mac80211: allow vendor specific cipher suites
[deliverable/linux.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
39
40 /* misc utils */
41
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
44 {
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
51
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
55
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
59
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
62
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
64
65 /*
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
74 *
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
81 */
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
87 *
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
97 */
98 return 0;
99 }
100
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
104
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
107
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
117 */
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
123
124 if (r->bitrate > txrate->bitrate)
125 break;
126
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
129
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
140 }
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
148 }
149 }
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
154 }
155
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
159
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
162
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
171 }
172
173 return cpu_to_le16(dur);
174 }
175
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
178 {
179 return local == wdev_priv(dev->ieee80211_ptr);
180 }
181
182 /* tx handlers */
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
185 {
186 struct ieee80211_local *local = tx->local;
187 struct ieee80211_if_managed *ifmgd;
188
189 /* driver doesn't support power save */
190 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
191 return TX_CONTINUE;
192
193 /* hardware does dynamic power save */
194 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
195 return TX_CONTINUE;
196
197 /* dynamic power save disabled */
198 if (local->hw.conf.dynamic_ps_timeout <= 0)
199 return TX_CONTINUE;
200
201 /* we are scanning, don't enable power save */
202 if (local->scanning)
203 return TX_CONTINUE;
204
205 if (!local->ps_sdata)
206 return TX_CONTINUE;
207
208 /* No point if we're going to suspend */
209 if (local->quiescing)
210 return TX_CONTINUE;
211
212 /* dynamic ps is supported only in managed mode */
213 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
214 return TX_CONTINUE;
215
216 ifmgd = &tx->sdata->u.mgd;
217
218 /*
219 * Don't wakeup from power save if u-apsd is enabled, voip ac has
220 * u-apsd enabled and the frame is in voip class. This effectively
221 * means that even if all access categories have u-apsd enabled, in
222 * practise u-apsd is only used with the voip ac. This is a
223 * workaround for the case when received voip class packets do not
224 * have correct qos tag for some reason, due the network or the
225 * peer application.
226 *
227 * Note: local->uapsd_queues access is racy here. If the value is
228 * changed via debugfs, user needs to reassociate manually to have
229 * everything in sync.
230 */
231 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
232 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
233 && skb_get_queue_mapping(tx->skb) == 0)
234 return TX_CONTINUE;
235
236 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
237 ieee80211_stop_queues_by_reason(&local->hw,
238 IEEE80211_QUEUE_STOP_REASON_PS);
239 ieee80211_queue_work(&local->hw,
240 &local->dynamic_ps_disable_work);
241 }
242
243 mod_timer(&local->dynamic_ps_timer, jiffies +
244 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
245
246 return TX_CONTINUE;
247 }
248
249 static ieee80211_tx_result debug_noinline
250 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
251 {
252
253 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
254 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
255 u32 sta_flags;
256
257 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
258 return TX_CONTINUE;
259
260 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
261 !ieee80211_is_probe_req(hdr->frame_control) &&
262 !ieee80211_is_nullfunc(hdr->frame_control))
263 /*
264 * When software scanning only nullfunc frames (to notify
265 * the sleep state to the AP) and probe requests (for the
266 * active scan) are allowed, all other frames should not be
267 * sent and we should not get here, but if we do
268 * nonetheless, drop them to avoid sending them
269 * off-channel. See the link below and
270 * ieee80211_start_scan() for more.
271 *
272 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
273 */
274 return TX_DROP;
275
276 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
277 return TX_CONTINUE;
278
279 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
280 return TX_CONTINUE;
281
282 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
283
284 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
285 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
286 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
287 ieee80211_is_data(hdr->frame_control))) {
288 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
289 printk(KERN_DEBUG "%s: dropped data frame to not "
290 "associated station %pM\n",
291 tx->sdata->name, hdr->addr1);
292 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
293 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
294 return TX_DROP;
295 }
296 } else {
297 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
298 tx->local->num_sta == 0 &&
299 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
300 /*
301 * No associated STAs - no need to send multicast
302 * frames.
303 */
304 return TX_DROP;
305 }
306 return TX_CONTINUE;
307 }
308
309 return TX_CONTINUE;
310 }
311
312 /* This function is called whenever the AP is about to exceed the maximum limit
313 * of buffered frames for power saving STAs. This situation should not really
314 * happen often during normal operation, so dropping the oldest buffered packet
315 * from each queue should be OK to make some room for new frames. */
316 static void purge_old_ps_buffers(struct ieee80211_local *local)
317 {
318 int total = 0, purged = 0;
319 struct sk_buff *skb;
320 struct ieee80211_sub_if_data *sdata;
321 struct sta_info *sta;
322
323 /*
324 * virtual interfaces are protected by RCU
325 */
326 rcu_read_lock();
327
328 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
329 struct ieee80211_if_ap *ap;
330 if (sdata->vif.type != NL80211_IFTYPE_AP)
331 continue;
332 ap = &sdata->u.ap;
333 skb = skb_dequeue(&ap->ps_bc_buf);
334 if (skb) {
335 purged++;
336 dev_kfree_skb(skb);
337 }
338 total += skb_queue_len(&ap->ps_bc_buf);
339 }
340
341 list_for_each_entry_rcu(sta, &local->sta_list, list) {
342 skb = skb_dequeue(&sta->ps_tx_buf);
343 if (skb) {
344 purged++;
345 dev_kfree_skb(skb);
346 }
347 total += skb_queue_len(&sta->ps_tx_buf);
348 }
349
350 rcu_read_unlock();
351
352 local->total_ps_buffered = total;
353 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
354 wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n",
355 purged);
356 #endif
357 }
358
359 static ieee80211_tx_result
360 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
361 {
362 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
363 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
364
365 /*
366 * broadcast/multicast frame
367 *
368 * If any of the associated stations is in power save mode,
369 * the frame is buffered to be sent after DTIM beacon frame.
370 * This is done either by the hardware or us.
371 */
372
373 /* powersaving STAs only in AP/VLAN mode */
374 if (!tx->sdata->bss)
375 return TX_CONTINUE;
376
377 /* no buffering for ordered frames */
378 if (ieee80211_has_order(hdr->frame_control))
379 return TX_CONTINUE;
380
381 /* no stations in PS mode */
382 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
383 return TX_CONTINUE;
384
385 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
386
387 /* device releases frame after DTIM beacon */
388 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
389 return TX_CONTINUE;
390
391 /* buffered in mac80211 */
392 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
393 purge_old_ps_buffers(tx->local);
394
395 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
396 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
397 if (net_ratelimit())
398 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
399 tx->sdata->name);
400 #endif
401 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
402 } else
403 tx->local->total_ps_buffered++;
404
405 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
406
407 return TX_QUEUED;
408 }
409
410 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
411 struct sk_buff *skb)
412 {
413 if (!ieee80211_is_mgmt(fc))
414 return 0;
415
416 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
417 return 0;
418
419 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
420 skb->data))
421 return 0;
422
423 return 1;
424 }
425
426 static ieee80211_tx_result
427 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
428 {
429 struct sta_info *sta = tx->sta;
430 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
431 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
432 struct ieee80211_local *local = tx->local;
433 u32 staflags;
434
435 if (unlikely(!sta ||
436 ieee80211_is_probe_resp(hdr->frame_control) ||
437 ieee80211_is_auth(hdr->frame_control) ||
438 ieee80211_is_assoc_resp(hdr->frame_control) ||
439 ieee80211_is_reassoc_resp(hdr->frame_control)))
440 return TX_CONTINUE;
441
442 staflags = get_sta_flags(sta);
443
444 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
445 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
446 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
447 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
448 "before %d)\n",
449 sta->sta.addr, sta->sta.aid,
450 skb_queue_len(&sta->ps_tx_buf));
451 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
452 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
453 purge_old_ps_buffers(tx->local);
454 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
455 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
456 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
457 if (net_ratelimit()) {
458 printk(KERN_DEBUG "%s: STA %pM TX "
459 "buffer full - dropping oldest frame\n",
460 tx->sdata->name, sta->sta.addr);
461 }
462 #endif
463 dev_kfree_skb(old);
464 } else
465 tx->local->total_ps_buffered++;
466
467 /*
468 * Queue frame to be sent after STA wakes up/polls,
469 * but don't set the TIM bit if the driver is blocking
470 * wakeup or poll response transmissions anyway.
471 */
472 if (skb_queue_empty(&sta->ps_tx_buf) &&
473 !(staflags & WLAN_STA_PS_DRIVER))
474 sta_info_set_tim_bit(sta);
475
476 info->control.jiffies = jiffies;
477 info->control.vif = &tx->sdata->vif;
478 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
479 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
480
481 if (!timer_pending(&local->sta_cleanup))
482 mod_timer(&local->sta_cleanup,
483 round_jiffies(jiffies +
484 STA_INFO_CLEANUP_INTERVAL));
485
486 return TX_QUEUED;
487 }
488 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
489 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
490 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
491 "set -> send frame\n", tx->sdata->name,
492 sta->sta.addr);
493 }
494 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
495
496 return TX_CONTINUE;
497 }
498
499 static ieee80211_tx_result debug_noinline
500 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
501 {
502 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
503 return TX_CONTINUE;
504
505 if (tx->flags & IEEE80211_TX_UNICAST)
506 return ieee80211_tx_h_unicast_ps_buf(tx);
507 else
508 return ieee80211_tx_h_multicast_ps_buf(tx);
509 }
510
511 static ieee80211_tx_result debug_noinline
512 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
513 {
514 struct ieee80211_key *key = NULL;
515 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
516 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
517
518 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
519 tx->key = NULL;
520 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
521 tx->key = key;
522 else if (ieee80211_is_mgmt(hdr->frame_control) &&
523 is_multicast_ether_addr(hdr->addr1) &&
524 ieee80211_is_robust_mgmt_frame(hdr) &&
525 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
526 tx->key = key;
527 else if ((key = rcu_dereference(tx->sdata->default_key)))
528 tx->key = key;
529 else if (tx->sdata->drop_unencrypted &&
530 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
531 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
532 (!ieee80211_is_robust_mgmt_frame(hdr) ||
533 (ieee80211_is_action(hdr->frame_control) &&
534 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
535 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
536 return TX_DROP;
537 } else
538 tx->key = NULL;
539
540 if (tx->key) {
541 bool skip_hw = false;
542
543 tx->key->tx_rx_count++;
544 /* TODO: add threshold stuff again */
545
546 switch (tx->key->conf.cipher) {
547 case WLAN_CIPHER_SUITE_WEP40:
548 case WLAN_CIPHER_SUITE_WEP104:
549 if (ieee80211_is_auth(hdr->frame_control))
550 break;
551 case WLAN_CIPHER_SUITE_TKIP:
552 if (!ieee80211_is_data_present(hdr->frame_control))
553 tx->key = NULL;
554 break;
555 case WLAN_CIPHER_SUITE_CCMP:
556 if (!ieee80211_is_data_present(hdr->frame_control) &&
557 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
558 tx->skb))
559 tx->key = NULL;
560 else
561 skip_hw = (tx->key->conf.flags &
562 IEEE80211_KEY_FLAG_SW_MGMT) &&
563 ieee80211_is_mgmt(hdr->frame_control);
564 break;
565 case WLAN_CIPHER_SUITE_AES_CMAC:
566 if (!ieee80211_is_mgmt(hdr->frame_control))
567 tx->key = NULL;
568 break;
569 }
570
571 if (!skip_hw && tx->key &&
572 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
573 info->control.hw_key = &tx->key->conf;
574 }
575
576 return TX_CONTINUE;
577 }
578
579 static ieee80211_tx_result debug_noinline
580 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
581 {
582 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
583 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
584 struct ieee80211_supported_band *sband;
585 struct ieee80211_rate *rate;
586 int i;
587 u32 len;
588 bool inval = false, rts = false, short_preamble = false;
589 struct ieee80211_tx_rate_control txrc;
590 u32 sta_flags;
591
592 memset(&txrc, 0, sizeof(txrc));
593
594 sband = tx->local->hw.wiphy->bands[tx->channel->band];
595
596 len = min_t(u32, tx->skb->len + FCS_LEN,
597 tx->local->hw.wiphy->frag_threshold);
598
599 /* set up the tx rate control struct we give the RC algo */
600 txrc.hw = local_to_hw(tx->local);
601 txrc.sband = sband;
602 txrc.bss_conf = &tx->sdata->vif.bss_conf;
603 txrc.skb = tx->skb;
604 txrc.reported_rate.idx = -1;
605 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
606 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
607 txrc.max_rate_idx = -1;
608 else
609 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
610 txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP;
611
612 /* set up RTS protection if desired */
613 if (len > tx->local->hw.wiphy->rts_threshold) {
614 txrc.rts = rts = true;
615 }
616
617 /*
618 * Use short preamble if the BSS can handle it, but not for
619 * management frames unless we know the receiver can handle
620 * that -- the management frame might be to a station that
621 * just wants a probe response.
622 */
623 if (tx->sdata->vif.bss_conf.use_short_preamble &&
624 (ieee80211_is_data(hdr->frame_control) ||
625 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
626 txrc.short_preamble = short_preamble = true;
627
628 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
629
630 /*
631 * Lets not bother rate control if we're associated and cannot
632 * talk to the sta. This should not happen.
633 */
634 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
635 (sta_flags & WLAN_STA_ASSOC) &&
636 !rate_usable_index_exists(sband, &tx->sta->sta),
637 "%s: Dropped data frame as no usable bitrate found while "
638 "scanning and associated. Target station: "
639 "%pM on %d GHz band\n",
640 tx->sdata->name, hdr->addr1,
641 tx->channel->band ? 5 : 2))
642 return TX_DROP;
643
644 /*
645 * If we're associated with the sta at this point we know we can at
646 * least send the frame at the lowest bit rate.
647 */
648 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
649
650 if (unlikely(info->control.rates[0].idx < 0))
651 return TX_DROP;
652
653 if (txrc.reported_rate.idx < 0)
654 txrc.reported_rate = info->control.rates[0];
655
656 if (tx->sta)
657 tx->sta->last_tx_rate = txrc.reported_rate;
658
659 if (unlikely(!info->control.rates[0].count))
660 info->control.rates[0].count = 1;
661
662 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
663 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
664 info->control.rates[0].count = 1;
665
666 if (is_multicast_ether_addr(hdr->addr1)) {
667 /*
668 * XXX: verify the rate is in the basic rateset
669 */
670 return TX_CONTINUE;
671 }
672
673 /*
674 * set up the RTS/CTS rate as the fastest basic rate
675 * that is not faster than the data rate
676 *
677 * XXX: Should this check all retry rates?
678 */
679 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
680 s8 baserate = 0;
681
682 rate = &sband->bitrates[info->control.rates[0].idx];
683
684 for (i = 0; i < sband->n_bitrates; i++) {
685 /* must be a basic rate */
686 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
687 continue;
688 /* must not be faster than the data rate */
689 if (sband->bitrates[i].bitrate > rate->bitrate)
690 continue;
691 /* maximum */
692 if (sband->bitrates[baserate].bitrate <
693 sband->bitrates[i].bitrate)
694 baserate = i;
695 }
696
697 info->control.rts_cts_rate_idx = baserate;
698 }
699
700 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
701 /*
702 * make sure there's no valid rate following
703 * an invalid one, just in case drivers don't
704 * take the API seriously to stop at -1.
705 */
706 if (inval) {
707 info->control.rates[i].idx = -1;
708 continue;
709 }
710 if (info->control.rates[i].idx < 0) {
711 inval = true;
712 continue;
713 }
714
715 /*
716 * For now assume MCS is already set up correctly, this
717 * needs to be fixed.
718 */
719 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
720 WARN_ON(info->control.rates[i].idx > 76);
721 continue;
722 }
723
724 /* set up RTS protection if desired */
725 if (rts)
726 info->control.rates[i].flags |=
727 IEEE80211_TX_RC_USE_RTS_CTS;
728
729 /* RC is busted */
730 if (WARN_ON_ONCE(info->control.rates[i].idx >=
731 sband->n_bitrates)) {
732 info->control.rates[i].idx = -1;
733 continue;
734 }
735
736 rate = &sband->bitrates[info->control.rates[i].idx];
737
738 /* set up short preamble */
739 if (short_preamble &&
740 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
741 info->control.rates[i].flags |=
742 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
743
744 /* set up G protection */
745 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
746 rate->flags & IEEE80211_RATE_ERP_G)
747 info->control.rates[i].flags |=
748 IEEE80211_TX_RC_USE_CTS_PROTECT;
749 }
750
751 return TX_CONTINUE;
752 }
753
754 static ieee80211_tx_result debug_noinline
755 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
756 {
757 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
758 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
759 u16 *seq;
760 u8 *qc;
761 int tid;
762
763 /*
764 * Packet injection may want to control the sequence
765 * number, if we have no matching interface then we
766 * neither assign one ourselves nor ask the driver to.
767 */
768 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
769 return TX_CONTINUE;
770
771 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
772 return TX_CONTINUE;
773
774 if (ieee80211_hdrlen(hdr->frame_control) < 24)
775 return TX_CONTINUE;
776
777 /*
778 * Anything but QoS data that has a sequence number field
779 * (is long enough) gets a sequence number from the global
780 * counter.
781 */
782 if (!ieee80211_is_data_qos(hdr->frame_control)) {
783 /* driver should assign sequence number */
784 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
785 /* for pure STA mode without beacons, we can do it */
786 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
787 tx->sdata->sequence_number += 0x10;
788 return TX_CONTINUE;
789 }
790
791 /*
792 * This should be true for injected/management frames only, for
793 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
794 * above since they are not QoS-data frames.
795 */
796 if (!tx->sta)
797 return TX_CONTINUE;
798
799 /* include per-STA, per-TID sequence counter */
800
801 qc = ieee80211_get_qos_ctl(hdr);
802 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
803 seq = &tx->sta->tid_seq[tid];
804
805 hdr->seq_ctrl = cpu_to_le16(*seq);
806
807 /* Increase the sequence number. */
808 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
809
810 return TX_CONTINUE;
811 }
812
813 static int ieee80211_fragment(struct ieee80211_local *local,
814 struct sk_buff *skb, int hdrlen,
815 int frag_threshold)
816 {
817 struct sk_buff *tail = skb, *tmp;
818 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
819 int pos = hdrlen + per_fragm;
820 int rem = skb->len - hdrlen - per_fragm;
821
822 if (WARN_ON(rem < 0))
823 return -EINVAL;
824
825 while (rem) {
826 int fraglen = per_fragm;
827
828 if (fraglen > rem)
829 fraglen = rem;
830 rem -= fraglen;
831 tmp = dev_alloc_skb(local->tx_headroom +
832 frag_threshold +
833 IEEE80211_ENCRYPT_HEADROOM +
834 IEEE80211_ENCRYPT_TAILROOM);
835 if (!tmp)
836 return -ENOMEM;
837 tail->next = tmp;
838 tail = tmp;
839 skb_reserve(tmp, local->tx_headroom +
840 IEEE80211_ENCRYPT_HEADROOM);
841 /* copy control information */
842 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
843 skb_copy_queue_mapping(tmp, skb);
844 tmp->priority = skb->priority;
845 tmp->dev = skb->dev;
846
847 /* copy header and data */
848 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
849 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
850
851 pos += fraglen;
852 }
853
854 skb->len = hdrlen + per_fragm;
855 return 0;
856 }
857
858 static ieee80211_tx_result debug_noinline
859 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
860 {
861 struct sk_buff *skb = tx->skb;
862 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
863 struct ieee80211_hdr *hdr = (void *)skb->data;
864 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
865 int hdrlen;
866 int fragnum;
867
868 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
869 return TX_CONTINUE;
870
871 /*
872 * Warn when submitting a fragmented A-MPDU frame and drop it.
873 * This scenario is handled in ieee80211_tx_prepare but extra
874 * caution taken here as fragmented ampdu may cause Tx stop.
875 */
876 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
877 return TX_DROP;
878
879 hdrlen = ieee80211_hdrlen(hdr->frame_control);
880
881 /* internal error, why is TX_FRAGMENTED set? */
882 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
883 return TX_DROP;
884
885 /*
886 * Now fragment the frame. This will allocate all the fragments and
887 * chain them (using skb as the first fragment) to skb->next.
888 * During transmission, we will remove the successfully transmitted
889 * fragments from this list. When the low-level driver rejects one
890 * of the fragments then we will simply pretend to accept the skb
891 * but store it away as pending.
892 */
893 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
894 return TX_DROP;
895
896 /* update duration/seq/flags of fragments */
897 fragnum = 0;
898 do {
899 int next_len;
900 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
901
902 hdr = (void *)skb->data;
903 info = IEEE80211_SKB_CB(skb);
904
905 if (skb->next) {
906 hdr->frame_control |= morefrags;
907 next_len = skb->next->len;
908 /*
909 * No multi-rate retries for fragmented frames, that
910 * would completely throw off the NAV at other STAs.
911 */
912 info->control.rates[1].idx = -1;
913 info->control.rates[2].idx = -1;
914 info->control.rates[3].idx = -1;
915 info->control.rates[4].idx = -1;
916 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
917 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
918 } else {
919 hdr->frame_control &= ~morefrags;
920 next_len = 0;
921 }
922 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
923 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
924 fragnum++;
925 } while ((skb = skb->next));
926
927 return TX_CONTINUE;
928 }
929
930 static ieee80211_tx_result debug_noinline
931 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
932 {
933 struct sk_buff *skb = tx->skb;
934
935 if (!tx->sta)
936 return TX_CONTINUE;
937
938 tx->sta->tx_packets++;
939 do {
940 tx->sta->tx_fragments++;
941 tx->sta->tx_bytes += skb->len;
942 } while ((skb = skb->next));
943
944 return TX_CONTINUE;
945 }
946
947 static ieee80211_tx_result debug_noinline
948 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
949 {
950 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
951
952 if (!tx->key)
953 return TX_CONTINUE;
954
955 switch (tx->key->conf.cipher) {
956 case WLAN_CIPHER_SUITE_WEP40:
957 case WLAN_CIPHER_SUITE_WEP104:
958 return ieee80211_crypto_wep_encrypt(tx);
959 case WLAN_CIPHER_SUITE_TKIP:
960 return ieee80211_crypto_tkip_encrypt(tx);
961 case WLAN_CIPHER_SUITE_CCMP:
962 return ieee80211_crypto_ccmp_encrypt(tx);
963 case WLAN_CIPHER_SUITE_AES_CMAC:
964 return ieee80211_crypto_aes_cmac_encrypt(tx);
965 default:
966 /* handle hw-only algorithm */
967 if (info->control.hw_key) {
968 ieee80211_tx_set_protected(tx);
969 return TX_CONTINUE;
970 }
971 break;
972
973 }
974
975 return TX_DROP;
976 }
977
978 static ieee80211_tx_result debug_noinline
979 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
980 {
981 struct sk_buff *skb = tx->skb;
982 struct ieee80211_hdr *hdr;
983 int next_len;
984 bool group_addr;
985
986 do {
987 hdr = (void *) skb->data;
988 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
989 break; /* must not overwrite AID */
990 next_len = skb->next ? skb->next->len : 0;
991 group_addr = is_multicast_ether_addr(hdr->addr1);
992
993 hdr->duration_id =
994 ieee80211_duration(tx, group_addr, next_len);
995 } while ((skb = skb->next));
996
997 return TX_CONTINUE;
998 }
999
1000 /* actual transmit path */
1001
1002 /*
1003 * deal with packet injection down monitor interface
1004 * with Radiotap Header -- only called for monitor mode interface
1005 */
1006 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
1007 struct sk_buff *skb)
1008 {
1009 /*
1010 * this is the moment to interpret and discard the radiotap header that
1011 * must be at the start of the packet injected in Monitor mode
1012 *
1013 * Need to take some care with endian-ness since radiotap
1014 * args are little-endian
1015 */
1016
1017 struct ieee80211_radiotap_iterator iterator;
1018 struct ieee80211_radiotap_header *rthdr =
1019 (struct ieee80211_radiotap_header *) skb->data;
1020 struct ieee80211_supported_band *sband;
1021 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1022 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
1023 NULL);
1024
1025 sband = tx->local->hw.wiphy->bands[tx->channel->band];
1026
1027 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1028 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1029
1030 /*
1031 * for every radiotap entry that is present
1032 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1033 * entries present, or -EINVAL on error)
1034 */
1035
1036 while (!ret) {
1037 ret = ieee80211_radiotap_iterator_next(&iterator);
1038
1039 if (ret)
1040 continue;
1041
1042 /* see if this argument is something we can use */
1043 switch (iterator.this_arg_index) {
1044 /*
1045 * You must take care when dereferencing iterator.this_arg
1046 * for multibyte types... the pointer is not aligned. Use
1047 * get_unaligned((type *)iterator.this_arg) to dereference
1048 * iterator.this_arg for type "type" safely on all arches.
1049 */
1050 case IEEE80211_RADIOTAP_FLAGS:
1051 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1052 /*
1053 * this indicates that the skb we have been
1054 * handed has the 32-bit FCS CRC at the end...
1055 * we should react to that by snipping it off
1056 * because it will be recomputed and added
1057 * on transmission
1058 */
1059 if (skb->len < (iterator._max_length + FCS_LEN))
1060 return false;
1061
1062 skb_trim(skb, skb->len - FCS_LEN);
1063 }
1064 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1065 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1066 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
1067 tx->flags |= IEEE80211_TX_FRAGMENTED;
1068 break;
1069
1070 /*
1071 * Please update the file
1072 * Documentation/networking/mac80211-injection.txt
1073 * when parsing new fields here.
1074 */
1075
1076 default:
1077 break;
1078 }
1079 }
1080
1081 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1082 return false;
1083
1084 /*
1085 * remove the radiotap header
1086 * iterator->_max_length was sanity-checked against
1087 * skb->len by iterator init
1088 */
1089 skb_pull(skb, iterator._max_length);
1090
1091 return true;
1092 }
1093
1094 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx,
1095 struct sk_buff *skb,
1096 struct ieee80211_tx_info *info,
1097 struct tid_ampdu_tx *tid_tx,
1098 int tid)
1099 {
1100 bool queued = false;
1101
1102 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1103 info->flags |= IEEE80211_TX_CTL_AMPDU;
1104 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) {
1105 /*
1106 * nothing -- this aggregation session is being started
1107 * but that might still fail with the driver
1108 */
1109 } else {
1110 spin_lock(&tx->sta->lock);
1111 /*
1112 * Need to re-check now, because we may get here
1113 *
1114 * 1) in the window during which the setup is actually
1115 * already done, but not marked yet because not all
1116 * packets are spliced over to the driver pending
1117 * queue yet -- if this happened we acquire the lock
1118 * either before or after the splice happens, but
1119 * need to recheck which of these cases happened.
1120 *
1121 * 2) during session teardown, if the OPERATIONAL bit
1122 * was cleared due to the teardown but the pointer
1123 * hasn't been assigned NULL yet (or we loaded it
1124 * before it was assigned) -- in this case it may
1125 * now be NULL which means we should just let the
1126 * packet pass through because splicing the frames
1127 * back is already done.
1128 */
1129 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1130
1131 if (!tid_tx) {
1132 /* do nothing, let packet pass through */
1133 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1134 info->flags |= IEEE80211_TX_CTL_AMPDU;
1135 } else {
1136 queued = true;
1137 info->control.vif = &tx->sdata->vif;
1138 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1139 __skb_queue_tail(&tid_tx->pending, skb);
1140 }
1141 spin_unlock(&tx->sta->lock);
1142 }
1143
1144 return queued;
1145 }
1146
1147 /*
1148 * initialises @tx
1149 */
1150 static ieee80211_tx_result
1151 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1152 struct ieee80211_tx_data *tx,
1153 struct sk_buff *skb)
1154 {
1155 struct ieee80211_local *local = sdata->local;
1156 struct ieee80211_hdr *hdr;
1157 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1158 int hdrlen, tid;
1159 u8 *qc;
1160
1161 memset(tx, 0, sizeof(*tx));
1162 tx->skb = skb;
1163 tx->local = local;
1164 tx->sdata = sdata;
1165 tx->channel = local->hw.conf.channel;
1166 /*
1167 * Set this flag (used below to indicate "automatic fragmentation"),
1168 * it will be cleared/left by radiotap as desired.
1169 */
1170 tx->flags |= IEEE80211_TX_FRAGMENTED;
1171
1172 /* process and remove the injection radiotap header */
1173 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) {
1174 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1175 return TX_DROP;
1176
1177 /*
1178 * __ieee80211_parse_tx_radiotap has now removed
1179 * the radiotap header that was present and pre-filled
1180 * 'tx' with tx control information.
1181 */
1182 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP;
1183 }
1184
1185 /*
1186 * If this flag is set to true anywhere, and we get here,
1187 * we are doing the needed processing, so remove the flag
1188 * now.
1189 */
1190 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1191
1192 hdr = (struct ieee80211_hdr *) skb->data;
1193
1194 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1195 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1196 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1197 return TX_DROP;
1198 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1199 tx->sta = sta_info_get_bss(sdata, hdr->addr1);
1200 }
1201 if (!tx->sta)
1202 tx->sta = sta_info_get(sdata, hdr->addr1);
1203
1204 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1205 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1206 struct tid_ampdu_tx *tid_tx;
1207
1208 qc = ieee80211_get_qos_ctl(hdr);
1209 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1210
1211 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]);
1212 if (tid_tx) {
1213 bool queued;
1214
1215 queued = ieee80211_tx_prep_agg(tx, skb, info,
1216 tid_tx, tid);
1217
1218 if (unlikely(queued))
1219 return TX_QUEUED;
1220 }
1221 }
1222
1223 if (is_multicast_ether_addr(hdr->addr1)) {
1224 tx->flags &= ~IEEE80211_TX_UNICAST;
1225 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1226 } else {
1227 tx->flags |= IEEE80211_TX_UNICAST;
1228 if (unlikely(local->wifi_wme_noack_test))
1229 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1230 else
1231 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1232 }
1233
1234 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1235 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1236 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1237 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1238 tx->flags |= IEEE80211_TX_FRAGMENTED;
1239 else
1240 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1241 }
1242
1243 if (!tx->sta)
1244 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1245 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1246 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1247
1248 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1249 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1250 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1251 tx->ethertype = (pos[0] << 8) | pos[1];
1252 }
1253 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1254
1255 return TX_CONTINUE;
1256 }
1257
1258 static int __ieee80211_tx(struct ieee80211_local *local,
1259 struct sk_buff **skbp,
1260 struct sta_info *sta,
1261 bool txpending)
1262 {
1263 struct sk_buff *skb = *skbp, *next;
1264 struct ieee80211_tx_info *info;
1265 struct ieee80211_sub_if_data *sdata;
1266 unsigned long flags;
1267 int ret, len;
1268 bool fragm = false;
1269
1270 while (skb) {
1271 int q = skb_get_queue_mapping(skb);
1272
1273 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1274 ret = IEEE80211_TX_OK;
1275 if (local->queue_stop_reasons[q] ||
1276 (!txpending && !skb_queue_empty(&local->pending[q])))
1277 ret = IEEE80211_TX_PENDING;
1278 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1279 if (ret != IEEE80211_TX_OK)
1280 return ret;
1281
1282 info = IEEE80211_SKB_CB(skb);
1283
1284 if (fragm)
1285 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1286 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1287
1288 next = skb->next;
1289 len = skb->len;
1290
1291 if (next)
1292 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1293
1294 sdata = vif_to_sdata(info->control.vif);
1295
1296 switch (sdata->vif.type) {
1297 case NL80211_IFTYPE_MONITOR:
1298 info->control.vif = NULL;
1299 break;
1300 case NL80211_IFTYPE_AP_VLAN:
1301 info->control.vif = &container_of(sdata->bss,
1302 struct ieee80211_sub_if_data, u.ap)->vif;
1303 break;
1304 default:
1305 /* keep */
1306 break;
1307 }
1308
1309 if (sta && sta->uploaded)
1310 info->control.sta = &sta->sta;
1311 else
1312 info->control.sta = NULL;
1313
1314 ret = drv_tx(local, skb);
1315 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1316 dev_kfree_skb(skb);
1317 ret = NETDEV_TX_OK;
1318 }
1319 if (ret != NETDEV_TX_OK) {
1320 info->control.vif = &sdata->vif;
1321 return IEEE80211_TX_AGAIN;
1322 }
1323
1324 *skbp = skb = next;
1325 ieee80211_led_tx(local, 1);
1326 fragm = true;
1327 }
1328
1329 return IEEE80211_TX_OK;
1330 }
1331
1332 /*
1333 * Invoke TX handlers, return 0 on success and non-zero if the
1334 * frame was dropped or queued.
1335 */
1336 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1337 {
1338 struct sk_buff *skb = tx->skb;
1339 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1340 ieee80211_tx_result res = TX_DROP;
1341
1342 #define CALL_TXH(txh) \
1343 do { \
1344 res = txh(tx); \
1345 if (res != TX_CONTINUE) \
1346 goto txh_done; \
1347 } while (0)
1348
1349 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1350 CALL_TXH(ieee80211_tx_h_check_assoc);
1351 CALL_TXH(ieee80211_tx_h_ps_buf);
1352 CALL_TXH(ieee80211_tx_h_select_key);
1353 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1354 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1355
1356 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
1357 goto txh_done;
1358
1359 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1360 CALL_TXH(ieee80211_tx_h_sequence);
1361 CALL_TXH(ieee80211_tx_h_fragment);
1362 /* handlers after fragment must be aware of tx info fragmentation! */
1363 CALL_TXH(ieee80211_tx_h_stats);
1364 CALL_TXH(ieee80211_tx_h_encrypt);
1365 CALL_TXH(ieee80211_tx_h_calculate_duration);
1366 #undef CALL_TXH
1367
1368 txh_done:
1369 if (unlikely(res == TX_DROP)) {
1370 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1371 while (skb) {
1372 struct sk_buff *next;
1373
1374 next = skb->next;
1375 dev_kfree_skb(skb);
1376 skb = next;
1377 }
1378 return -1;
1379 } else if (unlikely(res == TX_QUEUED)) {
1380 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1381 return -1;
1382 }
1383
1384 return 0;
1385 }
1386
1387 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1388 struct sk_buff *skb, bool txpending)
1389 {
1390 struct ieee80211_local *local = sdata->local;
1391 struct ieee80211_tx_data tx;
1392 ieee80211_tx_result res_prepare;
1393 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1394 struct sk_buff *next;
1395 unsigned long flags;
1396 int ret, retries;
1397 u16 queue;
1398
1399 queue = skb_get_queue_mapping(skb);
1400
1401 if (unlikely(skb->len < 10)) {
1402 dev_kfree_skb(skb);
1403 return;
1404 }
1405
1406 rcu_read_lock();
1407
1408 /* initialises tx */
1409 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1410
1411 if (unlikely(res_prepare == TX_DROP)) {
1412 dev_kfree_skb(skb);
1413 rcu_read_unlock();
1414 return;
1415 } else if (unlikely(res_prepare == TX_QUEUED)) {
1416 rcu_read_unlock();
1417 return;
1418 }
1419
1420 tx.channel = local->hw.conf.channel;
1421 info->band = tx.channel->band;
1422
1423 if (invoke_tx_handlers(&tx))
1424 goto out;
1425
1426 retries = 0;
1427 retry:
1428 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1429 switch (ret) {
1430 case IEEE80211_TX_OK:
1431 break;
1432 case IEEE80211_TX_AGAIN:
1433 /*
1434 * Since there are no fragmented frames on A-MPDU
1435 * queues, there's no reason for a driver to reject
1436 * a frame there, warn and drop it.
1437 */
1438 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1439 goto drop;
1440 /* fall through */
1441 case IEEE80211_TX_PENDING:
1442 skb = tx.skb;
1443
1444 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1445
1446 if (local->queue_stop_reasons[queue] ||
1447 !skb_queue_empty(&local->pending[queue])) {
1448 /*
1449 * if queue is stopped, queue up frames for later
1450 * transmission from the tasklet
1451 */
1452 do {
1453 next = skb->next;
1454 skb->next = NULL;
1455 if (unlikely(txpending))
1456 __skb_queue_head(&local->pending[queue],
1457 skb);
1458 else
1459 __skb_queue_tail(&local->pending[queue],
1460 skb);
1461 } while ((skb = next));
1462
1463 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1464 flags);
1465 } else {
1466 /*
1467 * otherwise retry, but this is a race condition or
1468 * a driver bug (which we warn about if it persists)
1469 */
1470 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1471 flags);
1472
1473 retries++;
1474 if (WARN(retries > 10, "tx refused but queue active\n"))
1475 goto drop;
1476 goto retry;
1477 }
1478 }
1479 out:
1480 rcu_read_unlock();
1481 return;
1482
1483 drop:
1484 rcu_read_unlock();
1485
1486 skb = tx.skb;
1487 while (skb) {
1488 next = skb->next;
1489 dev_kfree_skb(skb);
1490 skb = next;
1491 }
1492 }
1493
1494 /* device xmit handlers */
1495
1496 static int ieee80211_skb_resize(struct ieee80211_local *local,
1497 struct sk_buff *skb,
1498 int head_need, bool may_encrypt)
1499 {
1500 int tail_need = 0;
1501
1502 /*
1503 * This could be optimised, devices that do full hardware
1504 * crypto (including TKIP MMIC) need no tailroom... But we
1505 * have no drivers for such devices currently.
1506 */
1507 if (may_encrypt) {
1508 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1509 tail_need -= skb_tailroom(skb);
1510 tail_need = max_t(int, tail_need, 0);
1511 }
1512
1513 if (head_need || tail_need) {
1514 /* Sorry. Can't account for this any more */
1515 skb_orphan(skb);
1516 }
1517
1518 if (skb_header_cloned(skb))
1519 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1520 else
1521 I802_DEBUG_INC(local->tx_expand_skb_head);
1522
1523 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1524 wiphy_debug(local->hw.wiphy,
1525 "failed to reallocate TX buffer\n");
1526 return -ENOMEM;
1527 }
1528
1529 /* update truesize too */
1530 skb->truesize += head_need + tail_need;
1531
1532 return 0;
1533 }
1534
1535 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1536 struct sk_buff *skb)
1537 {
1538 struct ieee80211_local *local = sdata->local;
1539 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1540 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1541 struct ieee80211_sub_if_data *tmp_sdata;
1542 int headroom;
1543 bool may_encrypt;
1544
1545 rcu_read_lock();
1546
1547 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1548 int hdrlen;
1549 u16 len_rthdr;
1550
1551 info->flags |= IEEE80211_TX_CTL_INJECTED |
1552 IEEE80211_TX_INTFL_HAS_RADIOTAP;
1553
1554 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1555 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1556 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1557
1558 /* check the header is complete in the frame */
1559 if (likely(skb->len >= len_rthdr + hdrlen)) {
1560 /*
1561 * We process outgoing injected frames that have a
1562 * local address we handle as though they are our
1563 * own frames.
1564 * This code here isn't entirely correct, the local
1565 * MAC address is not necessarily enough to find
1566 * the interface to use; for that proper VLAN/WDS
1567 * support we will need a different mechanism.
1568 */
1569
1570 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1571 list) {
1572 if (!ieee80211_sdata_running(tmp_sdata))
1573 continue;
1574 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1575 continue;
1576 if (compare_ether_addr(tmp_sdata->vif.addr,
1577 hdr->addr2) == 0) {
1578 sdata = tmp_sdata;
1579 break;
1580 }
1581 }
1582 }
1583 }
1584
1585 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1586
1587 headroom = local->tx_headroom;
1588 if (may_encrypt)
1589 headroom += IEEE80211_ENCRYPT_HEADROOM;
1590 headroom -= skb_headroom(skb);
1591 headroom = max_t(int, 0, headroom);
1592
1593 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1594 dev_kfree_skb(skb);
1595 rcu_read_unlock();
1596 return;
1597 }
1598
1599 info->control.vif = &sdata->vif;
1600
1601 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1602 ieee80211_is_data(hdr->frame_control) &&
1603 !is_multicast_ether_addr(hdr->addr1))
1604 if (mesh_nexthop_lookup(skb, sdata)) {
1605 /* skb queued: don't free */
1606 rcu_read_unlock();
1607 return;
1608 }
1609
1610 ieee80211_set_qos_hdr(local, skb);
1611 ieee80211_tx(sdata, skb, false);
1612 rcu_read_unlock();
1613 }
1614
1615 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1616 struct net_device *dev)
1617 {
1618 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1619 struct ieee80211_channel *chan = local->hw.conf.channel;
1620 struct ieee80211_radiotap_header *prthdr =
1621 (struct ieee80211_radiotap_header *)skb->data;
1622 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1623 u16 len_rthdr;
1624
1625 /*
1626 * Frame injection is not allowed if beaconing is not allowed
1627 * or if we need radar detection. Beaconing is usually not allowed when
1628 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1629 * Passive scan is also used in world regulatory domains where
1630 * your country is not known and as such it should be treated as
1631 * NO TX unless the channel is explicitly allowed in which case
1632 * your current regulatory domain would not have the passive scan
1633 * flag.
1634 *
1635 * Since AP mode uses monitor interfaces to inject/TX management
1636 * frames we can make AP mode the exception to this rule once it
1637 * supports radar detection as its implementation can deal with
1638 * radar detection by itself. We can do that later by adding a
1639 * monitor flag interfaces used for AP support.
1640 */
1641 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1642 IEEE80211_CHAN_PASSIVE_SCAN)))
1643 goto fail;
1644
1645 /* check for not even having the fixed radiotap header part */
1646 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1647 goto fail; /* too short to be possibly valid */
1648
1649 /* is it a header version we can trust to find length from? */
1650 if (unlikely(prthdr->it_version))
1651 goto fail; /* only version 0 is supported */
1652
1653 /* then there must be a radiotap header with a length we can use */
1654 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1655
1656 /* does the skb contain enough to deliver on the alleged length? */
1657 if (unlikely(skb->len < len_rthdr))
1658 goto fail; /* skb too short for claimed rt header extent */
1659
1660 /*
1661 * fix up the pointers accounting for the radiotap
1662 * header still being in there. We are being given
1663 * a precooked IEEE80211 header so no need for
1664 * normal processing
1665 */
1666 skb_set_mac_header(skb, len_rthdr);
1667 /*
1668 * these are just fixed to the end of the rt area since we
1669 * don't have any better information and at this point, nobody cares
1670 */
1671 skb_set_network_header(skb, len_rthdr);
1672 skb_set_transport_header(skb, len_rthdr);
1673
1674 memset(info, 0, sizeof(*info));
1675
1676 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1677
1678 /* pass the radiotap header up to xmit */
1679 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1680 return NETDEV_TX_OK;
1681
1682 fail:
1683 dev_kfree_skb(skb);
1684 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1685 }
1686
1687 /**
1688 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1689 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1690 * @skb: packet to be sent
1691 * @dev: incoming interface
1692 *
1693 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1694 * not be freed, and caller is responsible for either retrying later or freeing
1695 * skb).
1696 *
1697 * This function takes in an Ethernet header and encapsulates it with suitable
1698 * IEEE 802.11 header based on which interface the packet is coming in. The
1699 * encapsulated packet will then be passed to master interface, wlan#.11, for
1700 * transmission (through low-level driver).
1701 */
1702 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1703 struct net_device *dev)
1704 {
1705 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1706 struct ieee80211_local *local = sdata->local;
1707 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1708 int ret = NETDEV_TX_BUSY, head_need;
1709 u16 ethertype, hdrlen, meshhdrlen = 0;
1710 __le16 fc;
1711 struct ieee80211_hdr hdr;
1712 struct ieee80211s_hdr mesh_hdr __maybe_unused;
1713 const u8 *encaps_data;
1714 int encaps_len, skip_header_bytes;
1715 int nh_pos, h_pos;
1716 struct sta_info *sta = NULL;
1717 u32 sta_flags = 0;
1718
1719 if (unlikely(skb->len < ETH_HLEN)) {
1720 ret = NETDEV_TX_OK;
1721 goto fail;
1722 }
1723
1724 nh_pos = skb_network_header(skb) - skb->data;
1725 h_pos = skb_transport_header(skb) - skb->data;
1726
1727 /* convert Ethernet header to proper 802.11 header (based on
1728 * operation mode) */
1729 ethertype = (skb->data[12] << 8) | skb->data[13];
1730 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1731
1732 switch (sdata->vif.type) {
1733 case NL80211_IFTYPE_AP_VLAN:
1734 rcu_read_lock();
1735 sta = rcu_dereference(sdata->u.vlan.sta);
1736 if (sta) {
1737 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1738 /* RA TA DA SA */
1739 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1740 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1741 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1742 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1743 hdrlen = 30;
1744 sta_flags = get_sta_flags(sta);
1745 }
1746 rcu_read_unlock();
1747 if (sta)
1748 break;
1749 /* fall through */
1750 case NL80211_IFTYPE_AP:
1751 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1752 /* DA BSSID SA */
1753 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1754 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1755 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1756 hdrlen = 24;
1757 break;
1758 case NL80211_IFTYPE_WDS:
1759 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1760 /* RA TA DA SA */
1761 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1762 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1763 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1764 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1765 hdrlen = 30;
1766 break;
1767 #ifdef CONFIG_MAC80211_MESH
1768 case NL80211_IFTYPE_MESH_POINT:
1769 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1770 /* Do not send frames with mesh_ttl == 0 */
1771 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1772 ret = NETDEV_TX_OK;
1773 goto fail;
1774 }
1775
1776 if (compare_ether_addr(sdata->vif.addr,
1777 skb->data + ETH_ALEN) == 0) {
1778 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1779 skb->data, skb->data + ETH_ALEN);
1780 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1781 sdata, NULL, NULL, NULL);
1782 } else {
1783 /* packet from other interface */
1784 struct mesh_path *mppath;
1785 int is_mesh_mcast = 1;
1786 const u8 *mesh_da;
1787
1788 rcu_read_lock();
1789 if (is_multicast_ether_addr(skb->data))
1790 /* DA TA mSA AE:SA */
1791 mesh_da = skb->data;
1792 else {
1793 static const u8 bcast[ETH_ALEN] =
1794 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1795
1796 mppath = mpp_path_lookup(skb->data, sdata);
1797 if (mppath) {
1798 /* RA TA mDA mSA AE:DA SA */
1799 mesh_da = mppath->mpp;
1800 is_mesh_mcast = 0;
1801 } else {
1802 /* DA TA mSA AE:SA */
1803 mesh_da = bcast;
1804 }
1805 }
1806 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1807 mesh_da, sdata->vif.addr);
1808 rcu_read_unlock();
1809 if (is_mesh_mcast)
1810 meshhdrlen =
1811 ieee80211_new_mesh_header(&mesh_hdr,
1812 sdata,
1813 skb->data + ETH_ALEN,
1814 NULL,
1815 NULL);
1816 else
1817 meshhdrlen =
1818 ieee80211_new_mesh_header(&mesh_hdr,
1819 sdata,
1820 NULL,
1821 skb->data,
1822 skb->data + ETH_ALEN);
1823
1824 }
1825 break;
1826 #endif
1827 case NL80211_IFTYPE_STATION:
1828 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1829 if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) {
1830 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1831 /* RA TA DA SA */
1832 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1833 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1834 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1835 hdrlen = 30;
1836 } else {
1837 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1838 /* BSSID SA DA */
1839 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1840 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1841 hdrlen = 24;
1842 }
1843 break;
1844 case NL80211_IFTYPE_ADHOC:
1845 /* DA SA BSSID */
1846 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1847 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1848 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1849 hdrlen = 24;
1850 break;
1851 default:
1852 ret = NETDEV_TX_OK;
1853 goto fail;
1854 }
1855
1856 /*
1857 * There's no need to try to look up the destination
1858 * if it is a multicast address (which can only happen
1859 * in AP mode)
1860 */
1861 if (!is_multicast_ether_addr(hdr.addr1)) {
1862 rcu_read_lock();
1863 sta = sta_info_get(sdata, hdr.addr1);
1864 if (sta)
1865 sta_flags = get_sta_flags(sta);
1866 rcu_read_unlock();
1867 }
1868
1869 /* receiver and we are QoS enabled, use a QoS type frame */
1870 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1871 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1872 hdrlen += 2;
1873 }
1874
1875 /*
1876 * Drop unicast frames to unauthorised stations unless they are
1877 * EAPOL frames from the local station.
1878 */
1879 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1880 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1881 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1882 !(ethertype == ETH_P_PAE &&
1883 compare_ether_addr(sdata->vif.addr,
1884 skb->data + ETH_ALEN) == 0))) {
1885 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1886 if (net_ratelimit())
1887 printk(KERN_DEBUG "%s: dropped frame to %pM"
1888 " (unauthorized port)\n", dev->name,
1889 hdr.addr1);
1890 #endif
1891
1892 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1893
1894 ret = NETDEV_TX_OK;
1895 goto fail;
1896 }
1897
1898 hdr.frame_control = fc;
1899 hdr.duration_id = 0;
1900 hdr.seq_ctrl = 0;
1901
1902 skip_header_bytes = ETH_HLEN;
1903 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1904 encaps_data = bridge_tunnel_header;
1905 encaps_len = sizeof(bridge_tunnel_header);
1906 skip_header_bytes -= 2;
1907 } else if (ethertype >= 0x600) {
1908 encaps_data = rfc1042_header;
1909 encaps_len = sizeof(rfc1042_header);
1910 skip_header_bytes -= 2;
1911 } else {
1912 encaps_data = NULL;
1913 encaps_len = 0;
1914 }
1915
1916 skb_pull(skb, skip_header_bytes);
1917 nh_pos -= skip_header_bytes;
1918 h_pos -= skip_header_bytes;
1919
1920 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1921
1922 /*
1923 * So we need to modify the skb header and hence need a copy of
1924 * that. The head_need variable above doesn't, so far, include
1925 * the needed header space that we don't need right away. If we
1926 * can, then we don't reallocate right now but only after the
1927 * frame arrives at the master device (if it does...)
1928 *
1929 * If we cannot, however, then we will reallocate to include all
1930 * the ever needed space. Also, if we need to reallocate it anyway,
1931 * make it big enough for everything we may ever need.
1932 */
1933
1934 if (head_need > 0 || skb_cloned(skb)) {
1935 head_need += IEEE80211_ENCRYPT_HEADROOM;
1936 head_need += local->tx_headroom;
1937 head_need = max_t(int, 0, head_need);
1938 if (ieee80211_skb_resize(local, skb, head_need, true))
1939 goto fail;
1940 }
1941
1942 if (encaps_data) {
1943 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1944 nh_pos += encaps_len;
1945 h_pos += encaps_len;
1946 }
1947
1948 #ifdef CONFIG_MAC80211_MESH
1949 if (meshhdrlen > 0) {
1950 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1951 nh_pos += meshhdrlen;
1952 h_pos += meshhdrlen;
1953 }
1954 #endif
1955
1956 if (ieee80211_is_data_qos(fc)) {
1957 __le16 *qos_control;
1958
1959 qos_control = (__le16*) skb_push(skb, 2);
1960 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1961 /*
1962 * Maybe we could actually set some fields here, for now just
1963 * initialise to zero to indicate no special operation.
1964 */
1965 *qos_control = 0;
1966 } else
1967 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1968
1969 nh_pos += hdrlen;
1970 h_pos += hdrlen;
1971
1972 dev->stats.tx_packets++;
1973 dev->stats.tx_bytes += skb->len;
1974
1975 /* Update skb pointers to various headers since this modified frame
1976 * is going to go through Linux networking code that may potentially
1977 * need things like pointer to IP header. */
1978 skb_set_mac_header(skb, 0);
1979 skb_set_network_header(skb, nh_pos);
1980 skb_set_transport_header(skb, h_pos);
1981
1982 memset(info, 0, sizeof(*info));
1983
1984 dev->trans_start = jiffies;
1985 ieee80211_xmit(sdata, skb);
1986
1987 return NETDEV_TX_OK;
1988
1989 fail:
1990 if (ret == NETDEV_TX_OK)
1991 dev_kfree_skb(skb);
1992
1993 return ret;
1994 }
1995
1996
1997 /*
1998 * ieee80211_clear_tx_pending may not be called in a context where
1999 * it is possible that it packets could come in again.
2000 */
2001 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
2002 {
2003 int i;
2004
2005 for (i = 0; i < local->hw.queues; i++)
2006 skb_queue_purge(&local->pending[i]);
2007 }
2008
2009 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
2010 struct sk_buff *skb)
2011 {
2012 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2013 struct ieee80211_sub_if_data *sdata;
2014 struct sta_info *sta;
2015 struct ieee80211_hdr *hdr;
2016 int ret;
2017 bool result = true;
2018
2019 sdata = vif_to_sdata(info->control.vif);
2020
2021 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
2022 ieee80211_tx(sdata, skb, true);
2023 } else {
2024 hdr = (struct ieee80211_hdr *)skb->data;
2025 sta = sta_info_get(sdata, hdr->addr1);
2026
2027 ret = __ieee80211_tx(local, &skb, sta, true);
2028 if (ret != IEEE80211_TX_OK)
2029 result = false;
2030 }
2031
2032 return result;
2033 }
2034
2035 /*
2036 * Transmit all pending packets. Called from tasklet.
2037 */
2038 void ieee80211_tx_pending(unsigned long data)
2039 {
2040 struct ieee80211_local *local = (struct ieee80211_local *)data;
2041 struct ieee80211_sub_if_data *sdata;
2042 unsigned long flags;
2043 int i;
2044 bool txok;
2045
2046 rcu_read_lock();
2047
2048 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
2049 for (i = 0; i < local->hw.queues; i++) {
2050 /*
2051 * If queue is stopped by something other than due to pending
2052 * frames, or we have no pending frames, proceed to next queue.
2053 */
2054 if (local->queue_stop_reasons[i] ||
2055 skb_queue_empty(&local->pending[i]))
2056 continue;
2057
2058 while (!skb_queue_empty(&local->pending[i])) {
2059 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
2060 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2061
2062 if (WARN_ON(!info->control.vif)) {
2063 kfree_skb(skb);
2064 continue;
2065 }
2066
2067 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2068 flags);
2069
2070 txok = ieee80211_tx_pending_skb(local, skb);
2071 if (!txok)
2072 __skb_queue_head(&local->pending[i], skb);
2073 spin_lock_irqsave(&local->queue_stop_reason_lock,
2074 flags);
2075 if (!txok)
2076 break;
2077 }
2078
2079 if (skb_queue_empty(&local->pending[i]))
2080 list_for_each_entry_rcu(sdata, &local->interfaces, list)
2081 netif_tx_wake_queue(
2082 netdev_get_tx_queue(sdata->dev, i));
2083 }
2084 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2085
2086 rcu_read_unlock();
2087 }
2088
2089 /* functions for drivers to get certain frames */
2090
2091 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2092 struct sk_buff *skb,
2093 struct beacon_data *beacon)
2094 {
2095 u8 *pos, *tim;
2096 int aid0 = 0;
2097 int i, have_bits = 0, n1, n2;
2098
2099 /* Generate bitmap for TIM only if there are any STAs in power save
2100 * mode. */
2101 if (atomic_read(&bss->num_sta_ps) > 0)
2102 /* in the hope that this is faster than
2103 * checking byte-for-byte */
2104 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2105 IEEE80211_MAX_AID+1);
2106
2107 if (bss->dtim_count == 0)
2108 bss->dtim_count = beacon->dtim_period - 1;
2109 else
2110 bss->dtim_count--;
2111
2112 tim = pos = (u8 *) skb_put(skb, 6);
2113 *pos++ = WLAN_EID_TIM;
2114 *pos++ = 4;
2115 *pos++ = bss->dtim_count;
2116 *pos++ = beacon->dtim_period;
2117
2118 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2119 aid0 = 1;
2120
2121 if (have_bits) {
2122 /* Find largest even number N1 so that bits numbered 1 through
2123 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2124 * (N2 + 1) x 8 through 2007 are 0. */
2125 n1 = 0;
2126 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2127 if (bss->tim[i]) {
2128 n1 = i & 0xfe;
2129 break;
2130 }
2131 }
2132 n2 = n1;
2133 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2134 if (bss->tim[i]) {
2135 n2 = i;
2136 break;
2137 }
2138 }
2139
2140 /* Bitmap control */
2141 *pos++ = n1 | aid0;
2142 /* Part Virt Bitmap */
2143 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2144
2145 tim[1] = n2 - n1 + 4;
2146 skb_put(skb, n2 - n1);
2147 } else {
2148 *pos++ = aid0; /* Bitmap control */
2149 *pos++ = 0; /* Part Virt Bitmap */
2150 }
2151 }
2152
2153 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2154 struct ieee80211_vif *vif,
2155 u16 *tim_offset, u16 *tim_length)
2156 {
2157 struct ieee80211_local *local = hw_to_local(hw);
2158 struct sk_buff *skb = NULL;
2159 struct ieee80211_tx_info *info;
2160 struct ieee80211_sub_if_data *sdata = NULL;
2161 struct ieee80211_if_ap *ap = NULL;
2162 struct beacon_data *beacon;
2163 struct ieee80211_supported_band *sband;
2164 enum ieee80211_band band = local->hw.conf.channel->band;
2165 struct ieee80211_tx_rate_control txrc;
2166
2167 sband = local->hw.wiphy->bands[band];
2168
2169 rcu_read_lock();
2170
2171 sdata = vif_to_sdata(vif);
2172
2173 if (tim_offset)
2174 *tim_offset = 0;
2175 if (tim_length)
2176 *tim_length = 0;
2177
2178 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2179 ap = &sdata->u.ap;
2180 beacon = rcu_dereference(ap->beacon);
2181 if (ap && beacon) {
2182 /*
2183 * headroom, head length,
2184 * tail length and maximum TIM length
2185 */
2186 skb = dev_alloc_skb(local->tx_headroom +
2187 beacon->head_len +
2188 beacon->tail_len + 256);
2189 if (!skb)
2190 goto out;
2191
2192 skb_reserve(skb, local->tx_headroom);
2193 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2194 beacon->head_len);
2195
2196 /*
2197 * Not very nice, but we want to allow the driver to call
2198 * ieee80211_beacon_get() as a response to the set_tim()
2199 * callback. That, however, is already invoked under the
2200 * sta_lock to guarantee consistent and race-free update
2201 * of the tim bitmap in mac80211 and the driver.
2202 */
2203 if (local->tim_in_locked_section) {
2204 ieee80211_beacon_add_tim(ap, skb, beacon);
2205 } else {
2206 unsigned long flags;
2207
2208 spin_lock_irqsave(&local->sta_lock, flags);
2209 ieee80211_beacon_add_tim(ap, skb, beacon);
2210 spin_unlock_irqrestore(&local->sta_lock, flags);
2211 }
2212
2213 if (tim_offset)
2214 *tim_offset = beacon->head_len;
2215 if (tim_length)
2216 *tim_length = skb->len - beacon->head_len;
2217
2218 if (beacon->tail)
2219 memcpy(skb_put(skb, beacon->tail_len),
2220 beacon->tail, beacon->tail_len);
2221 } else
2222 goto out;
2223 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2224 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2225 struct ieee80211_hdr *hdr;
2226 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2227
2228 if (!presp)
2229 goto out;
2230
2231 skb = skb_copy(presp, GFP_ATOMIC);
2232 if (!skb)
2233 goto out;
2234
2235 hdr = (struct ieee80211_hdr *) skb->data;
2236 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2237 IEEE80211_STYPE_BEACON);
2238 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2239 struct ieee80211_mgmt *mgmt;
2240 u8 *pos;
2241
2242 /* headroom, head length, tail length and maximum TIM length */
2243 skb = dev_alloc_skb(local->tx_headroom + 400);
2244 if (!skb)
2245 goto out;
2246
2247 skb_reserve(skb, local->hw.extra_tx_headroom);
2248 mgmt = (struct ieee80211_mgmt *)
2249 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2250 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2251 mgmt->frame_control =
2252 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2253 memset(mgmt->da, 0xff, ETH_ALEN);
2254 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2255 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2256 mgmt->u.beacon.beacon_int =
2257 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2258 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2259
2260 pos = skb_put(skb, 2);
2261 *pos++ = WLAN_EID_SSID;
2262 *pos++ = 0x0;
2263
2264 mesh_mgmt_ies_add(skb, sdata);
2265 } else {
2266 WARN_ON(1);
2267 goto out;
2268 }
2269
2270 info = IEEE80211_SKB_CB(skb);
2271
2272 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2273 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2274 info->band = band;
2275
2276 memset(&txrc, 0, sizeof(txrc));
2277 txrc.hw = hw;
2278 txrc.sband = sband;
2279 txrc.bss_conf = &sdata->vif.bss_conf;
2280 txrc.skb = skb;
2281 txrc.reported_rate.idx = -1;
2282 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2283 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2284 txrc.max_rate_idx = -1;
2285 else
2286 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2287 txrc.ap = true;
2288 rate_control_get_rate(sdata, NULL, &txrc);
2289
2290 info->control.vif = vif;
2291
2292 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT |
2293 IEEE80211_TX_CTL_ASSIGN_SEQ |
2294 IEEE80211_TX_CTL_FIRST_FRAGMENT;
2295 out:
2296 rcu_read_unlock();
2297 return skb;
2298 }
2299 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2300
2301 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2302 struct ieee80211_vif *vif)
2303 {
2304 struct ieee80211_sub_if_data *sdata;
2305 struct ieee80211_if_managed *ifmgd;
2306 struct ieee80211_pspoll *pspoll;
2307 struct ieee80211_local *local;
2308 struct sk_buff *skb;
2309
2310 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2311 return NULL;
2312
2313 sdata = vif_to_sdata(vif);
2314 ifmgd = &sdata->u.mgd;
2315 local = sdata->local;
2316
2317 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2318 if (!skb) {
2319 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2320 "pspoll template\n", sdata->name);
2321 return NULL;
2322 }
2323 skb_reserve(skb, local->hw.extra_tx_headroom);
2324
2325 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2326 memset(pspoll, 0, sizeof(*pspoll));
2327 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2328 IEEE80211_STYPE_PSPOLL);
2329 pspoll->aid = cpu_to_le16(ifmgd->aid);
2330
2331 /* aid in PS-Poll has its two MSBs each set to 1 */
2332 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2333
2334 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2335 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2336
2337 return skb;
2338 }
2339 EXPORT_SYMBOL(ieee80211_pspoll_get);
2340
2341 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2342 struct ieee80211_vif *vif)
2343 {
2344 struct ieee80211_hdr_3addr *nullfunc;
2345 struct ieee80211_sub_if_data *sdata;
2346 struct ieee80211_if_managed *ifmgd;
2347 struct ieee80211_local *local;
2348 struct sk_buff *skb;
2349
2350 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2351 return NULL;
2352
2353 sdata = vif_to_sdata(vif);
2354 ifmgd = &sdata->u.mgd;
2355 local = sdata->local;
2356
2357 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2358 if (!skb) {
2359 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2360 "template\n", sdata->name);
2361 return NULL;
2362 }
2363 skb_reserve(skb, local->hw.extra_tx_headroom);
2364
2365 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2366 sizeof(*nullfunc));
2367 memset(nullfunc, 0, sizeof(*nullfunc));
2368 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2369 IEEE80211_STYPE_NULLFUNC |
2370 IEEE80211_FCTL_TODS);
2371 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2372 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2373 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2374
2375 return skb;
2376 }
2377 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2378
2379 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2380 struct ieee80211_vif *vif,
2381 const u8 *ssid, size_t ssid_len,
2382 const u8 *ie, size_t ie_len)
2383 {
2384 struct ieee80211_sub_if_data *sdata;
2385 struct ieee80211_local *local;
2386 struct ieee80211_hdr_3addr *hdr;
2387 struct sk_buff *skb;
2388 size_t ie_ssid_len;
2389 u8 *pos;
2390
2391 sdata = vif_to_sdata(vif);
2392 local = sdata->local;
2393 ie_ssid_len = 2 + ssid_len;
2394
2395 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2396 ie_ssid_len + ie_len);
2397 if (!skb) {
2398 printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
2399 "request template\n", sdata->name);
2400 return NULL;
2401 }
2402
2403 skb_reserve(skb, local->hw.extra_tx_headroom);
2404
2405 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2406 memset(hdr, 0, sizeof(*hdr));
2407 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2408 IEEE80211_STYPE_PROBE_REQ);
2409 memset(hdr->addr1, 0xff, ETH_ALEN);
2410 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2411 memset(hdr->addr3, 0xff, ETH_ALEN);
2412
2413 pos = skb_put(skb, ie_ssid_len);
2414 *pos++ = WLAN_EID_SSID;
2415 *pos++ = ssid_len;
2416 if (ssid)
2417 memcpy(pos, ssid, ssid_len);
2418 pos += ssid_len;
2419
2420 if (ie) {
2421 pos = skb_put(skb, ie_len);
2422 memcpy(pos, ie, ie_len);
2423 }
2424
2425 return skb;
2426 }
2427 EXPORT_SYMBOL(ieee80211_probereq_get);
2428
2429 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2430 const void *frame, size_t frame_len,
2431 const struct ieee80211_tx_info *frame_txctl,
2432 struct ieee80211_rts *rts)
2433 {
2434 const struct ieee80211_hdr *hdr = frame;
2435
2436 rts->frame_control =
2437 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2438 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2439 frame_txctl);
2440 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2441 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2442 }
2443 EXPORT_SYMBOL(ieee80211_rts_get);
2444
2445 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2446 const void *frame, size_t frame_len,
2447 const struct ieee80211_tx_info *frame_txctl,
2448 struct ieee80211_cts *cts)
2449 {
2450 const struct ieee80211_hdr *hdr = frame;
2451
2452 cts->frame_control =
2453 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2454 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2455 frame_len, frame_txctl);
2456 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2457 }
2458 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2459
2460 struct sk_buff *
2461 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2462 struct ieee80211_vif *vif)
2463 {
2464 struct ieee80211_local *local = hw_to_local(hw);
2465 struct sk_buff *skb = NULL;
2466 struct sta_info *sta;
2467 struct ieee80211_tx_data tx;
2468 struct ieee80211_sub_if_data *sdata;
2469 struct ieee80211_if_ap *bss = NULL;
2470 struct beacon_data *beacon;
2471 struct ieee80211_tx_info *info;
2472
2473 sdata = vif_to_sdata(vif);
2474 bss = &sdata->u.ap;
2475
2476 rcu_read_lock();
2477 beacon = rcu_dereference(bss->beacon);
2478
2479 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2480 goto out;
2481
2482 if (bss->dtim_count != 0)
2483 goto out; /* send buffered bc/mc only after DTIM beacon */
2484
2485 while (1) {
2486 skb = skb_dequeue(&bss->ps_bc_buf);
2487 if (!skb)
2488 goto out;
2489 local->total_ps_buffered--;
2490
2491 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2492 struct ieee80211_hdr *hdr =
2493 (struct ieee80211_hdr *) skb->data;
2494 /* more buffered multicast/broadcast frames ==> set
2495 * MoreData flag in IEEE 802.11 header to inform PS
2496 * STAs */
2497 hdr->frame_control |=
2498 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2499 }
2500
2501 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2502 break;
2503 dev_kfree_skb_any(skb);
2504 }
2505
2506 info = IEEE80211_SKB_CB(skb);
2507
2508 sta = tx.sta;
2509 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2510 tx.channel = local->hw.conf.channel;
2511 info->band = tx.channel->band;
2512
2513 if (invoke_tx_handlers(&tx))
2514 skb = NULL;
2515 out:
2516 rcu_read_unlock();
2517
2518 return skb;
2519 }
2520 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2521
2522 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2523 {
2524 skb_set_mac_header(skb, 0);
2525 skb_set_network_header(skb, 0);
2526 skb_set_transport_header(skb, 0);
2527
2528 /* send all internal mgmt frames on VO */
2529 skb_set_queue_mapping(skb, 0);
2530
2531 /*
2532 * The other path calling ieee80211_xmit is from the tasklet,
2533 * and while we can handle concurrent transmissions locking
2534 * requirements are that we do not come into tx with bhs on.
2535 */
2536 local_bh_disable();
2537 ieee80211_xmit(sdata, skb);
2538 local_bh_enable();
2539 }
This page took 0.08901 seconds and 5 git commands to generate.