2505
2506 /* reset session timer */
2507 if (tid_agg_rx->timeout)
2508 mod_timer(&tid_agg_rx->session_timer,
2509 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2510
2511 spin_lock(&tid_agg_rx->reorder_lock);
2512 /* release stored frames up to start of BAR */
2513 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2514 start_seq_num, frames);
2515 spin_unlock(&tid_agg_rx->reorder_lock);
2516
2517 drv_event_callback(rx->local, rx->sdata, &event);
2518
2519 kfree_skb(skb);
2520 return RX_QUEUED;
2521 }
2522
2523 /*
2524 * After this point, we only want management frames,
2525 * so we can drop all remaining control frames to
2526 * cooked monitor interfaces.
2527 */
2528 return RX_DROP_MONITOR;
2529 }
2530
2531 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2532 struct ieee80211_mgmt *mgmt,
2533 size_t len)
2534 {
2535 struct ieee80211_local *local = sdata->local;
2536 struct sk_buff *skb;
2537 struct ieee80211_mgmt *resp;
2538
2539 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2540 /* Not to own unicast address */
2541 return;
2542 }
2543
2544 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2545 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2546 /* Not from the current AP or not associated yet. */
2547 return;
2548 }
2549
2550 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2551 /* Too short SA Query request frame */
2552 return;
2553 }
2554
2555 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2556 if (skb == NULL)
2557 return;
2558
2559 skb_reserve(skb, local->hw.extra_tx_headroom);
2560 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2561 memset(resp, 0, 24);
2562 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2563 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2564 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2565 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2566 IEEE80211_STYPE_ACTION);
2567 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2568 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2569 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2570 memcpy(resp->u.action.u.sa_query.trans_id,
2571 mgmt->u.action.u.sa_query.trans_id,
2572 WLAN_SA_QUERY_TR_ID_LEN);
2573
2574 ieee80211_tx_skb(sdata, skb);
2575 }
2576
2577 static ieee80211_rx_result debug_noinline
2578 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2579 {
2580 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2581 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2582
2583 /*
2584 * From here on, look only at management frames.
2585 * Data and control frames are already handled,
2586 * and unknown (reserved) frames are useless.
2587 */
2588 if (rx->skb->len < 24)
2589 return RX_DROP_MONITOR;
2590
2591 if (!ieee80211_is_mgmt(mgmt->frame_control))
2592 return RX_DROP_MONITOR;
2593
2594 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2595 ieee80211_is_beacon(mgmt->frame_control) &&
2596 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2597 int sig = 0;
2598
2599 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2600 sig = status->signal;
2601
2602 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2603 rx->skb->data, rx->skb->len,
2604 status->freq, sig);
2605 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2606 }
2607
2608 if (ieee80211_drop_unencrypted_mgmt(rx))
2609 return RX_DROP_UNUSABLE;
2610
2611 return RX_CONTINUE;
2612 }
2613
2614 static ieee80211_rx_result debug_noinline
2615 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2616 {
2617 struct ieee80211_local *local = rx->local;
2618 struct ieee80211_sub_if_data *sdata = rx->sdata;
2619 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2620 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2621 int len = rx->skb->len;
2622
2623 if (!ieee80211_is_action(mgmt->frame_control))
2624 return RX_CONTINUE;
2625
2626 /* drop too small frames */
2627 if (len < IEEE80211_MIN_ACTION_SIZE)
2628 return RX_DROP_UNUSABLE;
2629
2630 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2631 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2632 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2633 return RX_DROP_UNUSABLE;
2634
2635 switch (mgmt->u.action.category) {
2636 case WLAN_CATEGORY_HT:
2637 /* reject HT action frames from stations not supporting HT */
2638 if (!rx->sta->sta.ht_cap.ht_supported)
2639 goto invalid;
2640
2641 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2642 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2643 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2644 sdata->vif.type != NL80211_IFTYPE_AP &&
2645 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2646 break;
2647
2648 /* verify action & smps_control/chanwidth are present */
2649 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2650 goto invalid;
2651
2652 switch (mgmt->u.action.u.ht_smps.action) {
2653 case WLAN_HT_ACTION_SMPS: {
2654 struct ieee80211_supported_band *sband;
2655 enum ieee80211_smps_mode smps_mode;
2656
2657 /* convert to HT capability */
2658 switch (mgmt->u.action.u.ht_smps.smps_control) {
2659 case WLAN_HT_SMPS_CONTROL_DISABLED:
2660 smps_mode = IEEE80211_SMPS_OFF;
2661 break;
2662 case WLAN_HT_SMPS_CONTROL_STATIC:
2663 smps_mode = IEEE80211_SMPS_STATIC;
2664 break;
2665 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2666 smps_mode = IEEE80211_SMPS_DYNAMIC;
2667 break;
2668 default:
2669 goto invalid;
2670 }
2671
2672 /* if no change do nothing */
2673 if (rx->sta->sta.smps_mode == smps_mode)
2674 goto handled;
2675 rx->sta->sta.smps_mode = smps_mode;
2676
2677 sband = rx->local->hw.wiphy->bands[status->band];
2678
2679 rate_control_rate_update(local, sband, rx->sta,
2680 IEEE80211_RC_SMPS_CHANGED);
2681 goto handled;
2682 }
2683 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2684 struct ieee80211_supported_band *sband;
2685 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2686 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2687
2688 /* If it doesn't support 40 MHz it can't change ... */
2689 if (!(rx->sta->sta.ht_cap.cap &
2690 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2691 goto handled;
2692
2693 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2694 max_bw = IEEE80211_STA_RX_BW_20;
2695 else
2696 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2697
2698 /* set cur_max_bandwidth and recalc sta bw */
2699 rx->sta->cur_max_bandwidth = max_bw;
2700 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2701
2702 if (rx->sta->sta.bandwidth == new_bw)
2703 goto handled;
2704
2705 rx->sta->sta.bandwidth = new_bw;
2706 sband = rx->local->hw.wiphy->bands[status->band];
2707
2708 rate_control_rate_update(local, sband, rx->sta,
2709 IEEE80211_RC_BW_CHANGED);
2710 goto handled;
2711 }
2712 default:
2713 goto invalid;
2714 }
2715
2716 break;
2717 case WLAN_CATEGORY_PUBLIC:
2718 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2719 goto invalid;
2720 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2721 break;
2722 if (!rx->sta)
2723 break;
2724 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2725 break;
2726 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2727 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2728 break;
2729 if (len < offsetof(struct ieee80211_mgmt,
2730 u.action.u.ext_chan_switch.variable))
2731 goto invalid;
2732 goto queue;
2733 case WLAN_CATEGORY_VHT:
2734 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2735 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2736 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2737 sdata->vif.type != NL80211_IFTYPE_AP &&
2738 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2739 break;
2740
2741 /* verify action code is present */
2742 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2743 goto invalid;
2744
2745 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2746 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2747 u8 opmode;
2748
2749 /* verify opmode is present */
2750 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2751 goto invalid;
2752
2753 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2754
2755 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2756 opmode, status->band);
2757 goto handled;
2758 }
2759 default:
2760 break;
2761 }
2762 break;
2763 case WLAN_CATEGORY_BACK:
2764 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2765 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2766 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2767 sdata->vif.type != NL80211_IFTYPE_AP &&
2768 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2769 break;
2770
2771 /* verify action_code is present */
2772 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2773 break;
2774
2775 switch (mgmt->u.action.u.addba_req.action_code) {
2776 case WLAN_ACTION_ADDBA_REQ:
2777 if (len < (IEEE80211_MIN_ACTION_SIZE +
2778 sizeof(mgmt->u.action.u.addba_req)))
2779 goto invalid;
2780 break;
2781 case WLAN_ACTION_ADDBA_RESP:
2782 if (len < (IEEE80211_MIN_ACTION_SIZE +
2783 sizeof(mgmt->u.action.u.addba_resp)))
2784 goto invalid;
2785 break;
2786 case WLAN_ACTION_DELBA:
2787 if (len < (IEEE80211_MIN_ACTION_SIZE +
2788 sizeof(mgmt->u.action.u.delba)))
2789 goto invalid;
2790 break;
2791 default:
2792 goto invalid;
2793 }
2794
2795 goto queue;
2796 case WLAN_CATEGORY_SPECTRUM_MGMT:
2797 /* verify action_code is present */
2798 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2799 break;
2800
2801 switch (mgmt->u.action.u.measurement.action_code) {
2802 case WLAN_ACTION_SPCT_MSR_REQ:
2803 if (status->band != IEEE80211_BAND_5GHZ)
2804 break;
2805
2806 if (len < (IEEE80211_MIN_ACTION_SIZE +
2807 sizeof(mgmt->u.action.u.measurement)))
2808 break;
2809
2810 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2811 break;
2812
2813 ieee80211_process_measurement_req(sdata, mgmt, len);
2814 goto handled;
2815 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2816 u8 *bssid;
2817 if (len < (IEEE80211_MIN_ACTION_SIZE +
2818 sizeof(mgmt->u.action.u.chan_switch)))
2819 break;
2820
2821 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2822 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2823 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2824 break;
2825
2826 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2827 bssid = sdata->u.mgd.bssid;
2828 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2829 bssid = sdata->u.ibss.bssid;
2830 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2831 bssid = mgmt->sa;
2832 else
2833 break;
2834
2835 if (!ether_addr_equal(mgmt->bssid, bssid))
2836 break;
2837
2838 goto queue;
2839 }
2840 }
2841 break;
2842 case WLAN_CATEGORY_SA_QUERY:
2843 if (len < (IEEE80211_MIN_ACTION_SIZE +
2844 sizeof(mgmt->u.action.u.sa_query)))
2845 break;
2846
2847 switch (mgmt->u.action.u.sa_query.action) {
2848 case WLAN_ACTION_SA_QUERY_REQUEST:
2849 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2850 break;
2851 ieee80211_process_sa_query_req(sdata, mgmt, len);
2852 goto handled;
2853 }
2854 break;
2855 case WLAN_CATEGORY_SELF_PROTECTED:
2856 if (len < (IEEE80211_MIN_ACTION_SIZE +
2857 sizeof(mgmt->u.action.u.self_prot.action_code)))
2858 break;
2859
2860 switch (mgmt->u.action.u.self_prot.action_code) {
2861 case WLAN_SP_MESH_PEERING_OPEN:
2862 case WLAN_SP_MESH_PEERING_CLOSE:
2863 case WLAN_SP_MESH_PEERING_CONFIRM:
2864 if (!ieee80211_vif_is_mesh(&sdata->vif))
2865 goto invalid;
2866 if (sdata->u.mesh.user_mpm)
2867 /* userspace handles this frame */
2868 break;
2869 goto queue;
2870 case WLAN_SP_MGK_INFORM:
2871 case WLAN_SP_MGK_ACK:
2872 if (!ieee80211_vif_is_mesh(&sdata->vif))
2873 goto invalid;
2874 break;
2875 }
2876 break;
2877 case WLAN_CATEGORY_MESH_ACTION:
2878 if (len < (IEEE80211_MIN_ACTION_SIZE +
2879 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2880 break;
2881
2882 if (!ieee80211_vif_is_mesh(&sdata->vif))
2883 break;
2884 if (mesh_action_is_path_sel(mgmt) &&
2885 !mesh_path_sel_is_hwmp(sdata))
2886 break;
2887 goto queue;
2888 }
2889
2890 return RX_CONTINUE;
2891
2892 invalid:
2893 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2894 /* will return in the next handlers */
2895 return RX_CONTINUE;
2896
2897 handled:
2898 if (rx->sta)
2899 rx->sta->rx_stats.packets++;
2900 dev_kfree_skb(rx->skb);
2901 return RX_QUEUED;
2902
2903 queue:
2904 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2905 skb_queue_tail(&sdata->skb_queue, rx->skb);
2906 ieee80211_queue_work(&local->hw, &sdata->work);
2907 if (rx->sta)
2908 rx->sta->rx_stats.packets++;
2909 return RX_QUEUED;
2910 }
2911
2912 static ieee80211_rx_result debug_noinline
2913 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2914 {
2915 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2916 int sig = 0;
2917
2918 /* skip known-bad action frames and return them in the next handler */
2919 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2920 return RX_CONTINUE;
2921
2922 /*
2923 * Getting here means the kernel doesn't know how to handle
2924 * it, but maybe userspace does ... include returned frames
2925 * so userspace can register for those to know whether ones
2926 * it transmitted were processed or returned.
2927 */
2928
2929 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2930 sig = status->signal;
2931
2932 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2933 rx->skb->data, rx->skb->len, 0)) {
2934 if (rx->sta)
2935 rx->sta->rx_stats.packets++;
2936 dev_kfree_skb(rx->skb);
2937 return RX_QUEUED;
2938 }
2939
2940 return RX_CONTINUE;
2941 }
2942
2943 static ieee80211_rx_result debug_noinline
2944 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2945 {
2946 struct ieee80211_local *local = rx->local;
2947 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2948 struct sk_buff *nskb;
2949 struct ieee80211_sub_if_data *sdata = rx->sdata;
2950 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2951
2952 if (!ieee80211_is_action(mgmt->frame_control))
2953 return RX_CONTINUE;
2954
2955 /*
2956 * For AP mode, hostapd is responsible for handling any action
2957 * frames that we didn't handle, including returning unknown
2958 * ones. For all other modes we will return them to the sender,
2959 * setting the 0x80 bit in the action category, as required by
2960 * 802.11-2012 9.24.4.
2961 * Newer versions of hostapd shall also use the management frame
2962 * registration mechanisms, but older ones still use cooked
2963 * monitor interfaces so push all frames there.
2964 */
2965 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2966 (sdata->vif.type == NL80211_IFTYPE_AP ||
2967 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2968 return RX_DROP_MONITOR;
2969
2970 if (is_multicast_ether_addr(mgmt->da))
2971 return RX_DROP_MONITOR;
2972
2973 /* do not return rejected action frames */
2974 if (mgmt->u.action.category & 0x80)
2975 return RX_DROP_UNUSABLE;
2976
2977 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2978 GFP_ATOMIC);
2979 if (nskb) {
2980 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2981
2982 nmgmt->u.action.category |= 0x80;
2983 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2984 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2985
2986 memset(nskb->cb, 0, sizeof(nskb->cb));
2987
2988 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2989 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2990
2991 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2992 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2993 IEEE80211_TX_CTL_NO_CCK_RATE;
2994 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
2995 info->hw_queue =
2996 local->hw.offchannel_tx_hw_queue;
2997 }
2998
2999 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3000 status->band);
3001 }
3002 dev_kfree_skb(rx->skb);
3003 return RX_QUEUED;
3004 }
3005
3006 static ieee80211_rx_result debug_noinline
3007 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3008 {
3009 struct ieee80211_sub_if_data *sdata = rx->sdata;
3010 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3011 __le16 stype;
3012
3013 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3014
3015 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3016 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3017 sdata->vif.type != NL80211_IFTYPE_OCB &&
3018 sdata->vif.type != NL80211_IFTYPE_STATION)
3019 return RX_DROP_MONITOR;
3020
3021 switch (stype) {
3022 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3023 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3024 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3025 /* process for all: mesh, mlme, ibss */
3026 break;
3027 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3028 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3029 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3030 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3031 if (is_multicast_ether_addr(mgmt->da) &&
3032 !is_broadcast_ether_addr(mgmt->da))
3033 return RX_DROP_MONITOR;
3034
3035 /* process only for station */
3036 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3037 return RX_DROP_MONITOR;
3038 break;
3039 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3040 /* process only for ibss and mesh */
3041 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3042 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3043 return RX_DROP_MONITOR;
3044 break;
3045 default:
3046 return RX_DROP_MONITOR;
3047 }
3048
3049 /* queue up frame and kick off work to process it */
3050 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3051 skb_queue_tail(&sdata->skb_queue, rx->skb);
3052 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3053 if (rx->sta)
3054 rx->sta->rx_stats.packets++;
3055
3056 return RX_QUEUED;
3057 }
3058
3059 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3060 struct ieee80211_rate *rate)
3061 {
3062 struct ieee80211_sub_if_data *sdata;
3063 struct ieee80211_local *local = rx->local;
3064 struct sk_buff *skb = rx->skb, *skb2;
3065 struct net_device *prev_dev = NULL;
3066 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3067 int needed_headroom;
3068
3069 /*
3070 * If cooked monitor has been processed already, then
3071 * don't do it again. If not, set the flag.
3072 */
3073 if (rx->flags & IEEE80211_RX_CMNTR)
3074 goto out_free_skb;
3075 rx->flags |= IEEE80211_RX_CMNTR;
3076
3077 /* If there are no cooked monitor interfaces, just free the SKB */
3078 if (!local->cooked_mntrs)
3079 goto out_free_skb;
3080
3081 /* vendor data is long removed here */
3082 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3083 /* room for the radiotap header based on driver features */
3084 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3085
3086 if (skb_headroom(skb) < needed_headroom &&
3087 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3088 goto out_free_skb;
3089
3090 /* prepend radiotap information */
3091 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3092 false);
3093
3094 skb_set_mac_header(skb, 0);
3095 skb->ip_summed = CHECKSUM_UNNECESSARY;
3096 skb->pkt_type = PACKET_OTHERHOST;
3097 skb->protocol = htons(ETH_P_802_2);
3098
3099 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3100 if (!ieee80211_sdata_running(sdata))
3101 continue;
3102
3103 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3104 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3105 continue;
3106
3107 if (prev_dev) {
3108 skb2 = skb_clone(skb, GFP_ATOMIC);
3109 if (skb2) {
3110 skb2->dev = prev_dev;
3111 netif_receive_skb(skb2);
3112 }
3113 }
3114
3115 prev_dev = sdata->dev;
3116 ieee80211_rx_stats(sdata->dev, skb->len);
3117 }
3118
3119 if (prev_dev) {
3120 skb->dev = prev_dev;
3121 netif_receive_skb(skb);
3122 return;
3123 }
3124
3125 out_free_skb:
3126 dev_kfree_skb(skb);
3127 }
3128
3129 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3130 ieee80211_rx_result res)
3131 {
3132 switch (res) {
3133 case RX_DROP_MONITOR:
3134 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3135 if (rx->sta)
3136 rx->sta->rx_stats.dropped++;
3137 /* fall through */
3138 case RX_CONTINUE: {
3139 struct ieee80211_rate *rate = NULL;
3140 struct ieee80211_supported_band *sband;
3141 struct ieee80211_rx_status *status;
3142
3143 status = IEEE80211_SKB_RXCB((rx->skb));
3144
3145 sband = rx->local->hw.wiphy->bands[status->band];
3146 if (!(status->flag & RX_FLAG_HT) &&
3147 !(status->flag & RX_FLAG_VHT))
3148 rate = &sband->bitrates[status->rate_idx];
3149
3150 ieee80211_rx_cooked_monitor(rx, rate);
3151 break;
3152 }
3153 case RX_DROP_UNUSABLE:
3154 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3155 if (rx->sta)
3156 rx->sta->rx_stats.dropped++;
3157 dev_kfree_skb(rx->skb);
3158 break;
3159 case RX_QUEUED:
3160 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3161 break;
3162 }
3163 }
3164
3165 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3166 struct sk_buff_head *frames)
3167 {
3168 ieee80211_rx_result res = RX_DROP_MONITOR;
3169 struct sk_buff *skb;
3170
3171 #define CALL_RXH(rxh) \
3172 do { \
3173 res = rxh(rx); \
3174 if (res != RX_CONTINUE) \
3175 goto rxh_next; \
3176 } while (0);
3177
3178 /* Lock here to avoid hitting all of the data used in the RX
3179 * path (e.g. key data, station data, ...) concurrently when
3180 * a frame is released from the reorder buffer due to timeout
3181 * from the timer, potentially concurrently with RX from the
3182 * driver.
3183 */
3184 spin_lock_bh(&rx->local->rx_path_lock);
3185
3186 while ((skb = __skb_dequeue(frames))) {
3187 /*
3188 * all the other fields are valid across frames
3189 * that belong to an aMPDU since they are on the
3190 * same TID from the same station
3191 */
3192 rx->skb = skb;
3193
3194 CALL_RXH(ieee80211_rx_h_check_more_data)
3195 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3196 CALL_RXH(ieee80211_rx_h_sta_process)
3197 CALL_RXH(ieee80211_rx_h_decrypt)
3198 CALL_RXH(ieee80211_rx_h_defragment)
3199 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3200 /* must be after MMIC verify so header is counted in MPDU mic */
3201 #ifdef CONFIG_MAC80211_MESH
3202 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3203 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3204 #endif
3205 CALL_RXH(ieee80211_rx_h_amsdu)
3206 CALL_RXH(ieee80211_rx_h_data)
3207
3208 /* special treatment -- needs the queue */
3209 res = ieee80211_rx_h_ctrl(rx, frames);
3210 if (res != RX_CONTINUE)
3211 goto rxh_next;
3212
3213 CALL_RXH(ieee80211_rx_h_mgmt_check)
3214 CALL_RXH(ieee80211_rx_h_action)
3215 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3216 CALL_RXH(ieee80211_rx_h_action_return)
3217 CALL_RXH(ieee80211_rx_h_mgmt)
3218
3219 rxh_next:
3220 ieee80211_rx_handlers_result(rx, res);
3221
3222 #undef CALL_RXH
3223 }
3224
3225 spin_unlock_bh(&rx->local->rx_path_lock);
3226 }
3227
3228 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3229 {
3230 struct sk_buff_head reorder_release;
3231 ieee80211_rx_result res = RX_DROP_MONITOR;
3232
3233 __skb_queue_head_init(&reorder_release);
3234
3235 #define CALL_RXH(rxh) \
3236 do { \
3237 res = rxh(rx); \
3238 if (res != RX_CONTINUE) \
3239 goto rxh_next; \
3240 } while (0);
3241
3242 CALL_RXH(ieee80211_rx_h_check_dup)
3243 CALL_RXH(ieee80211_rx_h_check)
3244
3245 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3246
3247 ieee80211_rx_handlers(rx, &reorder_release);
3248 return;
3249
3250 rxh_next:
3251 ieee80211_rx_handlers_result(rx, res);
3252
3253 #undef CALL_RXH
3254 }
3255
3256 /*
3257 * This function makes calls into the RX path, therefore
3258 * it has to be invoked under RCU read lock.
3259 */
3260 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3261 {
3262 struct sk_buff_head frames;
3263 struct ieee80211_rx_data rx = {
3264 .sta = sta,
3265 .sdata = sta->sdata,
3266 .local = sta->local,
3267 /* This is OK -- must be QoS data frame */
3268 .security_idx = tid,
3269 .seqno_idx = tid,
3270 .napi = NULL, /* must be NULL to not have races */
3271 };
3272 struct tid_ampdu_rx *tid_agg_rx;
3273
3274 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3275 if (!tid_agg_rx)
3276 return;
3277
3278 __skb_queue_head_init(&frames);
3279
3280 spin_lock(&tid_agg_rx->reorder_lock);
3281 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3282 spin_unlock(&tid_agg_rx->reorder_lock);
3283
3284 if (!skb_queue_empty(&frames)) {
3285 struct ieee80211_event event = {
3286 .type = BA_FRAME_TIMEOUT,
3287 .u.ba.tid = tid,
3288 .u.ba.sta = &sta->sta,
3289 };
3290 drv_event_callback(rx.local, rx.sdata, &event);
3291 }
3292
3293 ieee80211_rx_handlers(&rx, &frames);
3294 }
3295
3296 /* main receive path */
3297
3298 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3299 {
3300 struct ieee80211_sub_if_data *sdata = rx->sdata;
3301 struct sk_buff *skb = rx->skb;
3302 struct ieee80211_hdr *hdr = (void *)skb->data;
3303 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3304 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3305 int multicast = is_multicast_ether_addr(hdr->addr1);
3306
3307 switch (sdata->vif.type) {
3308 case NL80211_IFTYPE_STATION:
3309 if (!bssid && !sdata->u.mgd.use_4addr)
3310 return false;
3311 if (multicast)
3312 return true;
3313 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3314 case NL80211_IFTYPE_ADHOC:
3315 if (!bssid)
3316 return false;
3317 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3318 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3319 return false;
3320 if (ieee80211_is_beacon(hdr->frame_control))
3321 return true;
3322 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3323 return false;
3324 if (!multicast &&
3325 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3326 return false;
3327 if (!rx->sta) {
3328 int rate_idx;
3329 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3330 rate_idx = 0; /* TODO: HT/VHT rates */
3331 else
3332 rate_idx = status->rate_idx;
3333 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3334 BIT(rate_idx));
3335 }
3336 return true;
3337 case NL80211_IFTYPE_OCB:
3338 if (!bssid)
3339 return false;
3340 if (!ieee80211_is_data_present(hdr->frame_control))
3341 return false;
3342 if (!is_broadcast_ether_addr(bssid))
3343 return false;
3344 if (!multicast &&
3345 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3346 return false;
3347 if (!rx->sta) {
3348 int rate_idx;
3349 if (status->flag & RX_FLAG_HT)
3350 rate_idx = 0; /* TODO: HT rates */
3351 else
3352 rate_idx = status->rate_idx;
3353 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3354 BIT(rate_idx));
3355 }
3356 return true;
3357 case NL80211_IFTYPE_MESH_POINT:
3358 if (multicast)
3359 return true;
3360 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3361 case NL80211_IFTYPE_AP_VLAN:
3362 case NL80211_IFTYPE_AP:
3363 if (!bssid)
3364 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3365
3366 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3367 /*
3368 * Accept public action frames even when the
3369 * BSSID doesn't match, this is used for P2P
3370 * and location updates. Note that mac80211
3371 * itself never looks at these frames.
3372 */
3373 if (!multicast &&
3374 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3375 return false;
3376 if (ieee80211_is_public_action(hdr, skb->len))
3377 return true;
3378 return ieee80211_is_beacon(hdr->frame_control);
3379 }
3380
3381 if (!ieee80211_has_tods(hdr->frame_control)) {
3382 /* ignore data frames to TDLS-peers */
3383 if (ieee80211_is_data(hdr->frame_control))
3384 return false;
3385 /* ignore action frames to TDLS-peers */
3386 if (ieee80211_is_action(hdr->frame_control) &&
3387 !is_broadcast_ether_addr(bssid) &&
3388 !ether_addr_equal(bssid, hdr->addr1))
3389 return false;
3390 }
3391 return true;
3392 case NL80211_IFTYPE_WDS:
3393 if (bssid || !ieee80211_is_data(hdr->frame_control))
3394 return false;
3395 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3396 case NL80211_IFTYPE_P2P_DEVICE:
3397 return ieee80211_is_public_action(hdr, skb->len) ||
3398 ieee80211_is_probe_req(hdr->frame_control) ||
3399 ieee80211_is_probe_resp(hdr->frame_control) ||
3400 ieee80211_is_beacon(hdr->frame_control);
3401 default:
3402 break;
3403 }
3404
3405 WARN_ON_ONCE(1);
3406 return false;
3407 }
3408
3409 /*
3410 * This function returns whether or not the SKB
3411 * was destined for RX processing or not, which,
3412 * if consume is true, is equivalent to whether
3413 * or not the skb was consumed.
3414 */
3415 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3416 struct sk_buff *skb, bool consume)
3417 {
3418 struct ieee80211_local *local = rx->local;
3419 struct ieee80211_sub_if_data *sdata = rx->sdata;
3420
3421 rx->skb = skb;
3422
3423 if (!ieee80211_accept_frame(rx))
3424 return false;
3425
3426 if (!consume) {
3427 skb = skb_copy(skb, GFP_ATOMIC);
3428 if (!skb) {
3429 if (net_ratelimit())
3430 wiphy_debug(local->hw.wiphy,
3431 "failed to copy skb for %s\n",
3432 sdata->name);
3433 return true;
3434 }
3435
3436 rx->skb = skb;
3437 }
3438
3439 ieee80211_invoke_rx_handlers(rx);
3440 return true;
3441 }
3442
3443 /*
3444 * This is the actual Rx frames handler. as it belongs to Rx path it must
3445 * be called with rcu_read_lock protection.
3446 */
3447 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3448 struct sk_buff *skb,
3449 struct napi_struct *napi)
3450 {
3451 struct ieee80211_local *local = hw_to_local(hw);
3452 struct ieee80211_sub_if_data *sdata;
3453 struct ieee80211_hdr *hdr;
3454 __le16 fc;
3455 struct ieee80211_rx_data rx;
3456 struct ieee80211_sub_if_data *prev;
3457 struct sta_info *sta, *prev_sta;
3458 struct rhash_head *tmp;
3459 int err = 0;
3460
3461 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3462 memset(&rx, 0, sizeof(rx));
3463 rx.skb = skb;
3464 rx.local = local;
3465 rx.napi = napi;
3466
3467 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3468 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3469
3470 if (ieee80211_is_mgmt(fc)) {
3471 /* drop frame if too short for header */
3472 if (skb->len < ieee80211_hdrlen(fc))
3473 err = -ENOBUFS;
3474 else
3475 err = skb_linearize(skb);
3476 } else {
3477 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3478 }
3479
3480 if (err) {
3481 dev_kfree_skb(skb);
3482 return;
3483 }
3484
3485 hdr = (struct ieee80211_hdr *)skb->data;
3486 ieee80211_parse_qos(&rx);
3487 ieee80211_verify_alignment(&rx);
3488
3489 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3490 ieee80211_is_beacon(hdr->frame_control)))
3491 ieee80211_scan_rx(local, skb);
3492
3493 if (ieee80211_is_data(fc)) {
3494 const struct bucket_table *tbl;
3495
3496 prev_sta = NULL;
3497
3498 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3499
3500 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3501 if (!prev_sta) {
3502 prev_sta = sta;
3503 continue;
3504 }
3505
3506 rx.sta = prev_sta;
3507 rx.sdata = prev_sta->sdata;
3508 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3509
3510 prev_sta = sta;
3511 }
3512
3513 if (prev_sta) {
3514 rx.sta = prev_sta;
3515 rx.sdata = prev_sta->sdata;
3516
3517 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3518 return;
3519 goto out;
3520 }
3521 }
3522
3523 prev = NULL;
3524
3525 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3526 if (!ieee80211_sdata_running(sdata))
3527 continue;
3528
3529 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3530 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3531 continue;
3532
3533 /*
3534 * frame is destined for this interface, but if it's
3535 * not also for the previous one we handle that after
3536 * the loop to avoid copying the SKB once too much
3537 */
3538
3539 if (!prev) {
3540 prev = sdata;
3541 continue;
3542 }
3543
3544 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3545 rx.sdata = prev;
3546 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3547
3548 prev = sdata;
3549 }
3550
3551 if (prev) {
3552 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3553 rx.sdata = prev;
3554
3555 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3556 return;
3557 }
3558
3559 out:
3560 dev_kfree_skb(skb);
3561 }
3562
3563 /*
3564 * This is the receive path handler. It is called by a low level driver when an
3565 * 802.11 MPDU is received from the hardware.
3566 */
3567 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct sk_buff *skb,
3568 struct napi_struct *napi)
3569 {
3570 struct ieee80211_local *local = hw_to_local(hw);
3571 struct ieee80211_rate *rate = NULL;
3572 struct ieee80211_supported_band *sband;
3573 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3574
3575 WARN_ON_ONCE(softirq_count() == 0);
3576
3577 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3578 goto drop;
3579
3580 sband = local->hw.wiphy->bands[status->band];
3581 if (WARN_ON(!sband))
3582 goto drop;
3583
3584 /*
3585 * If we're suspending, it is possible although not too likely
3586 * that we'd be receiving frames after having already partially
3587 * quiesced the stack. We can't process such frames then since
3588 * that might, for example, cause stations to be added or other
3589 * driver callbacks be invoked.
3590 */
3591 if (unlikely(local->quiescing || local->suspended))
3592 goto drop;
3593
3594 /* We might be during a HW reconfig, prevent Rx for the same reason */
3595 if (unlikely(local->in_reconfig))
3596 goto drop;
3597
3598 /*
3599 * The same happens when we're not even started,
3600 * but that's worth a warning.
3601 */
3602 if (WARN_ON(!local->started))
3603 goto drop;
3604
3605 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3606 /*
3607 * Validate the rate, unless a PLCP error means that
3608 * we probably can't have a valid rate here anyway.
3609 */
3610
3611 if (status->flag & RX_FLAG_HT) {
3612 /*
3613 * rate_idx is MCS index, which can be [0-76]
3614 * as documented on:
3615 *
3616 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3617 *
3618 * Anything else would be some sort of driver or
3619 * hardware error. The driver should catch hardware
3620 * errors.
3621 */
3622 if (WARN(status->rate_idx > 76,
3623 "Rate marked as an HT rate but passed "
3624 "status->rate_idx is not "
3625 "an MCS index [0-76]: %d (0x%02x)\n",
3626 status->rate_idx,
3627 status->rate_idx))
3628 goto drop;
3629 } else if (status->flag & RX_FLAG_VHT) {
3630 if (WARN_ONCE(status->rate_idx > 9 ||
3631 !status->vht_nss ||
3632 status->vht_nss > 8,
3633 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3634 status->rate_idx, status->vht_nss))
3635 goto drop;
3636 } else {
3637 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3638 goto drop;
3639 rate = &sband->bitrates[status->rate_idx];
3640 }
3641 }
3642
3643 status->rx_flags = 0;
3644
3645 /*
3646 * key references and virtual interfaces are protected using RCU
3647 * and this requires that we are in a read-side RCU section during
3648 * receive processing
3649 */
3650 rcu_read_lock();
3651
3652 /*
3653 * Frames with failed FCS/PLCP checksum are not returned,
3654 * all other frames are returned without radiotap header
3655 * if it was previously present.
3656 * Also, frames with less than 16 bytes are dropped.
3657 */
3658 skb = ieee80211_rx_monitor(local, skb, rate);
3659 if (!skb) {
3660 rcu_read_unlock();
3661 return;
3662 }
3663
3664 ieee80211_tpt_led_trig_rx(local,
3665 ((struct ieee80211_hdr *)skb->data)->frame_control,
3666 skb->len);
3667 __ieee80211_rx_handle_packet(hw, skb, napi);
3668
3669 rcu_read_unlock();
3670
3671 return;
3672 drop:
3673 kfree_skb(skb);
3674 }
3675 EXPORT_SYMBOL(ieee80211_rx_napi);
3676
3677 /* This is a version of the rx handler that can be called from hard irq
3678 * context. Post the skb on the queue and schedule the tasklet */
3679 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3680 {
3681 struct ieee80211_local *local = hw_to_local(hw);
3682
3683 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3684
3685 skb->pkt_type = IEEE80211_RX_MSG;
3686 skb_queue_tail(&local->skb_queue, skb);
3687 tasklet_schedule(&local->tasklet);
3688 }
3689 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.14542 seconds and 6 git commands to generate.