Merge branch 'tty-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
90
91 return len;
92 }
93
94 /*
95 * ieee80211_add_rx_radiotap_header - add radiotap header
96 *
97 * add a radiotap header containing all the fields which the hardware provided.
98 */
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
104 {
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
109
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
112
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
120
121 pos = (unsigned char *)(rthdr+1);
122
123 /* the order of the following fields is important */
124
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
131 }
132
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
141
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status->flag & RX_FLAG_HT) {
144 /*
145 * MCS information is a separate field in radiotap,
146 * added below. The byte here is needed as padding
147 * for the channel though, so initialise it to 0.
148 */
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
153 }
154 pos++;
155
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
172
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
179 }
180
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos = status->antenna;
185 pos++;
186
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos - (u8 *)rthdr) & 1)
192 pos++;
193 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195 put_unaligned_le16(rx_flags, pos);
196 pos += 2;
197
198 if (status->flag & RX_FLAG_HT) {
199 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
200 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
201 IEEE80211_RADIOTAP_MCS_HAVE_GI |
202 IEEE80211_RADIOTAP_MCS_HAVE_BW;
203 *pos = 0;
204 if (status->flag & RX_FLAG_SHORT_GI)
205 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
206 if (status->flag & RX_FLAG_40MHZ)
207 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
208 pos++;
209 *pos++ = status->rate_idx;
210 }
211 }
212
213 /*
214 * This function copies a received frame to all monitor interfaces and
215 * returns a cleaned-up SKB that no longer includes the FCS nor the
216 * radiotap header the driver might have added.
217 */
218 static struct sk_buff *
219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
220 struct ieee80211_rate *rate)
221 {
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
223 struct ieee80211_sub_if_data *sdata;
224 int needed_headroom = 0;
225 struct sk_buff *skb, *skb2;
226 struct net_device *prev_dev = NULL;
227 int present_fcs_len = 0;
228
229 /*
230 * First, we may need to make a copy of the skb because
231 * (1) we need to modify it for radiotap (if not present), and
232 * (2) the other RX handlers will modify the skb we got.
233 *
234 * We don't need to, of course, if we aren't going to return
235 * the SKB because it has a bad FCS/PLCP checksum.
236 */
237
238 /* room for the radiotap header based on driver features */
239 needed_headroom = ieee80211_rx_radiotap_len(local, status);
240
241 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242 present_fcs_len = FCS_LEN;
243
244 /* make sure hdr->frame_control is on the linear part */
245 if (!pskb_may_pull(origskb, 2)) {
246 dev_kfree_skb(origskb);
247 return NULL;
248 }
249
250 if (!local->monitors) {
251 if (should_drop_frame(origskb, present_fcs_len)) {
252 dev_kfree_skb(origskb);
253 return NULL;
254 }
255
256 return remove_monitor_info(local, origskb);
257 }
258
259 if (should_drop_frame(origskb, present_fcs_len)) {
260 /* only need to expand headroom if necessary */
261 skb = origskb;
262 origskb = NULL;
263
264 /*
265 * This shouldn't trigger often because most devices have an
266 * RX header they pull before we get here, and that should
267 * be big enough for our radiotap information. We should
268 * probably export the length to drivers so that we can have
269 * them allocate enough headroom to start with.
270 */
271 if (skb_headroom(skb) < needed_headroom &&
272 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
273 dev_kfree_skb(skb);
274 return NULL;
275 }
276 } else {
277 /*
278 * Need to make a copy and possibly remove radiotap header
279 * and FCS from the original.
280 */
281 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
282
283 origskb = remove_monitor_info(local, origskb);
284
285 if (!skb)
286 return origskb;
287 }
288
289 /* prepend radiotap information */
290 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
291
292 skb_reset_mac_header(skb);
293 skb->ip_summed = CHECKSUM_UNNECESSARY;
294 skb->pkt_type = PACKET_OTHERHOST;
295 skb->protocol = htons(ETH_P_802_2);
296
297 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
298 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299 continue;
300
301 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302 continue;
303
304 if (!ieee80211_sdata_running(sdata))
305 continue;
306
307 if (prev_dev) {
308 skb2 = skb_clone(skb, GFP_ATOMIC);
309 if (skb2) {
310 skb2->dev = prev_dev;
311 netif_receive_skb(skb2);
312 }
313 }
314
315 prev_dev = sdata->dev;
316 sdata->dev->stats.rx_packets++;
317 sdata->dev->stats.rx_bytes += skb->len;
318 }
319
320 if (prev_dev) {
321 skb->dev = prev_dev;
322 netif_receive_skb(skb);
323 } else
324 dev_kfree_skb(skb);
325
326 return origskb;
327 }
328
329
330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
331 {
332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
333 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
334 int tid, seqno_idx, security_idx;
335
336 /* does the frame have a qos control field? */
337 if (ieee80211_is_data_qos(hdr->frame_control)) {
338 u8 *qc = ieee80211_get_qos_ctl(hdr);
339 /* frame has qos control */
340 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
341 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
342 status->rx_flags |= IEEE80211_RX_AMSDU;
343
344 seqno_idx = tid;
345 security_idx = tid;
346 } else {
347 /*
348 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
349 *
350 * Sequence numbers for management frames, QoS data
351 * frames with a broadcast/multicast address in the
352 * Address 1 field, and all non-QoS data frames sent
353 * by QoS STAs are assigned using an additional single
354 * modulo-4096 counter, [...]
355 *
356 * We also use that counter for non-QoS STAs.
357 */
358 seqno_idx = NUM_RX_DATA_QUEUES;
359 security_idx = 0;
360 if (ieee80211_is_mgmt(hdr->frame_control))
361 security_idx = NUM_RX_DATA_QUEUES;
362 tid = 0;
363 }
364
365 rx->seqno_idx = seqno_idx;
366 rx->security_idx = security_idx;
367 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
368 * For now, set skb->priority to 0 for other cases. */
369 rx->skb->priority = (tid > 7) ? 0 : tid;
370 }
371
372 /**
373 * DOC: Packet alignment
374 *
375 * Drivers always need to pass packets that are aligned to two-byte boundaries
376 * to the stack.
377 *
378 * Additionally, should, if possible, align the payload data in a way that
379 * guarantees that the contained IP header is aligned to a four-byte
380 * boundary. In the case of regular frames, this simply means aligning the
381 * payload to a four-byte boundary (because either the IP header is directly
382 * contained, or IV/RFC1042 headers that have a length divisible by four are
383 * in front of it). If the payload data is not properly aligned and the
384 * architecture doesn't support efficient unaligned operations, mac80211
385 * will align the data.
386 *
387 * With A-MSDU frames, however, the payload data address must yield two modulo
388 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
389 * push the IP header further back to a multiple of four again. Thankfully, the
390 * specs were sane enough this time around to require padding each A-MSDU
391 * subframe to a length that is a multiple of four.
392 *
393 * Padding like Atheros hardware adds which is between the 802.11 header and
394 * the payload is not supported, the driver is required to move the 802.11
395 * header to be directly in front of the payload in that case.
396 */
397 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
398 {
399 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
400 WARN_ONCE((unsigned long)rx->skb->data & 1,
401 "unaligned packet at 0x%p\n", rx->skb->data);
402 #endif
403 }
404
405
406 /* rx handlers */
407
408 static ieee80211_rx_result debug_noinline
409 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
410 {
411 struct ieee80211_local *local = rx->local;
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
413 struct sk_buff *skb = rx->skb;
414
415 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
416 !local->sched_scanning))
417 return RX_CONTINUE;
418
419 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
420 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
421 local->sched_scanning)
422 return ieee80211_scan_rx(rx->sdata, skb);
423
424 /* scanning finished during invoking of handlers */
425 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
426 return RX_DROP_UNUSABLE;
427 }
428
429
430 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
431 {
432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
433
434 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
435 return 0;
436
437 return ieee80211_is_robust_mgmt_frame(hdr);
438 }
439
440
441 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
442 {
443 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
444
445 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
446 return 0;
447
448 return ieee80211_is_robust_mgmt_frame(hdr);
449 }
450
451
452 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
453 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
454 {
455 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
456 struct ieee80211_mmie *mmie;
457
458 if (skb->len < 24 + sizeof(*mmie) ||
459 !is_multicast_ether_addr(hdr->da))
460 return -1;
461
462 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
463 return -1; /* not a robust management frame */
464
465 mmie = (struct ieee80211_mmie *)
466 (skb->data + skb->len - sizeof(*mmie));
467 if (mmie->element_id != WLAN_EID_MMIE ||
468 mmie->length != sizeof(*mmie) - 2)
469 return -1;
470
471 return le16_to_cpu(mmie->key_id);
472 }
473
474
475 static ieee80211_rx_result
476 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
477 {
478 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
479 char *dev_addr = rx->sdata->vif.addr;
480
481 if (ieee80211_is_data(hdr->frame_control)) {
482 if (is_multicast_ether_addr(hdr->addr1)) {
483 if (ieee80211_has_tods(hdr->frame_control) ||
484 !ieee80211_has_fromds(hdr->frame_control))
485 return RX_DROP_MONITOR;
486 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
487 return RX_DROP_MONITOR;
488 } else {
489 if (!ieee80211_has_a4(hdr->frame_control))
490 return RX_DROP_MONITOR;
491 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
492 return RX_DROP_MONITOR;
493 }
494 }
495
496 /* If there is not an established peer link and this is not a peer link
497 * establisment frame, beacon or probe, drop the frame.
498 */
499
500 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
501 struct ieee80211_mgmt *mgmt;
502
503 if (!ieee80211_is_mgmt(hdr->frame_control))
504 return RX_DROP_MONITOR;
505
506 if (ieee80211_is_action(hdr->frame_control)) {
507 u8 category;
508 mgmt = (struct ieee80211_mgmt *)hdr;
509 category = mgmt->u.action.category;
510 if (category != WLAN_CATEGORY_MESH_ACTION &&
511 category != WLAN_CATEGORY_SELF_PROTECTED)
512 return RX_DROP_MONITOR;
513 return RX_CONTINUE;
514 }
515
516 if (ieee80211_is_probe_req(hdr->frame_control) ||
517 ieee80211_is_probe_resp(hdr->frame_control) ||
518 ieee80211_is_beacon(hdr->frame_control) ||
519 ieee80211_is_auth(hdr->frame_control))
520 return RX_CONTINUE;
521
522 return RX_DROP_MONITOR;
523
524 }
525
526 return RX_CONTINUE;
527 }
528
529 #define SEQ_MODULO 0x1000
530 #define SEQ_MASK 0xfff
531
532 static inline int seq_less(u16 sq1, u16 sq2)
533 {
534 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
535 }
536
537 static inline u16 seq_inc(u16 sq)
538 {
539 return (sq + 1) & SEQ_MASK;
540 }
541
542 static inline u16 seq_sub(u16 sq1, u16 sq2)
543 {
544 return (sq1 - sq2) & SEQ_MASK;
545 }
546
547
548 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
549 struct tid_ampdu_rx *tid_agg_rx,
550 int index)
551 {
552 struct ieee80211_local *local = hw_to_local(hw);
553 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
554 struct ieee80211_rx_status *status;
555
556 lockdep_assert_held(&tid_agg_rx->reorder_lock);
557
558 if (!skb)
559 goto no_frame;
560
561 /* release the frame from the reorder ring buffer */
562 tid_agg_rx->stored_mpdu_num--;
563 tid_agg_rx->reorder_buf[index] = NULL;
564 status = IEEE80211_SKB_RXCB(skb);
565 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
566 skb_queue_tail(&local->rx_skb_queue, skb);
567
568 no_frame:
569 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
570 }
571
572 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
573 struct tid_ampdu_rx *tid_agg_rx,
574 u16 head_seq_num)
575 {
576 int index;
577
578 lockdep_assert_held(&tid_agg_rx->reorder_lock);
579
580 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
581 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
582 tid_agg_rx->buf_size;
583 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
584 }
585 }
586
587 /*
588 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
589 * the skb was added to the buffer longer than this time ago, the earlier
590 * frames that have not yet been received are assumed to be lost and the skb
591 * can be released for processing. This may also release other skb's from the
592 * reorder buffer if there are no additional gaps between the frames.
593 *
594 * Callers must hold tid_agg_rx->reorder_lock.
595 */
596 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
597
598 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
599 struct tid_ampdu_rx *tid_agg_rx)
600 {
601 int index, j;
602
603 lockdep_assert_held(&tid_agg_rx->reorder_lock);
604
605 /* release the buffer until next missing frame */
606 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
607 tid_agg_rx->buf_size;
608 if (!tid_agg_rx->reorder_buf[index] &&
609 tid_agg_rx->stored_mpdu_num > 1) {
610 /*
611 * No buffers ready to be released, but check whether any
612 * frames in the reorder buffer have timed out.
613 */
614 int skipped = 1;
615 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
616 j = (j + 1) % tid_agg_rx->buf_size) {
617 if (!tid_agg_rx->reorder_buf[j]) {
618 skipped++;
619 continue;
620 }
621 if (skipped &&
622 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
623 HT_RX_REORDER_BUF_TIMEOUT))
624 goto set_release_timer;
625
626 #ifdef CONFIG_MAC80211_HT_DEBUG
627 if (net_ratelimit())
628 wiphy_debug(hw->wiphy,
629 "release an RX reorder frame due to timeout on earlier frames\n");
630 #endif
631 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
632
633 /*
634 * Increment the head seq# also for the skipped slots.
635 */
636 tid_agg_rx->head_seq_num =
637 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
638 skipped = 0;
639 }
640 } else while (tid_agg_rx->reorder_buf[index]) {
641 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
642 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
643 tid_agg_rx->buf_size;
644 }
645
646 if (tid_agg_rx->stored_mpdu_num) {
647 j = index = seq_sub(tid_agg_rx->head_seq_num,
648 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
649
650 for (; j != (index - 1) % tid_agg_rx->buf_size;
651 j = (j + 1) % tid_agg_rx->buf_size) {
652 if (tid_agg_rx->reorder_buf[j])
653 break;
654 }
655
656 set_release_timer:
657
658 mod_timer(&tid_agg_rx->reorder_timer,
659 tid_agg_rx->reorder_time[j] + 1 +
660 HT_RX_REORDER_BUF_TIMEOUT);
661 } else {
662 del_timer(&tid_agg_rx->reorder_timer);
663 }
664 }
665
666 /*
667 * As this function belongs to the RX path it must be under
668 * rcu_read_lock protection. It returns false if the frame
669 * can be processed immediately, true if it was consumed.
670 */
671 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
672 struct tid_ampdu_rx *tid_agg_rx,
673 struct sk_buff *skb)
674 {
675 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
676 u16 sc = le16_to_cpu(hdr->seq_ctrl);
677 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
678 u16 head_seq_num, buf_size;
679 int index;
680 bool ret = true;
681
682 spin_lock(&tid_agg_rx->reorder_lock);
683
684 buf_size = tid_agg_rx->buf_size;
685 head_seq_num = tid_agg_rx->head_seq_num;
686
687 /* frame with out of date sequence number */
688 if (seq_less(mpdu_seq_num, head_seq_num)) {
689 dev_kfree_skb(skb);
690 goto out;
691 }
692
693 /*
694 * If frame the sequence number exceeds our buffering window
695 * size release some previous frames to make room for this one.
696 */
697 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
698 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
699 /* release stored frames up to new head to stack */
700 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
701 }
702
703 /* Now the new frame is always in the range of the reordering buffer */
704
705 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
706
707 /* check if we already stored this frame */
708 if (tid_agg_rx->reorder_buf[index]) {
709 dev_kfree_skb(skb);
710 goto out;
711 }
712
713 /*
714 * If the current MPDU is in the right order and nothing else
715 * is stored we can process it directly, no need to buffer it.
716 * If it is first but there's something stored, we may be able
717 * to release frames after this one.
718 */
719 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
720 tid_agg_rx->stored_mpdu_num == 0) {
721 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
722 ret = false;
723 goto out;
724 }
725
726 /* put the frame in the reordering buffer */
727 tid_agg_rx->reorder_buf[index] = skb;
728 tid_agg_rx->reorder_time[index] = jiffies;
729 tid_agg_rx->stored_mpdu_num++;
730 ieee80211_sta_reorder_release(hw, tid_agg_rx);
731
732 out:
733 spin_unlock(&tid_agg_rx->reorder_lock);
734 return ret;
735 }
736
737 /*
738 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
739 * true if the MPDU was buffered, false if it should be processed.
740 */
741 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
742 {
743 struct sk_buff *skb = rx->skb;
744 struct ieee80211_local *local = rx->local;
745 struct ieee80211_hw *hw = &local->hw;
746 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
747 struct sta_info *sta = rx->sta;
748 struct tid_ampdu_rx *tid_agg_rx;
749 u16 sc;
750 int tid;
751
752 if (!ieee80211_is_data_qos(hdr->frame_control))
753 goto dont_reorder;
754
755 /*
756 * filter the QoS data rx stream according to
757 * STA/TID and check if this STA/TID is on aggregation
758 */
759
760 if (!sta)
761 goto dont_reorder;
762
763 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
764
765 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
766 if (!tid_agg_rx)
767 goto dont_reorder;
768
769 /* qos null data frames are excluded */
770 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
771 goto dont_reorder;
772
773 /* new, potentially un-ordered, ampdu frame - process it */
774
775 /* reset session timer */
776 if (tid_agg_rx->timeout)
777 mod_timer(&tid_agg_rx->session_timer,
778 TU_TO_EXP_TIME(tid_agg_rx->timeout));
779
780 /* if this mpdu is fragmented - terminate rx aggregation session */
781 sc = le16_to_cpu(hdr->seq_ctrl);
782 if (sc & IEEE80211_SCTL_FRAG) {
783 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
784 skb_queue_tail(&rx->sdata->skb_queue, skb);
785 ieee80211_queue_work(&local->hw, &rx->sdata->work);
786 return;
787 }
788
789 /*
790 * No locking needed -- we will only ever process one
791 * RX packet at a time, and thus own tid_agg_rx. All
792 * other code manipulating it needs to (and does) make
793 * sure that we cannot get to it any more before doing
794 * anything with it.
795 */
796 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
797 return;
798
799 dont_reorder:
800 skb_queue_tail(&local->rx_skb_queue, skb);
801 }
802
803 static ieee80211_rx_result debug_noinline
804 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
805 {
806 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
807 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
808
809 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
810 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
811 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
812 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
813 hdr->seq_ctrl)) {
814 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
815 rx->local->dot11FrameDuplicateCount++;
816 rx->sta->num_duplicates++;
817 }
818 return RX_DROP_UNUSABLE;
819 } else
820 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
821 }
822
823 if (unlikely(rx->skb->len < 16)) {
824 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
825 return RX_DROP_MONITOR;
826 }
827
828 /* Drop disallowed frame classes based on STA auth/assoc state;
829 * IEEE 802.11, Chap 5.5.
830 *
831 * mac80211 filters only based on association state, i.e. it drops
832 * Class 3 frames from not associated stations. hostapd sends
833 * deauth/disassoc frames when needed. In addition, hostapd is
834 * responsible for filtering on both auth and assoc states.
835 */
836
837 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
838 return ieee80211_rx_mesh_check(rx);
839
840 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
841 ieee80211_is_pspoll(hdr->frame_control)) &&
842 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
843 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
844 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
845 if (rx->sta && rx->sta->dummy &&
846 ieee80211_is_data_present(hdr->frame_control)) {
847 u16 ethertype;
848 u8 *payload;
849
850 payload = rx->skb->data +
851 ieee80211_hdrlen(hdr->frame_control);
852 ethertype = (payload[6] << 8) | payload[7];
853 if (cpu_to_be16(ethertype) ==
854 rx->sdata->control_port_protocol)
855 return RX_CONTINUE;
856 }
857 return RX_DROP_MONITOR;
858 }
859
860 return RX_CONTINUE;
861 }
862
863
864 static ieee80211_rx_result debug_noinline
865 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
866 {
867 struct sk_buff *skb = rx->skb;
868 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
869 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
870 int keyidx;
871 int hdrlen;
872 ieee80211_rx_result result = RX_DROP_UNUSABLE;
873 struct ieee80211_key *sta_ptk = NULL;
874 int mmie_keyidx = -1;
875 __le16 fc;
876
877 /*
878 * Key selection 101
879 *
880 * There are four types of keys:
881 * - GTK (group keys)
882 * - IGTK (group keys for management frames)
883 * - PTK (pairwise keys)
884 * - STK (station-to-station pairwise keys)
885 *
886 * When selecting a key, we have to distinguish between multicast
887 * (including broadcast) and unicast frames, the latter can only
888 * use PTKs and STKs while the former always use GTKs and IGTKs.
889 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
890 * unicast frames can also use key indices like GTKs. Hence, if we
891 * don't have a PTK/STK we check the key index for a WEP key.
892 *
893 * Note that in a regular BSS, multicast frames are sent by the
894 * AP only, associated stations unicast the frame to the AP first
895 * which then multicasts it on their behalf.
896 *
897 * There is also a slight problem in IBSS mode: GTKs are negotiated
898 * with each station, that is something we don't currently handle.
899 * The spec seems to expect that one negotiates the same key with
900 * every station but there's no such requirement; VLANs could be
901 * possible.
902 */
903
904 /*
905 * No point in finding a key and decrypting if the frame is neither
906 * addressed to us nor a multicast frame.
907 */
908 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
909 return RX_CONTINUE;
910
911 /* start without a key */
912 rx->key = NULL;
913
914 if (rx->sta)
915 sta_ptk = rcu_dereference(rx->sta->ptk);
916
917 fc = hdr->frame_control;
918
919 if (!ieee80211_has_protected(fc))
920 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
921
922 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
923 rx->key = sta_ptk;
924 if ((status->flag & RX_FLAG_DECRYPTED) &&
925 (status->flag & RX_FLAG_IV_STRIPPED))
926 return RX_CONTINUE;
927 /* Skip decryption if the frame is not protected. */
928 if (!ieee80211_has_protected(fc))
929 return RX_CONTINUE;
930 } else if (mmie_keyidx >= 0) {
931 /* Broadcast/multicast robust management frame / BIP */
932 if ((status->flag & RX_FLAG_DECRYPTED) &&
933 (status->flag & RX_FLAG_IV_STRIPPED))
934 return RX_CONTINUE;
935
936 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
937 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
938 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
939 if (rx->sta)
940 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
941 if (!rx->key)
942 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
943 } else if (!ieee80211_has_protected(fc)) {
944 /*
945 * The frame was not protected, so skip decryption. However, we
946 * need to set rx->key if there is a key that could have been
947 * used so that the frame may be dropped if encryption would
948 * have been expected.
949 */
950 struct ieee80211_key *key = NULL;
951 struct ieee80211_sub_if_data *sdata = rx->sdata;
952 int i;
953
954 if (ieee80211_is_mgmt(fc) &&
955 is_multicast_ether_addr(hdr->addr1) &&
956 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
957 rx->key = key;
958 else {
959 if (rx->sta) {
960 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
961 key = rcu_dereference(rx->sta->gtk[i]);
962 if (key)
963 break;
964 }
965 }
966 if (!key) {
967 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
968 key = rcu_dereference(sdata->keys[i]);
969 if (key)
970 break;
971 }
972 }
973 if (key)
974 rx->key = key;
975 }
976 return RX_CONTINUE;
977 } else {
978 u8 keyid;
979 /*
980 * The device doesn't give us the IV so we won't be
981 * able to look up the key. That's ok though, we
982 * don't need to decrypt the frame, we just won't
983 * be able to keep statistics accurate.
984 * Except for key threshold notifications, should
985 * we somehow allow the driver to tell us which key
986 * the hardware used if this flag is set?
987 */
988 if ((status->flag & RX_FLAG_DECRYPTED) &&
989 (status->flag & RX_FLAG_IV_STRIPPED))
990 return RX_CONTINUE;
991
992 hdrlen = ieee80211_hdrlen(fc);
993
994 if (rx->skb->len < 8 + hdrlen)
995 return RX_DROP_UNUSABLE; /* TODO: count this? */
996
997 /*
998 * no need to call ieee80211_wep_get_keyidx,
999 * it verifies a bunch of things we've done already
1000 */
1001 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1002 keyidx = keyid >> 6;
1003
1004 /* check per-station GTK first, if multicast packet */
1005 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1006 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1007
1008 /* if not found, try default key */
1009 if (!rx->key) {
1010 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1011
1012 /*
1013 * RSNA-protected unicast frames should always be
1014 * sent with pairwise or station-to-station keys,
1015 * but for WEP we allow using a key index as well.
1016 */
1017 if (rx->key &&
1018 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1019 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1020 !is_multicast_ether_addr(hdr->addr1))
1021 rx->key = NULL;
1022 }
1023 }
1024
1025 if (rx->key) {
1026 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1027 return RX_DROP_MONITOR;
1028
1029 rx->key->tx_rx_count++;
1030 /* TODO: add threshold stuff again */
1031 } else {
1032 return RX_DROP_MONITOR;
1033 }
1034
1035 if (skb_linearize(rx->skb))
1036 return RX_DROP_UNUSABLE;
1037 /* the hdr variable is invalid now! */
1038
1039 switch (rx->key->conf.cipher) {
1040 case WLAN_CIPHER_SUITE_WEP40:
1041 case WLAN_CIPHER_SUITE_WEP104:
1042 /* Check for weak IVs if possible */
1043 if (rx->sta && ieee80211_is_data(fc) &&
1044 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1045 !(status->flag & RX_FLAG_DECRYPTED)) &&
1046 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1047 rx->sta->wep_weak_iv_count++;
1048
1049 result = ieee80211_crypto_wep_decrypt(rx);
1050 break;
1051 case WLAN_CIPHER_SUITE_TKIP:
1052 result = ieee80211_crypto_tkip_decrypt(rx);
1053 break;
1054 case WLAN_CIPHER_SUITE_CCMP:
1055 result = ieee80211_crypto_ccmp_decrypt(rx);
1056 break;
1057 case WLAN_CIPHER_SUITE_AES_CMAC:
1058 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1059 break;
1060 default:
1061 /*
1062 * We can reach here only with HW-only algorithms
1063 * but why didn't it decrypt the frame?!
1064 */
1065 return RX_DROP_UNUSABLE;
1066 }
1067
1068 /* either the frame has been decrypted or will be dropped */
1069 status->flag |= RX_FLAG_DECRYPTED;
1070
1071 return result;
1072 }
1073
1074 static ieee80211_rx_result debug_noinline
1075 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1076 {
1077 struct ieee80211_local *local;
1078 struct ieee80211_hdr *hdr;
1079 struct sk_buff *skb;
1080
1081 local = rx->local;
1082 skb = rx->skb;
1083 hdr = (struct ieee80211_hdr *) skb->data;
1084
1085 if (!local->pspolling)
1086 return RX_CONTINUE;
1087
1088 if (!ieee80211_has_fromds(hdr->frame_control))
1089 /* this is not from AP */
1090 return RX_CONTINUE;
1091
1092 if (!ieee80211_is_data(hdr->frame_control))
1093 return RX_CONTINUE;
1094
1095 if (!ieee80211_has_moredata(hdr->frame_control)) {
1096 /* AP has no more frames buffered for us */
1097 local->pspolling = false;
1098 return RX_CONTINUE;
1099 }
1100
1101 /* more data bit is set, let's request a new frame from the AP */
1102 ieee80211_send_pspoll(local, rx->sdata);
1103
1104 return RX_CONTINUE;
1105 }
1106
1107 static void ap_sta_ps_start(struct sta_info *sta)
1108 {
1109 struct ieee80211_sub_if_data *sdata = sta->sdata;
1110 struct ieee80211_local *local = sdata->local;
1111
1112 atomic_inc(&sdata->bss->num_sta_ps);
1113 set_sta_flag(sta, WLAN_STA_PS_STA);
1114 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1115 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1116 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1117 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1118 sdata->name, sta->sta.addr, sta->sta.aid);
1119 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1120 }
1121
1122 static void ap_sta_ps_end(struct sta_info *sta)
1123 {
1124 struct ieee80211_sub_if_data *sdata = sta->sdata;
1125
1126 atomic_dec(&sdata->bss->num_sta_ps);
1127
1128 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1129 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1130 sdata->name, sta->sta.addr, sta->sta.aid);
1131 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1132
1133 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1134 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1135 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1136 sdata->name, sta->sta.addr, sta->sta.aid);
1137 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1138 return;
1139 }
1140
1141 ieee80211_sta_ps_deliver_wakeup(sta);
1142 }
1143
1144 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1145 {
1146 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1147 bool in_ps;
1148
1149 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1150
1151 /* Don't let the same PS state be set twice */
1152 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1153 if ((start && in_ps) || (!start && !in_ps))
1154 return -EINVAL;
1155
1156 if (start)
1157 ap_sta_ps_start(sta_inf);
1158 else
1159 ap_sta_ps_end(sta_inf);
1160
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1164
1165 static ieee80211_rx_result debug_noinline
1166 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1167 {
1168 struct ieee80211_sub_if_data *sdata = rx->sdata;
1169 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1170 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1171 int tid, ac;
1172
1173 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1174 return RX_CONTINUE;
1175
1176 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1177 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1178 return RX_CONTINUE;
1179
1180 /*
1181 * The device handles station powersave, so don't do anything about
1182 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1183 * it to mac80211 since they're handled.)
1184 */
1185 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1186 return RX_CONTINUE;
1187
1188 /*
1189 * Don't do anything if the station isn't already asleep. In
1190 * the uAPSD case, the station will probably be marked asleep,
1191 * in the PS-Poll case the station must be confused ...
1192 */
1193 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1194 return RX_CONTINUE;
1195
1196 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1197 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1198 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1199 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1200 else
1201 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1202 }
1203
1204 /* Free PS Poll skb here instead of returning RX_DROP that would
1205 * count as an dropped frame. */
1206 dev_kfree_skb(rx->skb);
1207
1208 return RX_QUEUED;
1209 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1210 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1211 ieee80211_has_pm(hdr->frame_control) &&
1212 (ieee80211_is_data_qos(hdr->frame_control) ||
1213 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1214 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1215 ac = ieee802_1d_to_ac[tid & 7];
1216
1217 /*
1218 * If this AC is not trigger-enabled do nothing.
1219 *
1220 * NB: This could/should check a separate bitmap of trigger-
1221 * enabled queues, but for now we only implement uAPSD w/o
1222 * TSPEC changes to the ACs, so they're always the same.
1223 */
1224 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1225 return RX_CONTINUE;
1226
1227 /* if we are in a service period, do nothing */
1228 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1229 return RX_CONTINUE;
1230
1231 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1232 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1233 else
1234 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1235 }
1236
1237 return RX_CONTINUE;
1238 }
1239
1240 static ieee80211_rx_result debug_noinline
1241 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1242 {
1243 struct sta_info *sta = rx->sta;
1244 struct sk_buff *skb = rx->skb;
1245 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1246 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1247
1248 if (!sta)
1249 return RX_CONTINUE;
1250
1251 /*
1252 * Update last_rx only for IBSS packets which are for the current
1253 * BSSID to avoid keeping the current IBSS network alive in cases
1254 * where other STAs start using different BSSID.
1255 */
1256 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1257 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1258 NL80211_IFTYPE_ADHOC);
1259 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1260 sta->last_rx = jiffies;
1261 if (ieee80211_is_data(hdr->frame_control)) {
1262 sta->last_rx_rate_idx = status->rate_idx;
1263 sta->last_rx_rate_flag = status->flag;
1264 }
1265 }
1266 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1267 /*
1268 * Mesh beacons will update last_rx when if they are found to
1269 * match the current local configuration when processed.
1270 */
1271 sta->last_rx = jiffies;
1272 if (ieee80211_is_data(hdr->frame_control)) {
1273 sta->last_rx_rate_idx = status->rate_idx;
1274 sta->last_rx_rate_flag = status->flag;
1275 }
1276 }
1277
1278 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1279 return RX_CONTINUE;
1280
1281 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1282 ieee80211_sta_rx_notify(rx->sdata, hdr);
1283
1284 sta->rx_fragments++;
1285 sta->rx_bytes += rx->skb->len;
1286 sta->last_signal = status->signal;
1287 ewma_add(&sta->avg_signal, -status->signal);
1288
1289 /*
1290 * Change STA power saving mode only at the end of a frame
1291 * exchange sequence.
1292 */
1293 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1294 !ieee80211_has_morefrags(hdr->frame_control) &&
1295 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1296 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1297 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1298 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1299 /*
1300 * Ignore doze->wake transitions that are
1301 * indicated by non-data frames, the standard
1302 * is unclear here, but for example going to
1303 * PS mode and then scanning would cause a
1304 * doze->wake transition for the probe request,
1305 * and that is clearly undesirable.
1306 */
1307 if (ieee80211_is_data(hdr->frame_control) &&
1308 !ieee80211_has_pm(hdr->frame_control))
1309 ap_sta_ps_end(sta);
1310 } else {
1311 if (ieee80211_has_pm(hdr->frame_control))
1312 ap_sta_ps_start(sta);
1313 }
1314 }
1315
1316 /*
1317 * Drop (qos-)data::nullfunc frames silently, since they
1318 * are used only to control station power saving mode.
1319 */
1320 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1321 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1322 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1323
1324 /*
1325 * If we receive a 4-addr nullfunc frame from a STA
1326 * that was not moved to a 4-addr STA vlan yet, drop
1327 * the frame to the monitor interface, to make sure
1328 * that hostapd sees it
1329 */
1330 if (ieee80211_has_a4(hdr->frame_control) &&
1331 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1332 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1333 !rx->sdata->u.vlan.sta)))
1334 return RX_DROP_MONITOR;
1335 /*
1336 * Update counter and free packet here to avoid
1337 * counting this as a dropped packed.
1338 */
1339 sta->rx_packets++;
1340 dev_kfree_skb(rx->skb);
1341 return RX_QUEUED;
1342 }
1343
1344 return RX_CONTINUE;
1345 } /* ieee80211_rx_h_sta_process */
1346
1347 static inline struct ieee80211_fragment_entry *
1348 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1349 unsigned int frag, unsigned int seq, int rx_queue,
1350 struct sk_buff **skb)
1351 {
1352 struct ieee80211_fragment_entry *entry;
1353 int idx;
1354
1355 idx = sdata->fragment_next;
1356 entry = &sdata->fragments[sdata->fragment_next++];
1357 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1358 sdata->fragment_next = 0;
1359
1360 if (!skb_queue_empty(&entry->skb_list)) {
1361 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1362 struct ieee80211_hdr *hdr =
1363 (struct ieee80211_hdr *) entry->skb_list.next->data;
1364 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1365 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1366 "addr1=%pM addr2=%pM\n",
1367 sdata->name, idx,
1368 jiffies - entry->first_frag_time, entry->seq,
1369 entry->last_frag, hdr->addr1, hdr->addr2);
1370 #endif
1371 __skb_queue_purge(&entry->skb_list);
1372 }
1373
1374 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1375 *skb = NULL;
1376 entry->first_frag_time = jiffies;
1377 entry->seq = seq;
1378 entry->rx_queue = rx_queue;
1379 entry->last_frag = frag;
1380 entry->ccmp = 0;
1381 entry->extra_len = 0;
1382
1383 return entry;
1384 }
1385
1386 static inline struct ieee80211_fragment_entry *
1387 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1388 unsigned int frag, unsigned int seq,
1389 int rx_queue, struct ieee80211_hdr *hdr)
1390 {
1391 struct ieee80211_fragment_entry *entry;
1392 int i, idx;
1393
1394 idx = sdata->fragment_next;
1395 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1396 struct ieee80211_hdr *f_hdr;
1397
1398 idx--;
1399 if (idx < 0)
1400 idx = IEEE80211_FRAGMENT_MAX - 1;
1401
1402 entry = &sdata->fragments[idx];
1403 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1404 entry->rx_queue != rx_queue ||
1405 entry->last_frag + 1 != frag)
1406 continue;
1407
1408 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1409
1410 /*
1411 * Check ftype and addresses are equal, else check next fragment
1412 */
1413 if (((hdr->frame_control ^ f_hdr->frame_control) &
1414 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1415 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1416 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1417 continue;
1418
1419 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1420 __skb_queue_purge(&entry->skb_list);
1421 continue;
1422 }
1423 return entry;
1424 }
1425
1426 return NULL;
1427 }
1428
1429 static ieee80211_rx_result debug_noinline
1430 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1431 {
1432 struct ieee80211_hdr *hdr;
1433 u16 sc;
1434 __le16 fc;
1435 unsigned int frag, seq;
1436 struct ieee80211_fragment_entry *entry;
1437 struct sk_buff *skb;
1438 struct ieee80211_rx_status *status;
1439
1440 hdr = (struct ieee80211_hdr *)rx->skb->data;
1441 fc = hdr->frame_control;
1442 sc = le16_to_cpu(hdr->seq_ctrl);
1443 frag = sc & IEEE80211_SCTL_FRAG;
1444
1445 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1446 (rx->skb)->len < 24 ||
1447 is_multicast_ether_addr(hdr->addr1))) {
1448 /* not fragmented */
1449 goto out;
1450 }
1451 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1452
1453 if (skb_linearize(rx->skb))
1454 return RX_DROP_UNUSABLE;
1455
1456 /*
1457 * skb_linearize() might change the skb->data and
1458 * previously cached variables (in this case, hdr) need to
1459 * be refreshed with the new data.
1460 */
1461 hdr = (struct ieee80211_hdr *)rx->skb->data;
1462 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1463
1464 if (frag == 0) {
1465 /* This is the first fragment of a new frame. */
1466 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1467 rx->seqno_idx, &(rx->skb));
1468 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1469 ieee80211_has_protected(fc)) {
1470 int queue = rx->security_idx;
1471 /* Store CCMP PN so that we can verify that the next
1472 * fragment has a sequential PN value. */
1473 entry->ccmp = 1;
1474 memcpy(entry->last_pn,
1475 rx->key->u.ccmp.rx_pn[queue],
1476 CCMP_PN_LEN);
1477 }
1478 return RX_QUEUED;
1479 }
1480
1481 /* This is a fragment for a frame that should already be pending in
1482 * fragment cache. Add this fragment to the end of the pending entry.
1483 */
1484 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1485 rx->seqno_idx, hdr);
1486 if (!entry) {
1487 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1488 return RX_DROP_MONITOR;
1489 }
1490
1491 /* Verify that MPDUs within one MSDU have sequential PN values.
1492 * (IEEE 802.11i, 8.3.3.4.5) */
1493 if (entry->ccmp) {
1494 int i;
1495 u8 pn[CCMP_PN_LEN], *rpn;
1496 int queue;
1497 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1498 return RX_DROP_UNUSABLE;
1499 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1500 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1501 pn[i]++;
1502 if (pn[i])
1503 break;
1504 }
1505 queue = rx->security_idx;
1506 rpn = rx->key->u.ccmp.rx_pn[queue];
1507 if (memcmp(pn, rpn, CCMP_PN_LEN))
1508 return RX_DROP_UNUSABLE;
1509 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1510 }
1511
1512 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1513 __skb_queue_tail(&entry->skb_list, rx->skb);
1514 entry->last_frag = frag;
1515 entry->extra_len += rx->skb->len;
1516 if (ieee80211_has_morefrags(fc)) {
1517 rx->skb = NULL;
1518 return RX_QUEUED;
1519 }
1520
1521 rx->skb = __skb_dequeue(&entry->skb_list);
1522 if (skb_tailroom(rx->skb) < entry->extra_len) {
1523 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1524 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1525 GFP_ATOMIC))) {
1526 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1527 __skb_queue_purge(&entry->skb_list);
1528 return RX_DROP_UNUSABLE;
1529 }
1530 }
1531 while ((skb = __skb_dequeue(&entry->skb_list))) {
1532 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1533 dev_kfree_skb(skb);
1534 }
1535
1536 /* Complete frame has been reassembled - process it now */
1537 status = IEEE80211_SKB_RXCB(rx->skb);
1538 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1539
1540 out:
1541 if (rx->sta)
1542 rx->sta->rx_packets++;
1543 if (is_multicast_ether_addr(hdr->addr1))
1544 rx->local->dot11MulticastReceivedFrameCount++;
1545 else
1546 ieee80211_led_rx(rx->local);
1547 return RX_CONTINUE;
1548 }
1549
1550 static ieee80211_rx_result debug_noinline
1551 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1552 {
1553 u8 *data = rx->skb->data;
1554 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1555
1556 if (!ieee80211_is_data_qos(hdr->frame_control))
1557 return RX_CONTINUE;
1558
1559 /* remove the qos control field, update frame type and meta-data */
1560 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1561 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1562 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1563 /* change frame type to non QOS */
1564 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1565
1566 return RX_CONTINUE;
1567 }
1568
1569 static int
1570 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1571 {
1572 if (unlikely(!rx->sta ||
1573 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1574 return -EACCES;
1575
1576 return 0;
1577 }
1578
1579 static int
1580 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1581 {
1582 struct sk_buff *skb = rx->skb;
1583 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1584
1585 /*
1586 * Pass through unencrypted frames if the hardware has
1587 * decrypted them already.
1588 */
1589 if (status->flag & RX_FLAG_DECRYPTED)
1590 return 0;
1591
1592 /* Drop unencrypted frames if key is set. */
1593 if (unlikely(!ieee80211_has_protected(fc) &&
1594 !ieee80211_is_nullfunc(fc) &&
1595 ieee80211_is_data(fc) &&
1596 (rx->key || rx->sdata->drop_unencrypted)))
1597 return -EACCES;
1598
1599 return 0;
1600 }
1601
1602 static int
1603 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1604 {
1605 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1606 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1607 __le16 fc = hdr->frame_control;
1608
1609 /*
1610 * Pass through unencrypted frames if the hardware has
1611 * decrypted them already.
1612 */
1613 if (status->flag & RX_FLAG_DECRYPTED)
1614 return 0;
1615
1616 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1617 if (unlikely(!ieee80211_has_protected(fc) &&
1618 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1619 rx->key)) {
1620 if (ieee80211_is_deauth(fc))
1621 cfg80211_send_unprot_deauth(rx->sdata->dev,
1622 rx->skb->data,
1623 rx->skb->len);
1624 else if (ieee80211_is_disassoc(fc))
1625 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1626 rx->skb->data,
1627 rx->skb->len);
1628 return -EACCES;
1629 }
1630 /* BIP does not use Protected field, so need to check MMIE */
1631 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1632 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1633 if (ieee80211_is_deauth(fc))
1634 cfg80211_send_unprot_deauth(rx->sdata->dev,
1635 rx->skb->data,
1636 rx->skb->len);
1637 else if (ieee80211_is_disassoc(fc))
1638 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1639 rx->skb->data,
1640 rx->skb->len);
1641 return -EACCES;
1642 }
1643 /*
1644 * When using MFP, Action frames are not allowed prior to
1645 * having configured keys.
1646 */
1647 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1648 ieee80211_is_robust_mgmt_frame(
1649 (struct ieee80211_hdr *) rx->skb->data)))
1650 return -EACCES;
1651 }
1652
1653 return 0;
1654 }
1655
1656 static int
1657 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1658 {
1659 struct ieee80211_sub_if_data *sdata = rx->sdata;
1660 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1661 bool check_port_control = false;
1662 struct ethhdr *ehdr;
1663 int ret;
1664
1665 *port_control = false;
1666 if (ieee80211_has_a4(hdr->frame_control) &&
1667 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1668 return -1;
1669
1670 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1671 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1672
1673 if (!sdata->u.mgd.use_4addr)
1674 return -1;
1675 else
1676 check_port_control = true;
1677 }
1678
1679 if (is_multicast_ether_addr(hdr->addr1) &&
1680 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1681 return -1;
1682
1683 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1684 if (ret < 0)
1685 return ret;
1686
1687 ehdr = (struct ethhdr *) rx->skb->data;
1688 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1689 *port_control = true;
1690 else if (check_port_control)
1691 return -1;
1692
1693 return 0;
1694 }
1695
1696 /*
1697 * requires that rx->skb is a frame with ethernet header
1698 */
1699 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1700 {
1701 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1702 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1703 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1704
1705 /*
1706 * Allow EAPOL frames to us/the PAE group address regardless
1707 * of whether the frame was encrypted or not.
1708 */
1709 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1710 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1711 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1712 return true;
1713
1714 if (ieee80211_802_1x_port_control(rx) ||
1715 ieee80211_drop_unencrypted(rx, fc))
1716 return false;
1717
1718 return true;
1719 }
1720
1721 /*
1722 * requires that rx->skb is a frame with ethernet header
1723 */
1724 static void
1725 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1726 {
1727 struct ieee80211_sub_if_data *sdata = rx->sdata;
1728 struct net_device *dev = sdata->dev;
1729 struct sk_buff *skb, *xmit_skb;
1730 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1731 struct sta_info *dsta;
1732 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1733
1734 skb = rx->skb;
1735 xmit_skb = NULL;
1736
1737 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1738 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1739 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1740 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1741 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1742 if (is_multicast_ether_addr(ehdr->h_dest)) {
1743 /*
1744 * send multicast frames both to higher layers in
1745 * local net stack and back to the wireless medium
1746 */
1747 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1748 if (!xmit_skb && net_ratelimit())
1749 printk(KERN_DEBUG "%s: failed to clone "
1750 "multicast frame\n", dev->name);
1751 } else {
1752 dsta = sta_info_get(sdata, skb->data);
1753 if (dsta) {
1754 /*
1755 * The destination station is associated to
1756 * this AP (in this VLAN), so send the frame
1757 * directly to it and do not pass it to local
1758 * net stack.
1759 */
1760 xmit_skb = skb;
1761 skb = NULL;
1762 }
1763 }
1764 }
1765
1766 if (skb) {
1767 int align __maybe_unused;
1768
1769 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1770 /*
1771 * 'align' will only take the values 0 or 2 here
1772 * since all frames are required to be aligned
1773 * to 2-byte boundaries when being passed to
1774 * mac80211. That also explains the __skb_push()
1775 * below.
1776 */
1777 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1778 if (align) {
1779 if (WARN_ON(skb_headroom(skb) < 3)) {
1780 dev_kfree_skb(skb);
1781 skb = NULL;
1782 } else {
1783 u8 *data = skb->data;
1784 size_t len = skb_headlen(skb);
1785 skb->data -= align;
1786 memmove(skb->data, data, len);
1787 skb_set_tail_pointer(skb, len);
1788 }
1789 }
1790 #endif
1791
1792 if (skb) {
1793 /* deliver to local stack */
1794 skb->protocol = eth_type_trans(skb, dev);
1795 memset(skb->cb, 0, sizeof(skb->cb));
1796 netif_receive_skb(skb);
1797 }
1798 }
1799
1800 if (xmit_skb) {
1801 /* send to wireless media */
1802 xmit_skb->protocol = htons(ETH_P_802_3);
1803 skb_reset_network_header(xmit_skb);
1804 skb_reset_mac_header(xmit_skb);
1805 dev_queue_xmit(xmit_skb);
1806 }
1807 }
1808
1809 static ieee80211_rx_result debug_noinline
1810 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1811 {
1812 struct net_device *dev = rx->sdata->dev;
1813 struct sk_buff *skb = rx->skb;
1814 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1815 __le16 fc = hdr->frame_control;
1816 struct sk_buff_head frame_list;
1817 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1818
1819 if (unlikely(!ieee80211_is_data(fc)))
1820 return RX_CONTINUE;
1821
1822 if (unlikely(!ieee80211_is_data_present(fc)))
1823 return RX_DROP_MONITOR;
1824
1825 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1826 return RX_CONTINUE;
1827
1828 if (ieee80211_has_a4(hdr->frame_control) &&
1829 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1830 !rx->sdata->u.vlan.sta)
1831 return RX_DROP_UNUSABLE;
1832
1833 if (is_multicast_ether_addr(hdr->addr1) &&
1834 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1835 rx->sdata->u.vlan.sta) ||
1836 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1837 rx->sdata->u.mgd.use_4addr)))
1838 return RX_DROP_UNUSABLE;
1839
1840 skb->dev = dev;
1841 __skb_queue_head_init(&frame_list);
1842
1843 if (skb_linearize(skb))
1844 return RX_DROP_UNUSABLE;
1845
1846 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1847 rx->sdata->vif.type,
1848 rx->local->hw.extra_tx_headroom, true);
1849
1850 while (!skb_queue_empty(&frame_list)) {
1851 rx->skb = __skb_dequeue(&frame_list);
1852
1853 if (!ieee80211_frame_allowed(rx, fc)) {
1854 dev_kfree_skb(rx->skb);
1855 continue;
1856 }
1857 dev->stats.rx_packets++;
1858 dev->stats.rx_bytes += rx->skb->len;
1859
1860 ieee80211_deliver_skb(rx);
1861 }
1862
1863 return RX_QUEUED;
1864 }
1865
1866 #ifdef CONFIG_MAC80211_MESH
1867 static ieee80211_rx_result
1868 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1869 {
1870 struct ieee80211_hdr *hdr;
1871 struct ieee80211s_hdr *mesh_hdr;
1872 unsigned int hdrlen;
1873 struct sk_buff *skb = rx->skb, *fwd_skb;
1874 struct ieee80211_local *local = rx->local;
1875 struct ieee80211_sub_if_data *sdata = rx->sdata;
1876 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1877
1878 hdr = (struct ieee80211_hdr *) skb->data;
1879 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1880 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1881
1882 /* frame is in RMC, don't forward */
1883 if (ieee80211_is_data(hdr->frame_control) &&
1884 is_multicast_ether_addr(hdr->addr1) &&
1885 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1886 return RX_DROP_MONITOR;
1887
1888 if (!ieee80211_is_data(hdr->frame_control))
1889 return RX_CONTINUE;
1890
1891 if (!mesh_hdr->ttl)
1892 /* illegal frame */
1893 return RX_DROP_MONITOR;
1894
1895 if (ieee80211_queue_stopped(&local->hw, skb_get_queue_mapping(skb))) {
1896 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1897 dropped_frames_congestion);
1898 return RX_DROP_MONITOR;
1899 }
1900
1901 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1902 struct mesh_path *mppath;
1903 char *proxied_addr;
1904 char *mpp_addr;
1905
1906 if (is_multicast_ether_addr(hdr->addr1)) {
1907 mpp_addr = hdr->addr3;
1908 proxied_addr = mesh_hdr->eaddr1;
1909 } else {
1910 mpp_addr = hdr->addr4;
1911 proxied_addr = mesh_hdr->eaddr2;
1912 }
1913
1914 rcu_read_lock();
1915 mppath = mpp_path_lookup(proxied_addr, sdata);
1916 if (!mppath) {
1917 mpp_path_add(proxied_addr, mpp_addr, sdata);
1918 } else {
1919 spin_lock_bh(&mppath->state_lock);
1920 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1921 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1922 spin_unlock_bh(&mppath->state_lock);
1923 }
1924 rcu_read_unlock();
1925 }
1926
1927 /* Frame has reached destination. Don't forward */
1928 if (!is_multicast_ether_addr(hdr->addr1) &&
1929 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1930 return RX_CONTINUE;
1931
1932 mesh_hdr->ttl--;
1933
1934 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1935 if (!mesh_hdr->ttl)
1936 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1937 dropped_frames_ttl);
1938 else {
1939 struct ieee80211_hdr *fwd_hdr;
1940 struct ieee80211_tx_info *info;
1941
1942 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1943
1944 if (!fwd_skb && net_ratelimit())
1945 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1946 sdata->name);
1947 if (!fwd_skb)
1948 goto out;
1949
1950 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1951 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1952 info = IEEE80211_SKB_CB(fwd_skb);
1953 memset(info, 0, sizeof(*info));
1954 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1955 info->control.vif = &rx->sdata->vif;
1956 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
1957 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1958 fwded_mcast);
1959 skb_set_queue_mapping(fwd_skb,
1960 ieee80211_select_queue(sdata, fwd_skb));
1961 ieee80211_set_qos_hdr(sdata, fwd_skb);
1962 } else {
1963 int err;
1964 /*
1965 * Save TA to addr1 to send TA a path error if a
1966 * suitable next hop is not found
1967 */
1968 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1969 ETH_ALEN);
1970 err = mesh_nexthop_lookup(fwd_skb, sdata);
1971 /* Failed to immediately resolve next hop:
1972 * fwded frame was dropped or will be added
1973 * later to the pending skb queue. */
1974 if (err)
1975 return RX_DROP_MONITOR;
1976
1977 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1978 fwded_unicast);
1979 }
1980 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1981 fwded_frames);
1982 ieee80211_add_pending_skb(local, fwd_skb);
1983 }
1984 }
1985
1986 out:
1987 if (is_multicast_ether_addr(hdr->addr1) ||
1988 sdata->dev->flags & IFF_PROMISC)
1989 return RX_CONTINUE;
1990 else
1991 return RX_DROP_MONITOR;
1992 }
1993 #endif
1994
1995 static ieee80211_rx_result debug_noinline
1996 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1997 {
1998 struct ieee80211_sub_if_data *sdata = rx->sdata;
1999 struct ieee80211_local *local = rx->local;
2000 struct net_device *dev = sdata->dev;
2001 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2002 __le16 fc = hdr->frame_control;
2003 bool port_control;
2004 int err;
2005
2006 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2007 return RX_CONTINUE;
2008
2009 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2010 return RX_DROP_MONITOR;
2011
2012 /*
2013 * Allow the cooked monitor interface of an AP to see 4-addr frames so
2014 * that a 4-addr station can be detected and moved into a separate VLAN
2015 */
2016 if (ieee80211_has_a4(hdr->frame_control) &&
2017 sdata->vif.type == NL80211_IFTYPE_AP)
2018 return RX_DROP_MONITOR;
2019
2020 err = __ieee80211_data_to_8023(rx, &port_control);
2021 if (unlikely(err))
2022 return RX_DROP_UNUSABLE;
2023
2024 if (!ieee80211_frame_allowed(rx, fc))
2025 return RX_DROP_MONITOR;
2026
2027 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2028 unlikely(port_control) && sdata->bss) {
2029 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2030 u.ap);
2031 dev = sdata->dev;
2032 rx->sdata = sdata;
2033 }
2034
2035 rx->skb->dev = dev;
2036
2037 dev->stats.rx_packets++;
2038 dev->stats.rx_bytes += rx->skb->len;
2039
2040 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2041 !is_multicast_ether_addr(
2042 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2043 (!local->scanning &&
2044 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2045 mod_timer(&local->dynamic_ps_timer, jiffies +
2046 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2047 }
2048
2049 ieee80211_deliver_skb(rx);
2050
2051 return RX_QUEUED;
2052 }
2053
2054 static ieee80211_rx_result debug_noinline
2055 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2056 {
2057 struct ieee80211_local *local = rx->local;
2058 struct ieee80211_hw *hw = &local->hw;
2059 struct sk_buff *skb = rx->skb;
2060 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2061 struct tid_ampdu_rx *tid_agg_rx;
2062 u16 start_seq_num;
2063 u16 tid;
2064
2065 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2066 return RX_CONTINUE;
2067
2068 if (ieee80211_is_back_req(bar->frame_control)) {
2069 struct {
2070 __le16 control, start_seq_num;
2071 } __packed bar_data;
2072
2073 if (!rx->sta)
2074 return RX_DROP_MONITOR;
2075
2076 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2077 &bar_data, sizeof(bar_data)))
2078 return RX_DROP_MONITOR;
2079
2080 tid = le16_to_cpu(bar_data.control) >> 12;
2081
2082 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2083 if (!tid_agg_rx)
2084 return RX_DROP_MONITOR;
2085
2086 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2087
2088 /* reset session timer */
2089 if (tid_agg_rx->timeout)
2090 mod_timer(&tid_agg_rx->session_timer,
2091 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2092
2093 spin_lock(&tid_agg_rx->reorder_lock);
2094 /* release stored frames up to start of BAR */
2095 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2096 spin_unlock(&tid_agg_rx->reorder_lock);
2097
2098 kfree_skb(skb);
2099 return RX_QUEUED;
2100 }
2101
2102 /*
2103 * After this point, we only want management frames,
2104 * so we can drop all remaining control frames to
2105 * cooked monitor interfaces.
2106 */
2107 return RX_DROP_MONITOR;
2108 }
2109
2110 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2111 struct ieee80211_mgmt *mgmt,
2112 size_t len)
2113 {
2114 struct ieee80211_local *local = sdata->local;
2115 struct sk_buff *skb;
2116 struct ieee80211_mgmt *resp;
2117
2118 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2119 /* Not to own unicast address */
2120 return;
2121 }
2122
2123 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2124 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2125 /* Not from the current AP or not associated yet. */
2126 return;
2127 }
2128
2129 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2130 /* Too short SA Query request frame */
2131 return;
2132 }
2133
2134 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2135 if (skb == NULL)
2136 return;
2137
2138 skb_reserve(skb, local->hw.extra_tx_headroom);
2139 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2140 memset(resp, 0, 24);
2141 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2142 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2143 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2144 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2145 IEEE80211_STYPE_ACTION);
2146 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2147 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2148 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2149 memcpy(resp->u.action.u.sa_query.trans_id,
2150 mgmt->u.action.u.sa_query.trans_id,
2151 WLAN_SA_QUERY_TR_ID_LEN);
2152
2153 ieee80211_tx_skb(sdata, skb);
2154 }
2155
2156 static ieee80211_rx_result debug_noinline
2157 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2158 {
2159 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2161
2162 /*
2163 * From here on, look only at management frames.
2164 * Data and control frames are already handled,
2165 * and unknown (reserved) frames are useless.
2166 */
2167 if (rx->skb->len < 24)
2168 return RX_DROP_MONITOR;
2169
2170 if (!ieee80211_is_mgmt(mgmt->frame_control))
2171 return RX_DROP_MONITOR;
2172
2173 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2174 return RX_DROP_MONITOR;
2175
2176 if (ieee80211_drop_unencrypted_mgmt(rx))
2177 return RX_DROP_UNUSABLE;
2178
2179 return RX_CONTINUE;
2180 }
2181
2182 static ieee80211_rx_result debug_noinline
2183 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2184 {
2185 struct ieee80211_local *local = rx->local;
2186 struct ieee80211_sub_if_data *sdata = rx->sdata;
2187 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2188 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2189 int len = rx->skb->len;
2190
2191 if (!ieee80211_is_action(mgmt->frame_control))
2192 return RX_CONTINUE;
2193
2194 /* drop too small frames */
2195 if (len < IEEE80211_MIN_ACTION_SIZE)
2196 return RX_DROP_UNUSABLE;
2197
2198 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2199 return RX_DROP_UNUSABLE;
2200
2201 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2202 return RX_DROP_UNUSABLE;
2203
2204 switch (mgmt->u.action.category) {
2205 case WLAN_CATEGORY_BACK:
2206 /*
2207 * The aggregation code is not prepared to handle
2208 * anything but STA/AP due to the BSSID handling;
2209 * IBSS could work in the code but isn't supported
2210 * by drivers or the standard.
2211 */
2212 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2213 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2214 sdata->vif.type != NL80211_IFTYPE_AP)
2215 break;
2216
2217 /* verify action_code is present */
2218 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2219 break;
2220
2221 switch (mgmt->u.action.u.addba_req.action_code) {
2222 case WLAN_ACTION_ADDBA_REQ:
2223 if (len < (IEEE80211_MIN_ACTION_SIZE +
2224 sizeof(mgmt->u.action.u.addba_req)))
2225 goto invalid;
2226 break;
2227 case WLAN_ACTION_ADDBA_RESP:
2228 if (len < (IEEE80211_MIN_ACTION_SIZE +
2229 sizeof(mgmt->u.action.u.addba_resp)))
2230 goto invalid;
2231 break;
2232 case WLAN_ACTION_DELBA:
2233 if (len < (IEEE80211_MIN_ACTION_SIZE +
2234 sizeof(mgmt->u.action.u.delba)))
2235 goto invalid;
2236 break;
2237 default:
2238 goto invalid;
2239 }
2240
2241 goto queue;
2242 case WLAN_CATEGORY_SPECTRUM_MGMT:
2243 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2244 break;
2245
2246 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2247 break;
2248
2249 /* verify action_code is present */
2250 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2251 break;
2252
2253 switch (mgmt->u.action.u.measurement.action_code) {
2254 case WLAN_ACTION_SPCT_MSR_REQ:
2255 if (len < (IEEE80211_MIN_ACTION_SIZE +
2256 sizeof(mgmt->u.action.u.measurement)))
2257 break;
2258 ieee80211_process_measurement_req(sdata, mgmt, len);
2259 goto handled;
2260 case WLAN_ACTION_SPCT_CHL_SWITCH:
2261 if (len < (IEEE80211_MIN_ACTION_SIZE +
2262 sizeof(mgmt->u.action.u.chan_switch)))
2263 break;
2264
2265 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2266 break;
2267
2268 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2269 break;
2270
2271 goto queue;
2272 }
2273 break;
2274 case WLAN_CATEGORY_SA_QUERY:
2275 if (len < (IEEE80211_MIN_ACTION_SIZE +
2276 sizeof(mgmt->u.action.u.sa_query)))
2277 break;
2278
2279 switch (mgmt->u.action.u.sa_query.action) {
2280 case WLAN_ACTION_SA_QUERY_REQUEST:
2281 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2282 break;
2283 ieee80211_process_sa_query_req(sdata, mgmt, len);
2284 goto handled;
2285 }
2286 break;
2287 case WLAN_CATEGORY_SELF_PROTECTED:
2288 switch (mgmt->u.action.u.self_prot.action_code) {
2289 case WLAN_SP_MESH_PEERING_OPEN:
2290 case WLAN_SP_MESH_PEERING_CLOSE:
2291 case WLAN_SP_MESH_PEERING_CONFIRM:
2292 if (!ieee80211_vif_is_mesh(&sdata->vif))
2293 goto invalid;
2294 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2295 /* userspace handles this frame */
2296 break;
2297 goto queue;
2298 case WLAN_SP_MGK_INFORM:
2299 case WLAN_SP_MGK_ACK:
2300 if (!ieee80211_vif_is_mesh(&sdata->vif))
2301 goto invalid;
2302 break;
2303 }
2304 break;
2305 case WLAN_CATEGORY_MESH_ACTION:
2306 if (!ieee80211_vif_is_mesh(&sdata->vif))
2307 break;
2308 if (mesh_action_is_path_sel(mgmt) &&
2309 (!mesh_path_sel_is_hwmp(sdata)))
2310 break;
2311 goto queue;
2312 }
2313
2314 return RX_CONTINUE;
2315
2316 invalid:
2317 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2318 /* will return in the next handlers */
2319 return RX_CONTINUE;
2320
2321 handled:
2322 if (rx->sta)
2323 rx->sta->rx_packets++;
2324 dev_kfree_skb(rx->skb);
2325 return RX_QUEUED;
2326
2327 queue:
2328 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2329 skb_queue_tail(&sdata->skb_queue, rx->skb);
2330 ieee80211_queue_work(&local->hw, &sdata->work);
2331 if (rx->sta)
2332 rx->sta->rx_packets++;
2333 return RX_QUEUED;
2334 }
2335
2336 static ieee80211_rx_result debug_noinline
2337 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2338 {
2339 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2340
2341 /* skip known-bad action frames and return them in the next handler */
2342 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2343 return RX_CONTINUE;
2344
2345 /*
2346 * Getting here means the kernel doesn't know how to handle
2347 * it, but maybe userspace does ... include returned frames
2348 * so userspace can register for those to know whether ones
2349 * it transmitted were processed or returned.
2350 */
2351
2352 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2353 rx->skb->data, rx->skb->len,
2354 GFP_ATOMIC)) {
2355 if (rx->sta)
2356 rx->sta->rx_packets++;
2357 dev_kfree_skb(rx->skb);
2358 return RX_QUEUED;
2359 }
2360
2361
2362 return RX_CONTINUE;
2363 }
2364
2365 static ieee80211_rx_result debug_noinline
2366 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2367 {
2368 struct ieee80211_local *local = rx->local;
2369 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2370 struct sk_buff *nskb;
2371 struct ieee80211_sub_if_data *sdata = rx->sdata;
2372 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2373
2374 if (!ieee80211_is_action(mgmt->frame_control))
2375 return RX_CONTINUE;
2376
2377 /*
2378 * For AP mode, hostapd is responsible for handling any action
2379 * frames that we didn't handle, including returning unknown
2380 * ones. For all other modes we will return them to the sender,
2381 * setting the 0x80 bit in the action category, as required by
2382 * 802.11-2007 7.3.1.11.
2383 * Newer versions of hostapd shall also use the management frame
2384 * registration mechanisms, but older ones still use cooked
2385 * monitor interfaces so push all frames there.
2386 */
2387 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2388 (sdata->vif.type == NL80211_IFTYPE_AP ||
2389 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2390 return RX_DROP_MONITOR;
2391
2392 /* do not return rejected action frames */
2393 if (mgmt->u.action.category & 0x80)
2394 return RX_DROP_UNUSABLE;
2395
2396 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2397 GFP_ATOMIC);
2398 if (nskb) {
2399 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2400
2401 nmgmt->u.action.category |= 0x80;
2402 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2403 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2404
2405 memset(nskb->cb, 0, sizeof(nskb->cb));
2406
2407 ieee80211_tx_skb(rx->sdata, nskb);
2408 }
2409 dev_kfree_skb(rx->skb);
2410 return RX_QUEUED;
2411 }
2412
2413 static ieee80211_rx_result debug_noinline
2414 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2415 {
2416 struct ieee80211_sub_if_data *sdata = rx->sdata;
2417 ieee80211_rx_result rxs;
2418 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2419 __le16 stype;
2420
2421 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2422 if (rxs != RX_CONTINUE)
2423 return rxs;
2424
2425 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2426
2427 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2428 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2429 sdata->vif.type != NL80211_IFTYPE_STATION)
2430 return RX_DROP_MONITOR;
2431
2432 switch (stype) {
2433 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2434 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2435 /* process for all: mesh, mlme, ibss */
2436 break;
2437 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2438 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2439 if (is_multicast_ether_addr(mgmt->da) &&
2440 !is_broadcast_ether_addr(mgmt->da))
2441 return RX_DROP_MONITOR;
2442
2443 /* process only for station */
2444 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2445 return RX_DROP_MONITOR;
2446 break;
2447 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2448 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2449 /* process only for ibss */
2450 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2451 return RX_DROP_MONITOR;
2452 break;
2453 default:
2454 return RX_DROP_MONITOR;
2455 }
2456
2457 /* queue up frame and kick off work to process it */
2458 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2459 skb_queue_tail(&sdata->skb_queue, rx->skb);
2460 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2461 if (rx->sta)
2462 rx->sta->rx_packets++;
2463
2464 return RX_QUEUED;
2465 }
2466
2467 /* TODO: use IEEE80211_RX_FRAGMENTED */
2468 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2469 struct ieee80211_rate *rate)
2470 {
2471 struct ieee80211_sub_if_data *sdata;
2472 struct ieee80211_local *local = rx->local;
2473 struct ieee80211_rtap_hdr {
2474 struct ieee80211_radiotap_header hdr;
2475 u8 flags;
2476 u8 rate_or_pad;
2477 __le16 chan_freq;
2478 __le16 chan_flags;
2479 } __packed *rthdr;
2480 struct sk_buff *skb = rx->skb, *skb2;
2481 struct net_device *prev_dev = NULL;
2482 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2483
2484 /*
2485 * If cooked monitor has been processed already, then
2486 * don't do it again. If not, set the flag.
2487 */
2488 if (rx->flags & IEEE80211_RX_CMNTR)
2489 goto out_free_skb;
2490 rx->flags |= IEEE80211_RX_CMNTR;
2491
2492 if (skb_headroom(skb) < sizeof(*rthdr) &&
2493 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2494 goto out_free_skb;
2495
2496 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2497 memset(rthdr, 0, sizeof(*rthdr));
2498 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2499 rthdr->hdr.it_present =
2500 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2501 (1 << IEEE80211_RADIOTAP_CHANNEL));
2502
2503 if (rate) {
2504 rthdr->rate_or_pad = rate->bitrate / 5;
2505 rthdr->hdr.it_present |=
2506 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2507 }
2508 rthdr->chan_freq = cpu_to_le16(status->freq);
2509
2510 if (status->band == IEEE80211_BAND_5GHZ)
2511 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2512 IEEE80211_CHAN_5GHZ);
2513 else
2514 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2515 IEEE80211_CHAN_2GHZ);
2516
2517 skb_set_mac_header(skb, 0);
2518 skb->ip_summed = CHECKSUM_UNNECESSARY;
2519 skb->pkt_type = PACKET_OTHERHOST;
2520 skb->protocol = htons(ETH_P_802_2);
2521
2522 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2523 if (!ieee80211_sdata_running(sdata))
2524 continue;
2525
2526 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2527 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2528 continue;
2529
2530 if (prev_dev) {
2531 skb2 = skb_clone(skb, GFP_ATOMIC);
2532 if (skb2) {
2533 skb2->dev = prev_dev;
2534 netif_receive_skb(skb2);
2535 }
2536 }
2537
2538 prev_dev = sdata->dev;
2539 sdata->dev->stats.rx_packets++;
2540 sdata->dev->stats.rx_bytes += skb->len;
2541 }
2542
2543 if (prev_dev) {
2544 skb->dev = prev_dev;
2545 netif_receive_skb(skb);
2546 return;
2547 }
2548
2549 out_free_skb:
2550 dev_kfree_skb(skb);
2551 }
2552
2553 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2554 ieee80211_rx_result res)
2555 {
2556 switch (res) {
2557 case RX_DROP_MONITOR:
2558 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2559 if (rx->sta)
2560 rx->sta->rx_dropped++;
2561 /* fall through */
2562 case RX_CONTINUE: {
2563 struct ieee80211_rate *rate = NULL;
2564 struct ieee80211_supported_band *sband;
2565 struct ieee80211_rx_status *status;
2566
2567 status = IEEE80211_SKB_RXCB((rx->skb));
2568
2569 sband = rx->local->hw.wiphy->bands[status->band];
2570 if (!(status->flag & RX_FLAG_HT))
2571 rate = &sband->bitrates[status->rate_idx];
2572
2573 ieee80211_rx_cooked_monitor(rx, rate);
2574 break;
2575 }
2576 case RX_DROP_UNUSABLE:
2577 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2578 if (rx->sta)
2579 rx->sta->rx_dropped++;
2580 dev_kfree_skb(rx->skb);
2581 break;
2582 case RX_QUEUED:
2583 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2584 break;
2585 }
2586 }
2587
2588 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2589 {
2590 ieee80211_rx_result res = RX_DROP_MONITOR;
2591 struct sk_buff *skb;
2592
2593 #define CALL_RXH(rxh) \
2594 do { \
2595 res = rxh(rx); \
2596 if (res != RX_CONTINUE) \
2597 goto rxh_next; \
2598 } while (0);
2599
2600 spin_lock(&rx->local->rx_skb_queue.lock);
2601 if (rx->local->running_rx_handler)
2602 goto unlock;
2603
2604 rx->local->running_rx_handler = true;
2605
2606 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2607 spin_unlock(&rx->local->rx_skb_queue.lock);
2608
2609 /*
2610 * all the other fields are valid across frames
2611 * that belong to an aMPDU since they are on the
2612 * same TID from the same station
2613 */
2614 rx->skb = skb;
2615
2616 CALL_RXH(ieee80211_rx_h_decrypt)
2617 CALL_RXH(ieee80211_rx_h_check_more_data)
2618 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2619 CALL_RXH(ieee80211_rx_h_sta_process)
2620 CALL_RXH(ieee80211_rx_h_defragment)
2621 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2622 /* must be after MMIC verify so header is counted in MPDU mic */
2623 #ifdef CONFIG_MAC80211_MESH
2624 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2625 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2626 #endif
2627 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2628 CALL_RXH(ieee80211_rx_h_amsdu)
2629 CALL_RXH(ieee80211_rx_h_data)
2630 CALL_RXH(ieee80211_rx_h_ctrl);
2631 CALL_RXH(ieee80211_rx_h_mgmt_check)
2632 CALL_RXH(ieee80211_rx_h_action)
2633 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2634 CALL_RXH(ieee80211_rx_h_action_return)
2635 CALL_RXH(ieee80211_rx_h_mgmt)
2636
2637 rxh_next:
2638 ieee80211_rx_handlers_result(rx, res);
2639 spin_lock(&rx->local->rx_skb_queue.lock);
2640 #undef CALL_RXH
2641 }
2642
2643 rx->local->running_rx_handler = false;
2644
2645 unlock:
2646 spin_unlock(&rx->local->rx_skb_queue.lock);
2647 }
2648
2649 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2650 {
2651 ieee80211_rx_result res = RX_DROP_MONITOR;
2652
2653 #define CALL_RXH(rxh) \
2654 do { \
2655 res = rxh(rx); \
2656 if (res != RX_CONTINUE) \
2657 goto rxh_next; \
2658 } while (0);
2659
2660 CALL_RXH(ieee80211_rx_h_passive_scan)
2661 CALL_RXH(ieee80211_rx_h_check)
2662
2663 ieee80211_rx_reorder_ampdu(rx);
2664
2665 ieee80211_rx_handlers(rx);
2666 return;
2667
2668 rxh_next:
2669 ieee80211_rx_handlers_result(rx, res);
2670
2671 #undef CALL_RXH
2672 }
2673
2674 /*
2675 * This function makes calls into the RX path, therefore
2676 * it has to be invoked under RCU read lock.
2677 */
2678 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2679 {
2680 struct ieee80211_rx_data rx = {
2681 .sta = sta,
2682 .sdata = sta->sdata,
2683 .local = sta->local,
2684 /* This is OK -- must be QoS data frame */
2685 .security_idx = tid,
2686 .seqno_idx = tid,
2687 .flags = 0,
2688 };
2689 struct tid_ampdu_rx *tid_agg_rx;
2690
2691 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2692 if (!tid_agg_rx)
2693 return;
2694
2695 spin_lock(&tid_agg_rx->reorder_lock);
2696 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2697 spin_unlock(&tid_agg_rx->reorder_lock);
2698
2699 ieee80211_rx_handlers(&rx);
2700 }
2701
2702 /* main receive path */
2703
2704 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2705 struct ieee80211_hdr *hdr)
2706 {
2707 struct ieee80211_sub_if_data *sdata = rx->sdata;
2708 struct sk_buff *skb = rx->skb;
2709 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2710 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2711 int multicast = is_multicast_ether_addr(hdr->addr1);
2712
2713 switch (sdata->vif.type) {
2714 case NL80211_IFTYPE_STATION:
2715 if (!bssid && !sdata->u.mgd.use_4addr)
2716 return 0;
2717 if (!multicast &&
2718 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2719 if (!(sdata->dev->flags & IFF_PROMISC) ||
2720 sdata->u.mgd.use_4addr)
2721 return 0;
2722 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2723 }
2724 break;
2725 case NL80211_IFTYPE_ADHOC:
2726 if (!bssid)
2727 return 0;
2728 if (ieee80211_is_beacon(hdr->frame_control)) {
2729 return 1;
2730 }
2731 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2732 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2733 return 0;
2734 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2735 } else if (!multicast &&
2736 compare_ether_addr(sdata->vif.addr,
2737 hdr->addr1) != 0) {
2738 if (!(sdata->dev->flags & IFF_PROMISC))
2739 return 0;
2740 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2741 } else if (!rx->sta) {
2742 int rate_idx;
2743 if (status->flag & RX_FLAG_HT)
2744 rate_idx = 0; /* TODO: HT rates */
2745 else
2746 rate_idx = status->rate_idx;
2747 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2748 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2749 }
2750 break;
2751 case NL80211_IFTYPE_MESH_POINT:
2752 if (!multicast &&
2753 compare_ether_addr(sdata->vif.addr,
2754 hdr->addr1) != 0) {
2755 if (!(sdata->dev->flags & IFF_PROMISC))
2756 return 0;
2757
2758 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2759 }
2760 break;
2761 case NL80211_IFTYPE_AP_VLAN:
2762 case NL80211_IFTYPE_AP:
2763 if (!bssid) {
2764 if (compare_ether_addr(sdata->vif.addr,
2765 hdr->addr1))
2766 return 0;
2767 } else if (!ieee80211_bssid_match(bssid,
2768 sdata->vif.addr)) {
2769 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2770 !ieee80211_is_beacon(hdr->frame_control) &&
2771 !(ieee80211_is_action(hdr->frame_control) &&
2772 sdata->vif.p2p))
2773 return 0;
2774 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2775 }
2776 break;
2777 case NL80211_IFTYPE_WDS:
2778 if (bssid || !ieee80211_is_data(hdr->frame_control))
2779 return 0;
2780 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2781 return 0;
2782 break;
2783 default:
2784 /* should never get here */
2785 WARN_ON(1);
2786 break;
2787 }
2788
2789 return 1;
2790 }
2791
2792 /*
2793 * This function returns whether or not the SKB
2794 * was destined for RX processing or not, which,
2795 * if consume is true, is equivalent to whether
2796 * or not the skb was consumed.
2797 */
2798 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2799 struct sk_buff *skb, bool consume)
2800 {
2801 struct ieee80211_local *local = rx->local;
2802 struct ieee80211_sub_if_data *sdata = rx->sdata;
2803 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2804 struct ieee80211_hdr *hdr = (void *)skb->data;
2805 int prepares;
2806
2807 rx->skb = skb;
2808 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2809 prepares = prepare_for_handlers(rx, hdr);
2810
2811 if (!prepares)
2812 return false;
2813
2814 if (!consume) {
2815 skb = skb_copy(skb, GFP_ATOMIC);
2816 if (!skb) {
2817 if (net_ratelimit())
2818 wiphy_debug(local->hw.wiphy,
2819 "failed to copy skb for %s\n",
2820 sdata->name);
2821 return true;
2822 }
2823
2824 rx->skb = skb;
2825 }
2826
2827 ieee80211_invoke_rx_handlers(rx);
2828 return true;
2829 }
2830
2831 /*
2832 * This is the actual Rx frames handler. as it blongs to Rx path it must
2833 * be called with rcu_read_lock protection.
2834 */
2835 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2836 struct sk_buff *skb)
2837 {
2838 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2839 struct ieee80211_local *local = hw_to_local(hw);
2840 struct ieee80211_sub_if_data *sdata;
2841 struct ieee80211_hdr *hdr;
2842 __le16 fc;
2843 struct ieee80211_rx_data rx;
2844 struct ieee80211_sub_if_data *prev;
2845 struct sta_info *sta, *tmp, *prev_sta;
2846 int err = 0;
2847
2848 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2849 memset(&rx, 0, sizeof(rx));
2850 rx.skb = skb;
2851 rx.local = local;
2852
2853 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2854 local->dot11ReceivedFragmentCount++;
2855
2856 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2857 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2858 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2859
2860 if (ieee80211_is_mgmt(fc))
2861 err = skb_linearize(skb);
2862 else
2863 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2864
2865 if (err) {
2866 dev_kfree_skb(skb);
2867 return;
2868 }
2869
2870 hdr = (struct ieee80211_hdr *)skb->data;
2871 ieee80211_parse_qos(&rx);
2872 ieee80211_verify_alignment(&rx);
2873
2874 if (ieee80211_is_data(fc)) {
2875 prev_sta = NULL;
2876
2877 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) {
2878 if (!prev_sta) {
2879 prev_sta = sta;
2880 continue;
2881 }
2882
2883 rx.sta = prev_sta;
2884 rx.sdata = prev_sta->sdata;
2885 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2886
2887 prev_sta = sta;
2888 }
2889
2890 if (prev_sta) {
2891 rx.sta = prev_sta;
2892 rx.sdata = prev_sta->sdata;
2893
2894 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2895 return;
2896 goto out;
2897 }
2898 }
2899
2900 prev = NULL;
2901
2902 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2903 if (!ieee80211_sdata_running(sdata))
2904 continue;
2905
2906 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2907 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2908 continue;
2909
2910 /*
2911 * frame is destined for this interface, but if it's
2912 * not also for the previous one we handle that after
2913 * the loop to avoid copying the SKB once too much
2914 */
2915
2916 if (!prev) {
2917 prev = sdata;
2918 continue;
2919 }
2920
2921 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2922 rx.sdata = prev;
2923 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2924
2925 prev = sdata;
2926 }
2927
2928 if (prev) {
2929 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2930 rx.sdata = prev;
2931
2932 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2933 return;
2934 }
2935
2936 out:
2937 dev_kfree_skb(skb);
2938 }
2939
2940 /*
2941 * This is the receive path handler. It is called by a low level driver when an
2942 * 802.11 MPDU is received from the hardware.
2943 */
2944 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2945 {
2946 struct ieee80211_local *local = hw_to_local(hw);
2947 struct ieee80211_rate *rate = NULL;
2948 struct ieee80211_supported_band *sband;
2949 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2950
2951 WARN_ON_ONCE(softirq_count() == 0);
2952
2953 if (WARN_ON(status->band < 0 ||
2954 status->band >= IEEE80211_NUM_BANDS))
2955 goto drop;
2956
2957 sband = local->hw.wiphy->bands[status->band];
2958 if (WARN_ON(!sband))
2959 goto drop;
2960
2961 /*
2962 * If we're suspending, it is possible although not too likely
2963 * that we'd be receiving frames after having already partially
2964 * quiesced the stack. We can't process such frames then since
2965 * that might, for example, cause stations to be added or other
2966 * driver callbacks be invoked.
2967 */
2968 if (unlikely(local->quiescing || local->suspended))
2969 goto drop;
2970
2971 /*
2972 * The same happens when we're not even started,
2973 * but that's worth a warning.
2974 */
2975 if (WARN_ON(!local->started))
2976 goto drop;
2977
2978 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2979 /*
2980 * Validate the rate, unless a PLCP error means that
2981 * we probably can't have a valid rate here anyway.
2982 */
2983
2984 if (status->flag & RX_FLAG_HT) {
2985 /*
2986 * rate_idx is MCS index, which can be [0-76]
2987 * as documented on:
2988 *
2989 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2990 *
2991 * Anything else would be some sort of driver or
2992 * hardware error. The driver should catch hardware
2993 * errors.
2994 */
2995 if (WARN((status->rate_idx < 0 ||
2996 status->rate_idx > 76),
2997 "Rate marked as an HT rate but passed "
2998 "status->rate_idx is not "
2999 "an MCS index [0-76]: %d (0x%02x)\n",
3000 status->rate_idx,
3001 status->rate_idx))
3002 goto drop;
3003 } else {
3004 if (WARN_ON(status->rate_idx < 0 ||
3005 status->rate_idx >= sband->n_bitrates))
3006 goto drop;
3007 rate = &sband->bitrates[status->rate_idx];
3008 }
3009 }
3010
3011 status->rx_flags = 0;
3012
3013 /*
3014 * key references and virtual interfaces are protected using RCU
3015 * and this requires that we are in a read-side RCU section during
3016 * receive processing
3017 */
3018 rcu_read_lock();
3019
3020 /*
3021 * Frames with failed FCS/PLCP checksum are not returned,
3022 * all other frames are returned without radiotap header
3023 * if it was previously present.
3024 * Also, frames with less than 16 bytes are dropped.
3025 */
3026 skb = ieee80211_rx_monitor(local, skb, rate);
3027 if (!skb) {
3028 rcu_read_unlock();
3029 return;
3030 }
3031
3032 ieee80211_tpt_led_trig_rx(local,
3033 ((struct ieee80211_hdr *)skb->data)->frame_control,
3034 skb->len);
3035 __ieee80211_rx_handle_packet(hw, skb);
3036
3037 rcu_read_unlock();
3038
3039 return;
3040 drop:
3041 kfree_skb(skb);
3042 }
3043 EXPORT_SYMBOL(ieee80211_rx);
3044
3045 /* This is a version of the rx handler that can be called from hard irq
3046 * context. Post the skb on the queue and schedule the tasklet */
3047 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3048 {
3049 struct ieee80211_local *local = hw_to_local(hw);
3050
3051 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3052
3053 skb->pkt_type = IEEE80211_RX_MSG;
3054 skb_queue_tail(&local->skb_queue, skb);
3055 tasklet_schedule(&local->tasklet);
3056 }
3057 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.123661 seconds and 6 git commands to generate.