mac80211: fix oops due to missing private data
[deliverable/linux.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
39
40 /* misc utils */
41
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
44 {
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
51
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
55
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
59
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
62
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
64
65 /*
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
74 *
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
81 */
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
87 *
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
97 */
98 return 0;
99 }
100
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
104
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
107
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
117 */
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
123
124 if (r->bitrate > txrate->bitrate)
125 break;
126
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
129
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
140 }
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
148 }
149 }
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
154 }
155
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
159
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
162
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
171 }
172
173 return cpu_to_le16(dur);
174 }
175
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
178 {
179 return local == wdev_priv(dev->ieee80211_ptr);
180 }
181
182 /* tx handlers */
183
184 static ieee80211_tx_result debug_noinline
185 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
186 {
187
188 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
189 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
190 u32 sta_flags;
191
192 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
193 return TX_CONTINUE;
194
195 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
196 !ieee80211_is_probe_req(hdr->frame_control) &&
197 !ieee80211_is_nullfunc(hdr->frame_control))
198 /*
199 * When software scanning only nullfunc frames (to notify
200 * the sleep state to the AP) and probe requests (for the
201 * active scan) are allowed, all other frames should not be
202 * sent and we should not get here, but if we do
203 * nonetheless, drop them to avoid sending them
204 * off-channel. See the link below and
205 * ieee80211_start_scan() for more.
206 *
207 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
208 */
209 return TX_DROP;
210
211 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
212 return TX_CONTINUE;
213
214 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
215 return TX_CONTINUE;
216
217 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
218
219 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
220 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
221 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
222 ieee80211_is_data(hdr->frame_control))) {
223 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
224 printk(KERN_DEBUG "%s: dropped data frame to not "
225 "associated station %pM\n",
226 tx->dev->name, hdr->addr1);
227 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
228 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
229 return TX_DROP;
230 }
231 } else {
232 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
233 tx->local->num_sta == 0 &&
234 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
235 /*
236 * No associated STAs - no need to send multicast
237 * frames.
238 */
239 return TX_DROP;
240 }
241 return TX_CONTINUE;
242 }
243
244 return TX_CONTINUE;
245 }
246
247 /* This function is called whenever the AP is about to exceed the maximum limit
248 * of buffered frames for power saving STAs. This situation should not really
249 * happen often during normal operation, so dropping the oldest buffered packet
250 * from each queue should be OK to make some room for new frames. */
251 static void purge_old_ps_buffers(struct ieee80211_local *local)
252 {
253 int total = 0, purged = 0;
254 struct sk_buff *skb;
255 struct ieee80211_sub_if_data *sdata;
256 struct sta_info *sta;
257
258 /*
259 * virtual interfaces are protected by RCU
260 */
261 rcu_read_lock();
262
263 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
264 struct ieee80211_if_ap *ap;
265 if (sdata->vif.type != NL80211_IFTYPE_AP)
266 continue;
267 ap = &sdata->u.ap;
268 skb = skb_dequeue(&ap->ps_bc_buf);
269 if (skb) {
270 purged++;
271 dev_kfree_skb(skb);
272 }
273 total += skb_queue_len(&ap->ps_bc_buf);
274 }
275
276 list_for_each_entry_rcu(sta, &local->sta_list, list) {
277 skb = skb_dequeue(&sta->ps_tx_buf);
278 if (skb) {
279 purged++;
280 dev_kfree_skb(skb);
281 }
282 total += skb_queue_len(&sta->ps_tx_buf);
283 }
284
285 rcu_read_unlock();
286
287 local->total_ps_buffered = total;
288 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
289 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
290 wiphy_name(local->hw.wiphy), purged);
291 #endif
292 }
293
294 static ieee80211_tx_result
295 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
296 {
297 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
298 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
299
300 /*
301 * broadcast/multicast frame
302 *
303 * If any of the associated stations is in power save mode,
304 * the frame is buffered to be sent after DTIM beacon frame.
305 * This is done either by the hardware or us.
306 */
307
308 /* powersaving STAs only in AP/VLAN mode */
309 if (!tx->sdata->bss)
310 return TX_CONTINUE;
311
312 /* no buffering for ordered frames */
313 if (ieee80211_has_order(hdr->frame_control))
314 return TX_CONTINUE;
315
316 /* no stations in PS mode */
317 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
318 return TX_CONTINUE;
319
320 /* buffered in mac80211 */
321 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) {
322 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
323 purge_old_ps_buffers(tx->local);
324 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
325 AP_MAX_BC_BUFFER) {
326 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
327 if (net_ratelimit()) {
328 printk(KERN_DEBUG "%s: BC TX buffer full - "
329 "dropping the oldest frame\n",
330 tx->dev->name);
331 }
332 #endif
333 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
334 } else
335 tx->local->total_ps_buffered++;
336 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
337 return TX_QUEUED;
338 }
339
340 /* buffered in hardware */
341 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
342
343 return TX_CONTINUE;
344 }
345
346 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
347 struct sk_buff *skb)
348 {
349 if (!ieee80211_is_mgmt(fc))
350 return 0;
351
352 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
353 return 0;
354
355 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
356 skb->data))
357 return 0;
358
359 return 1;
360 }
361
362 static ieee80211_tx_result
363 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
364 {
365 struct sta_info *sta = tx->sta;
366 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
367 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
368 u32 staflags;
369
370 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control)))
371 return TX_CONTINUE;
372
373 staflags = get_sta_flags(sta);
374
375 if (unlikely((staflags & WLAN_STA_PS) &&
376 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
377 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
378 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
379 "before %d)\n",
380 sta->sta.addr, sta->sta.aid,
381 skb_queue_len(&sta->ps_tx_buf));
382 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
383 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
384 purge_old_ps_buffers(tx->local);
385 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
386 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
387 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
388 if (net_ratelimit()) {
389 printk(KERN_DEBUG "%s: STA %pM TX "
390 "buffer full - dropping oldest frame\n",
391 tx->dev->name, sta->sta.addr);
392 }
393 #endif
394 dev_kfree_skb(old);
395 } else
396 tx->local->total_ps_buffered++;
397
398 /* Queue frame to be sent after STA sends an PS Poll frame */
399 if (skb_queue_empty(&sta->ps_tx_buf))
400 sta_info_set_tim_bit(sta);
401
402 info->control.jiffies = jiffies;
403 info->control.vif = &tx->sdata->vif;
404 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
405 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
406 return TX_QUEUED;
407 }
408 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
409 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) {
410 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
411 "set -> send frame\n", tx->dev->name,
412 sta->sta.addr);
413 }
414 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
415
416 return TX_CONTINUE;
417 }
418
419 static ieee80211_tx_result debug_noinline
420 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
421 {
422 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
423 return TX_CONTINUE;
424
425 if (tx->flags & IEEE80211_TX_UNICAST)
426 return ieee80211_tx_h_unicast_ps_buf(tx);
427 else
428 return ieee80211_tx_h_multicast_ps_buf(tx);
429 }
430
431 static ieee80211_tx_result debug_noinline
432 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
433 {
434 struct ieee80211_key *key = NULL;
435 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
436 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
437
438 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
439 tx->key = NULL;
440 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
441 tx->key = key;
442 else if (ieee80211_is_mgmt(hdr->frame_control) &&
443 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
444 tx->key = key;
445 else if ((key = rcu_dereference(tx->sdata->default_key)))
446 tx->key = key;
447 else if (tx->sdata->drop_unencrypted &&
448 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
449 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
450 (!ieee80211_is_robust_mgmt_frame(hdr) ||
451 (ieee80211_is_action(hdr->frame_control) &&
452 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
453 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
454 return TX_DROP;
455 } else
456 tx->key = NULL;
457
458 if (tx->key) {
459 tx->key->tx_rx_count++;
460 /* TODO: add threshold stuff again */
461
462 switch (tx->key->conf.alg) {
463 case ALG_WEP:
464 if (ieee80211_is_auth(hdr->frame_control))
465 break;
466 case ALG_TKIP:
467 if (!ieee80211_is_data_present(hdr->frame_control))
468 tx->key = NULL;
469 break;
470 case ALG_CCMP:
471 if (!ieee80211_is_data_present(hdr->frame_control) &&
472 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
473 tx->skb))
474 tx->key = NULL;
475 break;
476 case ALG_AES_CMAC:
477 if (!ieee80211_is_mgmt(hdr->frame_control))
478 tx->key = NULL;
479 break;
480 }
481 }
482
483 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
484 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
485
486 return TX_CONTINUE;
487 }
488
489 static ieee80211_tx_result debug_noinline
490 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
491 {
492 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
493 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
494 struct ieee80211_supported_band *sband;
495 struct ieee80211_rate *rate;
496 int i, len;
497 bool inval = false, rts = false, short_preamble = false;
498 struct ieee80211_tx_rate_control txrc;
499 u32 sta_flags;
500
501 memset(&txrc, 0, sizeof(txrc));
502
503 sband = tx->local->hw.wiphy->bands[tx->channel->band];
504
505 len = min_t(int, tx->skb->len + FCS_LEN,
506 tx->local->hw.wiphy->frag_threshold);
507
508 /* set up the tx rate control struct we give the RC algo */
509 txrc.hw = local_to_hw(tx->local);
510 txrc.sband = sband;
511 txrc.bss_conf = &tx->sdata->vif.bss_conf;
512 txrc.skb = tx->skb;
513 txrc.reported_rate.idx = -1;
514 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx;
515
516 /* set up RTS protection if desired */
517 if (len > tx->local->hw.wiphy->rts_threshold) {
518 txrc.rts = rts = true;
519 }
520
521 /*
522 * Use short preamble if the BSS can handle it, but not for
523 * management frames unless we know the receiver can handle
524 * that -- the management frame might be to a station that
525 * just wants a probe response.
526 */
527 if (tx->sdata->vif.bss_conf.use_short_preamble &&
528 (ieee80211_is_data(hdr->frame_control) ||
529 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
530 txrc.short_preamble = short_preamble = true;
531
532 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
533
534 /*
535 * Lets not bother rate control if we're associated and cannot
536 * talk to the sta. This should not happen.
537 */
538 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
539 (sta_flags & WLAN_STA_ASSOC) &&
540 !rate_usable_index_exists(sband, &tx->sta->sta),
541 "%s: Dropped data frame as no usable bitrate found while "
542 "scanning and associated. Target station: "
543 "%pM on %d GHz band\n",
544 tx->dev->name, hdr->addr1,
545 tx->channel->band ? 5 : 2))
546 return TX_DROP;
547
548 /*
549 * If we're associated with the sta at this point we know we can at
550 * least send the frame at the lowest bit rate.
551 */
552 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
553
554 if (unlikely(info->control.rates[0].idx < 0))
555 return TX_DROP;
556
557 if (txrc.reported_rate.idx < 0)
558 txrc.reported_rate = info->control.rates[0];
559
560 if (tx->sta)
561 tx->sta->last_tx_rate = txrc.reported_rate;
562
563 if (unlikely(!info->control.rates[0].count))
564 info->control.rates[0].count = 1;
565
566 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
567 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
568 info->control.rates[0].count = 1;
569
570 if (is_multicast_ether_addr(hdr->addr1)) {
571 /*
572 * XXX: verify the rate is in the basic rateset
573 */
574 return TX_CONTINUE;
575 }
576
577 /*
578 * set up the RTS/CTS rate as the fastest basic rate
579 * that is not faster than the data rate
580 *
581 * XXX: Should this check all retry rates?
582 */
583 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
584 s8 baserate = 0;
585
586 rate = &sband->bitrates[info->control.rates[0].idx];
587
588 for (i = 0; i < sband->n_bitrates; i++) {
589 /* must be a basic rate */
590 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
591 continue;
592 /* must not be faster than the data rate */
593 if (sband->bitrates[i].bitrate > rate->bitrate)
594 continue;
595 /* maximum */
596 if (sband->bitrates[baserate].bitrate <
597 sband->bitrates[i].bitrate)
598 baserate = i;
599 }
600
601 info->control.rts_cts_rate_idx = baserate;
602 }
603
604 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
605 /*
606 * make sure there's no valid rate following
607 * an invalid one, just in case drivers don't
608 * take the API seriously to stop at -1.
609 */
610 if (inval) {
611 info->control.rates[i].idx = -1;
612 continue;
613 }
614 if (info->control.rates[i].idx < 0) {
615 inval = true;
616 continue;
617 }
618
619 /*
620 * For now assume MCS is already set up correctly, this
621 * needs to be fixed.
622 */
623 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
624 WARN_ON(info->control.rates[i].idx > 76);
625 continue;
626 }
627
628 /* set up RTS protection if desired */
629 if (rts)
630 info->control.rates[i].flags |=
631 IEEE80211_TX_RC_USE_RTS_CTS;
632
633 /* RC is busted */
634 if (WARN_ON_ONCE(info->control.rates[i].idx >=
635 sband->n_bitrates)) {
636 info->control.rates[i].idx = -1;
637 continue;
638 }
639
640 rate = &sband->bitrates[info->control.rates[i].idx];
641
642 /* set up short preamble */
643 if (short_preamble &&
644 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
645 info->control.rates[i].flags |=
646 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
647
648 /* set up G protection */
649 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
650 rate->flags & IEEE80211_RATE_ERP_G)
651 info->control.rates[i].flags |=
652 IEEE80211_TX_RC_USE_CTS_PROTECT;
653 }
654
655 return TX_CONTINUE;
656 }
657
658 static ieee80211_tx_result debug_noinline
659 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
660 {
661 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
662
663 if (tx->sta)
664 info->control.sta = &tx->sta->sta;
665
666 return TX_CONTINUE;
667 }
668
669 static ieee80211_tx_result debug_noinline
670 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
671 {
672 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
673 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
674 u16 *seq;
675 u8 *qc;
676 int tid;
677
678 /*
679 * Packet injection may want to control the sequence
680 * number, if we have no matching interface then we
681 * neither assign one ourselves nor ask the driver to.
682 */
683 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
684 return TX_CONTINUE;
685
686 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
687 return TX_CONTINUE;
688
689 if (ieee80211_hdrlen(hdr->frame_control) < 24)
690 return TX_CONTINUE;
691
692 /*
693 * Anything but QoS data that has a sequence number field
694 * (is long enough) gets a sequence number from the global
695 * counter.
696 */
697 if (!ieee80211_is_data_qos(hdr->frame_control)) {
698 /* driver should assign sequence number */
699 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
700 /* for pure STA mode without beacons, we can do it */
701 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
702 tx->sdata->sequence_number += 0x10;
703 tx->sdata->sequence_number &= IEEE80211_SCTL_SEQ;
704 return TX_CONTINUE;
705 }
706
707 /*
708 * This should be true for injected/management frames only, for
709 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
710 * above since they are not QoS-data frames.
711 */
712 if (!tx->sta)
713 return TX_CONTINUE;
714
715 /* include per-STA, per-TID sequence counter */
716
717 qc = ieee80211_get_qos_ctl(hdr);
718 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
719 seq = &tx->sta->tid_seq[tid];
720
721 hdr->seq_ctrl = cpu_to_le16(*seq);
722
723 /* Increase the sequence number. */
724 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
725
726 return TX_CONTINUE;
727 }
728
729 static int ieee80211_fragment(struct ieee80211_local *local,
730 struct sk_buff *skb, int hdrlen,
731 int frag_threshold)
732 {
733 struct sk_buff *tail = skb, *tmp;
734 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
735 int pos = hdrlen + per_fragm;
736 int rem = skb->len - hdrlen - per_fragm;
737
738 if (WARN_ON(rem < 0))
739 return -EINVAL;
740
741 while (rem) {
742 int fraglen = per_fragm;
743
744 if (fraglen > rem)
745 fraglen = rem;
746 rem -= fraglen;
747 tmp = dev_alloc_skb(local->tx_headroom +
748 frag_threshold +
749 IEEE80211_ENCRYPT_HEADROOM +
750 IEEE80211_ENCRYPT_TAILROOM);
751 if (!tmp)
752 return -ENOMEM;
753 tail->next = tmp;
754 tail = tmp;
755 skb_reserve(tmp, local->tx_headroom +
756 IEEE80211_ENCRYPT_HEADROOM);
757 /* copy control information */
758 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
759 skb_copy_queue_mapping(tmp, skb);
760 tmp->priority = skb->priority;
761 tmp->dev = skb->dev;
762
763 /* copy header and data */
764 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
765 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
766
767 pos += fraglen;
768 }
769
770 skb->len = hdrlen + per_fragm;
771 return 0;
772 }
773
774 static ieee80211_tx_result debug_noinline
775 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
776 {
777 struct sk_buff *skb = tx->skb;
778 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
779 struct ieee80211_hdr *hdr = (void *)skb->data;
780 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
781 int hdrlen;
782 int fragnum;
783
784 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
785 return TX_CONTINUE;
786
787 /*
788 * Warn when submitting a fragmented A-MPDU frame and drop it.
789 * This scenario is handled in ieee80211_tx_prepare but extra
790 * caution taken here as fragmented ampdu may cause Tx stop.
791 */
792 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
793 return TX_DROP;
794
795 hdrlen = ieee80211_hdrlen(hdr->frame_control);
796
797 /* internal error, why is TX_FRAGMENTED set? */
798 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
799 return TX_DROP;
800
801 /*
802 * Now fragment the frame. This will allocate all the fragments and
803 * chain them (using skb as the first fragment) to skb->next.
804 * During transmission, we will remove the successfully transmitted
805 * fragments from this list. When the low-level driver rejects one
806 * of the fragments then we will simply pretend to accept the skb
807 * but store it away as pending.
808 */
809 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
810 return TX_DROP;
811
812 /* update duration/seq/flags of fragments */
813 fragnum = 0;
814 do {
815 int next_len;
816 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
817
818 hdr = (void *)skb->data;
819 info = IEEE80211_SKB_CB(skb);
820
821 if (skb->next) {
822 hdr->frame_control |= morefrags;
823 next_len = skb->next->len;
824 /*
825 * No multi-rate retries for fragmented frames, that
826 * would completely throw off the NAV at other STAs.
827 */
828 info->control.rates[1].idx = -1;
829 info->control.rates[2].idx = -1;
830 info->control.rates[3].idx = -1;
831 info->control.rates[4].idx = -1;
832 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
833 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
834 } else {
835 hdr->frame_control &= ~morefrags;
836 next_len = 0;
837 }
838 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
839 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
840 fragnum++;
841 } while ((skb = skb->next));
842
843 return TX_CONTINUE;
844 }
845
846 static ieee80211_tx_result debug_noinline
847 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
848 {
849 if (!tx->key)
850 return TX_CONTINUE;
851
852 switch (tx->key->conf.alg) {
853 case ALG_WEP:
854 return ieee80211_crypto_wep_encrypt(tx);
855 case ALG_TKIP:
856 return ieee80211_crypto_tkip_encrypt(tx);
857 case ALG_CCMP:
858 return ieee80211_crypto_ccmp_encrypt(tx);
859 case ALG_AES_CMAC:
860 return ieee80211_crypto_aes_cmac_encrypt(tx);
861 }
862
863 /* not reached */
864 WARN_ON(1);
865 return TX_DROP;
866 }
867
868 static ieee80211_tx_result debug_noinline
869 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
870 {
871 struct sk_buff *skb = tx->skb;
872 struct ieee80211_hdr *hdr;
873 int next_len;
874 bool group_addr;
875
876 do {
877 hdr = (void *) skb->data;
878 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
879 break; /* must not overwrite AID */
880 next_len = skb->next ? skb->next->len : 0;
881 group_addr = is_multicast_ether_addr(hdr->addr1);
882
883 hdr->duration_id =
884 ieee80211_duration(tx, group_addr, next_len);
885 } while ((skb = skb->next));
886
887 return TX_CONTINUE;
888 }
889
890 static ieee80211_tx_result debug_noinline
891 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
892 {
893 struct sk_buff *skb = tx->skb;
894
895 if (!tx->sta)
896 return TX_CONTINUE;
897
898 tx->sta->tx_packets++;
899 do {
900 tx->sta->tx_fragments++;
901 tx->sta->tx_bytes += skb->len;
902 } while ((skb = skb->next));
903
904 return TX_CONTINUE;
905 }
906
907 /* actual transmit path */
908
909 /*
910 * deal with packet injection down monitor interface
911 * with Radiotap Header -- only called for monitor mode interface
912 */
913 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
914 struct sk_buff *skb)
915 {
916 /*
917 * this is the moment to interpret and discard the radiotap header that
918 * must be at the start of the packet injected in Monitor mode
919 *
920 * Need to take some care with endian-ness since radiotap
921 * args are little-endian
922 */
923
924 struct ieee80211_radiotap_iterator iterator;
925 struct ieee80211_radiotap_header *rthdr =
926 (struct ieee80211_radiotap_header *) skb->data;
927 struct ieee80211_supported_band *sband;
928 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
929 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
930
931 sband = tx->local->hw.wiphy->bands[tx->channel->band];
932
933 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
934 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
935
936 /*
937 * for every radiotap entry that is present
938 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
939 * entries present, or -EINVAL on error)
940 */
941
942 while (!ret) {
943 ret = ieee80211_radiotap_iterator_next(&iterator);
944
945 if (ret)
946 continue;
947
948 /* see if this argument is something we can use */
949 switch (iterator.this_arg_index) {
950 /*
951 * You must take care when dereferencing iterator.this_arg
952 * for multibyte types... the pointer is not aligned. Use
953 * get_unaligned((type *)iterator.this_arg) to dereference
954 * iterator.this_arg for type "type" safely on all arches.
955 */
956 case IEEE80211_RADIOTAP_FLAGS:
957 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
958 /*
959 * this indicates that the skb we have been
960 * handed has the 32-bit FCS CRC at the end...
961 * we should react to that by snipping it off
962 * because it will be recomputed and added
963 * on transmission
964 */
965 if (skb->len < (iterator.max_length + FCS_LEN))
966 return false;
967
968 skb_trim(skb, skb->len - FCS_LEN);
969 }
970 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
971 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
972 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
973 tx->flags |= IEEE80211_TX_FRAGMENTED;
974 break;
975
976 /*
977 * Please update the file
978 * Documentation/networking/mac80211-injection.txt
979 * when parsing new fields here.
980 */
981
982 default:
983 break;
984 }
985 }
986
987 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
988 return false;
989
990 /*
991 * remove the radiotap header
992 * iterator->max_length was sanity-checked against
993 * skb->len by iterator init
994 */
995 skb_pull(skb, iterator.max_length);
996
997 return true;
998 }
999
1000 /*
1001 * initialises @tx
1002 */
1003 static ieee80211_tx_result
1004 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1005 struct ieee80211_tx_data *tx,
1006 struct sk_buff *skb)
1007 {
1008 struct ieee80211_local *local = sdata->local;
1009 struct ieee80211_hdr *hdr;
1010 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1011 int hdrlen, tid;
1012 u8 *qc, *state;
1013 bool queued = false;
1014
1015 memset(tx, 0, sizeof(*tx));
1016 tx->skb = skb;
1017 tx->dev = sdata->dev; /* use original interface */
1018 tx->local = local;
1019 tx->sdata = sdata;
1020 tx->channel = local->hw.conf.channel;
1021 /*
1022 * Set this flag (used below to indicate "automatic fragmentation"),
1023 * it will be cleared/left by radiotap as desired.
1024 */
1025 tx->flags |= IEEE80211_TX_FRAGMENTED;
1026
1027 /* process and remove the injection radiotap header */
1028 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
1029 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1030 return TX_DROP;
1031
1032 /*
1033 * __ieee80211_parse_tx_radiotap has now removed
1034 * the radiotap header that was present and pre-filled
1035 * 'tx' with tx control information.
1036 */
1037 }
1038
1039 /*
1040 * If this flag is set to true anywhere, and we get here,
1041 * we are doing the needed processing, so remove the flag
1042 * now.
1043 */
1044 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1045
1046 hdr = (struct ieee80211_hdr *) skb->data;
1047
1048 tx->sta = sta_info_get(local, hdr->addr1);
1049
1050 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1051 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1052 unsigned long flags;
1053 struct tid_ampdu_tx *tid_tx;
1054
1055 qc = ieee80211_get_qos_ctl(hdr);
1056 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1057
1058 spin_lock_irqsave(&tx->sta->lock, flags);
1059 /*
1060 * XXX: This spinlock could be fairly expensive, but see the
1061 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1062 * One way to solve this would be to do something RCU-like
1063 * for managing the tid_tx struct and using atomic bitops
1064 * for the actual state -- by introducing an actual
1065 * 'operational' bit that would be possible. It would
1066 * require changing ieee80211_agg_tx_operational() to
1067 * set that bit, and changing the way tid_tx is managed
1068 * everywhere, including races between that bit and
1069 * tid_tx going away (tid_tx being added can be easily
1070 * committed to memory before the 'operational' bit).
1071 */
1072 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1073 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1074 if (*state == HT_AGG_STATE_OPERATIONAL) {
1075 info->flags |= IEEE80211_TX_CTL_AMPDU;
1076 } else if (*state != HT_AGG_STATE_IDLE) {
1077 /* in progress */
1078 queued = true;
1079 info->control.vif = &sdata->vif;
1080 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1081 __skb_queue_tail(&tid_tx->pending, skb);
1082 }
1083 spin_unlock_irqrestore(&tx->sta->lock, flags);
1084
1085 if (unlikely(queued))
1086 return TX_QUEUED;
1087 }
1088
1089 if (is_multicast_ether_addr(hdr->addr1)) {
1090 tx->flags &= ~IEEE80211_TX_UNICAST;
1091 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1092 } else {
1093 tx->flags |= IEEE80211_TX_UNICAST;
1094 if (unlikely(local->wifi_wme_noack_test))
1095 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1096 else
1097 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1098 }
1099
1100 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1101 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1102 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1103 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1104 tx->flags |= IEEE80211_TX_FRAGMENTED;
1105 else
1106 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1107 }
1108
1109 if (!tx->sta)
1110 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1111 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1112 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1113
1114 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1115 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1116 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1117 tx->ethertype = (pos[0] << 8) | pos[1];
1118 }
1119 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1120
1121 return TX_CONTINUE;
1122 }
1123
1124 static int __ieee80211_tx(struct ieee80211_local *local,
1125 struct sk_buff **skbp,
1126 struct sta_info *sta,
1127 bool txpending)
1128 {
1129 struct sk_buff *skb = *skbp, *next;
1130 struct ieee80211_tx_info *info;
1131 struct ieee80211_sub_if_data *sdata;
1132 unsigned long flags;
1133 int ret, len;
1134 bool fragm = false;
1135
1136 while (skb) {
1137 int q = skb_get_queue_mapping(skb);
1138
1139 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1140 ret = IEEE80211_TX_OK;
1141 if (local->queue_stop_reasons[q] ||
1142 (!txpending && !skb_queue_empty(&local->pending[q])))
1143 ret = IEEE80211_TX_PENDING;
1144 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1145 if (ret != IEEE80211_TX_OK)
1146 return ret;
1147
1148 info = IEEE80211_SKB_CB(skb);
1149
1150 if (fragm)
1151 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1152 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1153
1154 next = skb->next;
1155 len = skb->len;
1156
1157 sdata = vif_to_sdata(info->control.vif);
1158
1159 switch (sdata->vif.type) {
1160 case NL80211_IFTYPE_MONITOR:
1161 info->control.vif = NULL;
1162 break;
1163 case NL80211_IFTYPE_AP_VLAN:
1164 info->control.vif = &container_of(sdata->bss,
1165 struct ieee80211_sub_if_data, u.ap)->vif;
1166 break;
1167 default:
1168 /* keep */
1169 break;
1170 }
1171
1172 ret = drv_tx(local, skb);
1173 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1174 dev_kfree_skb(skb);
1175 ret = NETDEV_TX_OK;
1176 }
1177 if (ret != NETDEV_TX_OK) {
1178 info->control.vif = &sdata->vif;
1179 return IEEE80211_TX_AGAIN;
1180 }
1181
1182 *skbp = skb = next;
1183 ieee80211_led_tx(local, 1);
1184 fragm = true;
1185 }
1186
1187 return IEEE80211_TX_OK;
1188 }
1189
1190 /*
1191 * Invoke TX handlers, return 0 on success and non-zero if the
1192 * frame was dropped or queued.
1193 */
1194 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1195 {
1196 struct sk_buff *skb = tx->skb;
1197 ieee80211_tx_result res = TX_DROP;
1198
1199 #define CALL_TXH(txh) \
1200 res = txh(tx); \
1201 if (res != TX_CONTINUE) \
1202 goto txh_done;
1203
1204 CALL_TXH(ieee80211_tx_h_check_assoc)
1205 CALL_TXH(ieee80211_tx_h_ps_buf)
1206 CALL_TXH(ieee80211_tx_h_select_key)
1207 CALL_TXH(ieee80211_tx_h_michael_mic_add)
1208 CALL_TXH(ieee80211_tx_h_rate_ctrl)
1209 CALL_TXH(ieee80211_tx_h_misc)
1210 CALL_TXH(ieee80211_tx_h_sequence)
1211 CALL_TXH(ieee80211_tx_h_fragment)
1212 /* handlers after fragment must be aware of tx info fragmentation! */
1213 CALL_TXH(ieee80211_tx_h_encrypt)
1214 CALL_TXH(ieee80211_tx_h_calculate_duration)
1215 CALL_TXH(ieee80211_tx_h_stats)
1216 #undef CALL_TXH
1217
1218 txh_done:
1219 if (unlikely(res == TX_DROP)) {
1220 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1221 while (skb) {
1222 struct sk_buff *next;
1223
1224 next = skb->next;
1225 dev_kfree_skb(skb);
1226 skb = next;
1227 }
1228 return -1;
1229 } else if (unlikely(res == TX_QUEUED)) {
1230 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1231 return -1;
1232 }
1233
1234 return 0;
1235 }
1236
1237 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1238 struct sk_buff *skb, bool txpending)
1239 {
1240 struct ieee80211_local *local = sdata->local;
1241 struct ieee80211_tx_data tx;
1242 ieee80211_tx_result res_prepare;
1243 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1244 struct sk_buff *next;
1245 unsigned long flags;
1246 int ret, retries;
1247 u16 queue;
1248
1249 queue = skb_get_queue_mapping(skb);
1250
1251 if (unlikely(skb->len < 10)) {
1252 dev_kfree_skb(skb);
1253 return;
1254 }
1255
1256 rcu_read_lock();
1257
1258 /* initialises tx */
1259 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1260
1261 if (unlikely(res_prepare == TX_DROP)) {
1262 dev_kfree_skb(skb);
1263 rcu_read_unlock();
1264 return;
1265 } else if (unlikely(res_prepare == TX_QUEUED)) {
1266 rcu_read_unlock();
1267 return;
1268 }
1269
1270 tx.channel = local->hw.conf.channel;
1271 info->band = tx.channel->band;
1272
1273 if (invoke_tx_handlers(&tx))
1274 goto out;
1275
1276 retries = 0;
1277 retry:
1278 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1279 switch (ret) {
1280 case IEEE80211_TX_OK:
1281 break;
1282 case IEEE80211_TX_AGAIN:
1283 /*
1284 * Since there are no fragmented frames on A-MPDU
1285 * queues, there's no reason for a driver to reject
1286 * a frame there, warn and drop it.
1287 */
1288 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1289 goto drop;
1290 /* fall through */
1291 case IEEE80211_TX_PENDING:
1292 skb = tx.skb;
1293
1294 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1295
1296 if (local->queue_stop_reasons[queue] ||
1297 !skb_queue_empty(&local->pending[queue])) {
1298 /*
1299 * if queue is stopped, queue up frames for later
1300 * transmission from the tasklet
1301 */
1302 do {
1303 next = skb->next;
1304 skb->next = NULL;
1305 if (unlikely(txpending))
1306 __skb_queue_head(&local->pending[queue],
1307 skb);
1308 else
1309 __skb_queue_tail(&local->pending[queue],
1310 skb);
1311 } while ((skb = next));
1312
1313 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1314 flags);
1315 } else {
1316 /*
1317 * otherwise retry, but this is a race condition or
1318 * a driver bug (which we warn about if it persists)
1319 */
1320 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1321 flags);
1322
1323 retries++;
1324 if (WARN(retries > 10, "tx refused but queue active\n"))
1325 goto drop;
1326 goto retry;
1327 }
1328 }
1329 out:
1330 rcu_read_unlock();
1331 return;
1332
1333 drop:
1334 rcu_read_unlock();
1335
1336 skb = tx.skb;
1337 while (skb) {
1338 next = skb->next;
1339 dev_kfree_skb(skb);
1340 skb = next;
1341 }
1342 }
1343
1344 /* device xmit handlers */
1345
1346 static int ieee80211_skb_resize(struct ieee80211_local *local,
1347 struct sk_buff *skb,
1348 int head_need, bool may_encrypt)
1349 {
1350 int tail_need = 0;
1351
1352 /*
1353 * This could be optimised, devices that do full hardware
1354 * crypto (including TKIP MMIC) need no tailroom... But we
1355 * have no drivers for such devices currently.
1356 */
1357 if (may_encrypt) {
1358 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1359 tail_need -= skb_tailroom(skb);
1360 tail_need = max_t(int, tail_need, 0);
1361 }
1362
1363 if (head_need || tail_need) {
1364 /* Sorry. Can't account for this any more */
1365 skb_orphan(skb);
1366 }
1367
1368 if (skb_header_cloned(skb))
1369 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1370 else
1371 I802_DEBUG_INC(local->tx_expand_skb_head);
1372
1373 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1374 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1375 wiphy_name(local->hw.wiphy));
1376 return -ENOMEM;
1377 }
1378
1379 /* update truesize too */
1380 skb->truesize += head_need + tail_need;
1381
1382 return 0;
1383 }
1384
1385 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1386 struct sk_buff *skb)
1387 {
1388 struct ieee80211_local *local = sdata->local;
1389 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1390 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1391 struct ieee80211_sub_if_data *tmp_sdata;
1392 int headroom;
1393 bool may_encrypt;
1394
1395 dev_hold(sdata->dev);
1396
1397 if ((local->hw.flags & IEEE80211_HW_PS_NULLFUNC_STACK) &&
1398 local->hw.conf.dynamic_ps_timeout > 0 &&
1399 !(local->scanning) && local->ps_sdata) {
1400 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
1401 ieee80211_stop_queues_by_reason(&local->hw,
1402 IEEE80211_QUEUE_STOP_REASON_PS);
1403 queue_work(local->hw.workqueue,
1404 &local->dynamic_ps_disable_work);
1405 }
1406
1407 mod_timer(&local->dynamic_ps_timer, jiffies +
1408 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1409 }
1410
1411 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1412
1413 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1414 ieee80211_is_data(hdr->frame_control)) {
1415 if (is_multicast_ether_addr(hdr->addr3))
1416 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN);
1417 else
1418 if (mesh_nexthop_lookup(skb, sdata)) {
1419 dev_put(sdata->dev);
1420 return;
1421 }
1422 } else if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1423 int hdrlen;
1424 u16 len_rthdr;
1425
1426 info->flags |= IEEE80211_TX_CTL_INJECTED;
1427
1428 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1429 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1430 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1431
1432 /* check the header is complete in the frame */
1433 if (likely(skb->len >= len_rthdr + hdrlen)) {
1434 /*
1435 * We process outgoing injected frames that have a
1436 * local address we handle as though they are our
1437 * own frames.
1438 * This code here isn't entirely correct, the local
1439 * MAC address is not necessarily enough to find
1440 * the interface to use; for that proper VLAN/WDS
1441 * support we will need a different mechanism.
1442 */
1443
1444 rcu_read_lock();
1445 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1446 list) {
1447 if (!netif_running(tmp_sdata->dev))
1448 continue;
1449 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1450 continue;
1451 if (compare_ether_addr(tmp_sdata->dev->dev_addr,
1452 hdr->addr2)) {
1453 dev_hold(tmp_sdata->dev);
1454 dev_put(sdata->dev);
1455 sdata = tmp_sdata;
1456 break;
1457 }
1458 }
1459 rcu_read_unlock();
1460 }
1461 }
1462
1463 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1464
1465 headroom = local->tx_headroom;
1466 if (may_encrypt)
1467 headroom += IEEE80211_ENCRYPT_HEADROOM;
1468 headroom -= skb_headroom(skb);
1469 headroom = max_t(int, 0, headroom);
1470
1471 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1472 dev_kfree_skb(skb);
1473 dev_put(sdata->dev);
1474 return;
1475 }
1476
1477 info->control.vif = &sdata->vif;
1478
1479 ieee80211_select_queue(local, skb);
1480 ieee80211_tx(sdata, skb, false);
1481 dev_put(sdata->dev);
1482 }
1483
1484 int ieee80211_monitor_start_xmit(struct sk_buff *skb,
1485 struct net_device *dev)
1486 {
1487 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1488 struct ieee80211_channel *chan = local->hw.conf.channel;
1489 struct ieee80211_radiotap_header *prthdr =
1490 (struct ieee80211_radiotap_header *)skb->data;
1491 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1492 u16 len_rthdr;
1493
1494 /*
1495 * Frame injection is not allowed if beaconing is not allowed
1496 * or if we need radar detection. Beaconing is usually not allowed when
1497 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1498 * Passive scan is also used in world regulatory domains where
1499 * your country is not known and as such it should be treated as
1500 * NO TX unless the channel is explicitly allowed in which case
1501 * your current regulatory domain would not have the passive scan
1502 * flag.
1503 *
1504 * Since AP mode uses monitor interfaces to inject/TX management
1505 * frames we can make AP mode the exception to this rule once it
1506 * supports radar detection as its implementation can deal with
1507 * radar detection by itself. We can do that later by adding a
1508 * monitor flag interfaces used for AP support.
1509 */
1510 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1511 IEEE80211_CHAN_PASSIVE_SCAN)))
1512 goto fail;
1513
1514 /* check for not even having the fixed radiotap header part */
1515 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1516 goto fail; /* too short to be possibly valid */
1517
1518 /* is it a header version we can trust to find length from? */
1519 if (unlikely(prthdr->it_version))
1520 goto fail; /* only version 0 is supported */
1521
1522 /* then there must be a radiotap header with a length we can use */
1523 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1524
1525 /* does the skb contain enough to deliver on the alleged length? */
1526 if (unlikely(skb->len < len_rthdr))
1527 goto fail; /* skb too short for claimed rt header extent */
1528
1529 /*
1530 * fix up the pointers accounting for the radiotap
1531 * header still being in there. We are being given
1532 * a precooked IEEE80211 header so no need for
1533 * normal processing
1534 */
1535 skb_set_mac_header(skb, len_rthdr);
1536 /*
1537 * these are just fixed to the end of the rt area since we
1538 * don't have any better information and at this point, nobody cares
1539 */
1540 skb_set_network_header(skb, len_rthdr);
1541 skb_set_transport_header(skb, len_rthdr);
1542
1543 memset(info, 0, sizeof(*info));
1544
1545 /* pass the radiotap header up to xmit */
1546 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1547 return NETDEV_TX_OK;
1548
1549 fail:
1550 dev_kfree_skb(skb);
1551 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1552 }
1553
1554 /**
1555 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1556 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1557 * @skb: packet to be sent
1558 * @dev: incoming interface
1559 *
1560 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1561 * not be freed, and caller is responsible for either retrying later or freeing
1562 * skb).
1563 *
1564 * This function takes in an Ethernet header and encapsulates it with suitable
1565 * IEEE 802.11 header based on which interface the packet is coming in. The
1566 * encapsulated packet will then be passed to master interface, wlan#.11, for
1567 * transmission (through low-level driver).
1568 */
1569 int ieee80211_subif_start_xmit(struct sk_buff *skb,
1570 struct net_device *dev)
1571 {
1572 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1573 struct ieee80211_local *local = sdata->local;
1574 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1575 int ret = NETDEV_TX_BUSY, head_need;
1576 u16 ethertype, hdrlen, meshhdrlen = 0;
1577 __le16 fc;
1578 struct ieee80211_hdr hdr;
1579 struct ieee80211s_hdr mesh_hdr;
1580 const u8 *encaps_data;
1581 int encaps_len, skip_header_bytes;
1582 int nh_pos, h_pos;
1583 struct sta_info *sta;
1584 u32 sta_flags = 0;
1585
1586 if (unlikely(skb->len < ETH_HLEN)) {
1587 ret = NETDEV_TX_OK;
1588 goto fail;
1589 }
1590
1591 nh_pos = skb_network_header(skb) - skb->data;
1592 h_pos = skb_transport_header(skb) - skb->data;
1593
1594 /* convert Ethernet header to proper 802.11 header (based on
1595 * operation mode) */
1596 ethertype = (skb->data[12] << 8) | skb->data[13];
1597 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1598
1599 switch (sdata->vif.type) {
1600 case NL80211_IFTYPE_AP:
1601 case NL80211_IFTYPE_AP_VLAN:
1602 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1603 /* DA BSSID SA */
1604 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1605 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1606 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1607 hdrlen = 24;
1608 break;
1609 case NL80211_IFTYPE_WDS:
1610 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1611 /* RA TA DA SA */
1612 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1613 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1614 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1615 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1616 hdrlen = 30;
1617 break;
1618 #ifdef CONFIG_MAC80211_MESH
1619 case NL80211_IFTYPE_MESH_POINT:
1620 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1621 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1622 /* Do not send frames with mesh_ttl == 0 */
1623 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1624 ret = NETDEV_TX_OK;
1625 goto fail;
1626 }
1627 memset(&mesh_hdr, 0, sizeof(mesh_hdr));
1628
1629 if (compare_ether_addr(dev->dev_addr,
1630 skb->data + ETH_ALEN) == 0) {
1631 /* RA TA DA SA */
1632 memset(hdr.addr1, 0, ETH_ALEN);
1633 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1634 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1635 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1636 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata);
1637 } else {
1638 /* packet from other interface */
1639 struct mesh_path *mppath;
1640
1641 memset(hdr.addr1, 0, ETH_ALEN);
1642 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1643 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN);
1644
1645 if (is_multicast_ether_addr(skb->data))
1646 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1647 else {
1648 rcu_read_lock();
1649 mppath = mpp_path_lookup(skb->data, sdata);
1650 if (mppath)
1651 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN);
1652 else
1653 memset(hdr.addr3, 0xff, ETH_ALEN);
1654 rcu_read_unlock();
1655 }
1656
1657 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6;
1658 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
1659 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum);
1660 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN);
1661 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN);
1662 sdata->u.mesh.mesh_seqnum++;
1663 meshhdrlen = 18;
1664 }
1665 hdrlen = 30;
1666 break;
1667 #endif
1668 case NL80211_IFTYPE_STATION:
1669 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1670 /* BSSID SA DA */
1671 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1672 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1673 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1674 hdrlen = 24;
1675 break;
1676 case NL80211_IFTYPE_ADHOC:
1677 /* DA SA BSSID */
1678 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1679 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1680 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1681 hdrlen = 24;
1682 break;
1683 default:
1684 ret = NETDEV_TX_OK;
1685 goto fail;
1686 }
1687
1688 /*
1689 * There's no need to try to look up the destination
1690 * if it is a multicast address (which can only happen
1691 * in AP mode)
1692 */
1693 if (!is_multicast_ether_addr(hdr.addr1)) {
1694 rcu_read_lock();
1695 sta = sta_info_get(local, hdr.addr1);
1696 if (sta)
1697 sta_flags = get_sta_flags(sta);
1698 rcu_read_unlock();
1699 }
1700
1701 /* receiver and we are QoS enabled, use a QoS type frame */
1702 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1703 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1704 hdrlen += 2;
1705 }
1706
1707 /*
1708 * Drop unicast frames to unauthorised stations unless they are
1709 * EAPOL frames from the local station.
1710 */
1711 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1712 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1713 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1714 !(ethertype == ETH_P_PAE &&
1715 compare_ether_addr(dev->dev_addr,
1716 skb->data + ETH_ALEN) == 0))) {
1717 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1718 if (net_ratelimit())
1719 printk(KERN_DEBUG "%s: dropped frame to %pM"
1720 " (unauthorized port)\n", dev->name,
1721 hdr.addr1);
1722 #endif
1723
1724 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1725
1726 ret = NETDEV_TX_OK;
1727 goto fail;
1728 }
1729
1730 hdr.frame_control = fc;
1731 hdr.duration_id = 0;
1732 hdr.seq_ctrl = 0;
1733
1734 skip_header_bytes = ETH_HLEN;
1735 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1736 encaps_data = bridge_tunnel_header;
1737 encaps_len = sizeof(bridge_tunnel_header);
1738 skip_header_bytes -= 2;
1739 } else if (ethertype >= 0x600) {
1740 encaps_data = rfc1042_header;
1741 encaps_len = sizeof(rfc1042_header);
1742 skip_header_bytes -= 2;
1743 } else {
1744 encaps_data = NULL;
1745 encaps_len = 0;
1746 }
1747
1748 skb_pull(skb, skip_header_bytes);
1749 nh_pos -= skip_header_bytes;
1750 h_pos -= skip_header_bytes;
1751
1752 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1753
1754 /*
1755 * So we need to modify the skb header and hence need a copy of
1756 * that. The head_need variable above doesn't, so far, include
1757 * the needed header space that we don't need right away. If we
1758 * can, then we don't reallocate right now but only after the
1759 * frame arrives at the master device (if it does...)
1760 *
1761 * If we cannot, however, then we will reallocate to include all
1762 * the ever needed space. Also, if we need to reallocate it anyway,
1763 * make it big enough for everything we may ever need.
1764 */
1765
1766 if (head_need > 0 || skb_cloned(skb)) {
1767 head_need += IEEE80211_ENCRYPT_HEADROOM;
1768 head_need += local->tx_headroom;
1769 head_need = max_t(int, 0, head_need);
1770 if (ieee80211_skb_resize(local, skb, head_need, true))
1771 goto fail;
1772 }
1773
1774 if (encaps_data) {
1775 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1776 nh_pos += encaps_len;
1777 h_pos += encaps_len;
1778 }
1779
1780 if (meshhdrlen > 0) {
1781 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1782 nh_pos += meshhdrlen;
1783 h_pos += meshhdrlen;
1784 }
1785
1786 if (ieee80211_is_data_qos(fc)) {
1787 __le16 *qos_control;
1788
1789 qos_control = (__le16*) skb_push(skb, 2);
1790 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1791 /*
1792 * Maybe we could actually set some fields here, for now just
1793 * initialise to zero to indicate no special operation.
1794 */
1795 *qos_control = 0;
1796 } else
1797 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1798
1799 nh_pos += hdrlen;
1800 h_pos += hdrlen;
1801
1802 dev->stats.tx_packets++;
1803 dev->stats.tx_bytes += skb->len;
1804
1805 /* Update skb pointers to various headers since this modified frame
1806 * is going to go through Linux networking code that may potentially
1807 * need things like pointer to IP header. */
1808 skb_set_mac_header(skb, 0);
1809 skb_set_network_header(skb, nh_pos);
1810 skb_set_transport_header(skb, h_pos);
1811
1812 memset(info, 0, sizeof(*info));
1813
1814 dev->trans_start = jiffies;
1815 ieee80211_xmit(sdata, skb);
1816
1817 return NETDEV_TX_OK;
1818
1819 fail:
1820 if (ret == NETDEV_TX_OK)
1821 dev_kfree_skb(skb);
1822
1823 return ret;
1824 }
1825
1826
1827 /*
1828 * ieee80211_clear_tx_pending may not be called in a context where
1829 * it is possible that it packets could come in again.
1830 */
1831 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1832 {
1833 int i;
1834
1835 for (i = 0; i < local->hw.queues; i++)
1836 skb_queue_purge(&local->pending[i]);
1837 }
1838
1839 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1840 struct sk_buff *skb)
1841 {
1842 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1843 struct ieee80211_sub_if_data *sdata;
1844 struct sta_info *sta;
1845 struct ieee80211_hdr *hdr;
1846 int ret;
1847 bool result = true;
1848
1849 sdata = vif_to_sdata(info->control.vif);
1850
1851 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1852 ieee80211_tx(sdata, skb, true);
1853 } else {
1854 hdr = (struct ieee80211_hdr *)skb->data;
1855 sta = sta_info_get(local, hdr->addr1);
1856
1857 ret = __ieee80211_tx(local, &skb, sta, true);
1858 if (ret != IEEE80211_TX_OK)
1859 result = false;
1860 }
1861
1862 return result;
1863 }
1864
1865 /*
1866 * Transmit all pending packets. Called from tasklet.
1867 */
1868 void ieee80211_tx_pending(unsigned long data)
1869 {
1870 struct ieee80211_local *local = (struct ieee80211_local *)data;
1871 unsigned long flags;
1872 int i;
1873 bool txok;
1874
1875 rcu_read_lock();
1876
1877 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1878 for (i = 0; i < local->hw.queues; i++) {
1879 /*
1880 * If queue is stopped by something other than due to pending
1881 * frames, or we have no pending frames, proceed to next queue.
1882 */
1883 if (local->queue_stop_reasons[i] ||
1884 skb_queue_empty(&local->pending[i]))
1885 continue;
1886
1887 while (!skb_queue_empty(&local->pending[i])) {
1888 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
1889 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1890 struct ieee80211_sub_if_data *sdata;
1891
1892 sdata = vif_to_sdata(info->control.vif);
1893 dev_hold(sdata->dev);
1894 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1895 flags);
1896
1897 txok = ieee80211_tx_pending_skb(local, skb);
1898 dev_put(sdata->dev);
1899 if (!txok)
1900 __skb_queue_head(&local->pending[i], skb);
1901 spin_lock_irqsave(&local->queue_stop_reason_lock,
1902 flags);
1903 if (!txok)
1904 break;
1905 }
1906 }
1907 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1908
1909 rcu_read_unlock();
1910 }
1911
1912 /* functions for drivers to get certain frames */
1913
1914 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
1915 struct sk_buff *skb,
1916 struct beacon_data *beacon)
1917 {
1918 u8 *pos, *tim;
1919 int aid0 = 0;
1920 int i, have_bits = 0, n1, n2;
1921
1922 /* Generate bitmap for TIM only if there are any STAs in power save
1923 * mode. */
1924 if (atomic_read(&bss->num_sta_ps) > 0)
1925 /* in the hope that this is faster than
1926 * checking byte-for-byte */
1927 have_bits = !bitmap_empty((unsigned long*)bss->tim,
1928 IEEE80211_MAX_AID+1);
1929
1930 if (bss->dtim_count == 0)
1931 bss->dtim_count = beacon->dtim_period - 1;
1932 else
1933 bss->dtim_count--;
1934
1935 tim = pos = (u8 *) skb_put(skb, 6);
1936 *pos++ = WLAN_EID_TIM;
1937 *pos++ = 4;
1938 *pos++ = bss->dtim_count;
1939 *pos++ = beacon->dtim_period;
1940
1941 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
1942 aid0 = 1;
1943
1944 if (have_bits) {
1945 /* Find largest even number N1 so that bits numbered 1 through
1946 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
1947 * (N2 + 1) x 8 through 2007 are 0. */
1948 n1 = 0;
1949 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
1950 if (bss->tim[i]) {
1951 n1 = i & 0xfe;
1952 break;
1953 }
1954 }
1955 n2 = n1;
1956 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
1957 if (bss->tim[i]) {
1958 n2 = i;
1959 break;
1960 }
1961 }
1962
1963 /* Bitmap control */
1964 *pos++ = n1 | aid0;
1965 /* Part Virt Bitmap */
1966 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
1967
1968 tim[1] = n2 - n1 + 4;
1969 skb_put(skb, n2 - n1);
1970 } else {
1971 *pos++ = aid0; /* Bitmap control */
1972 *pos++ = 0; /* Part Virt Bitmap */
1973 }
1974 }
1975
1976 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1977 struct ieee80211_vif *vif)
1978 {
1979 struct ieee80211_local *local = hw_to_local(hw);
1980 struct sk_buff *skb = NULL;
1981 struct ieee80211_tx_info *info;
1982 struct ieee80211_sub_if_data *sdata = NULL;
1983 struct ieee80211_if_ap *ap = NULL;
1984 struct beacon_data *beacon;
1985 struct ieee80211_supported_band *sband;
1986 enum ieee80211_band band = local->hw.conf.channel->band;
1987
1988 sband = local->hw.wiphy->bands[band];
1989
1990 rcu_read_lock();
1991
1992 sdata = vif_to_sdata(vif);
1993
1994 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1995 ap = &sdata->u.ap;
1996 beacon = rcu_dereference(ap->beacon);
1997 if (ap && beacon) {
1998 /*
1999 * headroom, head length,
2000 * tail length and maximum TIM length
2001 */
2002 skb = dev_alloc_skb(local->tx_headroom +
2003 beacon->head_len +
2004 beacon->tail_len + 256);
2005 if (!skb)
2006 goto out;
2007
2008 skb_reserve(skb, local->tx_headroom);
2009 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2010 beacon->head_len);
2011
2012 /*
2013 * Not very nice, but we want to allow the driver to call
2014 * ieee80211_beacon_get() as a response to the set_tim()
2015 * callback. That, however, is already invoked under the
2016 * sta_lock to guarantee consistent and race-free update
2017 * of the tim bitmap in mac80211 and the driver.
2018 */
2019 if (local->tim_in_locked_section) {
2020 ieee80211_beacon_add_tim(ap, skb, beacon);
2021 } else {
2022 unsigned long flags;
2023
2024 spin_lock_irqsave(&local->sta_lock, flags);
2025 ieee80211_beacon_add_tim(ap, skb, beacon);
2026 spin_unlock_irqrestore(&local->sta_lock, flags);
2027 }
2028
2029 if (beacon->tail)
2030 memcpy(skb_put(skb, beacon->tail_len),
2031 beacon->tail, beacon->tail_len);
2032 } else
2033 goto out;
2034 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2035 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2036 struct ieee80211_hdr *hdr;
2037 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2038
2039 if (!presp)
2040 goto out;
2041
2042 skb = skb_copy(presp, GFP_ATOMIC);
2043 if (!skb)
2044 goto out;
2045
2046 hdr = (struct ieee80211_hdr *) skb->data;
2047 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2048 IEEE80211_STYPE_BEACON);
2049 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2050 struct ieee80211_mgmt *mgmt;
2051 u8 *pos;
2052
2053 /* headroom, head length, tail length and maximum TIM length */
2054 skb = dev_alloc_skb(local->tx_headroom + 400);
2055 if (!skb)
2056 goto out;
2057
2058 skb_reserve(skb, local->hw.extra_tx_headroom);
2059 mgmt = (struct ieee80211_mgmt *)
2060 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2061 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2062 mgmt->frame_control =
2063 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2064 memset(mgmt->da, 0xff, ETH_ALEN);
2065 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
2066 /* BSSID is left zeroed, wildcard value */
2067 mgmt->u.beacon.beacon_int =
2068 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2069 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2070
2071 pos = skb_put(skb, 2);
2072 *pos++ = WLAN_EID_SSID;
2073 *pos++ = 0x0;
2074
2075 mesh_mgmt_ies_add(skb, sdata);
2076 } else {
2077 WARN_ON(1);
2078 goto out;
2079 }
2080
2081 info = IEEE80211_SKB_CB(skb);
2082
2083 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2084 info->band = band;
2085 /*
2086 * XXX: For now, always use the lowest rate
2087 */
2088 info->control.rates[0].idx = 0;
2089 info->control.rates[0].count = 1;
2090 info->control.rates[1].idx = -1;
2091 info->control.rates[2].idx = -1;
2092 info->control.rates[3].idx = -1;
2093 info->control.rates[4].idx = -1;
2094 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
2095
2096 info->control.vif = vif;
2097
2098 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2099 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2100 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2101 out:
2102 rcu_read_unlock();
2103 return skb;
2104 }
2105 EXPORT_SYMBOL(ieee80211_beacon_get);
2106
2107 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2108 const void *frame, size_t frame_len,
2109 const struct ieee80211_tx_info *frame_txctl,
2110 struct ieee80211_rts *rts)
2111 {
2112 const struct ieee80211_hdr *hdr = frame;
2113
2114 rts->frame_control =
2115 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2116 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2117 frame_txctl);
2118 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2119 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2120 }
2121 EXPORT_SYMBOL(ieee80211_rts_get);
2122
2123 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2124 const void *frame, size_t frame_len,
2125 const struct ieee80211_tx_info *frame_txctl,
2126 struct ieee80211_cts *cts)
2127 {
2128 const struct ieee80211_hdr *hdr = frame;
2129
2130 cts->frame_control =
2131 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2132 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2133 frame_len, frame_txctl);
2134 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2135 }
2136 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2137
2138 struct sk_buff *
2139 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2140 struct ieee80211_vif *vif)
2141 {
2142 struct ieee80211_local *local = hw_to_local(hw);
2143 struct sk_buff *skb = NULL;
2144 struct sta_info *sta;
2145 struct ieee80211_tx_data tx;
2146 struct ieee80211_sub_if_data *sdata;
2147 struct ieee80211_if_ap *bss = NULL;
2148 struct beacon_data *beacon;
2149 struct ieee80211_tx_info *info;
2150
2151 sdata = vif_to_sdata(vif);
2152 bss = &sdata->u.ap;
2153
2154 rcu_read_lock();
2155 beacon = rcu_dereference(bss->beacon);
2156
2157 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2158 goto out;
2159
2160 if (bss->dtim_count != 0)
2161 goto out; /* send buffered bc/mc only after DTIM beacon */
2162
2163 while (1) {
2164 skb = skb_dequeue(&bss->ps_bc_buf);
2165 if (!skb)
2166 goto out;
2167 local->total_ps_buffered--;
2168
2169 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2170 struct ieee80211_hdr *hdr =
2171 (struct ieee80211_hdr *) skb->data;
2172 /* more buffered multicast/broadcast frames ==> set
2173 * MoreData flag in IEEE 802.11 header to inform PS
2174 * STAs */
2175 hdr->frame_control |=
2176 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2177 }
2178
2179 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2180 break;
2181 dev_kfree_skb_any(skb);
2182 }
2183
2184 info = IEEE80211_SKB_CB(skb);
2185
2186 sta = tx.sta;
2187 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2188 tx.channel = local->hw.conf.channel;
2189 info->band = tx.channel->band;
2190
2191 if (invoke_tx_handlers(&tx))
2192 skb = NULL;
2193 out:
2194 rcu_read_unlock();
2195
2196 return skb;
2197 }
2198 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2199
2200 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb,
2201 int encrypt)
2202 {
2203 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2204 skb_set_mac_header(skb, 0);
2205 skb_set_network_header(skb, 0);
2206 skb_set_transport_header(skb, 0);
2207
2208 if (!encrypt)
2209 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2210
2211 /*
2212 * The other path calling ieee80211_xmit is from the tasklet,
2213 * and while we can handle concurrent transmissions locking
2214 * requirements are that we do not come into tx with bhs on.
2215 */
2216 local_bh_disable();
2217 ieee80211_xmit(sdata, skb);
2218 local_bh_enable();
2219 }
This page took 0.105397 seconds and 5 git commands to generate.