Kill off warning: ‘inline’ is not at beginning of declaration
[deliverable/linux.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
39
40 /* misc utils */
41
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
44 {
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
51
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
55
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
59
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
62
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
64
65 /*
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
74 *
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
81 */
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
87 *
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
97 */
98 return 0;
99 }
100
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
104
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
107
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
117 */
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
123
124 if (r->bitrate > txrate->bitrate)
125 break;
126
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
129
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
140 }
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
148 }
149 }
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
154 }
155
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
159
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
162
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
171 }
172
173 return cpu_to_le16(dur);
174 }
175
176 static inline int is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
178 {
179 return local == wdev_priv(dev->ieee80211_ptr);
180 }
181
182 /* tx handlers */
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
185 {
186 struct ieee80211_local *local = tx->local;
187 struct ieee80211_if_managed *ifmgd;
188
189 /* driver doesn't support power save */
190 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
191 return TX_CONTINUE;
192
193 /* hardware does dynamic power save */
194 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
195 return TX_CONTINUE;
196
197 /* dynamic power save disabled */
198 if (local->hw.conf.dynamic_ps_timeout <= 0)
199 return TX_CONTINUE;
200
201 /* we are scanning, don't enable power save */
202 if (local->scanning)
203 return TX_CONTINUE;
204
205 if (!local->ps_sdata)
206 return TX_CONTINUE;
207
208 /* No point if we're going to suspend */
209 if (local->quiescing)
210 return TX_CONTINUE;
211
212 /* dynamic ps is supported only in managed mode */
213 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
214 return TX_CONTINUE;
215
216 ifmgd = &tx->sdata->u.mgd;
217
218 /*
219 * Don't wakeup from power save if u-apsd is enabled, voip ac has
220 * u-apsd enabled and the frame is in voip class. This effectively
221 * means that even if all access categories have u-apsd enabled, in
222 * practise u-apsd is only used with the voip ac. This is a
223 * workaround for the case when received voip class packets do not
224 * have correct qos tag for some reason, due the network or the
225 * peer application.
226 *
227 * Note: local->uapsd_queues access is racy here. If the value is
228 * changed via debugfs, user needs to reassociate manually to have
229 * everything in sync.
230 */
231 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
232 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
233 && skb_get_queue_mapping(tx->skb) == 0)
234 return TX_CONTINUE;
235
236 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
237 ieee80211_stop_queues_by_reason(&local->hw,
238 IEEE80211_QUEUE_STOP_REASON_PS);
239 ieee80211_queue_work(&local->hw,
240 &local->dynamic_ps_disable_work);
241 }
242
243 mod_timer(&local->dynamic_ps_timer, jiffies +
244 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
245
246 return TX_CONTINUE;
247 }
248
249 static ieee80211_tx_result debug_noinline
250 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
251 {
252
253 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
254 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
255 u32 sta_flags;
256
257 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
258 return TX_CONTINUE;
259
260 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
261 !ieee80211_is_probe_req(hdr->frame_control) &&
262 !ieee80211_is_nullfunc(hdr->frame_control))
263 /*
264 * When software scanning only nullfunc frames (to notify
265 * the sleep state to the AP) and probe requests (for the
266 * active scan) are allowed, all other frames should not be
267 * sent and we should not get here, but if we do
268 * nonetheless, drop them to avoid sending them
269 * off-channel. See the link below and
270 * ieee80211_start_scan() for more.
271 *
272 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
273 */
274 return TX_DROP;
275
276 if (tx->sdata->vif.type == NL80211_IFTYPE_WDS)
277 return TX_CONTINUE;
278
279 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
280 return TX_CONTINUE;
281
282 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
283 return TX_CONTINUE;
284
285 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
286
287 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
288 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
289 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
290 ieee80211_is_data(hdr->frame_control))) {
291 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
292 printk(KERN_DEBUG "%s: dropped data frame to not "
293 "associated station %pM\n",
294 tx->sdata->name, hdr->addr1);
295 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
296 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
297 return TX_DROP;
298 }
299 } else {
300 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
301 tx->local->num_sta == 0 &&
302 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
303 /*
304 * No associated STAs - no need to send multicast
305 * frames.
306 */
307 return TX_DROP;
308 }
309 return TX_CONTINUE;
310 }
311
312 return TX_CONTINUE;
313 }
314
315 /* This function is called whenever the AP is about to exceed the maximum limit
316 * of buffered frames for power saving STAs. This situation should not really
317 * happen often during normal operation, so dropping the oldest buffered packet
318 * from each queue should be OK to make some room for new frames. */
319 static void purge_old_ps_buffers(struct ieee80211_local *local)
320 {
321 int total = 0, purged = 0;
322 struct sk_buff *skb;
323 struct ieee80211_sub_if_data *sdata;
324 struct sta_info *sta;
325
326 /*
327 * virtual interfaces are protected by RCU
328 */
329 rcu_read_lock();
330
331 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
332 struct ieee80211_if_ap *ap;
333 if (sdata->vif.type != NL80211_IFTYPE_AP)
334 continue;
335 ap = &sdata->u.ap;
336 skb = skb_dequeue(&ap->ps_bc_buf);
337 if (skb) {
338 purged++;
339 dev_kfree_skb(skb);
340 }
341 total += skb_queue_len(&ap->ps_bc_buf);
342 }
343
344 list_for_each_entry_rcu(sta, &local->sta_list, list) {
345 skb = skb_dequeue(&sta->ps_tx_buf);
346 if (skb) {
347 purged++;
348 dev_kfree_skb(skb);
349 }
350 total += skb_queue_len(&sta->ps_tx_buf);
351 }
352
353 rcu_read_unlock();
354
355 local->total_ps_buffered = total;
356 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
357 wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n",
358 purged);
359 #endif
360 }
361
362 static ieee80211_tx_result
363 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
364 {
365 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
367
368 /*
369 * broadcast/multicast frame
370 *
371 * If any of the associated stations is in power save mode,
372 * the frame is buffered to be sent after DTIM beacon frame.
373 * This is done either by the hardware or us.
374 */
375
376 /* powersaving STAs only in AP/VLAN mode */
377 if (!tx->sdata->bss)
378 return TX_CONTINUE;
379
380 /* no buffering for ordered frames */
381 if (ieee80211_has_order(hdr->frame_control))
382 return TX_CONTINUE;
383
384 /* no stations in PS mode */
385 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
386 return TX_CONTINUE;
387
388 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
389
390 /* device releases frame after DTIM beacon */
391 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
392 return TX_CONTINUE;
393
394 /* buffered in mac80211 */
395 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
396 purge_old_ps_buffers(tx->local);
397
398 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
399 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
400 if (net_ratelimit())
401 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
402 tx->sdata->name);
403 #endif
404 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
405 } else
406 tx->local->total_ps_buffered++;
407
408 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
409
410 return TX_QUEUED;
411 }
412
413 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
414 struct sk_buff *skb)
415 {
416 if (!ieee80211_is_mgmt(fc))
417 return 0;
418
419 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
420 return 0;
421
422 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
423 skb->data))
424 return 0;
425
426 return 1;
427 }
428
429 static ieee80211_tx_result
430 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
431 {
432 struct sta_info *sta = tx->sta;
433 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
434 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
435 struct ieee80211_local *local = tx->local;
436 u32 staflags;
437
438 if (unlikely(!sta ||
439 ieee80211_is_probe_resp(hdr->frame_control) ||
440 ieee80211_is_auth(hdr->frame_control) ||
441 ieee80211_is_assoc_resp(hdr->frame_control) ||
442 ieee80211_is_reassoc_resp(hdr->frame_control)))
443 return TX_CONTINUE;
444
445 staflags = get_sta_flags(sta);
446
447 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
448 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
449 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
450 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
451 "before %d)\n",
452 sta->sta.addr, sta->sta.aid,
453 skb_queue_len(&sta->ps_tx_buf));
454 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
455 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
456 purge_old_ps_buffers(tx->local);
457 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
458 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
459 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
460 if (net_ratelimit()) {
461 printk(KERN_DEBUG "%s: STA %pM TX "
462 "buffer full - dropping oldest frame\n",
463 tx->sdata->name, sta->sta.addr);
464 }
465 #endif
466 dev_kfree_skb(old);
467 } else
468 tx->local->total_ps_buffered++;
469
470 /*
471 * Queue frame to be sent after STA wakes up/polls,
472 * but don't set the TIM bit if the driver is blocking
473 * wakeup or poll response transmissions anyway.
474 */
475 if (skb_queue_empty(&sta->ps_tx_buf) &&
476 !(staflags & WLAN_STA_PS_DRIVER))
477 sta_info_set_tim_bit(sta);
478
479 info->control.jiffies = jiffies;
480 info->control.vif = &tx->sdata->vif;
481 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
482 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
483
484 if (!timer_pending(&local->sta_cleanup))
485 mod_timer(&local->sta_cleanup,
486 round_jiffies(jiffies +
487 STA_INFO_CLEANUP_INTERVAL));
488
489 return TX_QUEUED;
490 }
491 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
492 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
493 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
494 "set -> send frame\n", tx->sdata->name,
495 sta->sta.addr);
496 }
497 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
498
499 return TX_CONTINUE;
500 }
501
502 static ieee80211_tx_result debug_noinline
503 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
504 {
505 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
506 return TX_CONTINUE;
507
508 if (tx->flags & IEEE80211_TX_UNICAST)
509 return ieee80211_tx_h_unicast_ps_buf(tx);
510 else
511 return ieee80211_tx_h_multicast_ps_buf(tx);
512 }
513
514 static ieee80211_tx_result debug_noinline
515 ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx)
516 {
517 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
518
519 if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol &&
520 tx->sdata->control_port_no_encrypt))
521 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
522
523 return TX_CONTINUE;
524 }
525
526 static ieee80211_tx_result debug_noinline
527 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
528 {
529 struct ieee80211_key *key = NULL;
530 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
531 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
532
533 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
534 tx->key = NULL;
535 else if (tx->sta && (key = rcu_dereference(tx->sta->ptk)))
536 tx->key = key;
537 else if (ieee80211_is_mgmt(hdr->frame_control) &&
538 is_multicast_ether_addr(hdr->addr1) &&
539 ieee80211_is_robust_mgmt_frame(hdr) &&
540 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
541 tx->key = key;
542 else if (is_multicast_ether_addr(hdr->addr1) &&
543 (key = rcu_dereference(tx->sdata->default_multicast_key)))
544 tx->key = key;
545 else if (!is_multicast_ether_addr(hdr->addr1) &&
546 (key = rcu_dereference(tx->sdata->default_unicast_key)))
547 tx->key = key;
548 else if (tx->sdata->drop_unencrypted &&
549 (tx->skb->protocol != tx->sdata->control_port_protocol) &&
550 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
551 (!ieee80211_is_robust_mgmt_frame(hdr) ||
552 (ieee80211_is_action(hdr->frame_control) &&
553 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
554 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
555 return TX_DROP;
556 } else
557 tx->key = NULL;
558
559 if (tx->key) {
560 bool skip_hw = false;
561
562 tx->key->tx_rx_count++;
563 /* TODO: add threshold stuff again */
564
565 switch (tx->key->conf.cipher) {
566 case WLAN_CIPHER_SUITE_WEP40:
567 case WLAN_CIPHER_SUITE_WEP104:
568 if (ieee80211_is_auth(hdr->frame_control))
569 break;
570 case WLAN_CIPHER_SUITE_TKIP:
571 if (!ieee80211_is_data_present(hdr->frame_control))
572 tx->key = NULL;
573 break;
574 case WLAN_CIPHER_SUITE_CCMP:
575 if (!ieee80211_is_data_present(hdr->frame_control) &&
576 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
577 tx->skb))
578 tx->key = NULL;
579 else
580 skip_hw = (tx->key->conf.flags &
581 IEEE80211_KEY_FLAG_SW_MGMT) &&
582 ieee80211_is_mgmt(hdr->frame_control);
583 break;
584 case WLAN_CIPHER_SUITE_AES_CMAC:
585 if (!ieee80211_is_mgmt(hdr->frame_control))
586 tx->key = NULL;
587 break;
588 }
589
590 if (!skip_hw && tx->key &&
591 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
592 info->control.hw_key = &tx->key->conf;
593 }
594
595 return TX_CONTINUE;
596 }
597
598 static ieee80211_tx_result debug_noinline
599 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
600 {
601 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
602 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
603 struct ieee80211_supported_band *sband;
604 struct ieee80211_rate *rate;
605 int i;
606 u32 len;
607 bool inval = false, rts = false, short_preamble = false;
608 struct ieee80211_tx_rate_control txrc;
609 u32 sta_flags;
610
611 memset(&txrc, 0, sizeof(txrc));
612
613 sband = tx->local->hw.wiphy->bands[tx->channel->band];
614
615 len = min_t(u32, tx->skb->len + FCS_LEN,
616 tx->local->hw.wiphy->frag_threshold);
617
618 /* set up the tx rate control struct we give the RC algo */
619 txrc.hw = local_to_hw(tx->local);
620 txrc.sband = sband;
621 txrc.bss_conf = &tx->sdata->vif.bss_conf;
622 txrc.skb = tx->skb;
623 txrc.reported_rate.idx = -1;
624 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
625 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
626 txrc.max_rate_idx = -1;
627 else
628 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
629 txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP ||
630 tx->sdata->vif.type == NL80211_IFTYPE_ADHOC);
631
632 /* set up RTS protection if desired */
633 if (len > tx->local->hw.wiphy->rts_threshold) {
634 txrc.rts = rts = true;
635 }
636
637 /*
638 * Use short preamble if the BSS can handle it, but not for
639 * management frames unless we know the receiver can handle
640 * that -- the management frame might be to a station that
641 * just wants a probe response.
642 */
643 if (tx->sdata->vif.bss_conf.use_short_preamble &&
644 (ieee80211_is_data(hdr->frame_control) ||
645 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
646 txrc.short_preamble = short_preamble = true;
647
648 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
649
650 /*
651 * Lets not bother rate control if we're associated and cannot
652 * talk to the sta. This should not happen.
653 */
654 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
655 (sta_flags & WLAN_STA_ASSOC) &&
656 !rate_usable_index_exists(sband, &tx->sta->sta),
657 "%s: Dropped data frame as no usable bitrate found while "
658 "scanning and associated. Target station: "
659 "%pM on %d GHz band\n",
660 tx->sdata->name, hdr->addr1,
661 tx->channel->band ? 5 : 2))
662 return TX_DROP;
663
664 /*
665 * If we're associated with the sta at this point we know we can at
666 * least send the frame at the lowest bit rate.
667 */
668 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
669
670 if (unlikely(info->control.rates[0].idx < 0))
671 return TX_DROP;
672
673 if (txrc.reported_rate.idx < 0) {
674 txrc.reported_rate = info->control.rates[0];
675 if (tx->sta && ieee80211_is_data(hdr->frame_control))
676 tx->sta->last_tx_rate = txrc.reported_rate;
677 } else if (tx->sta)
678 tx->sta->last_tx_rate = txrc.reported_rate;
679
680 if (unlikely(!info->control.rates[0].count))
681 info->control.rates[0].count = 1;
682
683 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
684 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
685 info->control.rates[0].count = 1;
686
687 if (is_multicast_ether_addr(hdr->addr1)) {
688 /*
689 * XXX: verify the rate is in the basic rateset
690 */
691 return TX_CONTINUE;
692 }
693
694 /*
695 * set up the RTS/CTS rate as the fastest basic rate
696 * that is not faster than the data rate
697 *
698 * XXX: Should this check all retry rates?
699 */
700 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
701 s8 baserate = 0;
702
703 rate = &sband->bitrates[info->control.rates[0].idx];
704
705 for (i = 0; i < sband->n_bitrates; i++) {
706 /* must be a basic rate */
707 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
708 continue;
709 /* must not be faster than the data rate */
710 if (sband->bitrates[i].bitrate > rate->bitrate)
711 continue;
712 /* maximum */
713 if (sband->bitrates[baserate].bitrate <
714 sband->bitrates[i].bitrate)
715 baserate = i;
716 }
717
718 info->control.rts_cts_rate_idx = baserate;
719 }
720
721 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
722 /*
723 * make sure there's no valid rate following
724 * an invalid one, just in case drivers don't
725 * take the API seriously to stop at -1.
726 */
727 if (inval) {
728 info->control.rates[i].idx = -1;
729 continue;
730 }
731 if (info->control.rates[i].idx < 0) {
732 inval = true;
733 continue;
734 }
735
736 /*
737 * For now assume MCS is already set up correctly, this
738 * needs to be fixed.
739 */
740 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
741 WARN_ON(info->control.rates[i].idx > 76);
742 continue;
743 }
744
745 /* set up RTS protection if desired */
746 if (rts)
747 info->control.rates[i].flags |=
748 IEEE80211_TX_RC_USE_RTS_CTS;
749
750 /* RC is busted */
751 if (WARN_ON_ONCE(info->control.rates[i].idx >=
752 sband->n_bitrates)) {
753 info->control.rates[i].idx = -1;
754 continue;
755 }
756
757 rate = &sband->bitrates[info->control.rates[i].idx];
758
759 /* set up short preamble */
760 if (short_preamble &&
761 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
762 info->control.rates[i].flags |=
763 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
764
765 /* set up G protection */
766 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
767 rate->flags & IEEE80211_RATE_ERP_G)
768 info->control.rates[i].flags |=
769 IEEE80211_TX_RC_USE_CTS_PROTECT;
770 }
771
772 return TX_CONTINUE;
773 }
774
775 static ieee80211_tx_result debug_noinline
776 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
777 {
778 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
779 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
780 u16 *seq;
781 u8 *qc;
782 int tid;
783
784 /*
785 * Packet injection may want to control the sequence
786 * number, if we have no matching interface then we
787 * neither assign one ourselves nor ask the driver to.
788 */
789 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
790 return TX_CONTINUE;
791
792 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
793 return TX_CONTINUE;
794
795 if (ieee80211_hdrlen(hdr->frame_control) < 24)
796 return TX_CONTINUE;
797
798 /*
799 * Anything but QoS data that has a sequence number field
800 * (is long enough) gets a sequence number from the global
801 * counter.
802 */
803 if (!ieee80211_is_data_qos(hdr->frame_control)) {
804 /* driver should assign sequence number */
805 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
806 /* for pure STA mode without beacons, we can do it */
807 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
808 tx->sdata->sequence_number += 0x10;
809 return TX_CONTINUE;
810 }
811
812 /*
813 * This should be true for injected/management frames only, for
814 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
815 * above since they are not QoS-data frames.
816 */
817 if (!tx->sta)
818 return TX_CONTINUE;
819
820 /* include per-STA, per-TID sequence counter */
821
822 qc = ieee80211_get_qos_ctl(hdr);
823 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
824 seq = &tx->sta->tid_seq[tid];
825
826 hdr->seq_ctrl = cpu_to_le16(*seq);
827
828 /* Increase the sequence number. */
829 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
830
831 return TX_CONTINUE;
832 }
833
834 static int ieee80211_fragment(struct ieee80211_local *local,
835 struct sk_buff *skb, int hdrlen,
836 int frag_threshold)
837 {
838 struct sk_buff *tail = skb, *tmp;
839 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
840 int pos = hdrlen + per_fragm;
841 int rem = skb->len - hdrlen - per_fragm;
842
843 if (WARN_ON(rem < 0))
844 return -EINVAL;
845
846 while (rem) {
847 int fraglen = per_fragm;
848
849 if (fraglen > rem)
850 fraglen = rem;
851 rem -= fraglen;
852 tmp = dev_alloc_skb(local->tx_headroom +
853 frag_threshold +
854 IEEE80211_ENCRYPT_HEADROOM +
855 IEEE80211_ENCRYPT_TAILROOM);
856 if (!tmp)
857 return -ENOMEM;
858 tail->next = tmp;
859 tail = tmp;
860 skb_reserve(tmp, local->tx_headroom +
861 IEEE80211_ENCRYPT_HEADROOM);
862 /* copy control information */
863 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
864 skb_copy_queue_mapping(tmp, skb);
865 tmp->priority = skb->priority;
866 tmp->dev = skb->dev;
867
868 /* copy header and data */
869 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
870 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
871
872 pos += fraglen;
873 }
874
875 skb->len = hdrlen + per_fragm;
876 return 0;
877 }
878
879 static ieee80211_tx_result debug_noinline
880 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
881 {
882 struct sk_buff *skb = tx->skb;
883 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
884 struct ieee80211_hdr *hdr = (void *)skb->data;
885 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
886 int hdrlen;
887 int fragnum;
888
889 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
890 return TX_CONTINUE;
891
892 /*
893 * Warn when submitting a fragmented A-MPDU frame and drop it.
894 * This scenario is handled in ieee80211_tx_prepare but extra
895 * caution taken here as fragmented ampdu may cause Tx stop.
896 */
897 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
898 return TX_DROP;
899
900 hdrlen = ieee80211_hdrlen(hdr->frame_control);
901
902 /* internal error, why is TX_FRAGMENTED set? */
903 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
904 return TX_DROP;
905
906 /*
907 * Now fragment the frame. This will allocate all the fragments and
908 * chain them (using skb as the first fragment) to skb->next.
909 * During transmission, we will remove the successfully transmitted
910 * fragments from this list. When the low-level driver rejects one
911 * of the fragments then we will simply pretend to accept the skb
912 * but store it away as pending.
913 */
914 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
915 return TX_DROP;
916
917 /* update duration/seq/flags of fragments */
918 fragnum = 0;
919 do {
920 int next_len;
921 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
922
923 hdr = (void *)skb->data;
924 info = IEEE80211_SKB_CB(skb);
925
926 if (skb->next) {
927 hdr->frame_control |= morefrags;
928 next_len = skb->next->len;
929 /*
930 * No multi-rate retries for fragmented frames, that
931 * would completely throw off the NAV at other STAs.
932 */
933 info->control.rates[1].idx = -1;
934 info->control.rates[2].idx = -1;
935 info->control.rates[3].idx = -1;
936 info->control.rates[4].idx = -1;
937 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
938 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
939 } else {
940 hdr->frame_control &= ~morefrags;
941 next_len = 0;
942 }
943 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
944 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
945 fragnum++;
946 } while ((skb = skb->next));
947
948 return TX_CONTINUE;
949 }
950
951 static ieee80211_tx_result debug_noinline
952 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
953 {
954 struct sk_buff *skb = tx->skb;
955
956 if (!tx->sta)
957 return TX_CONTINUE;
958
959 tx->sta->tx_packets++;
960 do {
961 tx->sta->tx_fragments++;
962 tx->sta->tx_bytes += skb->len;
963 } while ((skb = skb->next));
964
965 return TX_CONTINUE;
966 }
967
968 static ieee80211_tx_result debug_noinline
969 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
970 {
971 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
972
973 if (!tx->key)
974 return TX_CONTINUE;
975
976 switch (tx->key->conf.cipher) {
977 case WLAN_CIPHER_SUITE_WEP40:
978 case WLAN_CIPHER_SUITE_WEP104:
979 return ieee80211_crypto_wep_encrypt(tx);
980 case WLAN_CIPHER_SUITE_TKIP:
981 return ieee80211_crypto_tkip_encrypt(tx);
982 case WLAN_CIPHER_SUITE_CCMP:
983 return ieee80211_crypto_ccmp_encrypt(tx);
984 case WLAN_CIPHER_SUITE_AES_CMAC:
985 return ieee80211_crypto_aes_cmac_encrypt(tx);
986 default:
987 /* handle hw-only algorithm */
988 if (info->control.hw_key) {
989 ieee80211_tx_set_protected(tx);
990 return TX_CONTINUE;
991 }
992 break;
993
994 }
995
996 return TX_DROP;
997 }
998
999 static ieee80211_tx_result debug_noinline
1000 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
1001 {
1002 struct sk_buff *skb = tx->skb;
1003 struct ieee80211_hdr *hdr;
1004 int next_len;
1005 bool group_addr;
1006
1007 do {
1008 hdr = (void *) skb->data;
1009 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
1010 break; /* must not overwrite AID */
1011 next_len = skb->next ? skb->next->len : 0;
1012 group_addr = is_multicast_ether_addr(hdr->addr1);
1013
1014 hdr->duration_id =
1015 ieee80211_duration(tx, group_addr, next_len);
1016 } while ((skb = skb->next));
1017
1018 return TX_CONTINUE;
1019 }
1020
1021 /* actual transmit path */
1022
1023 /*
1024 * deal with packet injection down monitor interface
1025 * with Radiotap Header -- only called for monitor mode interface
1026 */
1027 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
1028 struct sk_buff *skb)
1029 {
1030 /*
1031 * this is the moment to interpret and discard the radiotap header that
1032 * must be at the start of the packet injected in Monitor mode
1033 *
1034 * Need to take some care with endian-ness since radiotap
1035 * args are little-endian
1036 */
1037
1038 struct ieee80211_radiotap_iterator iterator;
1039 struct ieee80211_radiotap_header *rthdr =
1040 (struct ieee80211_radiotap_header *) skb->data;
1041 struct ieee80211_supported_band *sband;
1042 bool hw_frag;
1043 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1044 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
1045 NULL);
1046
1047 sband = tx->local->hw.wiphy->bands[tx->channel->band];
1048
1049 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1050 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1051
1052 /* packet is fragmented in HW if we have a non-NULL driver callback */
1053 hw_frag = (tx->local->ops->set_frag_threshold != NULL);
1054
1055 /*
1056 * for every radiotap entry that is present
1057 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1058 * entries present, or -EINVAL on error)
1059 */
1060
1061 while (!ret) {
1062 ret = ieee80211_radiotap_iterator_next(&iterator);
1063
1064 if (ret)
1065 continue;
1066
1067 /* see if this argument is something we can use */
1068 switch (iterator.this_arg_index) {
1069 /*
1070 * You must take care when dereferencing iterator.this_arg
1071 * for multibyte types... the pointer is not aligned. Use
1072 * get_unaligned((type *)iterator.this_arg) to dereference
1073 * iterator.this_arg for type "type" safely on all arches.
1074 */
1075 case IEEE80211_RADIOTAP_FLAGS:
1076 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1077 /*
1078 * this indicates that the skb we have been
1079 * handed has the 32-bit FCS CRC at the end...
1080 * we should react to that by snipping it off
1081 * because it will be recomputed and added
1082 * on transmission
1083 */
1084 if (skb->len < (iterator._max_length + FCS_LEN))
1085 return false;
1086
1087 skb_trim(skb, skb->len - FCS_LEN);
1088 }
1089 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1090 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1091 if ((*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) &&
1092 !hw_frag)
1093 tx->flags |= IEEE80211_TX_FRAGMENTED;
1094 break;
1095
1096 /*
1097 * Please update the file
1098 * Documentation/networking/mac80211-injection.txt
1099 * when parsing new fields here.
1100 */
1101
1102 default:
1103 break;
1104 }
1105 }
1106
1107 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1108 return false;
1109
1110 /*
1111 * remove the radiotap header
1112 * iterator->_max_length was sanity-checked against
1113 * skb->len by iterator init
1114 */
1115 skb_pull(skb, iterator._max_length);
1116
1117 return true;
1118 }
1119
1120 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx,
1121 struct sk_buff *skb,
1122 struct ieee80211_tx_info *info,
1123 struct tid_ampdu_tx *tid_tx,
1124 int tid)
1125 {
1126 bool queued = false;
1127
1128 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1129 info->flags |= IEEE80211_TX_CTL_AMPDU;
1130 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) {
1131 /*
1132 * nothing -- this aggregation session is being started
1133 * but that might still fail with the driver
1134 */
1135 } else {
1136 spin_lock(&tx->sta->lock);
1137 /*
1138 * Need to re-check now, because we may get here
1139 *
1140 * 1) in the window during which the setup is actually
1141 * already done, but not marked yet because not all
1142 * packets are spliced over to the driver pending
1143 * queue yet -- if this happened we acquire the lock
1144 * either before or after the splice happens, but
1145 * need to recheck which of these cases happened.
1146 *
1147 * 2) during session teardown, if the OPERATIONAL bit
1148 * was cleared due to the teardown but the pointer
1149 * hasn't been assigned NULL yet (or we loaded it
1150 * before it was assigned) -- in this case it may
1151 * now be NULL which means we should just let the
1152 * packet pass through because splicing the frames
1153 * back is already done.
1154 */
1155 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1156
1157 if (!tid_tx) {
1158 /* do nothing, let packet pass through */
1159 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1160 info->flags |= IEEE80211_TX_CTL_AMPDU;
1161 } else {
1162 queued = true;
1163 info->control.vif = &tx->sdata->vif;
1164 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1165 __skb_queue_tail(&tid_tx->pending, skb);
1166 }
1167 spin_unlock(&tx->sta->lock);
1168 }
1169
1170 return queued;
1171 }
1172
1173 /*
1174 * initialises @tx
1175 */
1176 static ieee80211_tx_result
1177 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1178 struct ieee80211_tx_data *tx,
1179 struct sk_buff *skb)
1180 {
1181 struct ieee80211_local *local = sdata->local;
1182 struct ieee80211_hdr *hdr;
1183 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1184 int hdrlen, tid;
1185 u8 *qc;
1186
1187 memset(tx, 0, sizeof(*tx));
1188 tx->skb = skb;
1189 tx->local = local;
1190 tx->sdata = sdata;
1191 tx->channel = local->hw.conf.channel;
1192 /*
1193 * Set this flag (used below to indicate "automatic fragmentation"),
1194 * it will be cleared/left by radiotap as desired.
1195 * Only valid when fragmentation is done by the stack.
1196 */
1197 if (!local->ops->set_frag_threshold)
1198 tx->flags |= IEEE80211_TX_FRAGMENTED;
1199
1200 /* process and remove the injection radiotap header */
1201 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) {
1202 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1203 return TX_DROP;
1204
1205 /*
1206 * __ieee80211_parse_tx_radiotap has now removed
1207 * the radiotap header that was present and pre-filled
1208 * 'tx' with tx control information.
1209 */
1210 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP;
1211 }
1212
1213 /*
1214 * If this flag is set to true anywhere, and we get here,
1215 * we are doing the needed processing, so remove the flag
1216 * now.
1217 */
1218 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1219
1220 hdr = (struct ieee80211_hdr *) skb->data;
1221
1222 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1223 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1224 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1225 return TX_DROP;
1226 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1227 tx->sta = sta_info_get_bss(sdata, hdr->addr1);
1228 }
1229 if (!tx->sta)
1230 tx->sta = sta_info_get(sdata, hdr->addr1);
1231
1232 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1233 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1234 struct tid_ampdu_tx *tid_tx;
1235
1236 qc = ieee80211_get_qos_ctl(hdr);
1237 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1238
1239 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]);
1240 if (tid_tx) {
1241 bool queued;
1242
1243 queued = ieee80211_tx_prep_agg(tx, skb, info,
1244 tid_tx, tid);
1245
1246 if (unlikely(queued))
1247 return TX_QUEUED;
1248 }
1249 }
1250
1251 if (is_multicast_ether_addr(hdr->addr1)) {
1252 tx->flags &= ~IEEE80211_TX_UNICAST;
1253 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1254 } else {
1255 tx->flags |= IEEE80211_TX_UNICAST;
1256 if (unlikely(local->wifi_wme_noack_test))
1257 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1258 else
1259 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1260 }
1261
1262 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1263 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1264 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1265 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1266 tx->flags |= IEEE80211_TX_FRAGMENTED;
1267 else
1268 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1269 }
1270
1271 if (!tx->sta)
1272 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1273 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1274 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1275
1276 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1277 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1278 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1279 tx->ethertype = (pos[0] << 8) | pos[1];
1280 }
1281 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1282
1283 return TX_CONTINUE;
1284 }
1285
1286 static int __ieee80211_tx(struct ieee80211_local *local,
1287 struct sk_buff **skbp,
1288 struct sta_info *sta,
1289 bool txpending)
1290 {
1291 struct sk_buff *skb = *skbp, *next;
1292 struct ieee80211_tx_info *info;
1293 struct ieee80211_sub_if_data *sdata;
1294 unsigned long flags;
1295 int ret, len;
1296 bool fragm = false;
1297
1298 while (skb) {
1299 int q = skb_get_queue_mapping(skb);
1300 __le16 fc;
1301
1302 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1303 ret = IEEE80211_TX_OK;
1304 if (local->queue_stop_reasons[q] ||
1305 (!txpending && !skb_queue_empty(&local->pending[q])))
1306 ret = IEEE80211_TX_PENDING;
1307 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1308 if (ret != IEEE80211_TX_OK)
1309 return ret;
1310
1311 info = IEEE80211_SKB_CB(skb);
1312
1313 if (fragm)
1314 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1315 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1316
1317 next = skb->next;
1318 len = skb->len;
1319
1320 if (next)
1321 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1322
1323 sdata = vif_to_sdata(info->control.vif);
1324
1325 switch (sdata->vif.type) {
1326 case NL80211_IFTYPE_MONITOR:
1327 info->control.vif = NULL;
1328 break;
1329 case NL80211_IFTYPE_AP_VLAN:
1330 info->control.vif = &container_of(sdata->bss,
1331 struct ieee80211_sub_if_data, u.ap)->vif;
1332 break;
1333 default:
1334 /* keep */
1335 break;
1336 }
1337
1338 if (sta && sta->uploaded)
1339 info->control.sta = &sta->sta;
1340 else
1341 info->control.sta = NULL;
1342
1343 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
1344 ret = drv_tx(local, skb);
1345 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1346 dev_kfree_skb(skb);
1347 ret = NETDEV_TX_OK;
1348 }
1349 if (ret != NETDEV_TX_OK) {
1350 info->control.vif = &sdata->vif;
1351 return IEEE80211_TX_AGAIN;
1352 }
1353
1354 ieee80211_tpt_led_trig_tx(local, fc, len);
1355 *skbp = skb = next;
1356 ieee80211_led_tx(local, 1);
1357 fragm = true;
1358 }
1359
1360 return IEEE80211_TX_OK;
1361 }
1362
1363 /*
1364 * Invoke TX handlers, return 0 on success and non-zero if the
1365 * frame was dropped or queued.
1366 */
1367 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1368 {
1369 struct sk_buff *skb = tx->skb;
1370 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1371 ieee80211_tx_result res = TX_DROP;
1372
1373 #define CALL_TXH(txh) \
1374 do { \
1375 res = txh(tx); \
1376 if (res != TX_CONTINUE) \
1377 goto txh_done; \
1378 } while (0)
1379
1380 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1381 CALL_TXH(ieee80211_tx_h_check_assoc);
1382 CALL_TXH(ieee80211_tx_h_ps_buf);
1383 CALL_TXH(ieee80211_tx_h_check_control_port_protocol);
1384 CALL_TXH(ieee80211_tx_h_select_key);
1385 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1386 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1387
1388 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
1389 goto txh_done;
1390
1391 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1392 CALL_TXH(ieee80211_tx_h_sequence);
1393 CALL_TXH(ieee80211_tx_h_fragment);
1394 /* handlers after fragment must be aware of tx info fragmentation! */
1395 CALL_TXH(ieee80211_tx_h_stats);
1396 CALL_TXH(ieee80211_tx_h_encrypt);
1397 CALL_TXH(ieee80211_tx_h_calculate_duration);
1398 #undef CALL_TXH
1399
1400 txh_done:
1401 if (unlikely(res == TX_DROP)) {
1402 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1403 while (skb) {
1404 struct sk_buff *next;
1405
1406 next = skb->next;
1407 dev_kfree_skb(skb);
1408 skb = next;
1409 }
1410 return -1;
1411 } else if (unlikely(res == TX_QUEUED)) {
1412 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1413 return -1;
1414 }
1415
1416 return 0;
1417 }
1418
1419 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1420 struct sk_buff *skb, bool txpending)
1421 {
1422 struct ieee80211_local *local = sdata->local;
1423 struct ieee80211_tx_data tx;
1424 ieee80211_tx_result res_prepare;
1425 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1426 struct sk_buff *next;
1427 unsigned long flags;
1428 int ret, retries;
1429 u16 queue;
1430
1431 queue = skb_get_queue_mapping(skb);
1432
1433 if (unlikely(skb->len < 10)) {
1434 dev_kfree_skb(skb);
1435 return;
1436 }
1437
1438 rcu_read_lock();
1439
1440 /* initialises tx */
1441 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1442
1443 if (unlikely(res_prepare == TX_DROP)) {
1444 dev_kfree_skb(skb);
1445 rcu_read_unlock();
1446 return;
1447 } else if (unlikely(res_prepare == TX_QUEUED)) {
1448 rcu_read_unlock();
1449 return;
1450 }
1451
1452 tx.channel = local->hw.conf.channel;
1453 info->band = tx.channel->band;
1454
1455 if (invoke_tx_handlers(&tx))
1456 goto out;
1457
1458 retries = 0;
1459 retry:
1460 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1461 switch (ret) {
1462 case IEEE80211_TX_OK:
1463 break;
1464 case IEEE80211_TX_AGAIN:
1465 /*
1466 * Since there are no fragmented frames on A-MPDU
1467 * queues, there's no reason for a driver to reject
1468 * a frame there, warn and drop it.
1469 */
1470 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1471 goto drop;
1472 /* fall through */
1473 case IEEE80211_TX_PENDING:
1474 skb = tx.skb;
1475
1476 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1477
1478 if (local->queue_stop_reasons[queue] ||
1479 !skb_queue_empty(&local->pending[queue])) {
1480 /*
1481 * if queue is stopped, queue up frames for later
1482 * transmission from the tasklet
1483 */
1484 do {
1485 next = skb->next;
1486 skb->next = NULL;
1487 if (unlikely(txpending))
1488 __skb_queue_head(&local->pending[queue],
1489 skb);
1490 else
1491 __skb_queue_tail(&local->pending[queue],
1492 skb);
1493 } while ((skb = next));
1494
1495 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1496 flags);
1497 } else {
1498 /*
1499 * otherwise retry, but this is a race condition or
1500 * a driver bug (which we warn about if it persists)
1501 */
1502 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1503 flags);
1504
1505 retries++;
1506 if (WARN(retries > 10, "tx refused but queue active\n"))
1507 goto drop;
1508 goto retry;
1509 }
1510 }
1511 out:
1512 rcu_read_unlock();
1513 return;
1514
1515 drop:
1516 rcu_read_unlock();
1517
1518 skb = tx.skb;
1519 while (skb) {
1520 next = skb->next;
1521 dev_kfree_skb(skb);
1522 skb = next;
1523 }
1524 }
1525
1526 /* device xmit handlers */
1527
1528 static int ieee80211_skb_resize(struct ieee80211_local *local,
1529 struct sk_buff *skb,
1530 int head_need, bool may_encrypt)
1531 {
1532 int tail_need = 0;
1533
1534 /*
1535 * This could be optimised, devices that do full hardware
1536 * crypto (including TKIP MMIC) need no tailroom... But we
1537 * have no drivers for such devices currently.
1538 */
1539 if (may_encrypt) {
1540 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1541 tail_need -= skb_tailroom(skb);
1542 tail_need = max_t(int, tail_need, 0);
1543 }
1544
1545 if (head_need || tail_need) {
1546 /* Sorry. Can't account for this any more */
1547 skb_orphan(skb);
1548 }
1549
1550 if (skb_header_cloned(skb))
1551 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1552 else if (head_need || tail_need)
1553 I802_DEBUG_INC(local->tx_expand_skb_head);
1554 else
1555 return 0;
1556
1557 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1558 wiphy_debug(local->hw.wiphy,
1559 "failed to reallocate TX buffer\n");
1560 return -ENOMEM;
1561 }
1562
1563 /* update truesize too */
1564 skb->truesize += head_need + tail_need;
1565
1566 return 0;
1567 }
1568
1569 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1570 struct sk_buff *skb)
1571 {
1572 struct ieee80211_local *local = sdata->local;
1573 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1574 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1575 struct ieee80211_sub_if_data *tmp_sdata;
1576 int headroom;
1577 bool may_encrypt;
1578
1579 rcu_read_lock();
1580
1581 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1582 int hdrlen;
1583 u16 len_rthdr;
1584
1585 info->flags |= IEEE80211_TX_CTL_INJECTED |
1586 IEEE80211_TX_INTFL_HAS_RADIOTAP;
1587
1588 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1589 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1590 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1591
1592 /* check the header is complete in the frame */
1593 if (likely(skb->len >= len_rthdr + hdrlen)) {
1594 /*
1595 * We process outgoing injected frames that have a
1596 * local address we handle as though they are our
1597 * own frames.
1598 * This code here isn't entirely correct, the local
1599 * MAC address is not necessarily enough to find
1600 * the interface to use; for that proper VLAN/WDS
1601 * support we will need a different mechanism.
1602 */
1603
1604 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1605 list) {
1606 if (!ieee80211_sdata_running(tmp_sdata))
1607 continue;
1608 if (tmp_sdata->vif.type ==
1609 NL80211_IFTYPE_MONITOR ||
1610 tmp_sdata->vif.type ==
1611 NL80211_IFTYPE_AP_VLAN ||
1612 tmp_sdata->vif.type ==
1613 NL80211_IFTYPE_WDS)
1614 continue;
1615 if (compare_ether_addr(tmp_sdata->vif.addr,
1616 hdr->addr2) == 0) {
1617 sdata = tmp_sdata;
1618 break;
1619 }
1620 }
1621 }
1622 }
1623
1624 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1625
1626 headroom = local->tx_headroom;
1627 if (may_encrypt)
1628 headroom += IEEE80211_ENCRYPT_HEADROOM;
1629 headroom -= skb_headroom(skb);
1630 headroom = max_t(int, 0, headroom);
1631
1632 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1633 dev_kfree_skb(skb);
1634 rcu_read_unlock();
1635 return;
1636 }
1637
1638 hdr = (struct ieee80211_hdr *) skb->data;
1639 info->control.vif = &sdata->vif;
1640
1641 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1642 ieee80211_is_data(hdr->frame_control) &&
1643 !is_multicast_ether_addr(hdr->addr1))
1644 if (mesh_nexthop_lookup(skb, sdata)) {
1645 /* skb queued: don't free */
1646 rcu_read_unlock();
1647 return;
1648 }
1649
1650 ieee80211_set_qos_hdr(local, skb);
1651 ieee80211_tx(sdata, skb, false);
1652 rcu_read_unlock();
1653 }
1654
1655 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1656 struct net_device *dev)
1657 {
1658 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1659 struct ieee80211_channel *chan = local->hw.conf.channel;
1660 struct ieee80211_radiotap_header *prthdr =
1661 (struct ieee80211_radiotap_header *)skb->data;
1662 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1663 u16 len_rthdr;
1664
1665 /*
1666 * Frame injection is not allowed if beaconing is not allowed
1667 * or if we need radar detection. Beaconing is usually not allowed when
1668 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1669 * Passive scan is also used in world regulatory domains where
1670 * your country is not known and as such it should be treated as
1671 * NO TX unless the channel is explicitly allowed in which case
1672 * your current regulatory domain would not have the passive scan
1673 * flag.
1674 *
1675 * Since AP mode uses monitor interfaces to inject/TX management
1676 * frames we can make AP mode the exception to this rule once it
1677 * supports radar detection as its implementation can deal with
1678 * radar detection by itself. We can do that later by adding a
1679 * monitor flag interfaces used for AP support.
1680 */
1681 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1682 IEEE80211_CHAN_PASSIVE_SCAN)))
1683 goto fail;
1684
1685 /* check for not even having the fixed radiotap header part */
1686 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1687 goto fail; /* too short to be possibly valid */
1688
1689 /* is it a header version we can trust to find length from? */
1690 if (unlikely(prthdr->it_version))
1691 goto fail; /* only version 0 is supported */
1692
1693 /* then there must be a radiotap header with a length we can use */
1694 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1695
1696 /* does the skb contain enough to deliver on the alleged length? */
1697 if (unlikely(skb->len < len_rthdr))
1698 goto fail; /* skb too short for claimed rt header extent */
1699
1700 /*
1701 * fix up the pointers accounting for the radiotap
1702 * header still being in there. We are being given
1703 * a precooked IEEE80211 header so no need for
1704 * normal processing
1705 */
1706 skb_set_mac_header(skb, len_rthdr);
1707 /*
1708 * these are just fixed to the end of the rt area since we
1709 * don't have any better information and at this point, nobody cares
1710 */
1711 skb_set_network_header(skb, len_rthdr);
1712 skb_set_transport_header(skb, len_rthdr);
1713
1714 memset(info, 0, sizeof(*info));
1715
1716 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1717
1718 /* pass the radiotap header up to xmit */
1719 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1720 return NETDEV_TX_OK;
1721
1722 fail:
1723 dev_kfree_skb(skb);
1724 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1725 }
1726
1727 /**
1728 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1729 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1730 * @skb: packet to be sent
1731 * @dev: incoming interface
1732 *
1733 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1734 * not be freed, and caller is responsible for either retrying later or freeing
1735 * skb).
1736 *
1737 * This function takes in an Ethernet header and encapsulates it with suitable
1738 * IEEE 802.11 header based on which interface the packet is coming in. The
1739 * encapsulated packet will then be passed to master interface, wlan#.11, for
1740 * transmission (through low-level driver).
1741 */
1742 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1743 struct net_device *dev)
1744 {
1745 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1746 struct ieee80211_local *local = sdata->local;
1747 struct ieee80211_tx_info *info;
1748 int ret = NETDEV_TX_BUSY, head_need;
1749 u16 ethertype, hdrlen, meshhdrlen = 0;
1750 __le16 fc;
1751 struct ieee80211_hdr hdr;
1752 struct ieee80211s_hdr mesh_hdr __maybe_unused;
1753 struct mesh_path *mppath = NULL;
1754 const u8 *encaps_data;
1755 int encaps_len, skip_header_bytes;
1756 int nh_pos, h_pos;
1757 struct sta_info *sta = NULL;
1758 u32 sta_flags = 0;
1759 struct sk_buff *tmp_skb;
1760
1761 if (unlikely(skb->len < ETH_HLEN)) {
1762 ret = NETDEV_TX_OK;
1763 goto fail;
1764 }
1765
1766 /* convert Ethernet header to proper 802.11 header (based on
1767 * operation mode) */
1768 ethertype = (skb->data[12] << 8) | skb->data[13];
1769 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1770
1771 switch (sdata->vif.type) {
1772 case NL80211_IFTYPE_AP_VLAN:
1773 rcu_read_lock();
1774 sta = rcu_dereference(sdata->u.vlan.sta);
1775 if (sta) {
1776 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1777 /* RA TA DA SA */
1778 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1779 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1780 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1781 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1782 hdrlen = 30;
1783 sta_flags = get_sta_flags(sta);
1784 }
1785 rcu_read_unlock();
1786 if (sta)
1787 break;
1788 /* fall through */
1789 case NL80211_IFTYPE_AP:
1790 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1791 /* DA BSSID SA */
1792 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1793 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1794 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1795 hdrlen = 24;
1796 break;
1797 case NL80211_IFTYPE_WDS:
1798 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1799 /* RA TA DA SA */
1800 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1801 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1802 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1803 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1804 hdrlen = 30;
1805 break;
1806 #ifdef CONFIG_MAC80211_MESH
1807 case NL80211_IFTYPE_MESH_POINT:
1808 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1809 /* Do not send frames with mesh_ttl == 0 */
1810 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1811 ret = NETDEV_TX_OK;
1812 goto fail;
1813 }
1814 if (!is_multicast_ether_addr(skb->data))
1815 mppath = mpp_path_lookup(skb->data, sdata);
1816
1817 /*
1818 * Do not use address extension, if it is a packet from
1819 * the same interface and the destination is not being
1820 * proxied by any other mest point.
1821 */
1822 if (compare_ether_addr(sdata->vif.addr,
1823 skb->data + ETH_ALEN) == 0 &&
1824 (!mppath || !compare_ether_addr(mppath->mpp, skb->data))) {
1825 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1826 skb->data, skb->data + ETH_ALEN);
1827 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1828 sdata, NULL, NULL);
1829 } else {
1830 /* packet from other interface */
1831 int is_mesh_mcast = 1;
1832 const u8 *mesh_da;
1833
1834 rcu_read_lock();
1835 if (is_multicast_ether_addr(skb->data))
1836 /* DA TA mSA AE:SA */
1837 mesh_da = skb->data;
1838 else {
1839 static const u8 bcast[ETH_ALEN] =
1840 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1841 if (mppath) {
1842 /* RA TA mDA mSA AE:DA SA */
1843 mesh_da = mppath->mpp;
1844 is_mesh_mcast = 0;
1845 } else {
1846 /* DA TA mSA AE:SA */
1847 mesh_da = bcast;
1848 }
1849 }
1850 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1851 mesh_da, sdata->vif.addr);
1852 rcu_read_unlock();
1853 if (is_mesh_mcast)
1854 meshhdrlen =
1855 ieee80211_new_mesh_header(&mesh_hdr,
1856 sdata,
1857 skb->data + ETH_ALEN,
1858 NULL);
1859 else
1860 meshhdrlen =
1861 ieee80211_new_mesh_header(&mesh_hdr,
1862 sdata,
1863 skb->data,
1864 skb->data + ETH_ALEN);
1865
1866 }
1867 break;
1868 #endif
1869 case NL80211_IFTYPE_STATION:
1870 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1871 if (sdata->u.mgd.use_4addr &&
1872 cpu_to_be16(ethertype) != sdata->control_port_protocol) {
1873 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1874 /* RA TA DA SA */
1875 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1876 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1877 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1878 hdrlen = 30;
1879 } else {
1880 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1881 /* BSSID SA DA */
1882 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1883 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1884 hdrlen = 24;
1885 }
1886 break;
1887 case NL80211_IFTYPE_ADHOC:
1888 /* DA SA BSSID */
1889 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1890 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1891 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1892 hdrlen = 24;
1893 break;
1894 default:
1895 ret = NETDEV_TX_OK;
1896 goto fail;
1897 }
1898
1899 /*
1900 * There's no need to try to look up the destination
1901 * if it is a multicast address (which can only happen
1902 * in AP mode)
1903 */
1904 if (!is_multicast_ether_addr(hdr.addr1)) {
1905 rcu_read_lock();
1906 sta = sta_info_get(sdata, hdr.addr1);
1907 if (sta)
1908 sta_flags = get_sta_flags(sta);
1909 rcu_read_unlock();
1910 }
1911
1912 /* receiver and we are QoS enabled, use a QoS type frame */
1913 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1914 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1915 hdrlen += 2;
1916 }
1917
1918 /*
1919 * Drop unicast frames to unauthorised stations unless they are
1920 * EAPOL frames from the local station.
1921 */
1922 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1923 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1924 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1925 !(cpu_to_be16(ethertype) == sdata->control_port_protocol &&
1926 compare_ether_addr(sdata->vif.addr,
1927 skb->data + ETH_ALEN) == 0))) {
1928 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1929 if (net_ratelimit())
1930 printk(KERN_DEBUG "%s: dropped frame to %pM"
1931 " (unauthorized port)\n", dev->name,
1932 hdr.addr1);
1933 #endif
1934
1935 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1936
1937 ret = NETDEV_TX_OK;
1938 goto fail;
1939 }
1940
1941 /*
1942 * If the skb is shared we need to obtain our own copy.
1943 */
1944 if (skb_shared(skb)) {
1945 tmp_skb = skb;
1946 skb = skb_clone(skb, GFP_ATOMIC);
1947 kfree_skb(tmp_skb);
1948
1949 if (!skb) {
1950 ret = NETDEV_TX_OK;
1951 goto fail;
1952 }
1953 }
1954
1955 hdr.frame_control = fc;
1956 hdr.duration_id = 0;
1957 hdr.seq_ctrl = 0;
1958
1959 skip_header_bytes = ETH_HLEN;
1960 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1961 encaps_data = bridge_tunnel_header;
1962 encaps_len = sizeof(bridge_tunnel_header);
1963 skip_header_bytes -= 2;
1964 } else if (ethertype >= 0x600) {
1965 encaps_data = rfc1042_header;
1966 encaps_len = sizeof(rfc1042_header);
1967 skip_header_bytes -= 2;
1968 } else {
1969 encaps_data = NULL;
1970 encaps_len = 0;
1971 }
1972
1973 nh_pos = skb_network_header(skb) - skb->data;
1974 h_pos = skb_transport_header(skb) - skb->data;
1975
1976 skb_pull(skb, skip_header_bytes);
1977 nh_pos -= skip_header_bytes;
1978 h_pos -= skip_header_bytes;
1979
1980 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1981
1982 /*
1983 * So we need to modify the skb header and hence need a copy of
1984 * that. The head_need variable above doesn't, so far, include
1985 * the needed header space that we don't need right away. If we
1986 * can, then we don't reallocate right now but only after the
1987 * frame arrives at the master device (if it does...)
1988 *
1989 * If we cannot, however, then we will reallocate to include all
1990 * the ever needed space. Also, if we need to reallocate it anyway,
1991 * make it big enough for everything we may ever need.
1992 */
1993
1994 if (head_need > 0 || skb_cloned(skb)) {
1995 head_need += IEEE80211_ENCRYPT_HEADROOM;
1996 head_need += local->tx_headroom;
1997 head_need = max_t(int, 0, head_need);
1998 if (ieee80211_skb_resize(local, skb, head_need, true))
1999 goto fail;
2000 }
2001
2002 if (encaps_data) {
2003 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
2004 nh_pos += encaps_len;
2005 h_pos += encaps_len;
2006 }
2007
2008 #ifdef CONFIG_MAC80211_MESH
2009 if (meshhdrlen > 0) {
2010 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
2011 nh_pos += meshhdrlen;
2012 h_pos += meshhdrlen;
2013 }
2014 #endif
2015
2016 if (ieee80211_is_data_qos(fc)) {
2017 __le16 *qos_control;
2018
2019 qos_control = (__le16*) skb_push(skb, 2);
2020 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
2021 /*
2022 * Maybe we could actually set some fields here, for now just
2023 * initialise to zero to indicate no special operation.
2024 */
2025 *qos_control = 0;
2026 } else
2027 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
2028
2029 nh_pos += hdrlen;
2030 h_pos += hdrlen;
2031
2032 dev->stats.tx_packets++;
2033 dev->stats.tx_bytes += skb->len;
2034
2035 /* Update skb pointers to various headers since this modified frame
2036 * is going to go through Linux networking code that may potentially
2037 * need things like pointer to IP header. */
2038 skb_set_mac_header(skb, 0);
2039 skb_set_network_header(skb, nh_pos);
2040 skb_set_transport_header(skb, h_pos);
2041
2042 info = IEEE80211_SKB_CB(skb);
2043 memset(info, 0, sizeof(*info));
2044
2045 dev->trans_start = jiffies;
2046 ieee80211_xmit(sdata, skb);
2047
2048 return NETDEV_TX_OK;
2049
2050 fail:
2051 if (ret == NETDEV_TX_OK)
2052 dev_kfree_skb(skb);
2053
2054 return ret;
2055 }
2056
2057
2058 /*
2059 * ieee80211_clear_tx_pending may not be called in a context where
2060 * it is possible that it packets could come in again.
2061 */
2062 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
2063 {
2064 int i;
2065
2066 for (i = 0; i < local->hw.queues; i++)
2067 skb_queue_purge(&local->pending[i]);
2068 }
2069
2070 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
2071 struct sk_buff *skb)
2072 {
2073 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2074 struct ieee80211_sub_if_data *sdata;
2075 struct sta_info *sta;
2076 struct ieee80211_hdr *hdr;
2077 int ret;
2078 bool result = true;
2079
2080 sdata = vif_to_sdata(info->control.vif);
2081
2082 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
2083 ieee80211_tx(sdata, skb, true);
2084 } else {
2085 hdr = (struct ieee80211_hdr *)skb->data;
2086 sta = sta_info_get(sdata, hdr->addr1);
2087
2088 ret = __ieee80211_tx(local, &skb, sta, true);
2089 if (ret != IEEE80211_TX_OK)
2090 result = false;
2091 }
2092
2093 return result;
2094 }
2095
2096 /*
2097 * Transmit all pending packets. Called from tasklet.
2098 */
2099 void ieee80211_tx_pending(unsigned long data)
2100 {
2101 struct ieee80211_local *local = (struct ieee80211_local *)data;
2102 struct ieee80211_sub_if_data *sdata;
2103 unsigned long flags;
2104 int i;
2105 bool txok;
2106
2107 rcu_read_lock();
2108
2109 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
2110 for (i = 0; i < local->hw.queues; i++) {
2111 /*
2112 * If queue is stopped by something other than due to pending
2113 * frames, or we have no pending frames, proceed to next queue.
2114 */
2115 if (local->queue_stop_reasons[i] ||
2116 skb_queue_empty(&local->pending[i]))
2117 continue;
2118
2119 while (!skb_queue_empty(&local->pending[i])) {
2120 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
2121 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2122
2123 if (WARN_ON(!info->control.vif)) {
2124 kfree_skb(skb);
2125 continue;
2126 }
2127
2128 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2129 flags);
2130
2131 txok = ieee80211_tx_pending_skb(local, skb);
2132 if (!txok)
2133 __skb_queue_head(&local->pending[i], skb);
2134 spin_lock_irqsave(&local->queue_stop_reason_lock,
2135 flags);
2136 if (!txok)
2137 break;
2138 }
2139
2140 if (skb_queue_empty(&local->pending[i]))
2141 list_for_each_entry_rcu(sdata, &local->interfaces, list)
2142 netif_wake_subqueue(sdata->dev, i);
2143 }
2144 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2145
2146 rcu_read_unlock();
2147 }
2148
2149 /* functions for drivers to get certain frames */
2150
2151 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2152 struct sk_buff *skb,
2153 struct beacon_data *beacon)
2154 {
2155 u8 *pos, *tim;
2156 int aid0 = 0;
2157 int i, have_bits = 0, n1, n2;
2158
2159 /* Generate bitmap for TIM only if there are any STAs in power save
2160 * mode. */
2161 if (atomic_read(&bss->num_sta_ps) > 0)
2162 /* in the hope that this is faster than
2163 * checking byte-for-byte */
2164 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2165 IEEE80211_MAX_AID+1);
2166
2167 if (bss->dtim_count == 0)
2168 bss->dtim_count = beacon->dtim_period - 1;
2169 else
2170 bss->dtim_count--;
2171
2172 tim = pos = (u8 *) skb_put(skb, 6);
2173 *pos++ = WLAN_EID_TIM;
2174 *pos++ = 4;
2175 *pos++ = bss->dtim_count;
2176 *pos++ = beacon->dtim_period;
2177
2178 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2179 aid0 = 1;
2180
2181 if (have_bits) {
2182 /* Find largest even number N1 so that bits numbered 1 through
2183 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2184 * (N2 + 1) x 8 through 2007 are 0. */
2185 n1 = 0;
2186 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2187 if (bss->tim[i]) {
2188 n1 = i & 0xfe;
2189 break;
2190 }
2191 }
2192 n2 = n1;
2193 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2194 if (bss->tim[i]) {
2195 n2 = i;
2196 break;
2197 }
2198 }
2199
2200 /* Bitmap control */
2201 *pos++ = n1 | aid0;
2202 /* Part Virt Bitmap */
2203 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2204
2205 tim[1] = n2 - n1 + 4;
2206 skb_put(skb, n2 - n1);
2207 } else {
2208 *pos++ = aid0; /* Bitmap control */
2209 *pos++ = 0; /* Part Virt Bitmap */
2210 }
2211 }
2212
2213 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2214 struct ieee80211_vif *vif,
2215 u16 *tim_offset, u16 *tim_length)
2216 {
2217 struct ieee80211_local *local = hw_to_local(hw);
2218 struct sk_buff *skb = NULL;
2219 struct ieee80211_tx_info *info;
2220 struct ieee80211_sub_if_data *sdata = NULL;
2221 struct ieee80211_if_ap *ap = NULL;
2222 struct beacon_data *beacon;
2223 struct ieee80211_supported_band *sband;
2224 enum ieee80211_band band = local->hw.conf.channel->band;
2225 struct ieee80211_tx_rate_control txrc;
2226
2227 sband = local->hw.wiphy->bands[band];
2228
2229 rcu_read_lock();
2230
2231 sdata = vif_to_sdata(vif);
2232
2233 if (tim_offset)
2234 *tim_offset = 0;
2235 if (tim_length)
2236 *tim_length = 0;
2237
2238 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2239 ap = &sdata->u.ap;
2240 beacon = rcu_dereference(ap->beacon);
2241 if (ap && beacon) {
2242 /*
2243 * headroom, head length,
2244 * tail length and maximum TIM length
2245 */
2246 skb = dev_alloc_skb(local->tx_headroom +
2247 beacon->head_len +
2248 beacon->tail_len + 256);
2249 if (!skb)
2250 goto out;
2251
2252 skb_reserve(skb, local->tx_headroom);
2253 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2254 beacon->head_len);
2255
2256 /*
2257 * Not very nice, but we want to allow the driver to call
2258 * ieee80211_beacon_get() as a response to the set_tim()
2259 * callback. That, however, is already invoked under the
2260 * sta_lock to guarantee consistent and race-free update
2261 * of the tim bitmap in mac80211 and the driver.
2262 */
2263 if (local->tim_in_locked_section) {
2264 ieee80211_beacon_add_tim(ap, skb, beacon);
2265 } else {
2266 unsigned long flags;
2267
2268 spin_lock_irqsave(&local->sta_lock, flags);
2269 ieee80211_beacon_add_tim(ap, skb, beacon);
2270 spin_unlock_irqrestore(&local->sta_lock, flags);
2271 }
2272
2273 if (tim_offset)
2274 *tim_offset = beacon->head_len;
2275 if (tim_length)
2276 *tim_length = skb->len - beacon->head_len;
2277
2278 if (beacon->tail)
2279 memcpy(skb_put(skb, beacon->tail_len),
2280 beacon->tail, beacon->tail_len);
2281 } else
2282 goto out;
2283 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2284 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2285 struct ieee80211_hdr *hdr;
2286 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2287
2288 if (!presp)
2289 goto out;
2290
2291 skb = skb_copy(presp, GFP_ATOMIC);
2292 if (!skb)
2293 goto out;
2294
2295 hdr = (struct ieee80211_hdr *) skb->data;
2296 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2297 IEEE80211_STYPE_BEACON);
2298 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2299 struct ieee80211_mgmt *mgmt;
2300 u8 *pos;
2301
2302 /* headroom, head length, tail length and maximum TIM length */
2303 skb = dev_alloc_skb(local->tx_headroom + 400 +
2304 sdata->u.mesh.vendor_ie_len);
2305 if (!skb)
2306 goto out;
2307
2308 skb_reserve(skb, local->hw.extra_tx_headroom);
2309 mgmt = (struct ieee80211_mgmt *)
2310 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2311 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2312 mgmt->frame_control =
2313 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2314 memset(mgmt->da, 0xff, ETH_ALEN);
2315 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2316 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2317 mgmt->u.beacon.beacon_int =
2318 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2319 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2320
2321 pos = skb_put(skb, 2);
2322 *pos++ = WLAN_EID_SSID;
2323 *pos++ = 0x0;
2324
2325 mesh_mgmt_ies_add(skb, sdata);
2326 } else {
2327 WARN_ON(1);
2328 goto out;
2329 }
2330
2331 info = IEEE80211_SKB_CB(skb);
2332
2333 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2334 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2335 info->band = band;
2336
2337 memset(&txrc, 0, sizeof(txrc));
2338 txrc.hw = hw;
2339 txrc.sband = sband;
2340 txrc.bss_conf = &sdata->vif.bss_conf;
2341 txrc.skb = skb;
2342 txrc.reported_rate.idx = -1;
2343 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2344 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2345 txrc.max_rate_idx = -1;
2346 else
2347 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2348 txrc.bss = true;
2349 rate_control_get_rate(sdata, NULL, &txrc);
2350
2351 info->control.vif = vif;
2352
2353 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT |
2354 IEEE80211_TX_CTL_ASSIGN_SEQ |
2355 IEEE80211_TX_CTL_FIRST_FRAGMENT;
2356 out:
2357 rcu_read_unlock();
2358 return skb;
2359 }
2360 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2361
2362 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2363 struct ieee80211_vif *vif)
2364 {
2365 struct ieee80211_sub_if_data *sdata;
2366 struct ieee80211_if_managed *ifmgd;
2367 struct ieee80211_pspoll *pspoll;
2368 struct ieee80211_local *local;
2369 struct sk_buff *skb;
2370
2371 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2372 return NULL;
2373
2374 sdata = vif_to_sdata(vif);
2375 ifmgd = &sdata->u.mgd;
2376 local = sdata->local;
2377
2378 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2379 if (!skb) {
2380 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2381 "pspoll template\n", sdata->name);
2382 return NULL;
2383 }
2384 skb_reserve(skb, local->hw.extra_tx_headroom);
2385
2386 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2387 memset(pspoll, 0, sizeof(*pspoll));
2388 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2389 IEEE80211_STYPE_PSPOLL);
2390 pspoll->aid = cpu_to_le16(ifmgd->aid);
2391
2392 /* aid in PS-Poll has its two MSBs each set to 1 */
2393 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2394
2395 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2396 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2397
2398 return skb;
2399 }
2400 EXPORT_SYMBOL(ieee80211_pspoll_get);
2401
2402 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2403 struct ieee80211_vif *vif)
2404 {
2405 struct ieee80211_hdr_3addr *nullfunc;
2406 struct ieee80211_sub_if_data *sdata;
2407 struct ieee80211_if_managed *ifmgd;
2408 struct ieee80211_local *local;
2409 struct sk_buff *skb;
2410
2411 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2412 return NULL;
2413
2414 sdata = vif_to_sdata(vif);
2415 ifmgd = &sdata->u.mgd;
2416 local = sdata->local;
2417
2418 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2419 if (!skb) {
2420 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2421 "template\n", sdata->name);
2422 return NULL;
2423 }
2424 skb_reserve(skb, local->hw.extra_tx_headroom);
2425
2426 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2427 sizeof(*nullfunc));
2428 memset(nullfunc, 0, sizeof(*nullfunc));
2429 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2430 IEEE80211_STYPE_NULLFUNC |
2431 IEEE80211_FCTL_TODS);
2432 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2433 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2434 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2435
2436 return skb;
2437 }
2438 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2439
2440 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2441 struct ieee80211_vif *vif,
2442 const u8 *ssid, size_t ssid_len,
2443 const u8 *ie, size_t ie_len)
2444 {
2445 struct ieee80211_sub_if_data *sdata;
2446 struct ieee80211_local *local;
2447 struct ieee80211_hdr_3addr *hdr;
2448 struct sk_buff *skb;
2449 size_t ie_ssid_len;
2450 u8 *pos;
2451
2452 sdata = vif_to_sdata(vif);
2453 local = sdata->local;
2454 ie_ssid_len = 2 + ssid_len;
2455
2456 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2457 ie_ssid_len + ie_len);
2458 if (!skb) {
2459 printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
2460 "request template\n", sdata->name);
2461 return NULL;
2462 }
2463
2464 skb_reserve(skb, local->hw.extra_tx_headroom);
2465
2466 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2467 memset(hdr, 0, sizeof(*hdr));
2468 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2469 IEEE80211_STYPE_PROBE_REQ);
2470 memset(hdr->addr1, 0xff, ETH_ALEN);
2471 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2472 memset(hdr->addr3, 0xff, ETH_ALEN);
2473
2474 pos = skb_put(skb, ie_ssid_len);
2475 *pos++ = WLAN_EID_SSID;
2476 *pos++ = ssid_len;
2477 if (ssid)
2478 memcpy(pos, ssid, ssid_len);
2479 pos += ssid_len;
2480
2481 if (ie) {
2482 pos = skb_put(skb, ie_len);
2483 memcpy(pos, ie, ie_len);
2484 }
2485
2486 return skb;
2487 }
2488 EXPORT_SYMBOL(ieee80211_probereq_get);
2489
2490 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2491 const void *frame, size_t frame_len,
2492 const struct ieee80211_tx_info *frame_txctl,
2493 struct ieee80211_rts *rts)
2494 {
2495 const struct ieee80211_hdr *hdr = frame;
2496
2497 rts->frame_control =
2498 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2499 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2500 frame_txctl);
2501 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2502 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2503 }
2504 EXPORT_SYMBOL(ieee80211_rts_get);
2505
2506 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2507 const void *frame, size_t frame_len,
2508 const struct ieee80211_tx_info *frame_txctl,
2509 struct ieee80211_cts *cts)
2510 {
2511 const struct ieee80211_hdr *hdr = frame;
2512
2513 cts->frame_control =
2514 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2515 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2516 frame_len, frame_txctl);
2517 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2518 }
2519 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2520
2521 struct sk_buff *
2522 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2523 struct ieee80211_vif *vif)
2524 {
2525 struct ieee80211_local *local = hw_to_local(hw);
2526 struct sk_buff *skb = NULL;
2527 struct sta_info *sta;
2528 struct ieee80211_tx_data tx;
2529 struct ieee80211_sub_if_data *sdata;
2530 struct ieee80211_if_ap *bss = NULL;
2531 struct beacon_data *beacon;
2532 struct ieee80211_tx_info *info;
2533
2534 sdata = vif_to_sdata(vif);
2535 bss = &sdata->u.ap;
2536
2537 rcu_read_lock();
2538 beacon = rcu_dereference(bss->beacon);
2539
2540 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2541 goto out;
2542
2543 if (bss->dtim_count != 0)
2544 goto out; /* send buffered bc/mc only after DTIM beacon */
2545
2546 while (1) {
2547 skb = skb_dequeue(&bss->ps_bc_buf);
2548 if (!skb)
2549 goto out;
2550 local->total_ps_buffered--;
2551
2552 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2553 struct ieee80211_hdr *hdr =
2554 (struct ieee80211_hdr *) skb->data;
2555 /* more buffered multicast/broadcast frames ==> set
2556 * MoreData flag in IEEE 802.11 header to inform PS
2557 * STAs */
2558 hdr->frame_control |=
2559 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2560 }
2561
2562 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2563 break;
2564 dev_kfree_skb_any(skb);
2565 }
2566
2567 info = IEEE80211_SKB_CB(skb);
2568
2569 sta = tx.sta;
2570 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2571 tx.channel = local->hw.conf.channel;
2572 info->band = tx.channel->band;
2573
2574 if (invoke_tx_handlers(&tx))
2575 skb = NULL;
2576 out:
2577 rcu_read_unlock();
2578
2579 return skb;
2580 }
2581 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2582
2583 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2584 {
2585 skb_set_mac_header(skb, 0);
2586 skb_set_network_header(skb, 0);
2587 skb_set_transport_header(skb, 0);
2588
2589 /* send all internal mgmt frames on VO */
2590 skb_set_queue_mapping(skb, 0);
2591
2592 /*
2593 * The other path calling ieee80211_xmit is from the tasklet,
2594 * and while we can handle concurrent transmissions locking
2595 * requirements are that we do not come into tx with bhs on.
2596 */
2597 local_bh_disable();
2598 ieee80211_xmit(sdata, skb);
2599 local_bh_enable();
2600 }
This page took 0.138601 seconds and 5 git commands to generate.