Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
39
40 /* misc utils */
41
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
44 {
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
51
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
55
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
59
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
62
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
64
65 /*
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
74 *
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
81 */
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
87 *
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
97 */
98 return 0;
99 }
100
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
104
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
107
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
117 */
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
123
124 if (r->bitrate > txrate->bitrate)
125 break;
126
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
129
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
140 }
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
148 }
149 }
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
154 }
155
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
159
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
162
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
171 }
172
173 return cpu_to_le16(dur);
174 }
175
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
178 {
179 return local == wdev_priv(dev->ieee80211_ptr);
180 }
181
182 /* tx handlers */
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
185 {
186 struct ieee80211_local *local = tx->local;
187 struct ieee80211_if_managed *ifmgd;
188
189 /* driver doesn't support power save */
190 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
191 return TX_CONTINUE;
192
193 /* hardware does dynamic power save */
194 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
195 return TX_CONTINUE;
196
197 /* dynamic power save disabled */
198 if (local->hw.conf.dynamic_ps_timeout <= 0)
199 return TX_CONTINUE;
200
201 /* we are scanning, don't enable power save */
202 if (local->scanning)
203 return TX_CONTINUE;
204
205 if (!local->ps_sdata)
206 return TX_CONTINUE;
207
208 /* No point if we're going to suspend */
209 if (local->quiescing)
210 return TX_CONTINUE;
211
212 /* dynamic ps is supported only in managed mode */
213 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
214 return TX_CONTINUE;
215
216 ifmgd = &tx->sdata->u.mgd;
217
218 /*
219 * Don't wakeup from power save if u-apsd is enabled, voip ac has
220 * u-apsd enabled and the frame is in voip class. This effectively
221 * means that even if all access categories have u-apsd enabled, in
222 * practise u-apsd is only used with the voip ac. This is a
223 * workaround for the case when received voip class packets do not
224 * have correct qos tag for some reason, due the network or the
225 * peer application.
226 *
227 * Note: local->uapsd_queues access is racy here. If the value is
228 * changed via debugfs, user needs to reassociate manually to have
229 * everything in sync.
230 */
231 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
232 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
233 && skb_get_queue_mapping(tx->skb) == 0)
234 return TX_CONTINUE;
235
236 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
237 ieee80211_stop_queues_by_reason(&local->hw,
238 IEEE80211_QUEUE_STOP_REASON_PS);
239 ieee80211_queue_work(&local->hw,
240 &local->dynamic_ps_disable_work);
241 }
242
243 mod_timer(&local->dynamic_ps_timer, jiffies +
244 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
245
246 return TX_CONTINUE;
247 }
248
249 static ieee80211_tx_result debug_noinline
250 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
251 {
252
253 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
254 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
255 u32 sta_flags;
256
257 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
258 return TX_CONTINUE;
259
260 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
261 !ieee80211_is_probe_req(hdr->frame_control) &&
262 !ieee80211_is_nullfunc(hdr->frame_control))
263 /*
264 * When software scanning only nullfunc frames (to notify
265 * the sleep state to the AP) and probe requests (for the
266 * active scan) are allowed, all other frames should not be
267 * sent and we should not get here, but if we do
268 * nonetheless, drop them to avoid sending them
269 * off-channel. See the link below and
270 * ieee80211_start_scan() for more.
271 *
272 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
273 */
274 return TX_DROP;
275
276 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
277 return TX_CONTINUE;
278
279 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
280 return TX_CONTINUE;
281
282 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
283
284 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
285 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
286 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
287 ieee80211_is_data(hdr->frame_control))) {
288 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
289 printk(KERN_DEBUG "%s: dropped data frame to not "
290 "associated station %pM\n",
291 tx->sdata->name, hdr->addr1);
292 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
293 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
294 return TX_DROP;
295 }
296 } else {
297 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
298 tx->local->num_sta == 0 &&
299 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
300 /*
301 * No associated STAs - no need to send multicast
302 * frames.
303 */
304 return TX_DROP;
305 }
306 return TX_CONTINUE;
307 }
308
309 return TX_CONTINUE;
310 }
311
312 /* This function is called whenever the AP is about to exceed the maximum limit
313 * of buffered frames for power saving STAs. This situation should not really
314 * happen often during normal operation, so dropping the oldest buffered packet
315 * from each queue should be OK to make some room for new frames. */
316 static void purge_old_ps_buffers(struct ieee80211_local *local)
317 {
318 int total = 0, purged = 0;
319 struct sk_buff *skb;
320 struct ieee80211_sub_if_data *sdata;
321 struct sta_info *sta;
322
323 /*
324 * virtual interfaces are protected by RCU
325 */
326 rcu_read_lock();
327
328 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
329 struct ieee80211_if_ap *ap;
330 if (sdata->vif.type != NL80211_IFTYPE_AP)
331 continue;
332 ap = &sdata->u.ap;
333 skb = skb_dequeue(&ap->ps_bc_buf);
334 if (skb) {
335 purged++;
336 dev_kfree_skb(skb);
337 }
338 total += skb_queue_len(&ap->ps_bc_buf);
339 }
340
341 list_for_each_entry_rcu(sta, &local->sta_list, list) {
342 skb = skb_dequeue(&sta->ps_tx_buf);
343 if (skb) {
344 purged++;
345 dev_kfree_skb(skb);
346 }
347 total += skb_queue_len(&sta->ps_tx_buf);
348 }
349
350 rcu_read_unlock();
351
352 local->total_ps_buffered = total;
353 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
354 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
355 wiphy_name(local->hw.wiphy), purged);
356 #endif
357 }
358
359 static ieee80211_tx_result
360 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
361 {
362 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
363 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
364
365 /*
366 * broadcast/multicast frame
367 *
368 * If any of the associated stations is in power save mode,
369 * the frame is buffered to be sent after DTIM beacon frame.
370 * This is done either by the hardware or us.
371 */
372
373 /* powersaving STAs only in AP/VLAN mode */
374 if (!tx->sdata->bss)
375 return TX_CONTINUE;
376
377 /* no buffering for ordered frames */
378 if (ieee80211_has_order(hdr->frame_control))
379 return TX_CONTINUE;
380
381 /* no stations in PS mode */
382 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
383 return TX_CONTINUE;
384
385 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
386
387 /* device releases frame after DTIM beacon */
388 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
389 return TX_CONTINUE;
390
391 /* buffered in mac80211 */
392 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
393 purge_old_ps_buffers(tx->local);
394
395 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
396 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
397 if (net_ratelimit())
398 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
399 tx->sdata->name);
400 #endif
401 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
402 } else
403 tx->local->total_ps_buffered++;
404
405 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
406
407 return TX_QUEUED;
408 }
409
410 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
411 struct sk_buff *skb)
412 {
413 if (!ieee80211_is_mgmt(fc))
414 return 0;
415
416 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
417 return 0;
418
419 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
420 skb->data))
421 return 0;
422
423 return 1;
424 }
425
426 static ieee80211_tx_result
427 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
428 {
429 struct sta_info *sta = tx->sta;
430 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
431 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
432 u32 staflags;
433
434 if (unlikely(!sta ||
435 ieee80211_is_probe_resp(hdr->frame_control) ||
436 ieee80211_is_auth(hdr->frame_control) ||
437 ieee80211_is_assoc_resp(hdr->frame_control) ||
438 ieee80211_is_reassoc_resp(hdr->frame_control)))
439 return TX_CONTINUE;
440
441 staflags = get_sta_flags(sta);
442
443 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
444 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
445 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
446 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
447 "before %d)\n",
448 sta->sta.addr, sta->sta.aid,
449 skb_queue_len(&sta->ps_tx_buf));
450 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
451 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
452 purge_old_ps_buffers(tx->local);
453 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
454 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
455 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
456 if (net_ratelimit()) {
457 printk(KERN_DEBUG "%s: STA %pM TX "
458 "buffer full - dropping oldest frame\n",
459 tx->sdata->name, sta->sta.addr);
460 }
461 #endif
462 dev_kfree_skb(old);
463 } else
464 tx->local->total_ps_buffered++;
465
466 /*
467 * Queue frame to be sent after STA wakes up/polls,
468 * but don't set the TIM bit if the driver is blocking
469 * wakeup or poll response transmissions anyway.
470 */
471 if (skb_queue_empty(&sta->ps_tx_buf) &&
472 !(staflags & WLAN_STA_PS_DRIVER))
473 sta_info_set_tim_bit(sta);
474
475 info->control.jiffies = jiffies;
476 info->control.vif = &tx->sdata->vif;
477 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
478 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
479 return TX_QUEUED;
480 }
481 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
482 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
483 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
484 "set -> send frame\n", tx->sdata->name,
485 sta->sta.addr);
486 }
487 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
488
489 return TX_CONTINUE;
490 }
491
492 static ieee80211_tx_result debug_noinline
493 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
494 {
495 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
496 return TX_CONTINUE;
497
498 if (tx->flags & IEEE80211_TX_UNICAST)
499 return ieee80211_tx_h_unicast_ps_buf(tx);
500 else
501 return ieee80211_tx_h_multicast_ps_buf(tx);
502 }
503
504 static ieee80211_tx_result debug_noinline
505 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
506 {
507 struct ieee80211_key *key = NULL;
508 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
509 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
510
511 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
512 tx->key = NULL;
513 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
514 tx->key = key;
515 else if (ieee80211_is_mgmt(hdr->frame_control) &&
516 is_multicast_ether_addr(hdr->addr1) &&
517 ieee80211_is_robust_mgmt_frame(hdr) &&
518 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
519 tx->key = key;
520 else if ((key = rcu_dereference(tx->sdata->default_key)))
521 tx->key = key;
522 else if (tx->sdata->drop_unencrypted &&
523 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
524 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
525 (!ieee80211_is_robust_mgmt_frame(hdr) ||
526 (ieee80211_is_action(hdr->frame_control) &&
527 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
528 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
529 return TX_DROP;
530 } else
531 tx->key = NULL;
532
533 if (tx->key) {
534 bool skip_hw = false;
535
536 tx->key->tx_rx_count++;
537 /* TODO: add threshold stuff again */
538
539 switch (tx->key->conf.alg) {
540 case ALG_WEP:
541 if (ieee80211_is_auth(hdr->frame_control))
542 break;
543 case ALG_TKIP:
544 if (!ieee80211_is_data_present(hdr->frame_control))
545 tx->key = NULL;
546 break;
547 case ALG_CCMP:
548 if (!ieee80211_is_data_present(hdr->frame_control) &&
549 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
550 tx->skb))
551 tx->key = NULL;
552 else
553 skip_hw = (tx->key->conf.flags &
554 IEEE80211_KEY_FLAG_SW_MGMT) &&
555 ieee80211_is_mgmt(hdr->frame_control);
556 break;
557 case ALG_AES_CMAC:
558 if (!ieee80211_is_mgmt(hdr->frame_control))
559 tx->key = NULL;
560 break;
561 }
562
563 if (!skip_hw && tx->key &&
564 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
565 info->control.hw_key = &tx->key->conf;
566 }
567
568 return TX_CONTINUE;
569 }
570
571 static ieee80211_tx_result debug_noinline
572 ieee80211_tx_h_sta(struct ieee80211_tx_data *tx)
573 {
574 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
575
576 if (tx->sta && tx->sta->uploaded)
577 info->control.sta = &tx->sta->sta;
578
579 return TX_CONTINUE;
580 }
581
582 static ieee80211_tx_result debug_noinline
583 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
584 {
585 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
586 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
587 struct ieee80211_supported_band *sband;
588 struct ieee80211_rate *rate;
589 int i, len;
590 bool inval = false, rts = false, short_preamble = false;
591 struct ieee80211_tx_rate_control txrc;
592 u32 sta_flags;
593
594 memset(&txrc, 0, sizeof(txrc));
595
596 sband = tx->local->hw.wiphy->bands[tx->channel->band];
597
598 len = min_t(int, tx->skb->len + FCS_LEN,
599 tx->local->hw.wiphy->frag_threshold);
600
601 /* set up the tx rate control struct we give the RC algo */
602 txrc.hw = local_to_hw(tx->local);
603 txrc.sband = sband;
604 txrc.bss_conf = &tx->sdata->vif.bss_conf;
605 txrc.skb = tx->skb;
606 txrc.reported_rate.idx = -1;
607 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
608 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
609 txrc.max_rate_idx = -1;
610 else
611 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
612 txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP;
613
614 /* set up RTS protection if desired */
615 if (len > tx->local->hw.wiphy->rts_threshold) {
616 txrc.rts = rts = true;
617 }
618
619 /*
620 * Use short preamble if the BSS can handle it, but not for
621 * management frames unless we know the receiver can handle
622 * that -- the management frame might be to a station that
623 * just wants a probe response.
624 */
625 if (tx->sdata->vif.bss_conf.use_short_preamble &&
626 (ieee80211_is_data(hdr->frame_control) ||
627 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
628 txrc.short_preamble = short_preamble = true;
629
630 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
631
632 /*
633 * Lets not bother rate control if we're associated and cannot
634 * talk to the sta. This should not happen.
635 */
636 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
637 (sta_flags & WLAN_STA_ASSOC) &&
638 !rate_usable_index_exists(sband, &tx->sta->sta),
639 "%s: Dropped data frame as no usable bitrate found while "
640 "scanning and associated. Target station: "
641 "%pM on %d GHz band\n",
642 tx->sdata->name, hdr->addr1,
643 tx->channel->band ? 5 : 2))
644 return TX_DROP;
645
646 /*
647 * If we're associated with the sta at this point we know we can at
648 * least send the frame at the lowest bit rate.
649 */
650 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
651
652 if (unlikely(info->control.rates[0].idx < 0))
653 return TX_DROP;
654
655 if (txrc.reported_rate.idx < 0)
656 txrc.reported_rate = info->control.rates[0];
657
658 if (tx->sta)
659 tx->sta->last_tx_rate = txrc.reported_rate;
660
661 if (unlikely(!info->control.rates[0].count))
662 info->control.rates[0].count = 1;
663
664 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
665 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
666 info->control.rates[0].count = 1;
667
668 if (is_multicast_ether_addr(hdr->addr1)) {
669 /*
670 * XXX: verify the rate is in the basic rateset
671 */
672 return TX_CONTINUE;
673 }
674
675 /*
676 * set up the RTS/CTS rate as the fastest basic rate
677 * that is not faster than the data rate
678 *
679 * XXX: Should this check all retry rates?
680 */
681 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
682 s8 baserate = 0;
683
684 rate = &sband->bitrates[info->control.rates[0].idx];
685
686 for (i = 0; i < sband->n_bitrates; i++) {
687 /* must be a basic rate */
688 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
689 continue;
690 /* must not be faster than the data rate */
691 if (sband->bitrates[i].bitrate > rate->bitrate)
692 continue;
693 /* maximum */
694 if (sband->bitrates[baserate].bitrate <
695 sband->bitrates[i].bitrate)
696 baserate = i;
697 }
698
699 info->control.rts_cts_rate_idx = baserate;
700 }
701
702 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
703 /*
704 * make sure there's no valid rate following
705 * an invalid one, just in case drivers don't
706 * take the API seriously to stop at -1.
707 */
708 if (inval) {
709 info->control.rates[i].idx = -1;
710 continue;
711 }
712 if (info->control.rates[i].idx < 0) {
713 inval = true;
714 continue;
715 }
716
717 /*
718 * For now assume MCS is already set up correctly, this
719 * needs to be fixed.
720 */
721 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
722 WARN_ON(info->control.rates[i].idx > 76);
723 continue;
724 }
725
726 /* set up RTS protection if desired */
727 if (rts)
728 info->control.rates[i].flags |=
729 IEEE80211_TX_RC_USE_RTS_CTS;
730
731 /* RC is busted */
732 if (WARN_ON_ONCE(info->control.rates[i].idx >=
733 sband->n_bitrates)) {
734 info->control.rates[i].idx = -1;
735 continue;
736 }
737
738 rate = &sband->bitrates[info->control.rates[i].idx];
739
740 /* set up short preamble */
741 if (short_preamble &&
742 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
743 info->control.rates[i].flags |=
744 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
745
746 /* set up G protection */
747 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
748 rate->flags & IEEE80211_RATE_ERP_G)
749 info->control.rates[i].flags |=
750 IEEE80211_TX_RC_USE_CTS_PROTECT;
751 }
752
753 return TX_CONTINUE;
754 }
755
756 static ieee80211_tx_result debug_noinline
757 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
758 {
759 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
760 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
761 u16 *seq;
762 u8 *qc;
763 int tid;
764
765 /*
766 * Packet injection may want to control the sequence
767 * number, if we have no matching interface then we
768 * neither assign one ourselves nor ask the driver to.
769 */
770 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
771 return TX_CONTINUE;
772
773 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
774 return TX_CONTINUE;
775
776 if (ieee80211_hdrlen(hdr->frame_control) < 24)
777 return TX_CONTINUE;
778
779 /*
780 * Anything but QoS data that has a sequence number field
781 * (is long enough) gets a sequence number from the global
782 * counter.
783 */
784 if (!ieee80211_is_data_qos(hdr->frame_control)) {
785 /* driver should assign sequence number */
786 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
787 /* for pure STA mode without beacons, we can do it */
788 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
789 tx->sdata->sequence_number += 0x10;
790 return TX_CONTINUE;
791 }
792
793 /*
794 * This should be true for injected/management frames only, for
795 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
796 * above since they are not QoS-data frames.
797 */
798 if (!tx->sta)
799 return TX_CONTINUE;
800
801 /* include per-STA, per-TID sequence counter */
802
803 qc = ieee80211_get_qos_ctl(hdr);
804 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
805 seq = &tx->sta->tid_seq[tid];
806
807 hdr->seq_ctrl = cpu_to_le16(*seq);
808
809 /* Increase the sequence number. */
810 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
811
812 return TX_CONTINUE;
813 }
814
815 static int ieee80211_fragment(struct ieee80211_local *local,
816 struct sk_buff *skb, int hdrlen,
817 int frag_threshold)
818 {
819 struct sk_buff *tail = skb, *tmp;
820 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
821 int pos = hdrlen + per_fragm;
822 int rem = skb->len - hdrlen - per_fragm;
823
824 if (WARN_ON(rem < 0))
825 return -EINVAL;
826
827 while (rem) {
828 int fraglen = per_fragm;
829
830 if (fraglen > rem)
831 fraglen = rem;
832 rem -= fraglen;
833 tmp = dev_alloc_skb(local->tx_headroom +
834 frag_threshold +
835 IEEE80211_ENCRYPT_HEADROOM +
836 IEEE80211_ENCRYPT_TAILROOM);
837 if (!tmp)
838 return -ENOMEM;
839 tail->next = tmp;
840 tail = tmp;
841 skb_reserve(tmp, local->tx_headroom +
842 IEEE80211_ENCRYPT_HEADROOM);
843 /* copy control information */
844 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
845 skb_copy_queue_mapping(tmp, skb);
846 tmp->priority = skb->priority;
847 tmp->dev = skb->dev;
848
849 /* copy header and data */
850 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
851 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
852
853 pos += fraglen;
854 }
855
856 skb->len = hdrlen + per_fragm;
857 return 0;
858 }
859
860 static ieee80211_tx_result debug_noinline
861 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
862 {
863 struct sk_buff *skb = tx->skb;
864 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
865 struct ieee80211_hdr *hdr = (void *)skb->data;
866 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
867 int hdrlen;
868 int fragnum;
869
870 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
871 return TX_CONTINUE;
872
873 /*
874 * Warn when submitting a fragmented A-MPDU frame and drop it.
875 * This scenario is handled in ieee80211_tx_prepare but extra
876 * caution taken here as fragmented ampdu may cause Tx stop.
877 */
878 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
879 return TX_DROP;
880
881 hdrlen = ieee80211_hdrlen(hdr->frame_control);
882
883 /* internal error, why is TX_FRAGMENTED set? */
884 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
885 return TX_DROP;
886
887 /*
888 * Now fragment the frame. This will allocate all the fragments and
889 * chain them (using skb as the first fragment) to skb->next.
890 * During transmission, we will remove the successfully transmitted
891 * fragments from this list. When the low-level driver rejects one
892 * of the fragments then we will simply pretend to accept the skb
893 * but store it away as pending.
894 */
895 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
896 return TX_DROP;
897
898 /* update duration/seq/flags of fragments */
899 fragnum = 0;
900 do {
901 int next_len;
902 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
903
904 hdr = (void *)skb->data;
905 info = IEEE80211_SKB_CB(skb);
906
907 if (skb->next) {
908 hdr->frame_control |= morefrags;
909 next_len = skb->next->len;
910 /*
911 * No multi-rate retries for fragmented frames, that
912 * would completely throw off the NAV at other STAs.
913 */
914 info->control.rates[1].idx = -1;
915 info->control.rates[2].idx = -1;
916 info->control.rates[3].idx = -1;
917 info->control.rates[4].idx = -1;
918 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
919 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
920 } else {
921 hdr->frame_control &= ~morefrags;
922 next_len = 0;
923 }
924 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
925 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
926 fragnum++;
927 } while ((skb = skb->next));
928
929 return TX_CONTINUE;
930 }
931
932 static ieee80211_tx_result debug_noinline
933 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
934 {
935 struct sk_buff *skb = tx->skb;
936
937 if (!tx->sta)
938 return TX_CONTINUE;
939
940 tx->sta->tx_packets++;
941 do {
942 tx->sta->tx_fragments++;
943 tx->sta->tx_bytes += skb->len;
944 } while ((skb = skb->next));
945
946 return TX_CONTINUE;
947 }
948
949 static ieee80211_tx_result debug_noinline
950 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
951 {
952 if (!tx->key)
953 return TX_CONTINUE;
954
955 switch (tx->key->conf.alg) {
956 case ALG_WEP:
957 return ieee80211_crypto_wep_encrypt(tx);
958 case ALG_TKIP:
959 return ieee80211_crypto_tkip_encrypt(tx);
960 case ALG_CCMP:
961 return ieee80211_crypto_ccmp_encrypt(tx);
962 case ALG_AES_CMAC:
963 return ieee80211_crypto_aes_cmac_encrypt(tx);
964 }
965
966 /* not reached */
967 WARN_ON(1);
968 return TX_DROP;
969 }
970
971 static ieee80211_tx_result debug_noinline
972 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
973 {
974 struct sk_buff *skb = tx->skb;
975 struct ieee80211_hdr *hdr;
976 int next_len;
977 bool group_addr;
978
979 do {
980 hdr = (void *) skb->data;
981 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
982 break; /* must not overwrite AID */
983 next_len = skb->next ? skb->next->len : 0;
984 group_addr = is_multicast_ether_addr(hdr->addr1);
985
986 hdr->duration_id =
987 ieee80211_duration(tx, group_addr, next_len);
988 } while ((skb = skb->next));
989
990 return TX_CONTINUE;
991 }
992
993 /* actual transmit path */
994
995 /*
996 * deal with packet injection down monitor interface
997 * with Radiotap Header -- only called for monitor mode interface
998 */
999 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
1000 struct sk_buff *skb)
1001 {
1002 /*
1003 * this is the moment to interpret and discard the radiotap header that
1004 * must be at the start of the packet injected in Monitor mode
1005 *
1006 * Need to take some care with endian-ness since radiotap
1007 * args are little-endian
1008 */
1009
1010 struct ieee80211_radiotap_iterator iterator;
1011 struct ieee80211_radiotap_header *rthdr =
1012 (struct ieee80211_radiotap_header *) skb->data;
1013 struct ieee80211_supported_band *sband;
1014 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1015 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
1016 NULL);
1017
1018 sband = tx->local->hw.wiphy->bands[tx->channel->band];
1019
1020 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1021 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1022
1023 /*
1024 * for every radiotap entry that is present
1025 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1026 * entries present, or -EINVAL on error)
1027 */
1028
1029 while (!ret) {
1030 ret = ieee80211_radiotap_iterator_next(&iterator);
1031
1032 if (ret)
1033 continue;
1034
1035 /* see if this argument is something we can use */
1036 switch (iterator.this_arg_index) {
1037 /*
1038 * You must take care when dereferencing iterator.this_arg
1039 * for multibyte types... the pointer is not aligned. Use
1040 * get_unaligned((type *)iterator.this_arg) to dereference
1041 * iterator.this_arg for type "type" safely on all arches.
1042 */
1043 case IEEE80211_RADIOTAP_FLAGS:
1044 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1045 /*
1046 * this indicates that the skb we have been
1047 * handed has the 32-bit FCS CRC at the end...
1048 * we should react to that by snipping it off
1049 * because it will be recomputed and added
1050 * on transmission
1051 */
1052 if (skb->len < (iterator._max_length + FCS_LEN))
1053 return false;
1054
1055 skb_trim(skb, skb->len - FCS_LEN);
1056 }
1057 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1058 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1059 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
1060 tx->flags |= IEEE80211_TX_FRAGMENTED;
1061 break;
1062
1063 /*
1064 * Please update the file
1065 * Documentation/networking/mac80211-injection.txt
1066 * when parsing new fields here.
1067 */
1068
1069 default:
1070 break;
1071 }
1072 }
1073
1074 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1075 return false;
1076
1077 /*
1078 * remove the radiotap header
1079 * iterator->_max_length was sanity-checked against
1080 * skb->len by iterator init
1081 */
1082 skb_pull(skb, iterator._max_length);
1083
1084 return true;
1085 }
1086
1087 /*
1088 * initialises @tx
1089 */
1090 static ieee80211_tx_result
1091 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1092 struct ieee80211_tx_data *tx,
1093 struct sk_buff *skb)
1094 {
1095 struct ieee80211_local *local = sdata->local;
1096 struct ieee80211_hdr *hdr;
1097 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1098 int hdrlen, tid;
1099 u8 *qc, *state;
1100 bool queued = false;
1101
1102 memset(tx, 0, sizeof(*tx));
1103 tx->skb = skb;
1104 tx->local = local;
1105 tx->sdata = sdata;
1106 tx->channel = local->hw.conf.channel;
1107 /*
1108 * Set this flag (used below to indicate "automatic fragmentation"),
1109 * it will be cleared/left by radiotap as desired.
1110 */
1111 tx->flags |= IEEE80211_TX_FRAGMENTED;
1112
1113 /* process and remove the injection radiotap header */
1114 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) {
1115 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1116 return TX_DROP;
1117
1118 /*
1119 * __ieee80211_parse_tx_radiotap has now removed
1120 * the radiotap header that was present and pre-filled
1121 * 'tx' with tx control information.
1122 */
1123 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP;
1124 }
1125
1126 /*
1127 * If this flag is set to true anywhere, and we get here,
1128 * we are doing the needed processing, so remove the flag
1129 * now.
1130 */
1131 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1132
1133 hdr = (struct ieee80211_hdr *) skb->data;
1134
1135 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1136 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1137 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1138 return TX_DROP;
1139 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1140 tx->sta = sta_info_get_bss(sdata, hdr->addr1);
1141 }
1142 if (!tx->sta)
1143 tx->sta = sta_info_get(sdata, hdr->addr1);
1144
1145 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1146 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1147 struct tid_ampdu_tx *tid_tx;
1148
1149 qc = ieee80211_get_qos_ctl(hdr);
1150 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1151
1152 spin_lock(&tx->sta->lock);
1153 /*
1154 * XXX: This spinlock could be fairly expensive, but see the
1155 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1156 * One way to solve this would be to do something RCU-like
1157 * for managing the tid_tx struct and using atomic bitops
1158 * for the actual state -- by introducing an actual
1159 * 'operational' bit that would be possible. It would
1160 * require changing ieee80211_agg_tx_operational() to
1161 * set that bit, and changing the way tid_tx is managed
1162 * everywhere, including races between that bit and
1163 * tid_tx going away (tid_tx being added can be easily
1164 * committed to memory before the 'operational' bit).
1165 */
1166 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1167 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1168 if (*state == HT_AGG_STATE_OPERATIONAL) {
1169 info->flags |= IEEE80211_TX_CTL_AMPDU;
1170 } else if (*state != HT_AGG_STATE_IDLE) {
1171 /* in progress */
1172 queued = true;
1173 info->control.vif = &sdata->vif;
1174 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1175 __skb_queue_tail(&tid_tx->pending, skb);
1176 }
1177 spin_unlock(&tx->sta->lock);
1178
1179 if (unlikely(queued))
1180 return TX_QUEUED;
1181 }
1182
1183 if (is_multicast_ether_addr(hdr->addr1)) {
1184 tx->flags &= ~IEEE80211_TX_UNICAST;
1185 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1186 } else {
1187 tx->flags |= IEEE80211_TX_UNICAST;
1188 if (unlikely(local->wifi_wme_noack_test))
1189 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1190 else
1191 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1192 }
1193
1194 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1195 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1196 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1197 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1198 tx->flags |= IEEE80211_TX_FRAGMENTED;
1199 else
1200 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1201 }
1202
1203 if (!tx->sta)
1204 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1205 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1206 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1207
1208 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1209 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1210 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1211 tx->ethertype = (pos[0] << 8) | pos[1];
1212 }
1213 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1214
1215 return TX_CONTINUE;
1216 }
1217
1218 static int __ieee80211_tx(struct ieee80211_local *local,
1219 struct sk_buff **skbp,
1220 struct sta_info *sta,
1221 bool txpending)
1222 {
1223 struct sk_buff *skb = *skbp, *next;
1224 struct ieee80211_tx_info *info;
1225 struct ieee80211_sub_if_data *sdata;
1226 unsigned long flags;
1227 int ret, len;
1228 bool fragm = false;
1229
1230 while (skb) {
1231 int q = skb_get_queue_mapping(skb);
1232
1233 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1234 ret = IEEE80211_TX_OK;
1235 if (local->queue_stop_reasons[q] ||
1236 (!txpending && !skb_queue_empty(&local->pending[q])))
1237 ret = IEEE80211_TX_PENDING;
1238 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1239 if (ret != IEEE80211_TX_OK)
1240 return ret;
1241
1242 info = IEEE80211_SKB_CB(skb);
1243
1244 if (fragm)
1245 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1246 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1247
1248 next = skb->next;
1249 len = skb->len;
1250
1251 if (next)
1252 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1253
1254 sdata = vif_to_sdata(info->control.vif);
1255
1256 switch (sdata->vif.type) {
1257 case NL80211_IFTYPE_MONITOR:
1258 info->control.vif = NULL;
1259 break;
1260 case NL80211_IFTYPE_AP_VLAN:
1261 info->control.vif = &container_of(sdata->bss,
1262 struct ieee80211_sub_if_data, u.ap)->vif;
1263 break;
1264 default:
1265 /* keep */
1266 break;
1267 }
1268
1269 ret = drv_tx(local, skb);
1270 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1271 dev_kfree_skb(skb);
1272 ret = NETDEV_TX_OK;
1273 }
1274 if (ret != NETDEV_TX_OK) {
1275 info->control.vif = &sdata->vif;
1276 return IEEE80211_TX_AGAIN;
1277 }
1278
1279 *skbp = skb = next;
1280 ieee80211_led_tx(local, 1);
1281 fragm = true;
1282 }
1283
1284 return IEEE80211_TX_OK;
1285 }
1286
1287 /*
1288 * Invoke TX handlers, return 0 on success and non-zero if the
1289 * frame was dropped or queued.
1290 */
1291 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1292 {
1293 struct sk_buff *skb = tx->skb;
1294 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1295 ieee80211_tx_result res = TX_DROP;
1296
1297 #define CALL_TXH(txh) \
1298 do { \
1299 res = txh(tx); \
1300 if (res != TX_CONTINUE) \
1301 goto txh_done; \
1302 } while (0)
1303
1304 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1305 CALL_TXH(ieee80211_tx_h_check_assoc);
1306 CALL_TXH(ieee80211_tx_h_ps_buf);
1307 CALL_TXH(ieee80211_tx_h_select_key);
1308 CALL_TXH(ieee80211_tx_h_sta);
1309 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1310 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1311
1312 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
1313 goto txh_done;
1314
1315 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1316 CALL_TXH(ieee80211_tx_h_sequence);
1317 CALL_TXH(ieee80211_tx_h_fragment);
1318 /* handlers after fragment must be aware of tx info fragmentation! */
1319 CALL_TXH(ieee80211_tx_h_stats);
1320 CALL_TXH(ieee80211_tx_h_encrypt);
1321 CALL_TXH(ieee80211_tx_h_calculate_duration);
1322 #undef CALL_TXH
1323
1324 txh_done:
1325 if (unlikely(res == TX_DROP)) {
1326 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1327 while (skb) {
1328 struct sk_buff *next;
1329
1330 next = skb->next;
1331 dev_kfree_skb(skb);
1332 skb = next;
1333 }
1334 return -1;
1335 } else if (unlikely(res == TX_QUEUED)) {
1336 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1337 return -1;
1338 }
1339
1340 return 0;
1341 }
1342
1343 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1344 struct sk_buff *skb, bool txpending)
1345 {
1346 struct ieee80211_local *local = sdata->local;
1347 struct ieee80211_tx_data tx;
1348 ieee80211_tx_result res_prepare;
1349 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1350 struct sk_buff *next;
1351 unsigned long flags;
1352 int ret, retries;
1353 u16 queue;
1354
1355 queue = skb_get_queue_mapping(skb);
1356
1357 if (unlikely(skb->len < 10)) {
1358 dev_kfree_skb(skb);
1359 return;
1360 }
1361
1362 rcu_read_lock();
1363
1364 /* initialises tx */
1365 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1366
1367 if (unlikely(res_prepare == TX_DROP)) {
1368 dev_kfree_skb(skb);
1369 rcu_read_unlock();
1370 return;
1371 } else if (unlikely(res_prepare == TX_QUEUED)) {
1372 rcu_read_unlock();
1373 return;
1374 }
1375
1376 tx.channel = local->hw.conf.channel;
1377 info->band = tx.channel->band;
1378
1379 if (invoke_tx_handlers(&tx))
1380 goto out;
1381
1382 retries = 0;
1383 retry:
1384 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1385 switch (ret) {
1386 case IEEE80211_TX_OK:
1387 break;
1388 case IEEE80211_TX_AGAIN:
1389 /*
1390 * Since there are no fragmented frames on A-MPDU
1391 * queues, there's no reason for a driver to reject
1392 * a frame there, warn and drop it.
1393 */
1394 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1395 goto drop;
1396 /* fall through */
1397 case IEEE80211_TX_PENDING:
1398 skb = tx.skb;
1399
1400 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1401
1402 if (local->queue_stop_reasons[queue] ||
1403 !skb_queue_empty(&local->pending[queue])) {
1404 /*
1405 * if queue is stopped, queue up frames for later
1406 * transmission from the tasklet
1407 */
1408 do {
1409 next = skb->next;
1410 skb->next = NULL;
1411 if (unlikely(txpending))
1412 __skb_queue_head(&local->pending[queue],
1413 skb);
1414 else
1415 __skb_queue_tail(&local->pending[queue],
1416 skb);
1417 } while ((skb = next));
1418
1419 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1420 flags);
1421 } else {
1422 /*
1423 * otherwise retry, but this is a race condition or
1424 * a driver bug (which we warn about if it persists)
1425 */
1426 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1427 flags);
1428
1429 retries++;
1430 if (WARN(retries > 10, "tx refused but queue active\n"))
1431 goto drop;
1432 goto retry;
1433 }
1434 }
1435 out:
1436 rcu_read_unlock();
1437 return;
1438
1439 drop:
1440 rcu_read_unlock();
1441
1442 skb = tx.skb;
1443 while (skb) {
1444 next = skb->next;
1445 dev_kfree_skb(skb);
1446 skb = next;
1447 }
1448 }
1449
1450 /* device xmit handlers */
1451
1452 static int ieee80211_skb_resize(struct ieee80211_local *local,
1453 struct sk_buff *skb,
1454 int head_need, bool may_encrypt)
1455 {
1456 int tail_need = 0;
1457
1458 /*
1459 * This could be optimised, devices that do full hardware
1460 * crypto (including TKIP MMIC) need no tailroom... But we
1461 * have no drivers for such devices currently.
1462 */
1463 if (may_encrypt) {
1464 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1465 tail_need -= skb_tailroom(skb);
1466 tail_need = max_t(int, tail_need, 0);
1467 }
1468
1469 if (head_need || tail_need) {
1470 /* Sorry. Can't account for this any more */
1471 skb_orphan(skb);
1472 }
1473
1474 if (skb_header_cloned(skb))
1475 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1476 else
1477 I802_DEBUG_INC(local->tx_expand_skb_head);
1478
1479 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1480 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1481 wiphy_name(local->hw.wiphy));
1482 return -ENOMEM;
1483 }
1484
1485 /* update truesize too */
1486 skb->truesize += head_need + tail_need;
1487
1488 return 0;
1489 }
1490
1491 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1492 struct sk_buff *skb)
1493 {
1494 struct ieee80211_local *local = sdata->local;
1495 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1496 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1497 struct ieee80211_sub_if_data *tmp_sdata;
1498 int headroom;
1499 bool may_encrypt;
1500
1501 rcu_read_lock();
1502
1503 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1504 int hdrlen;
1505 u16 len_rthdr;
1506
1507 info->flags |= IEEE80211_TX_CTL_INJECTED |
1508 IEEE80211_TX_INTFL_HAS_RADIOTAP;
1509
1510 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1511 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1512 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1513
1514 /* check the header is complete in the frame */
1515 if (likely(skb->len >= len_rthdr + hdrlen)) {
1516 /*
1517 * We process outgoing injected frames that have a
1518 * local address we handle as though they are our
1519 * own frames.
1520 * This code here isn't entirely correct, the local
1521 * MAC address is not necessarily enough to find
1522 * the interface to use; for that proper VLAN/WDS
1523 * support we will need a different mechanism.
1524 */
1525
1526 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1527 list) {
1528 if (!ieee80211_sdata_running(tmp_sdata))
1529 continue;
1530 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1531 continue;
1532 if (compare_ether_addr(tmp_sdata->vif.addr,
1533 hdr->addr2) == 0) {
1534 sdata = tmp_sdata;
1535 break;
1536 }
1537 }
1538 }
1539 }
1540
1541 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1542
1543 headroom = local->tx_headroom;
1544 if (may_encrypt)
1545 headroom += IEEE80211_ENCRYPT_HEADROOM;
1546 headroom -= skb_headroom(skb);
1547 headroom = max_t(int, 0, headroom);
1548
1549 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1550 dev_kfree_skb(skb);
1551 rcu_read_unlock();
1552 return;
1553 }
1554
1555 info->control.vif = &sdata->vif;
1556
1557 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1558 ieee80211_is_data(hdr->frame_control) &&
1559 !is_multicast_ether_addr(hdr->addr1))
1560 if (mesh_nexthop_lookup(skb, sdata)) {
1561 /* skb queued: don't free */
1562 rcu_read_unlock();
1563 return;
1564 }
1565
1566 ieee80211_set_qos_hdr(local, skb);
1567 ieee80211_tx(sdata, skb, false);
1568 rcu_read_unlock();
1569 }
1570
1571 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1572 struct net_device *dev)
1573 {
1574 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1575 struct ieee80211_channel *chan = local->hw.conf.channel;
1576 struct ieee80211_radiotap_header *prthdr =
1577 (struct ieee80211_radiotap_header *)skb->data;
1578 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1579 u16 len_rthdr;
1580
1581 /*
1582 * Frame injection is not allowed if beaconing is not allowed
1583 * or if we need radar detection. Beaconing is usually not allowed when
1584 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1585 * Passive scan is also used in world regulatory domains where
1586 * your country is not known and as such it should be treated as
1587 * NO TX unless the channel is explicitly allowed in which case
1588 * your current regulatory domain would not have the passive scan
1589 * flag.
1590 *
1591 * Since AP mode uses monitor interfaces to inject/TX management
1592 * frames we can make AP mode the exception to this rule once it
1593 * supports radar detection as its implementation can deal with
1594 * radar detection by itself. We can do that later by adding a
1595 * monitor flag interfaces used for AP support.
1596 */
1597 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1598 IEEE80211_CHAN_PASSIVE_SCAN)))
1599 goto fail;
1600
1601 /* check for not even having the fixed radiotap header part */
1602 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1603 goto fail; /* too short to be possibly valid */
1604
1605 /* is it a header version we can trust to find length from? */
1606 if (unlikely(prthdr->it_version))
1607 goto fail; /* only version 0 is supported */
1608
1609 /* then there must be a radiotap header with a length we can use */
1610 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1611
1612 /* does the skb contain enough to deliver on the alleged length? */
1613 if (unlikely(skb->len < len_rthdr))
1614 goto fail; /* skb too short for claimed rt header extent */
1615
1616 /*
1617 * fix up the pointers accounting for the radiotap
1618 * header still being in there. We are being given
1619 * a precooked IEEE80211 header so no need for
1620 * normal processing
1621 */
1622 skb_set_mac_header(skb, len_rthdr);
1623 /*
1624 * these are just fixed to the end of the rt area since we
1625 * don't have any better information and at this point, nobody cares
1626 */
1627 skb_set_network_header(skb, len_rthdr);
1628 skb_set_transport_header(skb, len_rthdr);
1629
1630 memset(info, 0, sizeof(*info));
1631
1632 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1633
1634 /* pass the radiotap header up to xmit */
1635 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1636 return NETDEV_TX_OK;
1637
1638 fail:
1639 dev_kfree_skb(skb);
1640 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1641 }
1642
1643 /**
1644 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1645 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1646 * @skb: packet to be sent
1647 * @dev: incoming interface
1648 *
1649 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1650 * not be freed, and caller is responsible for either retrying later or freeing
1651 * skb).
1652 *
1653 * This function takes in an Ethernet header and encapsulates it with suitable
1654 * IEEE 802.11 header based on which interface the packet is coming in. The
1655 * encapsulated packet will then be passed to master interface, wlan#.11, for
1656 * transmission (through low-level driver).
1657 */
1658 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1659 struct net_device *dev)
1660 {
1661 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1662 struct ieee80211_local *local = sdata->local;
1663 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1664 int ret = NETDEV_TX_BUSY, head_need;
1665 u16 ethertype, hdrlen, meshhdrlen = 0;
1666 __le16 fc;
1667 struct ieee80211_hdr hdr;
1668 struct ieee80211s_hdr mesh_hdr;
1669 const u8 *encaps_data;
1670 int encaps_len, skip_header_bytes;
1671 int nh_pos, h_pos;
1672 struct sta_info *sta = NULL;
1673 u32 sta_flags = 0;
1674
1675 if (unlikely(skb->len < ETH_HLEN)) {
1676 ret = NETDEV_TX_OK;
1677 goto fail;
1678 }
1679
1680 nh_pos = skb_network_header(skb) - skb->data;
1681 h_pos = skb_transport_header(skb) - skb->data;
1682
1683 /* convert Ethernet header to proper 802.11 header (based on
1684 * operation mode) */
1685 ethertype = (skb->data[12] << 8) | skb->data[13];
1686 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1687
1688 switch (sdata->vif.type) {
1689 case NL80211_IFTYPE_AP_VLAN:
1690 rcu_read_lock();
1691 sta = rcu_dereference(sdata->u.vlan.sta);
1692 if (sta) {
1693 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1694 /* RA TA DA SA */
1695 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1696 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1697 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1698 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1699 hdrlen = 30;
1700 sta_flags = get_sta_flags(sta);
1701 }
1702 rcu_read_unlock();
1703 if (sta)
1704 break;
1705 /* fall through */
1706 case NL80211_IFTYPE_AP:
1707 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1708 /* DA BSSID SA */
1709 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1710 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1711 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1712 hdrlen = 24;
1713 break;
1714 case NL80211_IFTYPE_WDS:
1715 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1716 /* RA TA DA SA */
1717 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1718 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1719 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1720 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1721 hdrlen = 30;
1722 break;
1723 #ifdef CONFIG_MAC80211_MESH
1724 case NL80211_IFTYPE_MESH_POINT:
1725 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1726 /* Do not send frames with mesh_ttl == 0 */
1727 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1728 ret = NETDEV_TX_OK;
1729 goto fail;
1730 }
1731
1732 if (compare_ether_addr(sdata->vif.addr,
1733 skb->data + ETH_ALEN) == 0) {
1734 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1735 skb->data, skb->data + ETH_ALEN);
1736 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1737 sdata, NULL, NULL, NULL);
1738 } else {
1739 /* packet from other interface */
1740 struct mesh_path *mppath;
1741 int is_mesh_mcast = 1;
1742 const u8 *mesh_da;
1743
1744 rcu_read_lock();
1745 if (is_multicast_ether_addr(skb->data))
1746 /* DA TA mSA AE:SA */
1747 mesh_da = skb->data;
1748 else {
1749 static const u8 bcast[ETH_ALEN] =
1750 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1751
1752 mppath = mpp_path_lookup(skb->data, sdata);
1753 if (mppath) {
1754 /* RA TA mDA mSA AE:DA SA */
1755 mesh_da = mppath->mpp;
1756 is_mesh_mcast = 0;
1757 } else {
1758 /* DA TA mSA AE:SA */
1759 mesh_da = bcast;
1760 }
1761 }
1762 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1763 mesh_da, sdata->vif.addr);
1764 rcu_read_unlock();
1765 if (is_mesh_mcast)
1766 meshhdrlen =
1767 ieee80211_new_mesh_header(&mesh_hdr,
1768 sdata,
1769 skb->data + ETH_ALEN,
1770 NULL,
1771 NULL);
1772 else
1773 meshhdrlen =
1774 ieee80211_new_mesh_header(&mesh_hdr,
1775 sdata,
1776 NULL,
1777 skb->data,
1778 skb->data + ETH_ALEN);
1779
1780 }
1781 break;
1782 #endif
1783 case NL80211_IFTYPE_STATION:
1784 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1785 if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) {
1786 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1787 /* RA TA DA SA */
1788 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1789 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1790 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1791 hdrlen = 30;
1792 } else {
1793 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1794 /* BSSID SA DA */
1795 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1796 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1797 hdrlen = 24;
1798 }
1799 break;
1800 case NL80211_IFTYPE_ADHOC:
1801 /* DA SA BSSID */
1802 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1803 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1804 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1805 hdrlen = 24;
1806 break;
1807 default:
1808 ret = NETDEV_TX_OK;
1809 goto fail;
1810 }
1811
1812 /*
1813 * There's no need to try to look up the destination
1814 * if it is a multicast address (which can only happen
1815 * in AP mode)
1816 */
1817 if (!is_multicast_ether_addr(hdr.addr1)) {
1818 rcu_read_lock();
1819 sta = sta_info_get(sdata, hdr.addr1);
1820 if (sta)
1821 sta_flags = get_sta_flags(sta);
1822 rcu_read_unlock();
1823 }
1824
1825 /* receiver and we are QoS enabled, use a QoS type frame */
1826 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1827 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1828 hdrlen += 2;
1829 }
1830
1831 /*
1832 * Drop unicast frames to unauthorised stations unless they are
1833 * EAPOL frames from the local station.
1834 */
1835 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1836 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1837 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1838 !(ethertype == ETH_P_PAE &&
1839 compare_ether_addr(sdata->vif.addr,
1840 skb->data + ETH_ALEN) == 0))) {
1841 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1842 if (net_ratelimit())
1843 printk(KERN_DEBUG "%s: dropped frame to %pM"
1844 " (unauthorized port)\n", dev->name,
1845 hdr.addr1);
1846 #endif
1847
1848 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1849
1850 ret = NETDEV_TX_OK;
1851 goto fail;
1852 }
1853
1854 hdr.frame_control = fc;
1855 hdr.duration_id = 0;
1856 hdr.seq_ctrl = 0;
1857
1858 skip_header_bytes = ETH_HLEN;
1859 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1860 encaps_data = bridge_tunnel_header;
1861 encaps_len = sizeof(bridge_tunnel_header);
1862 skip_header_bytes -= 2;
1863 } else if (ethertype >= 0x600) {
1864 encaps_data = rfc1042_header;
1865 encaps_len = sizeof(rfc1042_header);
1866 skip_header_bytes -= 2;
1867 } else {
1868 encaps_data = NULL;
1869 encaps_len = 0;
1870 }
1871
1872 skb_pull(skb, skip_header_bytes);
1873 nh_pos -= skip_header_bytes;
1874 h_pos -= skip_header_bytes;
1875
1876 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1877
1878 /*
1879 * So we need to modify the skb header and hence need a copy of
1880 * that. The head_need variable above doesn't, so far, include
1881 * the needed header space that we don't need right away. If we
1882 * can, then we don't reallocate right now but only after the
1883 * frame arrives at the master device (if it does...)
1884 *
1885 * If we cannot, however, then we will reallocate to include all
1886 * the ever needed space. Also, if we need to reallocate it anyway,
1887 * make it big enough for everything we may ever need.
1888 */
1889
1890 if (head_need > 0 || skb_cloned(skb)) {
1891 head_need += IEEE80211_ENCRYPT_HEADROOM;
1892 head_need += local->tx_headroom;
1893 head_need = max_t(int, 0, head_need);
1894 if (ieee80211_skb_resize(local, skb, head_need, true))
1895 goto fail;
1896 }
1897
1898 if (encaps_data) {
1899 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1900 nh_pos += encaps_len;
1901 h_pos += encaps_len;
1902 }
1903
1904 if (meshhdrlen > 0) {
1905 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1906 nh_pos += meshhdrlen;
1907 h_pos += meshhdrlen;
1908 }
1909
1910 if (ieee80211_is_data_qos(fc)) {
1911 __le16 *qos_control;
1912
1913 qos_control = (__le16*) skb_push(skb, 2);
1914 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1915 /*
1916 * Maybe we could actually set some fields here, for now just
1917 * initialise to zero to indicate no special operation.
1918 */
1919 *qos_control = 0;
1920 } else
1921 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1922
1923 nh_pos += hdrlen;
1924 h_pos += hdrlen;
1925
1926 dev->stats.tx_packets++;
1927 dev->stats.tx_bytes += skb->len;
1928
1929 /* Update skb pointers to various headers since this modified frame
1930 * is going to go through Linux networking code that may potentially
1931 * need things like pointer to IP header. */
1932 skb_set_mac_header(skb, 0);
1933 skb_set_network_header(skb, nh_pos);
1934 skb_set_transport_header(skb, h_pos);
1935
1936 memset(info, 0, sizeof(*info));
1937
1938 dev->trans_start = jiffies;
1939 ieee80211_xmit(sdata, skb);
1940
1941 return NETDEV_TX_OK;
1942
1943 fail:
1944 if (ret == NETDEV_TX_OK)
1945 dev_kfree_skb(skb);
1946
1947 return ret;
1948 }
1949
1950
1951 /*
1952 * ieee80211_clear_tx_pending may not be called in a context where
1953 * it is possible that it packets could come in again.
1954 */
1955 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1956 {
1957 int i;
1958
1959 for (i = 0; i < local->hw.queues; i++)
1960 skb_queue_purge(&local->pending[i]);
1961 }
1962
1963 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1964 struct sk_buff *skb)
1965 {
1966 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1967 struct ieee80211_sub_if_data *sdata;
1968 struct sta_info *sta;
1969 struct ieee80211_hdr *hdr;
1970 int ret;
1971 bool result = true;
1972
1973 sdata = vif_to_sdata(info->control.vif);
1974
1975 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1976 ieee80211_tx(sdata, skb, true);
1977 } else {
1978 hdr = (struct ieee80211_hdr *)skb->data;
1979 sta = sta_info_get(sdata, hdr->addr1);
1980
1981 ret = __ieee80211_tx(local, &skb, sta, true);
1982 if (ret != IEEE80211_TX_OK)
1983 result = false;
1984 }
1985
1986 return result;
1987 }
1988
1989 /*
1990 * Transmit all pending packets. Called from tasklet.
1991 */
1992 void ieee80211_tx_pending(unsigned long data)
1993 {
1994 struct ieee80211_local *local = (struct ieee80211_local *)data;
1995 struct ieee80211_sub_if_data *sdata;
1996 unsigned long flags;
1997 int i;
1998 bool txok;
1999
2000 rcu_read_lock();
2001
2002 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
2003 for (i = 0; i < local->hw.queues; i++) {
2004 /*
2005 * If queue is stopped by something other than due to pending
2006 * frames, or we have no pending frames, proceed to next queue.
2007 */
2008 if (local->queue_stop_reasons[i] ||
2009 skb_queue_empty(&local->pending[i]))
2010 continue;
2011
2012 while (!skb_queue_empty(&local->pending[i])) {
2013 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
2014 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2015
2016 if (WARN_ON(!info->control.vif)) {
2017 kfree_skb(skb);
2018 continue;
2019 }
2020
2021 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2022 flags);
2023
2024 txok = ieee80211_tx_pending_skb(local, skb);
2025 if (!txok)
2026 __skb_queue_head(&local->pending[i], skb);
2027 spin_lock_irqsave(&local->queue_stop_reason_lock,
2028 flags);
2029 if (!txok)
2030 break;
2031 }
2032
2033 if (skb_queue_empty(&local->pending[i]))
2034 list_for_each_entry_rcu(sdata, &local->interfaces, list)
2035 netif_tx_wake_queue(
2036 netdev_get_tx_queue(sdata->dev, i));
2037 }
2038 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2039
2040 rcu_read_unlock();
2041 }
2042
2043 /* functions for drivers to get certain frames */
2044
2045 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2046 struct sk_buff *skb,
2047 struct beacon_data *beacon)
2048 {
2049 u8 *pos, *tim;
2050 int aid0 = 0;
2051 int i, have_bits = 0, n1, n2;
2052
2053 /* Generate bitmap for TIM only if there are any STAs in power save
2054 * mode. */
2055 if (atomic_read(&bss->num_sta_ps) > 0)
2056 /* in the hope that this is faster than
2057 * checking byte-for-byte */
2058 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2059 IEEE80211_MAX_AID+1);
2060
2061 if (bss->dtim_count == 0)
2062 bss->dtim_count = beacon->dtim_period - 1;
2063 else
2064 bss->dtim_count--;
2065
2066 tim = pos = (u8 *) skb_put(skb, 6);
2067 *pos++ = WLAN_EID_TIM;
2068 *pos++ = 4;
2069 *pos++ = bss->dtim_count;
2070 *pos++ = beacon->dtim_period;
2071
2072 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2073 aid0 = 1;
2074
2075 if (have_bits) {
2076 /* Find largest even number N1 so that bits numbered 1 through
2077 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2078 * (N2 + 1) x 8 through 2007 are 0. */
2079 n1 = 0;
2080 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2081 if (bss->tim[i]) {
2082 n1 = i & 0xfe;
2083 break;
2084 }
2085 }
2086 n2 = n1;
2087 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2088 if (bss->tim[i]) {
2089 n2 = i;
2090 break;
2091 }
2092 }
2093
2094 /* Bitmap control */
2095 *pos++ = n1 | aid0;
2096 /* Part Virt Bitmap */
2097 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2098
2099 tim[1] = n2 - n1 + 4;
2100 skb_put(skb, n2 - n1);
2101 } else {
2102 *pos++ = aid0; /* Bitmap control */
2103 *pos++ = 0; /* Part Virt Bitmap */
2104 }
2105 }
2106
2107 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2108 struct ieee80211_vif *vif,
2109 u16 *tim_offset, u16 *tim_length)
2110 {
2111 struct ieee80211_local *local = hw_to_local(hw);
2112 struct sk_buff *skb = NULL;
2113 struct ieee80211_tx_info *info;
2114 struct ieee80211_sub_if_data *sdata = NULL;
2115 struct ieee80211_if_ap *ap = NULL;
2116 struct beacon_data *beacon;
2117 struct ieee80211_supported_band *sband;
2118 enum ieee80211_band band = local->hw.conf.channel->band;
2119 struct ieee80211_tx_rate_control txrc;
2120
2121 sband = local->hw.wiphy->bands[band];
2122
2123 rcu_read_lock();
2124
2125 sdata = vif_to_sdata(vif);
2126
2127 if (tim_offset)
2128 *tim_offset = 0;
2129 if (tim_length)
2130 *tim_length = 0;
2131
2132 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2133 ap = &sdata->u.ap;
2134 beacon = rcu_dereference(ap->beacon);
2135 if (ap && beacon) {
2136 /*
2137 * headroom, head length,
2138 * tail length and maximum TIM length
2139 */
2140 skb = dev_alloc_skb(local->tx_headroom +
2141 beacon->head_len +
2142 beacon->tail_len + 256);
2143 if (!skb)
2144 goto out;
2145
2146 skb_reserve(skb, local->tx_headroom);
2147 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2148 beacon->head_len);
2149
2150 /*
2151 * Not very nice, but we want to allow the driver to call
2152 * ieee80211_beacon_get() as a response to the set_tim()
2153 * callback. That, however, is already invoked under the
2154 * sta_lock to guarantee consistent and race-free update
2155 * of the tim bitmap in mac80211 and the driver.
2156 */
2157 if (local->tim_in_locked_section) {
2158 ieee80211_beacon_add_tim(ap, skb, beacon);
2159 } else {
2160 unsigned long flags;
2161
2162 spin_lock_irqsave(&local->sta_lock, flags);
2163 ieee80211_beacon_add_tim(ap, skb, beacon);
2164 spin_unlock_irqrestore(&local->sta_lock, flags);
2165 }
2166
2167 if (tim_offset)
2168 *tim_offset = beacon->head_len;
2169 if (tim_length)
2170 *tim_length = skb->len - beacon->head_len;
2171
2172 if (beacon->tail)
2173 memcpy(skb_put(skb, beacon->tail_len),
2174 beacon->tail, beacon->tail_len);
2175 } else
2176 goto out;
2177 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2178 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2179 struct ieee80211_hdr *hdr;
2180 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2181
2182 if (!presp)
2183 goto out;
2184
2185 skb = skb_copy(presp, GFP_ATOMIC);
2186 if (!skb)
2187 goto out;
2188
2189 hdr = (struct ieee80211_hdr *) skb->data;
2190 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2191 IEEE80211_STYPE_BEACON);
2192 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2193 struct ieee80211_mgmt *mgmt;
2194 u8 *pos;
2195
2196 /* headroom, head length, tail length and maximum TIM length */
2197 skb = dev_alloc_skb(local->tx_headroom + 400);
2198 if (!skb)
2199 goto out;
2200
2201 skb_reserve(skb, local->hw.extra_tx_headroom);
2202 mgmt = (struct ieee80211_mgmt *)
2203 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2204 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2205 mgmt->frame_control =
2206 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2207 memset(mgmt->da, 0xff, ETH_ALEN);
2208 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2209 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2210 mgmt->u.beacon.beacon_int =
2211 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2212 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2213
2214 pos = skb_put(skb, 2);
2215 *pos++ = WLAN_EID_SSID;
2216 *pos++ = 0x0;
2217
2218 mesh_mgmt_ies_add(skb, sdata);
2219 } else {
2220 WARN_ON(1);
2221 goto out;
2222 }
2223
2224 info = IEEE80211_SKB_CB(skb);
2225
2226 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2227 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2228 info->band = band;
2229
2230 memset(&txrc, 0, sizeof(txrc));
2231 txrc.hw = hw;
2232 txrc.sband = sband;
2233 txrc.bss_conf = &sdata->vif.bss_conf;
2234 txrc.skb = skb;
2235 txrc.reported_rate.idx = -1;
2236 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2237 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2238 txrc.max_rate_idx = -1;
2239 else
2240 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2241 txrc.ap = true;
2242 rate_control_get_rate(sdata, NULL, &txrc);
2243
2244 info->control.vif = vif;
2245
2246 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2247 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2248 out:
2249 rcu_read_unlock();
2250 return skb;
2251 }
2252 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2253
2254 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2255 struct ieee80211_vif *vif)
2256 {
2257 struct ieee80211_sub_if_data *sdata;
2258 struct ieee80211_if_managed *ifmgd;
2259 struct ieee80211_pspoll *pspoll;
2260 struct ieee80211_local *local;
2261 struct sk_buff *skb;
2262
2263 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2264 return NULL;
2265
2266 sdata = vif_to_sdata(vif);
2267 ifmgd = &sdata->u.mgd;
2268 local = sdata->local;
2269
2270 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2271 if (!skb) {
2272 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2273 "pspoll template\n", sdata->name);
2274 return NULL;
2275 }
2276 skb_reserve(skb, local->hw.extra_tx_headroom);
2277
2278 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2279 memset(pspoll, 0, sizeof(*pspoll));
2280 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2281 IEEE80211_STYPE_PSPOLL);
2282 pspoll->aid = cpu_to_le16(ifmgd->aid);
2283
2284 /* aid in PS-Poll has its two MSBs each set to 1 */
2285 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2286
2287 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2288 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2289
2290 return skb;
2291 }
2292 EXPORT_SYMBOL(ieee80211_pspoll_get);
2293
2294 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2295 struct ieee80211_vif *vif)
2296 {
2297 struct ieee80211_hdr_3addr *nullfunc;
2298 struct ieee80211_sub_if_data *sdata;
2299 struct ieee80211_if_managed *ifmgd;
2300 struct ieee80211_local *local;
2301 struct sk_buff *skb;
2302
2303 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2304 return NULL;
2305
2306 sdata = vif_to_sdata(vif);
2307 ifmgd = &sdata->u.mgd;
2308 local = sdata->local;
2309
2310 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2311 if (!skb) {
2312 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2313 "template\n", sdata->name);
2314 return NULL;
2315 }
2316 skb_reserve(skb, local->hw.extra_tx_headroom);
2317
2318 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2319 sizeof(*nullfunc));
2320 memset(nullfunc, 0, sizeof(*nullfunc));
2321 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2322 IEEE80211_STYPE_NULLFUNC |
2323 IEEE80211_FCTL_TODS);
2324 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2325 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2326 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2327
2328 return skb;
2329 }
2330 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2331
2332 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2333 struct ieee80211_vif *vif,
2334 const u8 *ssid, size_t ssid_len,
2335 const u8 *ie, size_t ie_len)
2336 {
2337 struct ieee80211_sub_if_data *sdata;
2338 struct ieee80211_local *local;
2339 struct ieee80211_hdr_3addr *hdr;
2340 struct sk_buff *skb;
2341 size_t ie_ssid_len;
2342 u8 *pos;
2343
2344 sdata = vif_to_sdata(vif);
2345 local = sdata->local;
2346 ie_ssid_len = 2 + ssid_len;
2347
2348 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2349 ie_ssid_len + ie_len);
2350 if (!skb) {
2351 printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
2352 "request template\n", sdata->name);
2353 return NULL;
2354 }
2355
2356 skb_reserve(skb, local->hw.extra_tx_headroom);
2357
2358 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2359 memset(hdr, 0, sizeof(*hdr));
2360 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2361 IEEE80211_STYPE_PROBE_REQ);
2362 memset(hdr->addr1, 0xff, ETH_ALEN);
2363 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2364 memset(hdr->addr3, 0xff, ETH_ALEN);
2365
2366 pos = skb_put(skb, ie_ssid_len);
2367 *pos++ = WLAN_EID_SSID;
2368 *pos++ = ssid_len;
2369 if (ssid)
2370 memcpy(pos, ssid, ssid_len);
2371 pos += ssid_len;
2372
2373 if (ie) {
2374 pos = skb_put(skb, ie_len);
2375 memcpy(pos, ie, ie_len);
2376 }
2377
2378 return skb;
2379 }
2380 EXPORT_SYMBOL(ieee80211_probereq_get);
2381
2382 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2383 const void *frame, size_t frame_len,
2384 const struct ieee80211_tx_info *frame_txctl,
2385 struct ieee80211_rts *rts)
2386 {
2387 const struct ieee80211_hdr *hdr = frame;
2388
2389 rts->frame_control =
2390 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2391 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2392 frame_txctl);
2393 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2394 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2395 }
2396 EXPORT_SYMBOL(ieee80211_rts_get);
2397
2398 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2399 const void *frame, size_t frame_len,
2400 const struct ieee80211_tx_info *frame_txctl,
2401 struct ieee80211_cts *cts)
2402 {
2403 const struct ieee80211_hdr *hdr = frame;
2404
2405 cts->frame_control =
2406 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2407 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2408 frame_len, frame_txctl);
2409 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2410 }
2411 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2412
2413 struct sk_buff *
2414 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2415 struct ieee80211_vif *vif)
2416 {
2417 struct ieee80211_local *local = hw_to_local(hw);
2418 struct sk_buff *skb = NULL;
2419 struct sta_info *sta;
2420 struct ieee80211_tx_data tx;
2421 struct ieee80211_sub_if_data *sdata;
2422 struct ieee80211_if_ap *bss = NULL;
2423 struct beacon_data *beacon;
2424 struct ieee80211_tx_info *info;
2425
2426 sdata = vif_to_sdata(vif);
2427 bss = &sdata->u.ap;
2428
2429 rcu_read_lock();
2430 beacon = rcu_dereference(bss->beacon);
2431
2432 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2433 goto out;
2434
2435 if (bss->dtim_count != 0)
2436 goto out; /* send buffered bc/mc only after DTIM beacon */
2437
2438 while (1) {
2439 skb = skb_dequeue(&bss->ps_bc_buf);
2440 if (!skb)
2441 goto out;
2442 local->total_ps_buffered--;
2443
2444 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2445 struct ieee80211_hdr *hdr =
2446 (struct ieee80211_hdr *) skb->data;
2447 /* more buffered multicast/broadcast frames ==> set
2448 * MoreData flag in IEEE 802.11 header to inform PS
2449 * STAs */
2450 hdr->frame_control |=
2451 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2452 }
2453
2454 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2455 break;
2456 dev_kfree_skb_any(skb);
2457 }
2458
2459 info = IEEE80211_SKB_CB(skb);
2460
2461 sta = tx.sta;
2462 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2463 tx.channel = local->hw.conf.channel;
2464 info->band = tx.channel->band;
2465
2466 if (invoke_tx_handlers(&tx))
2467 skb = NULL;
2468 out:
2469 rcu_read_unlock();
2470
2471 return skb;
2472 }
2473 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2474
2475 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2476 {
2477 skb_set_mac_header(skb, 0);
2478 skb_set_network_header(skb, 0);
2479 skb_set_transport_header(skb, 0);
2480
2481 /* send all internal mgmt frames on VO */
2482 skb_set_queue_mapping(skb, 0);
2483
2484 /*
2485 * The other path calling ieee80211_xmit is from the tasklet,
2486 * and while we can handle concurrent transmissions locking
2487 * requirements are that we do not come into tx with bhs on.
2488 */
2489 local_bh_disable();
2490 ieee80211_xmit(sdata, skb);
2491 local_bh_enable();
2492 }
This page took 0.088112 seconds and 5 git commands to generate.