ef725cabb09950d5163156a6d93f18803e89bb90
[deliverable/linux.git] / net / mac80211 / util.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * utilities for mac80211
12 */
13
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 struct ieee80211_local *local;
42 BUG_ON(!wiphy);
43
44 local = wiphy_priv(wiphy);
45 return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 enum nl80211_iftype type)
51 {
52 __le16 fc = hdr->frame_control;
53
54 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 if (len < 16)
56 return NULL;
57
58 if (ieee80211_is_data(fc)) {
59 if (len < 24) /* drop incorrect hdr len (data) */
60 return NULL;
61
62 if (ieee80211_has_a4(fc))
63 return NULL;
64 if (ieee80211_has_tods(fc))
65 return hdr->addr1;
66 if (ieee80211_has_fromds(fc))
67 return hdr->addr2;
68
69 return hdr->addr3;
70 }
71
72 if (ieee80211_is_mgmt(fc)) {
73 if (len < 24) /* drop incorrect hdr len (mgmt) */
74 return NULL;
75 return hdr->addr3;
76 }
77
78 if (ieee80211_is_ctl(fc)) {
79 if(ieee80211_is_pspoll(fc))
80 return hdr->addr1;
81
82 if (ieee80211_is_back_req(fc)) {
83 switch (type) {
84 case NL80211_IFTYPE_STATION:
85 return hdr->addr2;
86 case NL80211_IFTYPE_AP:
87 case NL80211_IFTYPE_AP_VLAN:
88 return hdr->addr1;
89 default:
90 break; /* fall through to the return */
91 }
92 }
93 }
94
95 return NULL;
96 }
97
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 struct sk_buff *skb;
101 struct ieee80211_hdr *hdr;
102
103 skb_queue_walk(&tx->skbs, skb) {
104 hdr = (struct ieee80211_hdr *) skb->data;
105 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 }
107 }
108
109 int ieee80211_frame_duration(struct ieee80211_local *local, size_t len,
110 int rate, int erp, int short_preamble)
111 {
112 int dur;
113
114 /* calculate duration (in microseconds, rounded up to next higher
115 * integer if it includes a fractional microsecond) to send frame of
116 * len bytes (does not include FCS) at the given rate. Duration will
117 * also include SIFS.
118 *
119 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 * DIV_ROUND_UP() operations.
121 */
122
123 if (local->hw.conf.channel->band == IEEE80211_BAND_5GHZ || erp) {
124 /*
125 * OFDM:
126 *
127 * N_DBPS = DATARATE x 4
128 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 * (16 = SIGNAL time, 6 = tail bits)
130 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 *
132 * T_SYM = 4 usec
133 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 * signal ext = 6 usec
136 */
137 dur = 16; /* SIFS + signal ext */
138 dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 4 * rate); /* T_SYM x N_SYM */
142 } else {
143 /*
144 * 802.11b or 802.11g with 802.11b compatibility:
145 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 *
148 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 * aSIFSTime = 10 usec
150 * aPreambleLength = 144 usec or 72 usec with short preamble
151 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 */
153 dur = 10; /* aSIFSTime = 10 usec */
154 dur += short_preamble ? (72 + 24) : (144 + 48);
155
156 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 }
158
159 return dur;
160 }
161
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 struct ieee80211_vif *vif,
165 size_t frame_len,
166 struct ieee80211_rate *rate)
167 {
168 struct ieee80211_local *local = hw_to_local(hw);
169 struct ieee80211_sub_if_data *sdata;
170 u16 dur;
171 int erp;
172 bool short_preamble = false;
173
174 erp = 0;
175 if (vif) {
176 sdata = vif_to_sdata(vif);
177 short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 erp = rate->flags & IEEE80211_RATE_ERP_G;
180 }
181
182 dur = ieee80211_frame_duration(local, frame_len, rate->bitrate, erp,
183 short_preamble);
184
185 return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 struct ieee80211_vif *vif, size_t frame_len,
191 const struct ieee80211_tx_info *frame_txctl)
192 {
193 struct ieee80211_local *local = hw_to_local(hw);
194 struct ieee80211_rate *rate;
195 struct ieee80211_sub_if_data *sdata;
196 bool short_preamble;
197 int erp;
198 u16 dur;
199 struct ieee80211_supported_band *sband;
200
201 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
202
203 short_preamble = false;
204
205 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206
207 erp = 0;
208 if (vif) {
209 sdata = vif_to_sdata(vif);
210 short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 erp = rate->flags & IEEE80211_RATE_ERP_G;
213 }
214
215 /* CTS duration */
216 dur = ieee80211_frame_duration(local, 10, rate->bitrate,
217 erp, short_preamble);
218 /* Data frame duration */
219 dur += ieee80211_frame_duration(local, frame_len, rate->bitrate,
220 erp, short_preamble);
221 /* ACK duration */
222 dur += ieee80211_frame_duration(local, 10, rate->bitrate,
223 erp, short_preamble);
224
225 return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 struct ieee80211_vif *vif,
231 size_t frame_len,
232 const struct ieee80211_tx_info *frame_txctl)
233 {
234 struct ieee80211_local *local = hw_to_local(hw);
235 struct ieee80211_rate *rate;
236 struct ieee80211_sub_if_data *sdata;
237 bool short_preamble;
238 int erp;
239 u16 dur;
240 struct ieee80211_supported_band *sband;
241
242 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
243
244 short_preamble = false;
245
246 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 erp = 0;
248 if (vif) {
249 sdata = vif_to_sdata(vif);
250 short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 erp = rate->flags & IEEE80211_RATE_ERP_G;
253 }
254
255 /* Data frame duration */
256 dur = ieee80211_frame_duration(local, frame_len, rate->bitrate,
257 erp, short_preamble);
258 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 /* ACK duration */
260 dur += ieee80211_frame_duration(local, 10, rate->bitrate,
261 erp, short_preamble);
262 }
263
264 return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267
268 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
269 enum queue_stop_reason reason)
270 {
271 struct ieee80211_local *local = hw_to_local(hw);
272 struct ieee80211_sub_if_data *sdata;
273
274 trace_wake_queue(local, queue, reason);
275
276 if (WARN_ON(queue >= hw->queues))
277 return;
278
279 if (!test_bit(reason, &local->queue_stop_reasons[queue]))
280 return;
281
282 __clear_bit(reason, &local->queue_stop_reasons[queue]);
283
284 if (local->queue_stop_reasons[queue] != 0)
285 /* someone still has this queue stopped */
286 return;
287
288 if (skb_queue_empty(&local->pending[queue])) {
289 rcu_read_lock();
290 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
291 if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
292 continue;
293 netif_wake_subqueue(sdata->dev, queue);
294 }
295 rcu_read_unlock();
296 } else
297 tasklet_schedule(&local->tx_pending_tasklet);
298 }
299
300 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
301 enum queue_stop_reason reason)
302 {
303 struct ieee80211_local *local = hw_to_local(hw);
304 unsigned long flags;
305
306 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
307 __ieee80211_wake_queue(hw, queue, reason);
308 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
309 }
310
311 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
312 {
313 ieee80211_wake_queue_by_reason(hw, queue,
314 IEEE80211_QUEUE_STOP_REASON_DRIVER);
315 }
316 EXPORT_SYMBOL(ieee80211_wake_queue);
317
318 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
319 enum queue_stop_reason reason)
320 {
321 struct ieee80211_local *local = hw_to_local(hw);
322 struct ieee80211_sub_if_data *sdata;
323
324 trace_stop_queue(local, queue, reason);
325
326 if (WARN_ON(queue >= hw->queues))
327 return;
328
329 if (test_bit(reason, &local->queue_stop_reasons[queue]))
330 return;
331
332 __set_bit(reason, &local->queue_stop_reasons[queue]);
333
334 rcu_read_lock();
335 list_for_each_entry_rcu(sdata, &local->interfaces, list)
336 netif_stop_subqueue(sdata->dev, queue);
337 rcu_read_unlock();
338 }
339
340 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
341 enum queue_stop_reason reason)
342 {
343 struct ieee80211_local *local = hw_to_local(hw);
344 unsigned long flags;
345
346 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
347 __ieee80211_stop_queue(hw, queue, reason);
348 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
349 }
350
351 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
352 {
353 ieee80211_stop_queue_by_reason(hw, queue,
354 IEEE80211_QUEUE_STOP_REASON_DRIVER);
355 }
356 EXPORT_SYMBOL(ieee80211_stop_queue);
357
358 void ieee80211_add_pending_skb(struct ieee80211_local *local,
359 struct sk_buff *skb)
360 {
361 struct ieee80211_hw *hw = &local->hw;
362 unsigned long flags;
363 int queue = skb_get_queue_mapping(skb);
364 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
365
366 if (WARN_ON(!info->control.vif)) {
367 kfree_skb(skb);
368 return;
369 }
370
371 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
372 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
373 __skb_queue_tail(&local->pending[queue], skb);
374 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
375 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
376 }
377
378 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
379 struct sk_buff_head *skbs,
380 void (*fn)(void *data), void *data)
381 {
382 struct ieee80211_hw *hw = &local->hw;
383 struct sk_buff *skb;
384 unsigned long flags;
385 int queue, i;
386
387 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
388 for (i = 0; i < hw->queues; i++)
389 __ieee80211_stop_queue(hw, i,
390 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
391
392 while ((skb = skb_dequeue(skbs))) {
393 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
394
395 if (WARN_ON(!info->control.vif)) {
396 kfree_skb(skb);
397 continue;
398 }
399
400 queue = skb_get_queue_mapping(skb);
401 __skb_queue_tail(&local->pending[queue], skb);
402 }
403
404 if (fn)
405 fn(data);
406
407 for (i = 0; i < hw->queues; i++)
408 __ieee80211_wake_queue(hw, i,
409 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
410 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
411 }
412
413 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
414 enum queue_stop_reason reason)
415 {
416 struct ieee80211_local *local = hw_to_local(hw);
417 unsigned long flags;
418 int i;
419
420 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
421
422 for (i = 0; i < hw->queues; i++)
423 __ieee80211_stop_queue(hw, i, reason);
424
425 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
426 }
427
428 void ieee80211_stop_queues(struct ieee80211_hw *hw)
429 {
430 ieee80211_stop_queues_by_reason(hw,
431 IEEE80211_QUEUE_STOP_REASON_DRIVER);
432 }
433 EXPORT_SYMBOL(ieee80211_stop_queues);
434
435 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
436 {
437 struct ieee80211_local *local = hw_to_local(hw);
438 unsigned long flags;
439 int ret;
440
441 if (WARN_ON(queue >= hw->queues))
442 return true;
443
444 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
445 ret = !!local->queue_stop_reasons[queue];
446 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
447 return ret;
448 }
449 EXPORT_SYMBOL(ieee80211_queue_stopped);
450
451 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
452 enum queue_stop_reason reason)
453 {
454 struct ieee80211_local *local = hw_to_local(hw);
455 unsigned long flags;
456 int i;
457
458 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
459
460 for (i = 0; i < hw->queues; i++)
461 __ieee80211_wake_queue(hw, i, reason);
462
463 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
464 }
465
466 void ieee80211_wake_queues(struct ieee80211_hw *hw)
467 {
468 ieee80211_wake_queues_by_reason(hw, IEEE80211_QUEUE_STOP_REASON_DRIVER);
469 }
470 EXPORT_SYMBOL(ieee80211_wake_queues);
471
472 void ieee80211_iterate_active_interfaces(
473 struct ieee80211_hw *hw,
474 void (*iterator)(void *data, u8 *mac,
475 struct ieee80211_vif *vif),
476 void *data)
477 {
478 struct ieee80211_local *local = hw_to_local(hw);
479 struct ieee80211_sub_if_data *sdata;
480
481 mutex_lock(&local->iflist_mtx);
482
483 list_for_each_entry(sdata, &local->interfaces, list) {
484 switch (sdata->vif.type) {
485 case NL80211_IFTYPE_MONITOR:
486 case NL80211_IFTYPE_AP_VLAN:
487 continue;
488 default:
489 break;
490 }
491 if (ieee80211_sdata_running(sdata))
492 iterator(data, sdata->vif.addr,
493 &sdata->vif);
494 }
495
496 mutex_unlock(&local->iflist_mtx);
497 }
498 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
499
500 void ieee80211_iterate_active_interfaces_atomic(
501 struct ieee80211_hw *hw,
502 void (*iterator)(void *data, u8 *mac,
503 struct ieee80211_vif *vif),
504 void *data)
505 {
506 struct ieee80211_local *local = hw_to_local(hw);
507 struct ieee80211_sub_if_data *sdata;
508
509 rcu_read_lock();
510
511 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
512 switch (sdata->vif.type) {
513 case NL80211_IFTYPE_MONITOR:
514 case NL80211_IFTYPE_AP_VLAN:
515 continue;
516 default:
517 break;
518 }
519 if (ieee80211_sdata_running(sdata))
520 iterator(data, sdata->vif.addr,
521 &sdata->vif);
522 }
523
524 rcu_read_unlock();
525 }
526 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
527
528 /*
529 * Nothing should have been stuffed into the workqueue during
530 * the suspend->resume cycle. If this WARN is seen then there
531 * is a bug with either the driver suspend or something in
532 * mac80211 stuffing into the workqueue which we haven't yet
533 * cleared during mac80211's suspend cycle.
534 */
535 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
536 {
537 if (WARN(local->suspended && !local->resuming,
538 "queueing ieee80211 work while going to suspend\n"))
539 return false;
540
541 return true;
542 }
543
544 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
545 {
546 struct ieee80211_local *local = hw_to_local(hw);
547
548 if (!ieee80211_can_queue_work(local))
549 return;
550
551 queue_work(local->workqueue, work);
552 }
553 EXPORT_SYMBOL(ieee80211_queue_work);
554
555 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
556 struct delayed_work *dwork,
557 unsigned long delay)
558 {
559 struct ieee80211_local *local = hw_to_local(hw);
560
561 if (!ieee80211_can_queue_work(local))
562 return;
563
564 queue_delayed_work(local->workqueue, dwork, delay);
565 }
566 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
567
568 u32 ieee802_11_parse_elems_crc(u8 *start, size_t len,
569 struct ieee802_11_elems *elems,
570 u64 filter, u32 crc)
571 {
572 size_t left = len;
573 u8 *pos = start;
574 bool calc_crc = filter != 0;
575 DECLARE_BITMAP(seen_elems, 256);
576
577 bitmap_zero(seen_elems, 256);
578 memset(elems, 0, sizeof(*elems));
579 elems->ie_start = start;
580 elems->total_len = len;
581
582 while (left >= 2) {
583 u8 id, elen;
584 bool elem_parse_failed;
585
586 id = *pos++;
587 elen = *pos++;
588 left -= 2;
589
590 if (elen > left) {
591 elems->parse_error = true;
592 break;
593 }
594
595 if (id != WLAN_EID_VENDOR_SPECIFIC &&
596 id != WLAN_EID_QUIET &&
597 test_bit(id, seen_elems)) {
598 elems->parse_error = true;
599 left -= elen;
600 pos += elen;
601 continue;
602 }
603
604 if (calc_crc && id < 64 && (filter & (1ULL << id)))
605 crc = crc32_be(crc, pos - 2, elen + 2);
606
607 elem_parse_failed = false;
608
609 switch (id) {
610 case WLAN_EID_SSID:
611 elems->ssid = pos;
612 elems->ssid_len = elen;
613 break;
614 case WLAN_EID_SUPP_RATES:
615 elems->supp_rates = pos;
616 elems->supp_rates_len = elen;
617 break;
618 case WLAN_EID_FH_PARAMS:
619 elems->fh_params = pos;
620 elems->fh_params_len = elen;
621 break;
622 case WLAN_EID_DS_PARAMS:
623 elems->ds_params = pos;
624 elems->ds_params_len = elen;
625 break;
626 case WLAN_EID_CF_PARAMS:
627 elems->cf_params = pos;
628 elems->cf_params_len = elen;
629 break;
630 case WLAN_EID_TIM:
631 if (elen >= sizeof(struct ieee80211_tim_ie)) {
632 elems->tim = (void *)pos;
633 elems->tim_len = elen;
634 } else
635 elem_parse_failed = true;
636 break;
637 case WLAN_EID_IBSS_PARAMS:
638 elems->ibss_params = pos;
639 elems->ibss_params_len = elen;
640 break;
641 case WLAN_EID_CHALLENGE:
642 elems->challenge = pos;
643 elems->challenge_len = elen;
644 break;
645 case WLAN_EID_VENDOR_SPECIFIC:
646 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
647 pos[2] == 0xf2) {
648 /* Microsoft OUI (00:50:F2) */
649
650 if (calc_crc)
651 crc = crc32_be(crc, pos - 2, elen + 2);
652
653 if (pos[3] == 1) {
654 /* OUI Type 1 - WPA IE */
655 elems->wpa = pos;
656 elems->wpa_len = elen;
657 } else if (elen >= 5 && pos[3] == 2) {
658 /* OUI Type 2 - WMM IE */
659 if (pos[4] == 0) {
660 elems->wmm_info = pos;
661 elems->wmm_info_len = elen;
662 } else if (pos[4] == 1) {
663 elems->wmm_param = pos;
664 elems->wmm_param_len = elen;
665 }
666 }
667 }
668 break;
669 case WLAN_EID_RSN:
670 elems->rsn = pos;
671 elems->rsn_len = elen;
672 break;
673 case WLAN_EID_ERP_INFO:
674 elems->erp_info = pos;
675 elems->erp_info_len = elen;
676 break;
677 case WLAN_EID_EXT_SUPP_RATES:
678 elems->ext_supp_rates = pos;
679 elems->ext_supp_rates_len = elen;
680 break;
681 case WLAN_EID_HT_CAPABILITY:
682 if (elen >= sizeof(struct ieee80211_ht_cap))
683 elems->ht_cap_elem = (void *)pos;
684 else
685 elem_parse_failed = true;
686 break;
687 case WLAN_EID_HT_OPERATION:
688 if (elen >= sizeof(struct ieee80211_ht_operation))
689 elems->ht_operation = (void *)pos;
690 else
691 elem_parse_failed = true;
692 break;
693 case WLAN_EID_MESH_ID:
694 elems->mesh_id = pos;
695 elems->mesh_id_len = elen;
696 break;
697 case WLAN_EID_MESH_CONFIG:
698 if (elen >= sizeof(struct ieee80211_meshconf_ie))
699 elems->mesh_config = (void *)pos;
700 else
701 elem_parse_failed = true;
702 break;
703 case WLAN_EID_PEER_MGMT:
704 elems->peering = pos;
705 elems->peering_len = elen;
706 break;
707 case WLAN_EID_PREQ:
708 elems->preq = pos;
709 elems->preq_len = elen;
710 break;
711 case WLAN_EID_PREP:
712 elems->prep = pos;
713 elems->prep_len = elen;
714 break;
715 case WLAN_EID_PERR:
716 elems->perr = pos;
717 elems->perr_len = elen;
718 break;
719 case WLAN_EID_RANN:
720 if (elen >= sizeof(struct ieee80211_rann_ie))
721 elems->rann = (void *)pos;
722 else
723 elem_parse_failed = true;
724 break;
725 case WLAN_EID_CHANNEL_SWITCH:
726 elems->ch_switch_elem = pos;
727 elems->ch_switch_elem_len = elen;
728 break;
729 case WLAN_EID_QUIET:
730 if (!elems->quiet_elem) {
731 elems->quiet_elem = pos;
732 elems->quiet_elem_len = elen;
733 }
734 elems->num_of_quiet_elem++;
735 break;
736 case WLAN_EID_COUNTRY:
737 elems->country_elem = pos;
738 elems->country_elem_len = elen;
739 break;
740 case WLAN_EID_PWR_CONSTRAINT:
741 elems->pwr_constr_elem = pos;
742 elems->pwr_constr_elem_len = elen;
743 break;
744 case WLAN_EID_TIMEOUT_INTERVAL:
745 elems->timeout_int = pos;
746 elems->timeout_int_len = elen;
747 break;
748 default:
749 break;
750 }
751
752 if (elem_parse_failed)
753 elems->parse_error = true;
754 else
755 set_bit(id, seen_elems);
756
757 left -= elen;
758 pos += elen;
759 }
760
761 if (left != 0)
762 elems->parse_error = true;
763
764 return crc;
765 }
766
767 void ieee802_11_parse_elems(u8 *start, size_t len,
768 struct ieee802_11_elems *elems)
769 {
770 ieee802_11_parse_elems_crc(start, len, elems, 0, 0);
771 }
772
773 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
774 bool bss_notify)
775 {
776 struct ieee80211_local *local = sdata->local;
777 struct ieee80211_tx_queue_params qparam;
778 int ac;
779 bool use_11b;
780 int aCWmin, aCWmax;
781
782 if (!local->ops->conf_tx)
783 return;
784
785 if (local->hw.queues < IEEE80211_NUM_ACS)
786 return;
787
788 memset(&qparam, 0, sizeof(qparam));
789
790 use_11b = (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) &&
791 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
792
793 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
794 /* Set defaults according to 802.11-2007 Table 7-37 */
795 aCWmax = 1023;
796 if (use_11b)
797 aCWmin = 31;
798 else
799 aCWmin = 15;
800
801 switch (ac) {
802 case IEEE80211_AC_BK:
803 qparam.cw_max = aCWmax;
804 qparam.cw_min = aCWmin;
805 qparam.txop = 0;
806 qparam.aifs = 7;
807 break;
808 default: /* never happens but let's not leave undefined */
809 case IEEE80211_AC_BE:
810 qparam.cw_max = aCWmax;
811 qparam.cw_min = aCWmin;
812 qparam.txop = 0;
813 qparam.aifs = 3;
814 break;
815 case IEEE80211_AC_VI:
816 qparam.cw_max = aCWmin;
817 qparam.cw_min = (aCWmin + 1) / 2 - 1;
818 if (use_11b)
819 qparam.txop = 6016/32;
820 else
821 qparam.txop = 3008/32;
822 qparam.aifs = 2;
823 break;
824 case IEEE80211_AC_VO:
825 qparam.cw_max = (aCWmin + 1) / 2 - 1;
826 qparam.cw_min = (aCWmin + 1) / 4 - 1;
827 if (use_11b)
828 qparam.txop = 3264/32;
829 else
830 qparam.txop = 1504/32;
831 qparam.aifs = 2;
832 break;
833 }
834
835 qparam.uapsd = false;
836
837 sdata->tx_conf[ac] = qparam;
838 drv_conf_tx(local, sdata, ac, &qparam);
839 }
840
841 /* after reinitialize QoS TX queues setting to default,
842 * disable QoS at all */
843
844 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) {
845 sdata->vif.bss_conf.qos =
846 sdata->vif.type != NL80211_IFTYPE_STATION;
847 if (bss_notify)
848 ieee80211_bss_info_change_notify(sdata,
849 BSS_CHANGED_QOS);
850 }
851 }
852
853 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
854 const size_t supp_rates_len,
855 const u8 *supp_rates)
856 {
857 struct ieee80211_local *local = sdata->local;
858 int i, have_higher_than_11mbit = 0;
859
860 /* cf. IEEE 802.11 9.2.12 */
861 for (i = 0; i < supp_rates_len; i++)
862 if ((supp_rates[i] & 0x7f) * 5 > 110)
863 have_higher_than_11mbit = 1;
864
865 if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
866 have_higher_than_11mbit)
867 sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
868 else
869 sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
870
871 ieee80211_set_wmm_default(sdata, true);
872 }
873
874 u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
875 enum ieee80211_band band)
876 {
877 struct ieee80211_supported_band *sband;
878 struct ieee80211_rate *bitrates;
879 u32 mandatory_rates;
880 enum ieee80211_rate_flags mandatory_flag;
881 int i;
882
883 sband = local->hw.wiphy->bands[band];
884 if (!sband) {
885 WARN_ON(1);
886 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
887 }
888
889 if (band == IEEE80211_BAND_2GHZ)
890 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
891 else
892 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
893
894 bitrates = sband->bitrates;
895 mandatory_rates = 0;
896 for (i = 0; i < sband->n_bitrates; i++)
897 if (bitrates[i].flags & mandatory_flag)
898 mandatory_rates |= BIT(i);
899 return mandatory_rates;
900 }
901
902 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
903 u16 transaction, u16 auth_alg,
904 u8 *extra, size_t extra_len, const u8 *da,
905 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx)
906 {
907 struct ieee80211_local *local = sdata->local;
908 struct sk_buff *skb;
909 struct ieee80211_mgmt *mgmt;
910 int err;
911
912 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
913 sizeof(*mgmt) + 6 + extra_len);
914 if (!skb)
915 return;
916
917 skb_reserve(skb, local->hw.extra_tx_headroom);
918
919 mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
920 memset(mgmt, 0, 24 + 6);
921 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
922 IEEE80211_STYPE_AUTH);
923 memcpy(mgmt->da, da, ETH_ALEN);
924 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
925 memcpy(mgmt->bssid, bssid, ETH_ALEN);
926 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
927 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
928 mgmt->u.auth.status_code = cpu_to_le16(0);
929 if (extra)
930 memcpy(skb_put(skb, extra_len), extra, extra_len);
931
932 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
933 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
934 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
935 WARN_ON(err);
936 }
937
938 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
939 ieee80211_tx_skb(sdata, skb);
940 }
941
942 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
943 const u8 *ie, size_t ie_len,
944 enum ieee80211_band band, u32 rate_mask,
945 u8 channel)
946 {
947 struct ieee80211_supported_band *sband;
948 u8 *pos;
949 size_t offset = 0, noffset;
950 int supp_rates_len, i;
951 u8 rates[32];
952 int num_rates;
953 int ext_rates_len;
954
955 sband = local->hw.wiphy->bands[band];
956
957 pos = buffer;
958
959 num_rates = 0;
960 for (i = 0; i < sband->n_bitrates; i++) {
961 if ((BIT(i) & rate_mask) == 0)
962 continue; /* skip rate */
963 rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
964 }
965
966 supp_rates_len = min_t(int, num_rates, 8);
967
968 *pos++ = WLAN_EID_SUPP_RATES;
969 *pos++ = supp_rates_len;
970 memcpy(pos, rates, supp_rates_len);
971 pos += supp_rates_len;
972
973 /* insert "request information" if in custom IEs */
974 if (ie && ie_len) {
975 static const u8 before_extrates[] = {
976 WLAN_EID_SSID,
977 WLAN_EID_SUPP_RATES,
978 WLAN_EID_REQUEST,
979 };
980 noffset = ieee80211_ie_split(ie, ie_len,
981 before_extrates,
982 ARRAY_SIZE(before_extrates),
983 offset);
984 memcpy(pos, ie + offset, noffset - offset);
985 pos += noffset - offset;
986 offset = noffset;
987 }
988
989 ext_rates_len = num_rates - supp_rates_len;
990 if (ext_rates_len > 0) {
991 *pos++ = WLAN_EID_EXT_SUPP_RATES;
992 *pos++ = ext_rates_len;
993 memcpy(pos, rates + supp_rates_len, ext_rates_len);
994 pos += ext_rates_len;
995 }
996
997 if (channel && sband->band == IEEE80211_BAND_2GHZ) {
998 *pos++ = WLAN_EID_DS_PARAMS;
999 *pos++ = 1;
1000 *pos++ = channel;
1001 }
1002
1003 /* insert custom IEs that go before HT */
1004 if (ie && ie_len) {
1005 static const u8 before_ht[] = {
1006 WLAN_EID_SSID,
1007 WLAN_EID_SUPP_RATES,
1008 WLAN_EID_REQUEST,
1009 WLAN_EID_EXT_SUPP_RATES,
1010 WLAN_EID_DS_PARAMS,
1011 WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1012 };
1013 noffset = ieee80211_ie_split(ie, ie_len,
1014 before_ht, ARRAY_SIZE(before_ht),
1015 offset);
1016 memcpy(pos, ie + offset, noffset - offset);
1017 pos += noffset - offset;
1018 offset = noffset;
1019 }
1020
1021 if (sband->ht_cap.ht_supported)
1022 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1023 sband->ht_cap.cap);
1024
1025 /*
1026 * If adding more here, adjust code in main.c
1027 * that calculates local->scan_ies_len.
1028 */
1029
1030 /* add any remaining custom IEs */
1031 if (ie && ie_len) {
1032 noffset = ie_len;
1033 memcpy(pos, ie + offset, noffset - offset);
1034 pos += noffset - offset;
1035 }
1036
1037 return pos - buffer;
1038 }
1039
1040 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1041 u8 *dst, u32 ratemask,
1042 const u8 *ssid, size_t ssid_len,
1043 const u8 *ie, size_t ie_len,
1044 bool directed)
1045 {
1046 struct ieee80211_local *local = sdata->local;
1047 struct sk_buff *skb;
1048 struct ieee80211_mgmt *mgmt;
1049 size_t buf_len;
1050 u8 *buf;
1051 u8 chan;
1052
1053 /* FIXME: come up with a proper value */
1054 buf = kmalloc(200 + ie_len, GFP_KERNEL);
1055 if (!buf)
1056 return NULL;
1057
1058 /*
1059 * Do not send DS Channel parameter for directed probe requests
1060 * in order to maximize the chance that we get a response. Some
1061 * badly-behaved APs don't respond when this parameter is included.
1062 */
1063 if (directed)
1064 chan = 0;
1065 else
1066 chan = ieee80211_frequency_to_channel(
1067 local->hw.conf.channel->center_freq);
1068
1069 buf_len = ieee80211_build_preq_ies(local, buf, ie, ie_len,
1070 local->hw.conf.channel->band,
1071 ratemask, chan);
1072
1073 skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1074 ssid, ssid_len,
1075 buf, buf_len);
1076 if (!skb)
1077 goto out;
1078
1079 if (dst) {
1080 mgmt = (struct ieee80211_mgmt *) skb->data;
1081 memcpy(mgmt->da, dst, ETH_ALEN);
1082 memcpy(mgmt->bssid, dst, ETH_ALEN);
1083 }
1084
1085 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1086
1087 out:
1088 kfree(buf);
1089
1090 return skb;
1091 }
1092
1093 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1094 const u8 *ssid, size_t ssid_len,
1095 const u8 *ie, size_t ie_len,
1096 u32 ratemask, bool directed, bool no_cck)
1097 {
1098 struct sk_buff *skb;
1099
1100 skb = ieee80211_build_probe_req(sdata, dst, ratemask, ssid, ssid_len,
1101 ie, ie_len, directed);
1102 if (skb) {
1103 if (no_cck)
1104 IEEE80211_SKB_CB(skb)->flags |=
1105 IEEE80211_TX_CTL_NO_CCK_RATE;
1106 ieee80211_tx_skb(sdata, skb);
1107 }
1108 }
1109
1110 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1111 struct ieee802_11_elems *elems,
1112 enum ieee80211_band band)
1113 {
1114 struct ieee80211_supported_band *sband;
1115 struct ieee80211_rate *bitrates;
1116 size_t num_rates;
1117 u32 supp_rates;
1118 int i, j;
1119 sband = local->hw.wiphy->bands[band];
1120
1121 if (!sband) {
1122 WARN_ON(1);
1123 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
1124 }
1125
1126 bitrates = sband->bitrates;
1127 num_rates = sband->n_bitrates;
1128 supp_rates = 0;
1129 for (i = 0; i < elems->supp_rates_len +
1130 elems->ext_supp_rates_len; i++) {
1131 u8 rate = 0;
1132 int own_rate;
1133 if (i < elems->supp_rates_len)
1134 rate = elems->supp_rates[i];
1135 else if (elems->ext_supp_rates)
1136 rate = elems->ext_supp_rates
1137 [i - elems->supp_rates_len];
1138 own_rate = 5 * (rate & 0x7f);
1139 for (j = 0; j < num_rates; j++)
1140 if (bitrates[j].bitrate == own_rate)
1141 supp_rates |= BIT(j);
1142 }
1143 return supp_rates;
1144 }
1145
1146 void ieee80211_stop_device(struct ieee80211_local *local)
1147 {
1148 ieee80211_led_radio(local, false);
1149 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1150
1151 cancel_work_sync(&local->reconfig_filter);
1152
1153 flush_workqueue(local->workqueue);
1154 drv_stop(local);
1155 }
1156
1157 int ieee80211_reconfig(struct ieee80211_local *local)
1158 {
1159 struct ieee80211_hw *hw = &local->hw;
1160 struct ieee80211_sub_if_data *sdata;
1161 struct sta_info *sta;
1162 int res, i;
1163
1164 #ifdef CONFIG_PM
1165 if (local->suspended)
1166 local->resuming = true;
1167
1168 if (local->wowlan) {
1169 local->wowlan = false;
1170 res = drv_resume(local);
1171 if (res < 0) {
1172 local->resuming = false;
1173 return res;
1174 }
1175 if (res == 0)
1176 goto wake_up;
1177 WARN_ON(res > 1);
1178 /*
1179 * res is 1, which means the driver requested
1180 * to go through a regular reset on wakeup.
1181 */
1182 }
1183 #endif
1184 /* everything else happens only if HW was up & running */
1185 if (!local->open_count)
1186 goto wake_up;
1187
1188 /*
1189 * Upon resume hardware can sometimes be goofy due to
1190 * various platform / driver / bus issues, so restarting
1191 * the device may at times not work immediately. Propagate
1192 * the error.
1193 */
1194 res = drv_start(local);
1195 if (res) {
1196 WARN(local->suspended, "Hardware became unavailable "
1197 "upon resume. This could be a software issue "
1198 "prior to suspend or a hardware issue.\n");
1199 return res;
1200 }
1201
1202 /* setup fragmentation threshold */
1203 drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1204
1205 /* setup RTS threshold */
1206 drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1207
1208 /* reset coverage class */
1209 drv_set_coverage_class(local, hw->wiphy->coverage_class);
1210
1211 ieee80211_led_radio(local, true);
1212 ieee80211_mod_tpt_led_trig(local,
1213 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1214
1215 /* add interfaces */
1216 list_for_each_entry(sdata, &local->interfaces, list) {
1217 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1218 sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1219 ieee80211_sdata_running(sdata))
1220 res = drv_add_interface(local, sdata);
1221 }
1222
1223 /* add STAs back */
1224 mutex_lock(&local->sta_mtx);
1225 list_for_each_entry(sta, &local->sta_list, list) {
1226 if (sta->uploaded) {
1227 enum ieee80211_sta_state state;
1228
1229 for (state = IEEE80211_STA_NOTEXIST;
1230 state < sta->sta_state - 1; state++)
1231 WARN_ON(drv_sta_state(local, sta->sdata, sta,
1232 state, state + 1));
1233 }
1234 }
1235 mutex_unlock(&local->sta_mtx);
1236
1237 /* reconfigure tx conf */
1238 if (hw->queues >= IEEE80211_NUM_ACS) {
1239 list_for_each_entry(sdata, &local->interfaces, list) {
1240 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1241 sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1242 !ieee80211_sdata_running(sdata))
1243 continue;
1244
1245 for (i = 0; i < IEEE80211_NUM_ACS; i++)
1246 drv_conf_tx(local, sdata, i,
1247 &sdata->tx_conf[i]);
1248 }
1249 }
1250
1251 /* reconfigure hardware */
1252 ieee80211_hw_config(local, ~0);
1253
1254 ieee80211_configure_filter(local);
1255
1256 /* Finally also reconfigure all the BSS information */
1257 list_for_each_entry(sdata, &local->interfaces, list) {
1258 u32 changed;
1259
1260 if (!ieee80211_sdata_running(sdata))
1261 continue;
1262
1263 /* common change flags for all interface types */
1264 changed = BSS_CHANGED_ERP_CTS_PROT |
1265 BSS_CHANGED_ERP_PREAMBLE |
1266 BSS_CHANGED_ERP_SLOT |
1267 BSS_CHANGED_HT |
1268 BSS_CHANGED_BASIC_RATES |
1269 BSS_CHANGED_BEACON_INT |
1270 BSS_CHANGED_BSSID |
1271 BSS_CHANGED_CQM |
1272 BSS_CHANGED_QOS |
1273 BSS_CHANGED_IDLE;
1274
1275 switch (sdata->vif.type) {
1276 case NL80211_IFTYPE_STATION:
1277 changed |= BSS_CHANGED_ASSOC |
1278 BSS_CHANGED_ARP_FILTER;
1279 mutex_lock(&sdata->u.mgd.mtx);
1280 ieee80211_bss_info_change_notify(sdata, changed);
1281 mutex_unlock(&sdata->u.mgd.mtx);
1282 break;
1283 case NL80211_IFTYPE_ADHOC:
1284 changed |= BSS_CHANGED_IBSS;
1285 /* fall through */
1286 case NL80211_IFTYPE_AP:
1287 changed |= BSS_CHANGED_SSID;
1288
1289 if (sdata->vif.type == NL80211_IFTYPE_AP)
1290 changed |= BSS_CHANGED_AP_PROBE_RESP;
1291
1292 /* fall through */
1293 case NL80211_IFTYPE_MESH_POINT:
1294 changed |= BSS_CHANGED_BEACON |
1295 BSS_CHANGED_BEACON_ENABLED;
1296 ieee80211_bss_info_change_notify(sdata, changed);
1297 break;
1298 case NL80211_IFTYPE_WDS:
1299 break;
1300 case NL80211_IFTYPE_AP_VLAN:
1301 case NL80211_IFTYPE_MONITOR:
1302 /* ignore virtual */
1303 break;
1304 case NL80211_IFTYPE_UNSPECIFIED:
1305 case NUM_NL80211_IFTYPES:
1306 case NL80211_IFTYPE_P2P_CLIENT:
1307 case NL80211_IFTYPE_P2P_GO:
1308 WARN_ON(1);
1309 break;
1310 }
1311 }
1312
1313 ieee80211_recalc_ps(local, -1);
1314
1315 /*
1316 * The sta might be in psm against the ap (e.g. because
1317 * this was the state before a hw restart), so we
1318 * explicitly send a null packet in order to make sure
1319 * it'll sync against the ap (and get out of psm).
1320 */
1321 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1322 list_for_each_entry(sdata, &local->interfaces, list) {
1323 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1324 continue;
1325
1326 ieee80211_send_nullfunc(local, sdata, 0);
1327 }
1328 }
1329
1330 /*
1331 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1332 * sessions can be established after a resume.
1333 *
1334 * Also tear down aggregation sessions since reconfiguring
1335 * them in a hardware restart scenario is not easily done
1336 * right now, and the hardware will have lost information
1337 * about the sessions, but we and the AP still think they
1338 * are active. This is really a workaround though.
1339 */
1340 if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1341 mutex_lock(&local->sta_mtx);
1342
1343 list_for_each_entry(sta, &local->sta_list, list) {
1344 ieee80211_sta_tear_down_BA_sessions(sta, true);
1345 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1346 }
1347
1348 mutex_unlock(&local->sta_mtx);
1349 }
1350
1351 /* add back keys */
1352 list_for_each_entry(sdata, &local->interfaces, list)
1353 if (ieee80211_sdata_running(sdata))
1354 ieee80211_enable_keys(sdata);
1355
1356 wake_up:
1357 ieee80211_wake_queues_by_reason(hw,
1358 IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1359
1360 /*
1361 * If this is for hw restart things are still running.
1362 * We may want to change that later, however.
1363 */
1364 if (!local->suspended)
1365 return 0;
1366
1367 #ifdef CONFIG_PM
1368 /* first set suspended false, then resuming */
1369 local->suspended = false;
1370 mb();
1371 local->resuming = false;
1372
1373 list_for_each_entry(sdata, &local->interfaces, list) {
1374 switch(sdata->vif.type) {
1375 case NL80211_IFTYPE_STATION:
1376 ieee80211_sta_restart(sdata);
1377 break;
1378 case NL80211_IFTYPE_ADHOC:
1379 ieee80211_ibss_restart(sdata);
1380 break;
1381 case NL80211_IFTYPE_MESH_POINT:
1382 ieee80211_mesh_restart(sdata);
1383 break;
1384 default:
1385 break;
1386 }
1387 }
1388
1389 mod_timer(&local->sta_cleanup, jiffies + 1);
1390
1391 mutex_lock(&local->sta_mtx);
1392 list_for_each_entry(sta, &local->sta_list, list)
1393 mesh_plink_restart(sta);
1394 mutex_unlock(&local->sta_mtx);
1395 #else
1396 WARN_ON(1);
1397 #endif
1398 return 0;
1399 }
1400
1401 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1402 {
1403 struct ieee80211_sub_if_data *sdata;
1404 struct ieee80211_local *local;
1405 struct ieee80211_key *key;
1406
1407 if (WARN_ON(!vif))
1408 return;
1409
1410 sdata = vif_to_sdata(vif);
1411 local = sdata->local;
1412
1413 if (WARN_ON(!local->resuming))
1414 return;
1415
1416 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1417 return;
1418
1419 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1420
1421 mutex_lock(&local->key_mtx);
1422 list_for_each_entry(key, &sdata->key_list, list)
1423 key->flags |= KEY_FLAG_TAINTED;
1424 mutex_unlock(&local->key_mtx);
1425 }
1426 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1427
1428 static int check_mgd_smps(struct ieee80211_if_managed *ifmgd,
1429 enum ieee80211_smps_mode *smps_mode)
1430 {
1431 if (ifmgd->associated) {
1432 *smps_mode = ifmgd->ap_smps;
1433
1434 if (*smps_mode == IEEE80211_SMPS_AUTOMATIC) {
1435 if (ifmgd->powersave)
1436 *smps_mode = IEEE80211_SMPS_DYNAMIC;
1437 else
1438 *smps_mode = IEEE80211_SMPS_OFF;
1439 }
1440
1441 return 1;
1442 }
1443
1444 return 0;
1445 }
1446
1447 /* must hold iflist_mtx */
1448 void ieee80211_recalc_smps(struct ieee80211_local *local)
1449 {
1450 struct ieee80211_sub_if_data *sdata;
1451 enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_OFF;
1452 int count = 0;
1453
1454 lockdep_assert_held(&local->iflist_mtx);
1455
1456 /*
1457 * This function could be improved to handle multiple
1458 * interfaces better, but right now it makes any
1459 * non-station interfaces force SM PS to be turned
1460 * off. If there are multiple station interfaces it
1461 * could also use the best possible mode, e.g. if
1462 * one is in static and the other in dynamic then
1463 * dynamic is ok.
1464 */
1465
1466 list_for_each_entry(sdata, &local->interfaces, list) {
1467 if (!ieee80211_sdata_running(sdata))
1468 continue;
1469 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1470 goto set;
1471
1472 count += check_mgd_smps(&sdata->u.mgd, &smps_mode);
1473
1474 if (count > 1) {
1475 smps_mode = IEEE80211_SMPS_OFF;
1476 break;
1477 }
1478 }
1479
1480 if (smps_mode == local->smps_mode)
1481 return;
1482
1483 set:
1484 local->smps_mode = smps_mode;
1485 /* changed flag is auto-detected for this */
1486 ieee80211_hw_config(local, 0);
1487 }
1488
1489 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1490 {
1491 int i;
1492
1493 for (i = 0; i < n_ids; i++)
1494 if (ids[i] == id)
1495 return true;
1496 return false;
1497 }
1498
1499 /**
1500 * ieee80211_ie_split - split an IE buffer according to ordering
1501 *
1502 * @ies: the IE buffer
1503 * @ielen: the length of the IE buffer
1504 * @ids: an array with element IDs that are allowed before
1505 * the split
1506 * @n_ids: the size of the element ID array
1507 * @offset: offset where to start splitting in the buffer
1508 *
1509 * This function splits an IE buffer by updating the @offset
1510 * variable to point to the location where the buffer should be
1511 * split.
1512 *
1513 * It assumes that the given IE buffer is well-formed, this
1514 * has to be guaranteed by the caller!
1515 *
1516 * It also assumes that the IEs in the buffer are ordered
1517 * correctly, if not the result of using this function will not
1518 * be ordered correctly either, i.e. it does no reordering.
1519 *
1520 * The function returns the offset where the next part of the
1521 * buffer starts, which may be @ielen if the entire (remainder)
1522 * of the buffer should be used.
1523 */
1524 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1525 const u8 *ids, int n_ids, size_t offset)
1526 {
1527 size_t pos = offset;
1528
1529 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1530 pos += 2 + ies[pos + 1];
1531
1532 return pos;
1533 }
1534
1535 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1536 {
1537 size_t pos = offset;
1538
1539 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1540 pos += 2 + ies[pos + 1];
1541
1542 return pos;
1543 }
1544
1545 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1546 int rssi_min_thold,
1547 int rssi_max_thold)
1548 {
1549 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1550
1551 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1552 return;
1553
1554 /*
1555 * Scale up threshold values before storing it, as the RSSI averaging
1556 * algorithm uses a scaled up value as well. Change this scaling
1557 * factor if the RSSI averaging algorithm changes.
1558 */
1559 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1560 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1561 }
1562
1563 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1564 int rssi_min_thold,
1565 int rssi_max_thold)
1566 {
1567 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1568
1569 WARN_ON(rssi_min_thold == rssi_max_thold ||
1570 rssi_min_thold > rssi_max_thold);
1571
1572 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1573 rssi_max_thold);
1574 }
1575 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1576
1577 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1578 {
1579 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1580
1581 _ieee80211_enable_rssi_reports(sdata, 0, 0);
1582 }
1583 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1584
1585 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1586 u16 cap)
1587 {
1588 __le16 tmp;
1589
1590 *pos++ = WLAN_EID_HT_CAPABILITY;
1591 *pos++ = sizeof(struct ieee80211_ht_cap);
1592 memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1593
1594 /* capability flags */
1595 tmp = cpu_to_le16(cap);
1596 memcpy(pos, &tmp, sizeof(u16));
1597 pos += sizeof(u16);
1598
1599 /* AMPDU parameters */
1600 *pos++ = ht_cap->ampdu_factor |
1601 (ht_cap->ampdu_density <<
1602 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1603
1604 /* MCS set */
1605 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1606 pos += sizeof(ht_cap->mcs);
1607
1608 /* extended capabilities */
1609 pos += sizeof(__le16);
1610
1611 /* BF capabilities */
1612 pos += sizeof(__le32);
1613
1614 /* antenna selection */
1615 pos += sizeof(u8);
1616
1617 return pos;
1618 }
1619
1620 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1621 struct ieee80211_channel *channel,
1622 enum nl80211_channel_type channel_type)
1623 {
1624 struct ieee80211_ht_operation *ht_oper;
1625 /* Build HT Information */
1626 *pos++ = WLAN_EID_HT_OPERATION;
1627 *pos++ = sizeof(struct ieee80211_ht_operation);
1628 ht_oper = (struct ieee80211_ht_operation *)pos;
1629 ht_oper->primary_chan =
1630 ieee80211_frequency_to_channel(channel->center_freq);
1631 switch (channel_type) {
1632 case NL80211_CHAN_HT40MINUS:
1633 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1634 break;
1635 case NL80211_CHAN_HT40PLUS:
1636 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1637 break;
1638 case NL80211_CHAN_HT20:
1639 default:
1640 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1641 break;
1642 }
1643 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
1644 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1645
1646 /*
1647 * Note: According to 802.11n-2009 9.13.3.1, HT Protection field and
1648 * RIFS Mode are reserved in IBSS mode, therefore keep them at 0
1649 */
1650 ht_oper->operation_mode = 0x0000;
1651 ht_oper->stbc_param = 0x0000;
1652
1653 /* It seems that Basic MCS set and Supported MCS set
1654 are identical for the first 10 bytes */
1655 memset(&ht_oper->basic_set, 0, 16);
1656 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1657
1658 return pos + sizeof(struct ieee80211_ht_operation);
1659 }
1660
1661 enum nl80211_channel_type
1662 ieee80211_ht_oper_to_channel_type(struct ieee80211_ht_operation *ht_oper)
1663 {
1664 enum nl80211_channel_type channel_type;
1665
1666 if (!ht_oper)
1667 return NL80211_CHAN_NO_HT;
1668
1669 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
1670 case IEEE80211_HT_PARAM_CHA_SEC_NONE:
1671 channel_type = NL80211_CHAN_HT20;
1672 break;
1673 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
1674 channel_type = NL80211_CHAN_HT40PLUS;
1675 break;
1676 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
1677 channel_type = NL80211_CHAN_HT40MINUS;
1678 break;
1679 default:
1680 channel_type = NL80211_CHAN_NO_HT;
1681 }
1682
1683 return channel_type;
1684 }
1685
1686 int ieee80211_add_srates_ie(struct ieee80211_vif *vif, struct sk_buff *skb)
1687 {
1688 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1689 struct ieee80211_local *local = sdata->local;
1690 struct ieee80211_supported_band *sband;
1691 int rate;
1692 u8 i, rates, *pos;
1693
1694 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
1695 rates = sband->n_bitrates;
1696 if (rates > 8)
1697 rates = 8;
1698
1699 if (skb_tailroom(skb) < rates + 2)
1700 return -ENOMEM;
1701
1702 pos = skb_put(skb, rates + 2);
1703 *pos++ = WLAN_EID_SUPP_RATES;
1704 *pos++ = rates;
1705 for (i = 0; i < rates; i++) {
1706 rate = sband->bitrates[i].bitrate;
1707 *pos++ = (u8) (rate / 5);
1708 }
1709
1710 return 0;
1711 }
1712
1713 int ieee80211_add_ext_srates_ie(struct ieee80211_vif *vif, struct sk_buff *skb)
1714 {
1715 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1716 struct ieee80211_local *local = sdata->local;
1717 struct ieee80211_supported_band *sband;
1718 int rate;
1719 u8 i, exrates, *pos;
1720
1721 sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
1722 exrates = sband->n_bitrates;
1723 if (exrates > 8)
1724 exrates -= 8;
1725 else
1726 exrates = 0;
1727
1728 if (skb_tailroom(skb) < exrates + 2)
1729 return -ENOMEM;
1730
1731 if (exrates) {
1732 pos = skb_put(skb, exrates + 2);
1733 *pos++ = WLAN_EID_EXT_SUPP_RATES;
1734 *pos++ = exrates;
1735 for (i = 8; i < sband->n_bitrates; i++) {
1736 rate = sband->bitrates[i].bitrate;
1737 *pos++ = (u8) (rate / 5);
1738 }
1739 }
1740 return 0;
1741 }
This page took 0.097405 seconds and 4 git commands to generate.