Merge branches 's390', 'arm/renesas', 'arm/msm', 'arm/shmobile', 'arm/smmu', 'x86...
[deliverable/linux.git] / net / mac80211 / util.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright (C) 2015 Intel Deutschland GmbH
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * utilities for mac80211
14 */
15
16 #include <net/mac80211.h>
17 #include <linux/netdevice.h>
18 #include <linux/export.h>
19 #include <linux/types.h>
20 #include <linux/slab.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/bitmap.h>
25 #include <linux/crc32.h>
26 #include <net/net_namespace.h>
27 #include <net/cfg80211.h>
28 #include <net/rtnetlink.h>
29
30 #include "ieee80211_i.h"
31 #include "driver-ops.h"
32 #include "rate.h"
33 #include "mesh.h"
34 #include "wme.h"
35 #include "led.h"
36 #include "wep.h"
37
38 /* privid for wiphys to determine whether they belong to us or not */
39 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid;
40
41 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
42 {
43 struct ieee80211_local *local;
44 BUG_ON(!wiphy);
45
46 local = wiphy_priv(wiphy);
47 return &local->hw;
48 }
49 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
50
51 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
52 {
53 struct sk_buff *skb;
54 struct ieee80211_hdr *hdr;
55
56 skb_queue_walk(&tx->skbs, skb) {
57 hdr = (struct ieee80211_hdr *) skb->data;
58 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
59 }
60 }
61
62 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
63 int rate, int erp, int short_preamble,
64 int shift)
65 {
66 int dur;
67
68 /* calculate duration (in microseconds, rounded up to next higher
69 * integer if it includes a fractional microsecond) to send frame of
70 * len bytes (does not include FCS) at the given rate. Duration will
71 * also include SIFS.
72 *
73 * rate is in 100 kbps, so divident is multiplied by 10 in the
74 * DIV_ROUND_UP() operations.
75 *
76 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and
77 * is assumed to be 0 otherwise.
78 */
79
80 if (band == IEEE80211_BAND_5GHZ || erp) {
81 /*
82 * OFDM:
83 *
84 * N_DBPS = DATARATE x 4
85 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
86 * (16 = SIGNAL time, 6 = tail bits)
87 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
88 *
89 * T_SYM = 4 usec
90 * 802.11a - 18.5.2: aSIFSTime = 16 usec
91 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
92 * signal ext = 6 usec
93 */
94 dur = 16; /* SIFS + signal ext */
95 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */
96 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */
97
98 /* IEEE 802.11-2012 18.3.2.4: all values above are:
99 * * times 4 for 5 MHz
100 * * times 2 for 10 MHz
101 */
102 dur *= 1 << shift;
103
104 /* rates should already consider the channel bandwidth,
105 * don't apply divisor again.
106 */
107 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
108 4 * rate); /* T_SYM x N_SYM */
109 } else {
110 /*
111 * 802.11b or 802.11g with 802.11b compatibility:
112 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
113 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
114 *
115 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
116 * aSIFSTime = 10 usec
117 * aPreambleLength = 144 usec or 72 usec with short preamble
118 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
119 */
120 dur = 10; /* aSIFSTime = 10 usec */
121 dur += short_preamble ? (72 + 24) : (144 + 48);
122
123 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
124 }
125
126 return dur;
127 }
128
129 /* Exported duration function for driver use */
130 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
131 struct ieee80211_vif *vif,
132 enum ieee80211_band band,
133 size_t frame_len,
134 struct ieee80211_rate *rate)
135 {
136 struct ieee80211_sub_if_data *sdata;
137 u16 dur;
138 int erp, shift = 0;
139 bool short_preamble = false;
140
141 erp = 0;
142 if (vif) {
143 sdata = vif_to_sdata(vif);
144 short_preamble = sdata->vif.bss_conf.use_short_preamble;
145 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
146 erp = rate->flags & IEEE80211_RATE_ERP_G;
147 shift = ieee80211_vif_get_shift(vif);
148 }
149
150 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
151 short_preamble, shift);
152
153 return cpu_to_le16(dur);
154 }
155 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
156
157 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
158 struct ieee80211_vif *vif, size_t frame_len,
159 const struct ieee80211_tx_info *frame_txctl)
160 {
161 struct ieee80211_local *local = hw_to_local(hw);
162 struct ieee80211_rate *rate;
163 struct ieee80211_sub_if_data *sdata;
164 bool short_preamble;
165 int erp, shift = 0, bitrate;
166 u16 dur;
167 struct ieee80211_supported_band *sband;
168
169 sband = local->hw.wiphy->bands[frame_txctl->band];
170
171 short_preamble = false;
172
173 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
174
175 erp = 0;
176 if (vif) {
177 sdata = vif_to_sdata(vif);
178 short_preamble = sdata->vif.bss_conf.use_short_preamble;
179 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
180 erp = rate->flags & IEEE80211_RATE_ERP_G;
181 shift = ieee80211_vif_get_shift(vif);
182 }
183
184 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
185
186 /* CTS duration */
187 dur = ieee80211_frame_duration(sband->band, 10, bitrate,
188 erp, short_preamble, shift);
189 /* Data frame duration */
190 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate,
191 erp, short_preamble, shift);
192 /* ACK duration */
193 dur += ieee80211_frame_duration(sband->band, 10, bitrate,
194 erp, short_preamble, shift);
195
196 return cpu_to_le16(dur);
197 }
198 EXPORT_SYMBOL(ieee80211_rts_duration);
199
200 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
201 struct ieee80211_vif *vif,
202 size_t frame_len,
203 const struct ieee80211_tx_info *frame_txctl)
204 {
205 struct ieee80211_local *local = hw_to_local(hw);
206 struct ieee80211_rate *rate;
207 struct ieee80211_sub_if_data *sdata;
208 bool short_preamble;
209 int erp, shift = 0, bitrate;
210 u16 dur;
211 struct ieee80211_supported_band *sband;
212
213 sband = local->hw.wiphy->bands[frame_txctl->band];
214
215 short_preamble = false;
216
217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
218 erp = 0;
219 if (vif) {
220 sdata = vif_to_sdata(vif);
221 short_preamble = sdata->vif.bss_conf.use_short_preamble;
222 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
223 erp = rate->flags & IEEE80211_RATE_ERP_G;
224 shift = ieee80211_vif_get_shift(vif);
225 }
226
227 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
228
229 /* Data frame duration */
230 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate,
231 erp, short_preamble, shift);
232 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
233 /* ACK duration */
234 dur += ieee80211_frame_duration(sband->band, 10, bitrate,
235 erp, short_preamble, shift);
236 }
237
238 return cpu_to_le16(dur);
239 }
240 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
241
242 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
243 {
244 struct ieee80211_sub_if_data *sdata;
245 int n_acs = IEEE80211_NUM_ACS;
246
247 if (local->hw.queues < IEEE80211_NUM_ACS)
248 n_acs = 1;
249
250 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
251 int ac;
252
253 if (!sdata->dev)
254 continue;
255
256 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
257 local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
258 continue;
259
260 for (ac = 0; ac < n_acs; ac++) {
261 int ac_queue = sdata->vif.hw_queue[ac];
262
263 if (local->ops->wake_tx_queue &&
264 (atomic_read(&sdata->txqs_len[ac]) >
265 local->hw.txq_ac_max_pending))
266 continue;
267
268 if (ac_queue == queue ||
269 (sdata->vif.cab_queue == queue &&
270 local->queue_stop_reasons[ac_queue] == 0 &&
271 skb_queue_empty(&local->pending[ac_queue])))
272 netif_wake_subqueue(sdata->dev, ac);
273 }
274 }
275 }
276
277 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
278 enum queue_stop_reason reason,
279 bool refcounted)
280 {
281 struct ieee80211_local *local = hw_to_local(hw);
282
283 trace_wake_queue(local, queue, reason);
284
285 if (WARN_ON(queue >= hw->queues))
286 return;
287
288 if (!test_bit(reason, &local->queue_stop_reasons[queue]))
289 return;
290
291 if (!refcounted)
292 local->q_stop_reasons[queue][reason] = 0;
293 else
294 local->q_stop_reasons[queue][reason]--;
295
296 if (local->q_stop_reasons[queue][reason] == 0)
297 __clear_bit(reason, &local->queue_stop_reasons[queue]);
298
299 if (local->queue_stop_reasons[queue] != 0)
300 /* someone still has this queue stopped */
301 return;
302
303 if (skb_queue_empty(&local->pending[queue])) {
304 rcu_read_lock();
305 ieee80211_propagate_queue_wake(local, queue);
306 rcu_read_unlock();
307 } else
308 tasklet_schedule(&local->tx_pending_tasklet);
309 }
310
311 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
312 enum queue_stop_reason reason,
313 bool refcounted)
314 {
315 struct ieee80211_local *local = hw_to_local(hw);
316 unsigned long flags;
317
318 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
319 __ieee80211_wake_queue(hw, queue, reason, refcounted);
320 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
321 }
322
323 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
324 {
325 ieee80211_wake_queue_by_reason(hw, queue,
326 IEEE80211_QUEUE_STOP_REASON_DRIVER,
327 false);
328 }
329 EXPORT_SYMBOL(ieee80211_wake_queue);
330
331 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
332 enum queue_stop_reason reason,
333 bool refcounted)
334 {
335 struct ieee80211_local *local = hw_to_local(hw);
336 struct ieee80211_sub_if_data *sdata;
337 int n_acs = IEEE80211_NUM_ACS;
338
339 trace_stop_queue(local, queue, reason);
340
341 if (WARN_ON(queue >= hw->queues))
342 return;
343
344 if (!refcounted)
345 local->q_stop_reasons[queue][reason] = 1;
346 else
347 local->q_stop_reasons[queue][reason]++;
348
349 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue]))
350 return;
351
352 if (local->hw.queues < IEEE80211_NUM_ACS)
353 n_acs = 1;
354
355 rcu_read_lock();
356 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
357 int ac;
358
359 if (!sdata->dev)
360 continue;
361
362 for (ac = 0; ac < n_acs; ac++) {
363 if (sdata->vif.hw_queue[ac] == queue ||
364 sdata->vif.cab_queue == queue)
365 netif_stop_subqueue(sdata->dev, ac);
366 }
367 }
368 rcu_read_unlock();
369 }
370
371 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
372 enum queue_stop_reason reason,
373 bool refcounted)
374 {
375 struct ieee80211_local *local = hw_to_local(hw);
376 unsigned long flags;
377
378 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
379 __ieee80211_stop_queue(hw, queue, reason, refcounted);
380 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
381 }
382
383 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
384 {
385 ieee80211_stop_queue_by_reason(hw, queue,
386 IEEE80211_QUEUE_STOP_REASON_DRIVER,
387 false);
388 }
389 EXPORT_SYMBOL(ieee80211_stop_queue);
390
391 void ieee80211_add_pending_skb(struct ieee80211_local *local,
392 struct sk_buff *skb)
393 {
394 struct ieee80211_hw *hw = &local->hw;
395 unsigned long flags;
396 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
397 int queue = info->hw_queue;
398
399 if (WARN_ON(!info->control.vif)) {
400 ieee80211_free_txskb(&local->hw, skb);
401 return;
402 }
403
404 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
405 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
406 false);
407 __skb_queue_tail(&local->pending[queue], skb);
408 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
409 false);
410 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
411 }
412
413 void ieee80211_add_pending_skbs(struct ieee80211_local *local,
414 struct sk_buff_head *skbs)
415 {
416 struct ieee80211_hw *hw = &local->hw;
417 struct sk_buff *skb;
418 unsigned long flags;
419 int queue, i;
420
421 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
422 while ((skb = skb_dequeue(skbs))) {
423 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
424
425 if (WARN_ON(!info->control.vif)) {
426 ieee80211_free_txskb(&local->hw, skb);
427 continue;
428 }
429
430 queue = info->hw_queue;
431
432 __ieee80211_stop_queue(hw, queue,
433 IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
434 false);
435
436 __skb_queue_tail(&local->pending[queue], skb);
437 }
438
439 for (i = 0; i < hw->queues; i++)
440 __ieee80211_wake_queue(hw, i,
441 IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
442 false);
443 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
444 }
445
446 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
447 unsigned long queues,
448 enum queue_stop_reason reason,
449 bool refcounted)
450 {
451 struct ieee80211_local *local = hw_to_local(hw);
452 unsigned long flags;
453 int i;
454
455 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
456
457 for_each_set_bit(i, &queues, hw->queues)
458 __ieee80211_stop_queue(hw, i, reason, refcounted);
459
460 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
461 }
462
463 void ieee80211_stop_queues(struct ieee80211_hw *hw)
464 {
465 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
466 IEEE80211_QUEUE_STOP_REASON_DRIVER,
467 false);
468 }
469 EXPORT_SYMBOL(ieee80211_stop_queues);
470
471 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
472 {
473 struct ieee80211_local *local = hw_to_local(hw);
474 unsigned long flags;
475 int ret;
476
477 if (WARN_ON(queue >= hw->queues))
478 return true;
479
480 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
481 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
482 &local->queue_stop_reasons[queue]);
483 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
484 return ret;
485 }
486 EXPORT_SYMBOL(ieee80211_queue_stopped);
487
488 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
489 unsigned long queues,
490 enum queue_stop_reason reason,
491 bool refcounted)
492 {
493 struct ieee80211_local *local = hw_to_local(hw);
494 unsigned long flags;
495 int i;
496
497 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
498
499 for_each_set_bit(i, &queues, hw->queues)
500 __ieee80211_wake_queue(hw, i, reason, refcounted);
501
502 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
503 }
504
505 void ieee80211_wake_queues(struct ieee80211_hw *hw)
506 {
507 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
508 IEEE80211_QUEUE_STOP_REASON_DRIVER,
509 false);
510 }
511 EXPORT_SYMBOL(ieee80211_wake_queues);
512
513 static unsigned int
514 ieee80211_get_vif_queues(struct ieee80211_local *local,
515 struct ieee80211_sub_if_data *sdata)
516 {
517 unsigned int queues;
518
519 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
520 int ac;
521
522 queues = 0;
523
524 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
525 queues |= BIT(sdata->vif.hw_queue[ac]);
526 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
527 queues |= BIT(sdata->vif.cab_queue);
528 } else {
529 /* all queues */
530 queues = BIT(local->hw.queues) - 1;
531 }
532
533 return queues;
534 }
535
536 void __ieee80211_flush_queues(struct ieee80211_local *local,
537 struct ieee80211_sub_if_data *sdata,
538 unsigned int queues, bool drop)
539 {
540 if (!local->ops->flush)
541 return;
542
543 /*
544 * If no queue was set, or if the HW doesn't support
545 * IEEE80211_HW_QUEUE_CONTROL - flush all queues
546 */
547 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
548 queues = ieee80211_get_vif_queues(local, sdata);
549
550 ieee80211_stop_queues_by_reason(&local->hw, queues,
551 IEEE80211_QUEUE_STOP_REASON_FLUSH,
552 false);
553
554 drv_flush(local, sdata, queues, drop);
555
556 ieee80211_wake_queues_by_reason(&local->hw, queues,
557 IEEE80211_QUEUE_STOP_REASON_FLUSH,
558 false);
559 }
560
561 void ieee80211_flush_queues(struct ieee80211_local *local,
562 struct ieee80211_sub_if_data *sdata, bool drop)
563 {
564 __ieee80211_flush_queues(local, sdata, 0, drop);
565 }
566
567 void ieee80211_stop_vif_queues(struct ieee80211_local *local,
568 struct ieee80211_sub_if_data *sdata,
569 enum queue_stop_reason reason)
570 {
571 ieee80211_stop_queues_by_reason(&local->hw,
572 ieee80211_get_vif_queues(local, sdata),
573 reason, true);
574 }
575
576 void ieee80211_wake_vif_queues(struct ieee80211_local *local,
577 struct ieee80211_sub_if_data *sdata,
578 enum queue_stop_reason reason)
579 {
580 ieee80211_wake_queues_by_reason(&local->hw,
581 ieee80211_get_vif_queues(local, sdata),
582 reason, true);
583 }
584
585 static void __iterate_interfaces(struct ieee80211_local *local,
586 u32 iter_flags,
587 void (*iterator)(void *data, u8 *mac,
588 struct ieee80211_vif *vif),
589 void *data)
590 {
591 struct ieee80211_sub_if_data *sdata;
592 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE;
593
594 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
595 switch (sdata->vif.type) {
596 case NL80211_IFTYPE_MONITOR:
597 if (!(sdata->u.mntr_flags & MONITOR_FLAG_ACTIVE))
598 continue;
599 break;
600 case NL80211_IFTYPE_AP_VLAN:
601 continue;
602 default:
603 break;
604 }
605 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
606 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
607 continue;
608 if (ieee80211_sdata_running(sdata) || !active_only)
609 iterator(data, sdata->vif.addr,
610 &sdata->vif);
611 }
612
613 sdata = rcu_dereference_check(local->monitor_sdata,
614 lockdep_is_held(&local->iflist_mtx) ||
615 lockdep_rtnl_is_held());
616 if (sdata &&
617 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only ||
618 sdata->flags & IEEE80211_SDATA_IN_DRIVER))
619 iterator(data, sdata->vif.addr, &sdata->vif);
620 }
621
622 void ieee80211_iterate_interfaces(
623 struct ieee80211_hw *hw, u32 iter_flags,
624 void (*iterator)(void *data, u8 *mac,
625 struct ieee80211_vif *vif),
626 void *data)
627 {
628 struct ieee80211_local *local = hw_to_local(hw);
629
630 mutex_lock(&local->iflist_mtx);
631 __iterate_interfaces(local, iter_flags, iterator, data);
632 mutex_unlock(&local->iflist_mtx);
633 }
634 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces);
635
636 void ieee80211_iterate_active_interfaces_atomic(
637 struct ieee80211_hw *hw, u32 iter_flags,
638 void (*iterator)(void *data, u8 *mac,
639 struct ieee80211_vif *vif),
640 void *data)
641 {
642 struct ieee80211_local *local = hw_to_local(hw);
643
644 rcu_read_lock();
645 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
646 iterator, data);
647 rcu_read_unlock();
648 }
649 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
650
651 void ieee80211_iterate_active_interfaces_rtnl(
652 struct ieee80211_hw *hw, u32 iter_flags,
653 void (*iterator)(void *data, u8 *mac,
654 struct ieee80211_vif *vif),
655 void *data)
656 {
657 struct ieee80211_local *local = hw_to_local(hw);
658
659 ASSERT_RTNL();
660
661 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
662 iterator, data);
663 }
664 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl);
665
666 static void __iterate_stations(struct ieee80211_local *local,
667 void (*iterator)(void *data,
668 struct ieee80211_sta *sta),
669 void *data)
670 {
671 struct sta_info *sta;
672
673 list_for_each_entry_rcu(sta, &local->sta_list, list) {
674 if (!sta->uploaded)
675 continue;
676
677 iterator(data, &sta->sta);
678 }
679 }
680
681 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw,
682 void (*iterator)(void *data,
683 struct ieee80211_sta *sta),
684 void *data)
685 {
686 struct ieee80211_local *local = hw_to_local(hw);
687
688 rcu_read_lock();
689 __iterate_stations(local, iterator, data);
690 rcu_read_unlock();
691 }
692 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic);
693
694 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev)
695 {
696 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
697
698 if (!ieee80211_sdata_running(sdata) ||
699 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
700 return NULL;
701 return &sdata->vif;
702 }
703 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif);
704
705 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif)
706 {
707 struct ieee80211_sub_if_data *sdata;
708
709 if (!vif)
710 return NULL;
711
712 sdata = vif_to_sdata(vif);
713
714 if (!ieee80211_sdata_running(sdata) ||
715 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
716 return NULL;
717
718 return &sdata->wdev;
719 }
720 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev);
721
722 /*
723 * Nothing should have been stuffed into the workqueue during
724 * the suspend->resume cycle. Since we can't check each caller
725 * of this function if we are already quiescing / suspended,
726 * check here and don't WARN since this can actually happen when
727 * the rx path (for example) is racing against __ieee80211_suspend
728 * and suspending / quiescing was set after the rx path checked
729 * them.
730 */
731 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
732 {
733 if (local->quiescing || (local->suspended && !local->resuming)) {
734 pr_warn("queueing ieee80211 work while going to suspend\n");
735 return false;
736 }
737
738 return true;
739 }
740
741 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
742 {
743 struct ieee80211_local *local = hw_to_local(hw);
744
745 if (!ieee80211_can_queue_work(local))
746 return;
747
748 queue_work(local->workqueue, work);
749 }
750 EXPORT_SYMBOL(ieee80211_queue_work);
751
752 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
753 struct delayed_work *dwork,
754 unsigned long delay)
755 {
756 struct ieee80211_local *local = hw_to_local(hw);
757
758 if (!ieee80211_can_queue_work(local))
759 return;
760
761 queue_delayed_work(local->workqueue, dwork, delay);
762 }
763 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
764
765 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
766 struct ieee802_11_elems *elems,
767 u64 filter, u32 crc)
768 {
769 size_t left = len;
770 const u8 *pos = start;
771 bool calc_crc = filter != 0;
772 DECLARE_BITMAP(seen_elems, 256);
773 const u8 *ie;
774
775 bitmap_zero(seen_elems, 256);
776 memset(elems, 0, sizeof(*elems));
777 elems->ie_start = start;
778 elems->total_len = len;
779
780 while (left >= 2) {
781 u8 id, elen;
782 bool elem_parse_failed;
783
784 id = *pos++;
785 elen = *pos++;
786 left -= 2;
787
788 if (elen > left) {
789 elems->parse_error = true;
790 break;
791 }
792
793 switch (id) {
794 case WLAN_EID_SSID:
795 case WLAN_EID_SUPP_RATES:
796 case WLAN_EID_FH_PARAMS:
797 case WLAN_EID_DS_PARAMS:
798 case WLAN_EID_CF_PARAMS:
799 case WLAN_EID_TIM:
800 case WLAN_EID_IBSS_PARAMS:
801 case WLAN_EID_CHALLENGE:
802 case WLAN_EID_RSN:
803 case WLAN_EID_ERP_INFO:
804 case WLAN_EID_EXT_SUPP_RATES:
805 case WLAN_EID_HT_CAPABILITY:
806 case WLAN_EID_HT_OPERATION:
807 case WLAN_EID_VHT_CAPABILITY:
808 case WLAN_EID_VHT_OPERATION:
809 case WLAN_EID_MESH_ID:
810 case WLAN_EID_MESH_CONFIG:
811 case WLAN_EID_PEER_MGMT:
812 case WLAN_EID_PREQ:
813 case WLAN_EID_PREP:
814 case WLAN_EID_PERR:
815 case WLAN_EID_RANN:
816 case WLAN_EID_CHANNEL_SWITCH:
817 case WLAN_EID_EXT_CHANSWITCH_ANN:
818 case WLAN_EID_COUNTRY:
819 case WLAN_EID_PWR_CONSTRAINT:
820 case WLAN_EID_TIMEOUT_INTERVAL:
821 case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
822 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
823 case WLAN_EID_CHAN_SWITCH_PARAM:
824 case WLAN_EID_EXT_CAPABILITY:
825 case WLAN_EID_CHAN_SWITCH_TIMING:
826 case WLAN_EID_LINK_ID:
827 /*
828 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
829 * that if the content gets bigger it might be needed more than once
830 */
831 if (test_bit(id, seen_elems)) {
832 elems->parse_error = true;
833 left -= elen;
834 pos += elen;
835 continue;
836 }
837 break;
838 }
839
840 if (calc_crc && id < 64 && (filter & (1ULL << id)))
841 crc = crc32_be(crc, pos - 2, elen + 2);
842
843 elem_parse_failed = false;
844
845 switch (id) {
846 case WLAN_EID_LINK_ID:
847 if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) {
848 elem_parse_failed = true;
849 break;
850 }
851 elems->lnk_id = (void *)(pos - 2);
852 break;
853 case WLAN_EID_CHAN_SWITCH_TIMING:
854 if (elen != sizeof(struct ieee80211_ch_switch_timing)) {
855 elem_parse_failed = true;
856 break;
857 }
858 elems->ch_sw_timing = (void *)pos;
859 break;
860 case WLAN_EID_EXT_CAPABILITY:
861 elems->ext_capab = pos;
862 elems->ext_capab_len = elen;
863 break;
864 case WLAN_EID_SSID:
865 elems->ssid = pos;
866 elems->ssid_len = elen;
867 break;
868 case WLAN_EID_SUPP_RATES:
869 elems->supp_rates = pos;
870 elems->supp_rates_len = elen;
871 break;
872 case WLAN_EID_DS_PARAMS:
873 if (elen >= 1)
874 elems->ds_params = pos;
875 else
876 elem_parse_failed = true;
877 break;
878 case WLAN_EID_TIM:
879 if (elen >= sizeof(struct ieee80211_tim_ie)) {
880 elems->tim = (void *)pos;
881 elems->tim_len = elen;
882 } else
883 elem_parse_failed = true;
884 break;
885 case WLAN_EID_CHALLENGE:
886 elems->challenge = pos;
887 elems->challenge_len = elen;
888 break;
889 case WLAN_EID_VENDOR_SPECIFIC:
890 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
891 pos[2] == 0xf2) {
892 /* Microsoft OUI (00:50:F2) */
893
894 if (calc_crc)
895 crc = crc32_be(crc, pos - 2, elen + 2);
896
897 if (elen >= 5 && pos[3] == 2) {
898 /* OUI Type 2 - WMM IE */
899 if (pos[4] == 0) {
900 elems->wmm_info = pos;
901 elems->wmm_info_len = elen;
902 } else if (pos[4] == 1) {
903 elems->wmm_param = pos;
904 elems->wmm_param_len = elen;
905 }
906 }
907 }
908 break;
909 case WLAN_EID_RSN:
910 elems->rsn = pos;
911 elems->rsn_len = elen;
912 break;
913 case WLAN_EID_ERP_INFO:
914 if (elen >= 1)
915 elems->erp_info = pos;
916 else
917 elem_parse_failed = true;
918 break;
919 case WLAN_EID_EXT_SUPP_RATES:
920 elems->ext_supp_rates = pos;
921 elems->ext_supp_rates_len = elen;
922 break;
923 case WLAN_EID_HT_CAPABILITY:
924 if (elen >= sizeof(struct ieee80211_ht_cap))
925 elems->ht_cap_elem = (void *)pos;
926 else
927 elem_parse_failed = true;
928 break;
929 case WLAN_EID_HT_OPERATION:
930 if (elen >= sizeof(struct ieee80211_ht_operation))
931 elems->ht_operation = (void *)pos;
932 else
933 elem_parse_failed = true;
934 break;
935 case WLAN_EID_VHT_CAPABILITY:
936 if (elen >= sizeof(struct ieee80211_vht_cap))
937 elems->vht_cap_elem = (void *)pos;
938 else
939 elem_parse_failed = true;
940 break;
941 case WLAN_EID_VHT_OPERATION:
942 if (elen >= sizeof(struct ieee80211_vht_operation))
943 elems->vht_operation = (void *)pos;
944 else
945 elem_parse_failed = true;
946 break;
947 case WLAN_EID_OPMODE_NOTIF:
948 if (elen > 0)
949 elems->opmode_notif = pos;
950 else
951 elem_parse_failed = true;
952 break;
953 case WLAN_EID_MESH_ID:
954 elems->mesh_id = pos;
955 elems->mesh_id_len = elen;
956 break;
957 case WLAN_EID_MESH_CONFIG:
958 if (elen >= sizeof(struct ieee80211_meshconf_ie))
959 elems->mesh_config = (void *)pos;
960 else
961 elem_parse_failed = true;
962 break;
963 case WLAN_EID_PEER_MGMT:
964 elems->peering = pos;
965 elems->peering_len = elen;
966 break;
967 case WLAN_EID_MESH_AWAKE_WINDOW:
968 if (elen >= 2)
969 elems->awake_window = (void *)pos;
970 break;
971 case WLAN_EID_PREQ:
972 elems->preq = pos;
973 elems->preq_len = elen;
974 break;
975 case WLAN_EID_PREP:
976 elems->prep = pos;
977 elems->prep_len = elen;
978 break;
979 case WLAN_EID_PERR:
980 elems->perr = pos;
981 elems->perr_len = elen;
982 break;
983 case WLAN_EID_RANN:
984 if (elen >= sizeof(struct ieee80211_rann_ie))
985 elems->rann = (void *)pos;
986 else
987 elem_parse_failed = true;
988 break;
989 case WLAN_EID_CHANNEL_SWITCH:
990 if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
991 elem_parse_failed = true;
992 break;
993 }
994 elems->ch_switch_ie = (void *)pos;
995 break;
996 case WLAN_EID_EXT_CHANSWITCH_ANN:
997 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
998 elem_parse_failed = true;
999 break;
1000 }
1001 elems->ext_chansw_ie = (void *)pos;
1002 break;
1003 case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1004 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
1005 elem_parse_failed = true;
1006 break;
1007 }
1008 elems->sec_chan_offs = (void *)pos;
1009 break;
1010 case WLAN_EID_CHAN_SWITCH_PARAM:
1011 if (elen !=
1012 sizeof(*elems->mesh_chansw_params_ie)) {
1013 elem_parse_failed = true;
1014 break;
1015 }
1016 elems->mesh_chansw_params_ie = (void *)pos;
1017 break;
1018 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1019 if (!action ||
1020 elen != sizeof(*elems->wide_bw_chansw_ie)) {
1021 elem_parse_failed = true;
1022 break;
1023 }
1024 elems->wide_bw_chansw_ie = (void *)pos;
1025 break;
1026 case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
1027 if (action) {
1028 elem_parse_failed = true;
1029 break;
1030 }
1031 /*
1032 * This is a bit tricky, but as we only care about
1033 * the wide bandwidth channel switch element, so
1034 * just parse it out manually.
1035 */
1036 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
1037 pos, elen);
1038 if (ie) {
1039 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie))
1040 elems->wide_bw_chansw_ie =
1041 (void *)(ie + 2);
1042 else
1043 elem_parse_failed = true;
1044 }
1045 break;
1046 case WLAN_EID_COUNTRY:
1047 elems->country_elem = pos;
1048 elems->country_elem_len = elen;
1049 break;
1050 case WLAN_EID_PWR_CONSTRAINT:
1051 if (elen != 1) {
1052 elem_parse_failed = true;
1053 break;
1054 }
1055 elems->pwr_constr_elem = pos;
1056 break;
1057 case WLAN_EID_CISCO_VENDOR_SPECIFIC:
1058 /* Lots of different options exist, but we only care
1059 * about the Dynamic Transmit Power Control element.
1060 * First check for the Cisco OUI, then for the DTPC
1061 * tag (0x00).
1062 */
1063 if (elen < 4) {
1064 elem_parse_failed = true;
1065 break;
1066 }
1067
1068 if (pos[0] != 0x00 || pos[1] != 0x40 ||
1069 pos[2] != 0x96 || pos[3] != 0x00)
1070 break;
1071
1072 if (elen != 6) {
1073 elem_parse_failed = true;
1074 break;
1075 }
1076
1077 if (calc_crc)
1078 crc = crc32_be(crc, pos - 2, elen + 2);
1079
1080 elems->cisco_dtpc_elem = pos;
1081 break;
1082 case WLAN_EID_TIMEOUT_INTERVAL:
1083 if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
1084 elems->timeout_int = (void *)pos;
1085 else
1086 elem_parse_failed = true;
1087 break;
1088 default:
1089 break;
1090 }
1091
1092 if (elem_parse_failed)
1093 elems->parse_error = true;
1094 else
1095 __set_bit(id, seen_elems);
1096
1097 left -= elen;
1098 pos += elen;
1099 }
1100
1101 if (left != 0)
1102 elems->parse_error = true;
1103
1104 return crc;
1105 }
1106
1107 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
1108 bool bss_notify, bool enable_qos)
1109 {
1110 struct ieee80211_local *local = sdata->local;
1111 struct ieee80211_tx_queue_params qparam;
1112 struct ieee80211_chanctx_conf *chanctx_conf;
1113 int ac;
1114 bool use_11b;
1115 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */
1116 int aCWmin, aCWmax;
1117
1118 if (!local->ops->conf_tx)
1119 return;
1120
1121 if (local->hw.queues < IEEE80211_NUM_ACS)
1122 return;
1123
1124 memset(&qparam, 0, sizeof(qparam));
1125
1126 rcu_read_lock();
1127 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1128 use_11b = (chanctx_conf &&
1129 chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ) &&
1130 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
1131 rcu_read_unlock();
1132
1133 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB);
1134
1135 /* Set defaults according to 802.11-2007 Table 7-37 */
1136 aCWmax = 1023;
1137 if (use_11b)
1138 aCWmin = 31;
1139 else
1140 aCWmin = 15;
1141
1142 /* Confiure old 802.11b/g medium access rules. */
1143 qparam.cw_max = aCWmax;
1144 qparam.cw_min = aCWmin;
1145 qparam.txop = 0;
1146 qparam.aifs = 2;
1147
1148 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1149 /* Update if QoS is enabled. */
1150 if (enable_qos) {
1151 switch (ac) {
1152 case IEEE80211_AC_BK:
1153 qparam.cw_max = aCWmax;
1154 qparam.cw_min = aCWmin;
1155 qparam.txop = 0;
1156 if (is_ocb)
1157 qparam.aifs = 9;
1158 else
1159 qparam.aifs = 7;
1160 break;
1161 /* never happens but let's not leave undefined */
1162 default:
1163 case IEEE80211_AC_BE:
1164 qparam.cw_max = aCWmax;
1165 qparam.cw_min = aCWmin;
1166 qparam.txop = 0;
1167 if (is_ocb)
1168 qparam.aifs = 6;
1169 else
1170 qparam.aifs = 3;
1171 break;
1172 case IEEE80211_AC_VI:
1173 qparam.cw_max = aCWmin;
1174 qparam.cw_min = (aCWmin + 1) / 2 - 1;
1175 if (is_ocb)
1176 qparam.txop = 0;
1177 else if (use_11b)
1178 qparam.txop = 6016/32;
1179 else
1180 qparam.txop = 3008/32;
1181
1182 if (is_ocb)
1183 qparam.aifs = 3;
1184 else
1185 qparam.aifs = 2;
1186 break;
1187 case IEEE80211_AC_VO:
1188 qparam.cw_max = (aCWmin + 1) / 2 - 1;
1189 qparam.cw_min = (aCWmin + 1) / 4 - 1;
1190 if (is_ocb)
1191 qparam.txop = 0;
1192 else if (use_11b)
1193 qparam.txop = 3264/32;
1194 else
1195 qparam.txop = 1504/32;
1196 qparam.aifs = 2;
1197 break;
1198 }
1199 }
1200
1201 qparam.uapsd = false;
1202
1203 sdata->tx_conf[ac] = qparam;
1204 drv_conf_tx(local, sdata, ac, &qparam);
1205 }
1206
1207 if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1208 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
1209 sdata->vif.bss_conf.qos = enable_qos;
1210 if (bss_notify)
1211 ieee80211_bss_info_change_notify(sdata,
1212 BSS_CHANGED_QOS);
1213 }
1214 }
1215
1216 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1217 u16 transaction, u16 auth_alg, u16 status,
1218 const u8 *extra, size_t extra_len, const u8 *da,
1219 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1220 u32 tx_flags)
1221 {
1222 struct ieee80211_local *local = sdata->local;
1223 struct sk_buff *skb;
1224 struct ieee80211_mgmt *mgmt;
1225 int err;
1226
1227 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */
1228 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN +
1229 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN);
1230 if (!skb)
1231 return;
1232
1233 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN);
1234
1235 mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
1236 memset(mgmt, 0, 24 + 6);
1237 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1238 IEEE80211_STYPE_AUTH);
1239 memcpy(mgmt->da, da, ETH_ALEN);
1240 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1241 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1242 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1243 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1244 mgmt->u.auth.status_code = cpu_to_le16(status);
1245 if (extra)
1246 memcpy(skb_put(skb, extra_len), extra, extra_len);
1247
1248 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1249 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1250 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1251 WARN_ON(err);
1252 }
1253
1254 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1255 tx_flags;
1256 ieee80211_tx_skb(sdata, skb);
1257 }
1258
1259 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1260 const u8 *bssid, u16 stype, u16 reason,
1261 bool send_frame, u8 *frame_buf)
1262 {
1263 struct ieee80211_local *local = sdata->local;
1264 struct sk_buff *skb;
1265 struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1266
1267 /* build frame */
1268 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1269 mgmt->duration = 0; /* initialize only */
1270 mgmt->seq_ctrl = 0; /* initialize only */
1271 memcpy(mgmt->da, bssid, ETH_ALEN);
1272 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1273 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1274 /* u.deauth.reason_code == u.disassoc.reason_code */
1275 mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1276
1277 if (send_frame) {
1278 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1279 IEEE80211_DEAUTH_FRAME_LEN);
1280 if (!skb)
1281 return;
1282
1283 skb_reserve(skb, local->hw.extra_tx_headroom);
1284
1285 /* copy in frame */
1286 memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1287 mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1288
1289 if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1290 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1291 IEEE80211_SKB_CB(skb)->flags |=
1292 IEEE80211_TX_INTFL_DONT_ENCRYPT;
1293
1294 ieee80211_tx_skb(sdata, skb);
1295 }
1296 }
1297
1298 static int ieee80211_build_preq_ies_band(struct ieee80211_local *local,
1299 u8 *buffer, size_t buffer_len,
1300 const u8 *ie, size_t ie_len,
1301 enum ieee80211_band band,
1302 u32 rate_mask,
1303 struct cfg80211_chan_def *chandef,
1304 size_t *offset)
1305 {
1306 struct ieee80211_supported_band *sband;
1307 u8 *pos = buffer, *end = buffer + buffer_len;
1308 size_t noffset;
1309 int supp_rates_len, i;
1310 u8 rates[32];
1311 int num_rates;
1312 int ext_rates_len;
1313 int shift;
1314 u32 rate_flags;
1315 bool have_80mhz = false;
1316
1317 *offset = 0;
1318
1319 sband = local->hw.wiphy->bands[band];
1320 if (WARN_ON_ONCE(!sband))
1321 return 0;
1322
1323 rate_flags = ieee80211_chandef_rate_flags(chandef);
1324 shift = ieee80211_chandef_get_shift(chandef);
1325
1326 num_rates = 0;
1327 for (i = 0; i < sband->n_bitrates; i++) {
1328 if ((BIT(i) & rate_mask) == 0)
1329 continue; /* skip rate */
1330 if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1331 continue;
1332
1333 rates[num_rates++] =
1334 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate,
1335 (1 << shift) * 5);
1336 }
1337
1338 supp_rates_len = min_t(int, num_rates, 8);
1339
1340 if (end - pos < 2 + supp_rates_len)
1341 goto out_err;
1342 *pos++ = WLAN_EID_SUPP_RATES;
1343 *pos++ = supp_rates_len;
1344 memcpy(pos, rates, supp_rates_len);
1345 pos += supp_rates_len;
1346
1347 /* insert "request information" if in custom IEs */
1348 if (ie && ie_len) {
1349 static const u8 before_extrates[] = {
1350 WLAN_EID_SSID,
1351 WLAN_EID_SUPP_RATES,
1352 WLAN_EID_REQUEST,
1353 };
1354 noffset = ieee80211_ie_split(ie, ie_len,
1355 before_extrates,
1356 ARRAY_SIZE(before_extrates),
1357 *offset);
1358 if (end - pos < noffset - *offset)
1359 goto out_err;
1360 memcpy(pos, ie + *offset, noffset - *offset);
1361 pos += noffset - *offset;
1362 *offset = noffset;
1363 }
1364
1365 ext_rates_len = num_rates - supp_rates_len;
1366 if (ext_rates_len > 0) {
1367 if (end - pos < 2 + ext_rates_len)
1368 goto out_err;
1369 *pos++ = WLAN_EID_EXT_SUPP_RATES;
1370 *pos++ = ext_rates_len;
1371 memcpy(pos, rates + supp_rates_len, ext_rates_len);
1372 pos += ext_rates_len;
1373 }
1374
1375 if (chandef->chan && sband->band == IEEE80211_BAND_2GHZ) {
1376 if (end - pos < 3)
1377 goto out_err;
1378 *pos++ = WLAN_EID_DS_PARAMS;
1379 *pos++ = 1;
1380 *pos++ = ieee80211_frequency_to_channel(
1381 chandef->chan->center_freq);
1382 }
1383
1384 /* insert custom IEs that go before HT */
1385 if (ie && ie_len) {
1386 static const u8 before_ht[] = {
1387 WLAN_EID_SSID,
1388 WLAN_EID_SUPP_RATES,
1389 WLAN_EID_REQUEST,
1390 WLAN_EID_EXT_SUPP_RATES,
1391 WLAN_EID_DS_PARAMS,
1392 WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1393 };
1394 noffset = ieee80211_ie_split(ie, ie_len,
1395 before_ht, ARRAY_SIZE(before_ht),
1396 *offset);
1397 if (end - pos < noffset - *offset)
1398 goto out_err;
1399 memcpy(pos, ie + *offset, noffset - *offset);
1400 pos += noffset - *offset;
1401 *offset = noffset;
1402 }
1403
1404 if (sband->ht_cap.ht_supported) {
1405 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1406 goto out_err;
1407 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1408 sband->ht_cap.cap);
1409 }
1410
1411 /*
1412 * If adding more here, adjust code in main.c
1413 * that calculates local->scan_ies_len.
1414 */
1415
1416 /* insert custom IEs that go before VHT */
1417 if (ie && ie_len) {
1418 static const u8 before_vht[] = {
1419 WLAN_EID_SSID,
1420 WLAN_EID_SUPP_RATES,
1421 WLAN_EID_REQUEST,
1422 WLAN_EID_EXT_SUPP_RATES,
1423 WLAN_EID_DS_PARAMS,
1424 WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1425 WLAN_EID_HT_CAPABILITY,
1426 WLAN_EID_BSS_COEX_2040,
1427 WLAN_EID_EXT_CAPABILITY,
1428 WLAN_EID_SSID_LIST,
1429 WLAN_EID_CHANNEL_USAGE,
1430 WLAN_EID_INTERWORKING,
1431 /* mesh ID can't happen here */
1432 /* 60 GHz can't happen here right now */
1433 };
1434 noffset = ieee80211_ie_split(ie, ie_len,
1435 before_vht, ARRAY_SIZE(before_vht),
1436 *offset);
1437 if (end - pos < noffset - *offset)
1438 goto out_err;
1439 memcpy(pos, ie + *offset, noffset - *offset);
1440 pos += noffset - *offset;
1441 *offset = noffset;
1442 }
1443
1444 /* Check if any channel in this sband supports at least 80 MHz */
1445 for (i = 0; i < sband->n_channels; i++) {
1446 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
1447 IEEE80211_CHAN_NO_80MHZ))
1448 continue;
1449
1450 have_80mhz = true;
1451 break;
1452 }
1453
1454 if (sband->vht_cap.vht_supported && have_80mhz) {
1455 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1456 goto out_err;
1457 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1458 sband->vht_cap.cap);
1459 }
1460
1461 return pos - buffer;
1462 out_err:
1463 WARN_ONCE(1, "not enough space for preq IEs\n");
1464 return pos - buffer;
1465 }
1466
1467 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1468 size_t buffer_len,
1469 struct ieee80211_scan_ies *ie_desc,
1470 const u8 *ie, size_t ie_len,
1471 u8 bands_used, u32 *rate_masks,
1472 struct cfg80211_chan_def *chandef)
1473 {
1474 size_t pos = 0, old_pos = 0, custom_ie_offset = 0;
1475 int i;
1476
1477 memset(ie_desc, 0, sizeof(*ie_desc));
1478
1479 for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
1480 if (bands_used & BIT(i)) {
1481 pos += ieee80211_build_preq_ies_band(local,
1482 buffer + pos,
1483 buffer_len - pos,
1484 ie, ie_len, i,
1485 rate_masks[i],
1486 chandef,
1487 &custom_ie_offset);
1488 ie_desc->ies[i] = buffer + old_pos;
1489 ie_desc->len[i] = pos - old_pos;
1490 old_pos = pos;
1491 }
1492 }
1493
1494 /* add any remaining custom IEs */
1495 if (ie && ie_len) {
1496 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset,
1497 "not enough space for preq custom IEs\n"))
1498 return pos;
1499 memcpy(buffer + pos, ie + custom_ie_offset,
1500 ie_len - custom_ie_offset);
1501 ie_desc->common_ies = buffer + pos;
1502 ie_desc->common_ie_len = ie_len - custom_ie_offset;
1503 pos += ie_len - custom_ie_offset;
1504 }
1505
1506 return pos;
1507 };
1508
1509 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1510 const u8 *src, const u8 *dst,
1511 u32 ratemask,
1512 struct ieee80211_channel *chan,
1513 const u8 *ssid, size_t ssid_len,
1514 const u8 *ie, size_t ie_len,
1515 bool directed)
1516 {
1517 struct ieee80211_local *local = sdata->local;
1518 struct cfg80211_chan_def chandef;
1519 struct sk_buff *skb;
1520 struct ieee80211_mgmt *mgmt;
1521 int ies_len;
1522 u32 rate_masks[IEEE80211_NUM_BANDS] = {};
1523 struct ieee80211_scan_ies dummy_ie_desc;
1524
1525 /*
1526 * Do not send DS Channel parameter for directed probe requests
1527 * in order to maximize the chance that we get a response. Some
1528 * badly-behaved APs don't respond when this parameter is included.
1529 */
1530 chandef.width = sdata->vif.bss_conf.chandef.width;
1531 if (directed)
1532 chandef.chan = NULL;
1533 else
1534 chandef.chan = chan;
1535
1536 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len,
1537 100 + ie_len);
1538 if (!skb)
1539 return NULL;
1540
1541 rate_masks[chan->band] = ratemask;
1542 ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb),
1543 skb_tailroom(skb), &dummy_ie_desc,
1544 ie, ie_len, BIT(chan->band),
1545 rate_masks, &chandef);
1546 skb_put(skb, ies_len);
1547
1548 if (dst) {
1549 mgmt = (struct ieee80211_mgmt *) skb->data;
1550 memcpy(mgmt->da, dst, ETH_ALEN);
1551 memcpy(mgmt->bssid, dst, ETH_ALEN);
1552 }
1553
1554 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1555
1556 return skb;
1557 }
1558
1559 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata,
1560 const u8 *src, const u8 *dst,
1561 const u8 *ssid, size_t ssid_len,
1562 const u8 *ie, size_t ie_len,
1563 u32 ratemask, bool directed, u32 tx_flags,
1564 struct ieee80211_channel *channel, bool scan)
1565 {
1566 struct sk_buff *skb;
1567
1568 skb = ieee80211_build_probe_req(sdata, src, dst, ratemask, channel,
1569 ssid, ssid_len,
1570 ie, ie_len, directed);
1571 if (skb) {
1572 IEEE80211_SKB_CB(skb)->flags |= tx_flags;
1573 if (scan)
1574 ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band);
1575 else
1576 ieee80211_tx_skb(sdata, skb);
1577 }
1578 }
1579
1580 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata,
1581 struct ieee802_11_elems *elems,
1582 enum ieee80211_band band, u32 *basic_rates)
1583 {
1584 struct ieee80211_supported_band *sband;
1585 size_t num_rates;
1586 u32 supp_rates, rate_flags;
1587 int i, j, shift;
1588 sband = sdata->local->hw.wiphy->bands[band];
1589
1590 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
1591 shift = ieee80211_vif_get_shift(&sdata->vif);
1592
1593 if (WARN_ON(!sband))
1594 return 1;
1595
1596 num_rates = sband->n_bitrates;
1597 supp_rates = 0;
1598 for (i = 0; i < elems->supp_rates_len +
1599 elems->ext_supp_rates_len; i++) {
1600 u8 rate = 0;
1601 int own_rate;
1602 bool is_basic;
1603 if (i < elems->supp_rates_len)
1604 rate = elems->supp_rates[i];
1605 else if (elems->ext_supp_rates)
1606 rate = elems->ext_supp_rates
1607 [i - elems->supp_rates_len];
1608 own_rate = 5 * (rate & 0x7f);
1609 is_basic = !!(rate & 0x80);
1610
1611 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1612 continue;
1613
1614 for (j = 0; j < num_rates; j++) {
1615 int brate;
1616 if ((rate_flags & sband->bitrates[j].flags)
1617 != rate_flags)
1618 continue;
1619
1620 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate,
1621 1 << shift);
1622
1623 if (brate == own_rate) {
1624 supp_rates |= BIT(j);
1625 if (basic_rates && is_basic)
1626 *basic_rates |= BIT(j);
1627 }
1628 }
1629 }
1630 return supp_rates;
1631 }
1632
1633 void ieee80211_stop_device(struct ieee80211_local *local)
1634 {
1635 ieee80211_led_radio(local, false);
1636 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1637
1638 cancel_work_sync(&local->reconfig_filter);
1639
1640 flush_workqueue(local->workqueue);
1641 drv_stop(local);
1642 }
1643
1644 static void ieee80211_flush_completed_scan(struct ieee80211_local *local,
1645 bool aborted)
1646 {
1647 /* It's possible that we don't handle the scan completion in
1648 * time during suspend, so if it's still marked as completed
1649 * here, queue the work and flush it to clean things up.
1650 * Instead of calling the worker function directly here, we
1651 * really queue it to avoid potential races with other flows
1652 * scheduling the same work.
1653 */
1654 if (test_bit(SCAN_COMPLETED, &local->scanning)) {
1655 /* If coming from reconfiguration failure, abort the scan so
1656 * we don't attempt to continue a partial HW scan - which is
1657 * possible otherwise if (e.g.) the 2.4 GHz portion was the
1658 * completed scan, and a 5 GHz portion is still pending.
1659 */
1660 if (aborted)
1661 set_bit(SCAN_ABORTED, &local->scanning);
1662 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0);
1663 flush_delayed_work(&local->scan_work);
1664 }
1665 }
1666
1667 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local)
1668 {
1669 struct ieee80211_sub_if_data *sdata;
1670 struct ieee80211_chanctx *ctx;
1671
1672 /*
1673 * We get here if during resume the device can't be restarted properly.
1674 * We might also get here if this happens during HW reset, which is a
1675 * slightly different situation and we need to drop all connections in
1676 * the latter case.
1677 *
1678 * Ask cfg80211 to turn off all interfaces, this will result in more
1679 * warnings but at least we'll then get into a clean stopped state.
1680 */
1681
1682 local->resuming = false;
1683 local->suspended = false;
1684 local->in_reconfig = false;
1685
1686 ieee80211_flush_completed_scan(local, true);
1687
1688 /* scheduled scan clearly can't be running any more, but tell
1689 * cfg80211 and clear local state
1690 */
1691 ieee80211_sched_scan_end(local);
1692
1693 list_for_each_entry(sdata, &local->interfaces, list)
1694 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER;
1695
1696 /* Mark channel contexts as not being in the driver any more to avoid
1697 * removing them from the driver during the shutdown process...
1698 */
1699 mutex_lock(&local->chanctx_mtx);
1700 list_for_each_entry(ctx, &local->chanctx_list, list)
1701 ctx->driver_present = false;
1702 mutex_unlock(&local->chanctx_mtx);
1703
1704 cfg80211_shutdown_all_interfaces(local->hw.wiphy);
1705 }
1706
1707 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
1708 struct ieee80211_sub_if_data *sdata)
1709 {
1710 struct ieee80211_chanctx_conf *conf;
1711 struct ieee80211_chanctx *ctx;
1712
1713 if (!local->use_chanctx)
1714 return;
1715
1716 mutex_lock(&local->chanctx_mtx);
1717 conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1718 lockdep_is_held(&local->chanctx_mtx));
1719 if (conf) {
1720 ctx = container_of(conf, struct ieee80211_chanctx, conf);
1721 drv_assign_vif_chanctx(local, sdata, ctx);
1722 }
1723 mutex_unlock(&local->chanctx_mtx);
1724 }
1725
1726 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata)
1727 {
1728 struct ieee80211_local *local = sdata->local;
1729 struct sta_info *sta;
1730
1731 /* add STAs back */
1732 mutex_lock(&local->sta_mtx);
1733 list_for_each_entry(sta, &local->sta_list, list) {
1734 enum ieee80211_sta_state state;
1735
1736 if (!sta->uploaded || sta->sdata != sdata)
1737 continue;
1738
1739 for (state = IEEE80211_STA_NOTEXIST;
1740 state < sta->sta_state; state++)
1741 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1742 state + 1));
1743 }
1744 mutex_unlock(&local->sta_mtx);
1745 }
1746
1747 int ieee80211_reconfig(struct ieee80211_local *local)
1748 {
1749 struct ieee80211_hw *hw = &local->hw;
1750 struct ieee80211_sub_if_data *sdata;
1751 struct ieee80211_chanctx *ctx;
1752 struct sta_info *sta;
1753 int res, i;
1754 bool reconfig_due_to_wowlan = false;
1755 struct ieee80211_sub_if_data *sched_scan_sdata;
1756 struct cfg80211_sched_scan_request *sched_scan_req;
1757 bool sched_scan_stopped = false;
1758 bool suspended = local->suspended;
1759
1760 /* nothing to do if HW shouldn't run */
1761 if (!local->open_count)
1762 goto wake_up;
1763
1764 #ifdef CONFIG_PM
1765 if (suspended)
1766 local->resuming = true;
1767
1768 if (local->wowlan) {
1769 /*
1770 * In the wowlan case, both mac80211 and the device
1771 * are functional when the resume op is called, so
1772 * clear local->suspended so the device could operate
1773 * normally (e.g. pass rx frames).
1774 */
1775 local->suspended = false;
1776 res = drv_resume(local);
1777 local->wowlan = false;
1778 if (res < 0) {
1779 local->resuming = false;
1780 return res;
1781 }
1782 if (res == 0)
1783 goto wake_up;
1784 WARN_ON(res > 1);
1785 /*
1786 * res is 1, which means the driver requested
1787 * to go through a regular reset on wakeup.
1788 * restore local->suspended in this case.
1789 */
1790 reconfig_due_to_wowlan = true;
1791 local->suspended = true;
1792 }
1793 #endif
1794
1795 /*
1796 * In case of hw_restart during suspend (without wowlan),
1797 * cancel restart work, as we are reconfiguring the device
1798 * anyway.
1799 * Note that restart_work is scheduled on a frozen workqueue,
1800 * so we can't deadlock in this case.
1801 */
1802 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan)
1803 cancel_work_sync(&local->restart_work);
1804
1805 local->started = false;
1806
1807 /*
1808 * Upon resume hardware can sometimes be goofy due to
1809 * various platform / driver / bus issues, so restarting
1810 * the device may at times not work immediately. Propagate
1811 * the error.
1812 */
1813 res = drv_start(local);
1814 if (res) {
1815 if (suspended)
1816 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n");
1817 else
1818 WARN(1, "Hardware became unavailable during restart.\n");
1819 ieee80211_handle_reconfig_failure(local);
1820 return res;
1821 }
1822
1823 /* setup fragmentation threshold */
1824 drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1825
1826 /* setup RTS threshold */
1827 drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1828
1829 /* reset coverage class */
1830 drv_set_coverage_class(local, hw->wiphy->coverage_class);
1831
1832 ieee80211_led_radio(local, true);
1833 ieee80211_mod_tpt_led_trig(local,
1834 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1835
1836 /* add interfaces */
1837 sdata = rtnl_dereference(local->monitor_sdata);
1838 if (sdata) {
1839 /* in HW restart it exists already */
1840 WARN_ON(local->resuming);
1841 res = drv_add_interface(local, sdata);
1842 if (WARN_ON(res)) {
1843 RCU_INIT_POINTER(local->monitor_sdata, NULL);
1844 synchronize_net();
1845 kfree(sdata);
1846 }
1847 }
1848
1849 list_for_each_entry(sdata, &local->interfaces, list) {
1850 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1851 sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1852 ieee80211_sdata_running(sdata)) {
1853 res = drv_add_interface(local, sdata);
1854 if (WARN_ON(res))
1855 break;
1856 }
1857 }
1858
1859 /* If adding any of the interfaces failed above, roll back and
1860 * report failure.
1861 */
1862 if (res) {
1863 list_for_each_entry_continue_reverse(sdata, &local->interfaces,
1864 list)
1865 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1866 sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1867 ieee80211_sdata_running(sdata))
1868 drv_remove_interface(local, sdata);
1869 ieee80211_handle_reconfig_failure(local);
1870 return res;
1871 }
1872
1873 /* add channel contexts */
1874 if (local->use_chanctx) {
1875 mutex_lock(&local->chanctx_mtx);
1876 list_for_each_entry(ctx, &local->chanctx_list, list)
1877 if (ctx->replace_state !=
1878 IEEE80211_CHANCTX_REPLACES_OTHER)
1879 WARN_ON(drv_add_chanctx(local, ctx));
1880 mutex_unlock(&local->chanctx_mtx);
1881
1882 sdata = rtnl_dereference(local->monitor_sdata);
1883 if (sdata && ieee80211_sdata_running(sdata))
1884 ieee80211_assign_chanctx(local, sdata);
1885 }
1886
1887 /* reconfigure hardware */
1888 ieee80211_hw_config(local, ~0);
1889
1890 ieee80211_configure_filter(local);
1891
1892 /* Finally also reconfigure all the BSS information */
1893 list_for_each_entry(sdata, &local->interfaces, list) {
1894 u32 changed;
1895
1896 if (!ieee80211_sdata_running(sdata))
1897 continue;
1898
1899 ieee80211_assign_chanctx(local, sdata);
1900
1901 switch (sdata->vif.type) {
1902 case NL80211_IFTYPE_AP_VLAN:
1903 case NL80211_IFTYPE_MONITOR:
1904 break;
1905 default:
1906 ieee80211_reconfig_stations(sdata);
1907 /* fall through */
1908 case NL80211_IFTYPE_AP: /* AP stations are handled later */
1909 for (i = 0; i < IEEE80211_NUM_ACS; i++)
1910 drv_conf_tx(local, sdata, i,
1911 &sdata->tx_conf[i]);
1912 break;
1913 }
1914
1915 /* common change flags for all interface types */
1916 changed = BSS_CHANGED_ERP_CTS_PROT |
1917 BSS_CHANGED_ERP_PREAMBLE |
1918 BSS_CHANGED_ERP_SLOT |
1919 BSS_CHANGED_HT |
1920 BSS_CHANGED_BASIC_RATES |
1921 BSS_CHANGED_BEACON_INT |
1922 BSS_CHANGED_BSSID |
1923 BSS_CHANGED_CQM |
1924 BSS_CHANGED_QOS |
1925 BSS_CHANGED_IDLE |
1926 BSS_CHANGED_TXPOWER;
1927
1928 switch (sdata->vif.type) {
1929 case NL80211_IFTYPE_STATION:
1930 changed |= BSS_CHANGED_ASSOC |
1931 BSS_CHANGED_ARP_FILTER |
1932 BSS_CHANGED_PS;
1933
1934 /* Re-send beacon info report to the driver */
1935 if (sdata->u.mgd.have_beacon)
1936 changed |= BSS_CHANGED_BEACON_INFO;
1937
1938 sdata_lock(sdata);
1939 ieee80211_bss_info_change_notify(sdata, changed);
1940 sdata_unlock(sdata);
1941 break;
1942 case NL80211_IFTYPE_OCB:
1943 changed |= BSS_CHANGED_OCB;
1944 ieee80211_bss_info_change_notify(sdata, changed);
1945 break;
1946 case NL80211_IFTYPE_ADHOC:
1947 changed |= BSS_CHANGED_IBSS;
1948 /* fall through */
1949 case NL80211_IFTYPE_AP:
1950 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
1951
1952 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1953 changed |= BSS_CHANGED_AP_PROBE_RESP;
1954
1955 if (rcu_access_pointer(sdata->u.ap.beacon))
1956 drv_start_ap(local, sdata);
1957 }
1958
1959 /* fall through */
1960 case NL80211_IFTYPE_MESH_POINT:
1961 if (sdata->vif.bss_conf.enable_beacon) {
1962 changed |= BSS_CHANGED_BEACON |
1963 BSS_CHANGED_BEACON_ENABLED;
1964 ieee80211_bss_info_change_notify(sdata, changed);
1965 }
1966 break;
1967 case NL80211_IFTYPE_WDS:
1968 case NL80211_IFTYPE_AP_VLAN:
1969 case NL80211_IFTYPE_MONITOR:
1970 case NL80211_IFTYPE_P2P_DEVICE:
1971 /* nothing to do */
1972 break;
1973 case NL80211_IFTYPE_UNSPECIFIED:
1974 case NUM_NL80211_IFTYPES:
1975 case NL80211_IFTYPE_P2P_CLIENT:
1976 case NL80211_IFTYPE_P2P_GO:
1977 WARN_ON(1);
1978 break;
1979 }
1980 }
1981
1982 ieee80211_recalc_ps(local);
1983
1984 /*
1985 * The sta might be in psm against the ap (e.g. because
1986 * this was the state before a hw restart), so we
1987 * explicitly send a null packet in order to make sure
1988 * it'll sync against the ap (and get out of psm).
1989 */
1990 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1991 list_for_each_entry(sdata, &local->interfaces, list) {
1992 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1993 continue;
1994 if (!sdata->u.mgd.associated)
1995 continue;
1996
1997 ieee80211_send_nullfunc(local, sdata, false);
1998 }
1999 }
2000
2001 /* APs are now beaconing, add back stations */
2002 mutex_lock(&local->sta_mtx);
2003 list_for_each_entry(sta, &local->sta_list, list) {
2004 enum ieee80211_sta_state state;
2005
2006 if (!sta->uploaded)
2007 continue;
2008
2009 if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
2010 continue;
2011
2012 for (state = IEEE80211_STA_NOTEXIST;
2013 state < sta->sta_state; state++)
2014 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2015 state + 1));
2016 }
2017 mutex_unlock(&local->sta_mtx);
2018
2019 /* add back keys */
2020 list_for_each_entry(sdata, &local->interfaces, list)
2021 ieee80211_reset_crypto_tx_tailroom(sdata);
2022
2023 list_for_each_entry(sdata, &local->interfaces, list)
2024 if (ieee80211_sdata_running(sdata))
2025 ieee80211_enable_keys(sdata);
2026
2027 /* Reconfigure sched scan if it was interrupted by FW restart */
2028 mutex_lock(&local->mtx);
2029 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata,
2030 lockdep_is_held(&local->mtx));
2031 sched_scan_req = rcu_dereference_protected(local->sched_scan_req,
2032 lockdep_is_held(&local->mtx));
2033 if (sched_scan_sdata && sched_scan_req)
2034 /*
2035 * Sched scan stopped, but we don't want to report it. Instead,
2036 * we're trying to reschedule. However, if more than one scan
2037 * plan was set, we cannot reschedule since we don't know which
2038 * scan plan was currently running (and some scan plans may have
2039 * already finished).
2040 */
2041 if (sched_scan_req->n_scan_plans > 1 ||
2042 __ieee80211_request_sched_scan_start(sched_scan_sdata,
2043 sched_scan_req))
2044 sched_scan_stopped = true;
2045 mutex_unlock(&local->mtx);
2046
2047 if (sched_scan_stopped)
2048 cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy);
2049
2050 wake_up:
2051 local->in_reconfig = false;
2052 barrier();
2053
2054 if (local->monitors == local->open_count && local->monitors > 0)
2055 ieee80211_add_virtual_monitor(local);
2056
2057 /*
2058 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
2059 * sessions can be established after a resume.
2060 *
2061 * Also tear down aggregation sessions since reconfiguring
2062 * them in a hardware restart scenario is not easily done
2063 * right now, and the hardware will have lost information
2064 * about the sessions, but we and the AP still think they
2065 * are active. This is really a workaround though.
2066 */
2067 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) {
2068 mutex_lock(&local->sta_mtx);
2069
2070 list_for_each_entry(sta, &local->sta_list, list) {
2071 if (!local->resuming)
2072 ieee80211_sta_tear_down_BA_sessions(
2073 sta, AGG_STOP_LOCAL_REQUEST);
2074 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
2075 }
2076
2077 mutex_unlock(&local->sta_mtx);
2078 }
2079
2080 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
2081 IEEE80211_QUEUE_STOP_REASON_SUSPEND,
2082 false);
2083
2084 /*
2085 * If this is for hw restart things are still running.
2086 * We may want to change that later, however.
2087 */
2088 if (local->open_count && (!suspended || reconfig_due_to_wowlan))
2089 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART);
2090
2091 if (!suspended)
2092 return 0;
2093
2094 #ifdef CONFIG_PM
2095 /* first set suspended false, then resuming */
2096 local->suspended = false;
2097 mb();
2098 local->resuming = false;
2099
2100 ieee80211_flush_completed_scan(local, false);
2101
2102 if (local->open_count && !reconfig_due_to_wowlan)
2103 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND);
2104
2105 list_for_each_entry(sdata, &local->interfaces, list) {
2106 if (!ieee80211_sdata_running(sdata))
2107 continue;
2108 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2109 ieee80211_sta_restart(sdata);
2110 }
2111
2112 mod_timer(&local->sta_cleanup, jiffies + 1);
2113 #else
2114 WARN_ON(1);
2115 #endif
2116
2117 return 0;
2118 }
2119
2120 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
2121 {
2122 struct ieee80211_sub_if_data *sdata;
2123 struct ieee80211_local *local;
2124 struct ieee80211_key *key;
2125
2126 if (WARN_ON(!vif))
2127 return;
2128
2129 sdata = vif_to_sdata(vif);
2130 local = sdata->local;
2131
2132 if (WARN_ON(!local->resuming))
2133 return;
2134
2135 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2136 return;
2137
2138 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
2139
2140 mutex_lock(&local->key_mtx);
2141 list_for_each_entry(key, &sdata->key_list, list)
2142 key->flags |= KEY_FLAG_TAINTED;
2143 mutex_unlock(&local->key_mtx);
2144 }
2145 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
2146
2147 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
2148 {
2149 struct ieee80211_local *local = sdata->local;
2150 struct ieee80211_chanctx_conf *chanctx_conf;
2151 struct ieee80211_chanctx *chanctx;
2152
2153 mutex_lock(&local->chanctx_mtx);
2154
2155 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2156 lockdep_is_held(&local->chanctx_mtx));
2157
2158 /*
2159 * This function can be called from a work, thus it may be possible
2160 * that the chanctx_conf is removed (due to a disconnection, for
2161 * example).
2162 * So nothing should be done in such case.
2163 */
2164 if (!chanctx_conf)
2165 goto unlock;
2166
2167 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2168 ieee80211_recalc_smps_chanctx(local, chanctx);
2169 unlock:
2170 mutex_unlock(&local->chanctx_mtx);
2171 }
2172
2173 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata)
2174 {
2175 struct ieee80211_local *local = sdata->local;
2176 struct ieee80211_chanctx_conf *chanctx_conf;
2177 struct ieee80211_chanctx *chanctx;
2178
2179 mutex_lock(&local->chanctx_mtx);
2180
2181 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2182 lockdep_is_held(&local->chanctx_mtx));
2183
2184 if (WARN_ON_ONCE(!chanctx_conf))
2185 goto unlock;
2186
2187 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2188 ieee80211_recalc_chanctx_min_def(local, chanctx);
2189 unlock:
2190 mutex_unlock(&local->chanctx_mtx);
2191 }
2192
2193 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
2194 {
2195 size_t pos = offset;
2196
2197 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
2198 pos += 2 + ies[pos + 1];
2199
2200 return pos;
2201 }
2202
2203 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
2204 int rssi_min_thold,
2205 int rssi_max_thold)
2206 {
2207 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
2208
2209 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
2210 return;
2211
2212 /*
2213 * Scale up threshold values before storing it, as the RSSI averaging
2214 * algorithm uses a scaled up value as well. Change this scaling
2215 * factor if the RSSI averaging algorithm changes.
2216 */
2217 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
2218 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
2219 }
2220
2221 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
2222 int rssi_min_thold,
2223 int rssi_max_thold)
2224 {
2225 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2226
2227 WARN_ON(rssi_min_thold == rssi_max_thold ||
2228 rssi_min_thold > rssi_max_thold);
2229
2230 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
2231 rssi_max_thold);
2232 }
2233 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
2234
2235 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
2236 {
2237 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2238
2239 _ieee80211_enable_rssi_reports(sdata, 0, 0);
2240 }
2241 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
2242
2243 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
2244 u16 cap)
2245 {
2246 __le16 tmp;
2247
2248 *pos++ = WLAN_EID_HT_CAPABILITY;
2249 *pos++ = sizeof(struct ieee80211_ht_cap);
2250 memset(pos, 0, sizeof(struct ieee80211_ht_cap));
2251
2252 /* capability flags */
2253 tmp = cpu_to_le16(cap);
2254 memcpy(pos, &tmp, sizeof(u16));
2255 pos += sizeof(u16);
2256
2257 /* AMPDU parameters */
2258 *pos++ = ht_cap->ampdu_factor |
2259 (ht_cap->ampdu_density <<
2260 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
2261
2262 /* MCS set */
2263 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
2264 pos += sizeof(ht_cap->mcs);
2265
2266 /* extended capabilities */
2267 pos += sizeof(__le16);
2268
2269 /* BF capabilities */
2270 pos += sizeof(__le32);
2271
2272 /* antenna selection */
2273 pos += sizeof(u8);
2274
2275 return pos;
2276 }
2277
2278 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
2279 u32 cap)
2280 {
2281 __le32 tmp;
2282
2283 *pos++ = WLAN_EID_VHT_CAPABILITY;
2284 *pos++ = sizeof(struct ieee80211_vht_cap);
2285 memset(pos, 0, sizeof(struct ieee80211_vht_cap));
2286
2287 /* capability flags */
2288 tmp = cpu_to_le32(cap);
2289 memcpy(pos, &tmp, sizeof(u32));
2290 pos += sizeof(u32);
2291
2292 /* VHT MCS set */
2293 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
2294 pos += sizeof(vht_cap->vht_mcs);
2295
2296 return pos;
2297 }
2298
2299 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
2300 const struct cfg80211_chan_def *chandef,
2301 u16 prot_mode, bool rifs_mode)
2302 {
2303 struct ieee80211_ht_operation *ht_oper;
2304 /* Build HT Information */
2305 *pos++ = WLAN_EID_HT_OPERATION;
2306 *pos++ = sizeof(struct ieee80211_ht_operation);
2307 ht_oper = (struct ieee80211_ht_operation *)pos;
2308 ht_oper->primary_chan = ieee80211_frequency_to_channel(
2309 chandef->chan->center_freq);
2310 switch (chandef->width) {
2311 case NL80211_CHAN_WIDTH_160:
2312 case NL80211_CHAN_WIDTH_80P80:
2313 case NL80211_CHAN_WIDTH_80:
2314 case NL80211_CHAN_WIDTH_40:
2315 if (chandef->center_freq1 > chandef->chan->center_freq)
2316 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
2317 else
2318 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
2319 break;
2320 default:
2321 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
2322 break;
2323 }
2324 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
2325 chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
2326 chandef->width != NL80211_CHAN_WIDTH_20)
2327 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
2328
2329 if (rifs_mode)
2330 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE;
2331
2332 ht_oper->operation_mode = cpu_to_le16(prot_mode);
2333 ht_oper->stbc_param = 0x0000;
2334
2335 /* It seems that Basic MCS set and Supported MCS set
2336 are identical for the first 10 bytes */
2337 memset(&ht_oper->basic_set, 0, 16);
2338 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
2339
2340 return pos + sizeof(struct ieee80211_ht_operation);
2341 }
2342
2343 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
2344 const struct cfg80211_chan_def *chandef)
2345 {
2346 struct ieee80211_vht_operation *vht_oper;
2347
2348 *pos++ = WLAN_EID_VHT_OPERATION;
2349 *pos++ = sizeof(struct ieee80211_vht_operation);
2350 vht_oper = (struct ieee80211_vht_operation *)pos;
2351 vht_oper->center_freq_seg1_idx = ieee80211_frequency_to_channel(
2352 chandef->center_freq1);
2353 if (chandef->center_freq2)
2354 vht_oper->center_freq_seg2_idx =
2355 ieee80211_frequency_to_channel(chandef->center_freq2);
2356 else
2357 vht_oper->center_freq_seg2_idx = 0x00;
2358
2359 switch (chandef->width) {
2360 case NL80211_CHAN_WIDTH_160:
2361 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_160MHZ;
2362 break;
2363 case NL80211_CHAN_WIDTH_80P80:
2364 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80P80MHZ;
2365 break;
2366 case NL80211_CHAN_WIDTH_80:
2367 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
2368 break;
2369 default:
2370 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT;
2371 break;
2372 }
2373
2374 /* don't require special VHT peer rates */
2375 vht_oper->basic_mcs_set = cpu_to_le16(0xffff);
2376
2377 return pos + sizeof(struct ieee80211_vht_operation);
2378 }
2379
2380 void ieee80211_ht_oper_to_chandef(struct ieee80211_channel *control_chan,
2381 const struct ieee80211_ht_operation *ht_oper,
2382 struct cfg80211_chan_def *chandef)
2383 {
2384 enum nl80211_channel_type channel_type;
2385
2386 if (!ht_oper) {
2387 cfg80211_chandef_create(chandef, control_chan,
2388 NL80211_CHAN_NO_HT);
2389 return;
2390 }
2391
2392 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
2393 case IEEE80211_HT_PARAM_CHA_SEC_NONE:
2394 channel_type = NL80211_CHAN_HT20;
2395 break;
2396 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
2397 channel_type = NL80211_CHAN_HT40PLUS;
2398 break;
2399 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
2400 channel_type = NL80211_CHAN_HT40MINUS;
2401 break;
2402 default:
2403 channel_type = NL80211_CHAN_NO_HT;
2404 }
2405
2406 cfg80211_chandef_create(chandef, control_chan, channel_type);
2407 }
2408
2409 void ieee80211_vht_oper_to_chandef(struct ieee80211_channel *control_chan,
2410 const struct ieee80211_vht_operation *oper,
2411 struct cfg80211_chan_def *chandef)
2412 {
2413 if (!oper)
2414 return;
2415
2416 chandef->chan = control_chan;
2417
2418 switch (oper->chan_width) {
2419 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2420 break;
2421 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2422 chandef->width = NL80211_CHAN_WIDTH_80;
2423 break;
2424 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2425 chandef->width = NL80211_CHAN_WIDTH_160;
2426 break;
2427 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2428 chandef->width = NL80211_CHAN_WIDTH_80P80;
2429 break;
2430 default:
2431 break;
2432 }
2433
2434 chandef->center_freq1 =
2435 ieee80211_channel_to_frequency(oper->center_freq_seg1_idx,
2436 control_chan->band);
2437 chandef->center_freq2 =
2438 ieee80211_channel_to_frequency(oper->center_freq_seg2_idx,
2439 control_chan->band);
2440 }
2441
2442 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef,
2443 const struct ieee80211_supported_band *sband,
2444 const u8 *srates, int srates_len, u32 *rates)
2445 {
2446 u32 rate_flags = ieee80211_chandef_rate_flags(chandef);
2447 int shift = ieee80211_chandef_get_shift(chandef);
2448 struct ieee80211_rate *br;
2449 int brate, rate, i, j, count = 0;
2450
2451 *rates = 0;
2452
2453 for (i = 0; i < srates_len; i++) {
2454 rate = srates[i] & 0x7f;
2455
2456 for (j = 0; j < sband->n_bitrates; j++) {
2457 br = &sband->bitrates[j];
2458 if ((rate_flags & br->flags) != rate_flags)
2459 continue;
2460
2461 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5);
2462 if (brate == rate) {
2463 *rates |= BIT(j);
2464 count++;
2465 break;
2466 }
2467 }
2468 }
2469 return count;
2470 }
2471
2472 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
2473 struct sk_buff *skb, bool need_basic,
2474 enum ieee80211_band band)
2475 {
2476 struct ieee80211_local *local = sdata->local;
2477 struct ieee80211_supported_band *sband;
2478 int rate, shift;
2479 u8 i, rates, *pos;
2480 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2481 u32 rate_flags;
2482
2483 shift = ieee80211_vif_get_shift(&sdata->vif);
2484 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
2485 sband = local->hw.wiphy->bands[band];
2486 rates = 0;
2487 for (i = 0; i < sband->n_bitrates; i++) {
2488 if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
2489 continue;
2490 rates++;
2491 }
2492 if (rates > 8)
2493 rates = 8;
2494
2495 if (skb_tailroom(skb) < rates + 2)
2496 return -ENOMEM;
2497
2498 pos = skb_put(skb, rates + 2);
2499 *pos++ = WLAN_EID_SUPP_RATES;
2500 *pos++ = rates;
2501 for (i = 0; i < rates; i++) {
2502 u8 basic = 0;
2503 if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
2504 continue;
2505
2506 if (need_basic && basic_rates & BIT(i))
2507 basic = 0x80;
2508 rate = sband->bitrates[i].bitrate;
2509 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
2510 5 * (1 << shift));
2511 *pos++ = basic | (u8) rate;
2512 }
2513
2514 return 0;
2515 }
2516
2517 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
2518 struct sk_buff *skb, bool need_basic,
2519 enum ieee80211_band band)
2520 {
2521 struct ieee80211_local *local = sdata->local;
2522 struct ieee80211_supported_band *sband;
2523 int rate, shift;
2524 u8 i, exrates, *pos;
2525 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2526 u32 rate_flags;
2527
2528 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
2529 shift = ieee80211_vif_get_shift(&sdata->vif);
2530
2531 sband = local->hw.wiphy->bands[band];
2532 exrates = 0;
2533 for (i = 0; i < sband->n_bitrates; i++) {
2534 if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
2535 continue;
2536 exrates++;
2537 }
2538
2539 if (exrates > 8)
2540 exrates -= 8;
2541 else
2542 exrates = 0;
2543
2544 if (skb_tailroom(skb) < exrates + 2)
2545 return -ENOMEM;
2546
2547 if (exrates) {
2548 pos = skb_put(skb, exrates + 2);
2549 *pos++ = WLAN_EID_EXT_SUPP_RATES;
2550 *pos++ = exrates;
2551 for (i = 8; i < sband->n_bitrates; i++) {
2552 u8 basic = 0;
2553 if ((rate_flags & sband->bitrates[i].flags)
2554 != rate_flags)
2555 continue;
2556 if (need_basic && basic_rates & BIT(i))
2557 basic = 0x80;
2558 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
2559 5 * (1 << shift));
2560 *pos++ = basic | (u8) rate;
2561 }
2562 }
2563 return 0;
2564 }
2565
2566 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
2567 {
2568 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2569 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
2570
2571 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
2572 /* non-managed type inferfaces */
2573 return 0;
2574 }
2575 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal);
2576 }
2577 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
2578
2579 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
2580 {
2581 if (!mcs)
2582 return 1;
2583
2584 /* TODO: consider rx_highest */
2585
2586 if (mcs->rx_mask[3])
2587 return 4;
2588 if (mcs->rx_mask[2])
2589 return 3;
2590 if (mcs->rx_mask[1])
2591 return 2;
2592 return 1;
2593 }
2594
2595 /**
2596 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
2597 * @local: mac80211 hw info struct
2598 * @status: RX status
2599 * @mpdu_len: total MPDU length (including FCS)
2600 * @mpdu_offset: offset into MPDU to calculate timestamp at
2601 *
2602 * This function calculates the RX timestamp at the given MPDU offset, taking
2603 * into account what the RX timestamp was. An offset of 0 will just normalize
2604 * the timestamp to TSF at beginning of MPDU reception.
2605 */
2606 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
2607 struct ieee80211_rx_status *status,
2608 unsigned int mpdu_len,
2609 unsigned int mpdu_offset)
2610 {
2611 u64 ts = status->mactime;
2612 struct rate_info ri;
2613 u16 rate;
2614
2615 if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
2616 return 0;
2617
2618 memset(&ri, 0, sizeof(ri));
2619
2620 /* Fill cfg80211 rate info */
2621 if (status->flag & RX_FLAG_HT) {
2622 ri.mcs = status->rate_idx;
2623 ri.flags |= RATE_INFO_FLAGS_MCS;
2624 if (status->flag & RX_FLAG_40MHZ)
2625 ri.bw = RATE_INFO_BW_40;
2626 else
2627 ri.bw = RATE_INFO_BW_20;
2628 if (status->flag & RX_FLAG_SHORT_GI)
2629 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2630 } else if (status->flag & RX_FLAG_VHT) {
2631 ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
2632 ri.mcs = status->rate_idx;
2633 ri.nss = status->vht_nss;
2634 if (status->flag & RX_FLAG_40MHZ)
2635 ri.bw = RATE_INFO_BW_40;
2636 else if (status->vht_flag & RX_VHT_FLAG_80MHZ)
2637 ri.bw = RATE_INFO_BW_80;
2638 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
2639 ri.bw = RATE_INFO_BW_160;
2640 else
2641 ri.bw = RATE_INFO_BW_20;
2642 if (status->flag & RX_FLAG_SHORT_GI)
2643 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2644 } else {
2645 struct ieee80211_supported_band *sband;
2646 int shift = 0;
2647 int bitrate;
2648
2649 if (status->flag & RX_FLAG_10MHZ) {
2650 shift = 1;
2651 ri.bw = RATE_INFO_BW_10;
2652 } else if (status->flag & RX_FLAG_5MHZ) {
2653 shift = 2;
2654 ri.bw = RATE_INFO_BW_5;
2655 } else {
2656 ri.bw = RATE_INFO_BW_20;
2657 }
2658
2659 sband = local->hw.wiphy->bands[status->band];
2660 bitrate = sband->bitrates[status->rate_idx].bitrate;
2661 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift));
2662 }
2663
2664 rate = cfg80211_calculate_bitrate(&ri);
2665 if (WARN_ONCE(!rate,
2666 "Invalid bitrate: flags=0x%x, idx=%d, vht_nss=%d\n",
2667 status->flag, status->rate_idx, status->vht_nss))
2668 return 0;
2669
2670 /* rewind from end of MPDU */
2671 if (status->flag & RX_FLAG_MACTIME_END)
2672 ts -= mpdu_len * 8 * 10 / rate;
2673
2674 ts += mpdu_offset * 8 * 10 / rate;
2675
2676 return ts;
2677 }
2678
2679 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
2680 {
2681 struct ieee80211_sub_if_data *sdata;
2682 struct cfg80211_chan_def chandef;
2683
2684 mutex_lock(&local->mtx);
2685 mutex_lock(&local->iflist_mtx);
2686 list_for_each_entry(sdata, &local->interfaces, list) {
2687 /* it might be waiting for the local->mtx, but then
2688 * by the time it gets it, sdata->wdev.cac_started
2689 * will no longer be true
2690 */
2691 cancel_delayed_work(&sdata->dfs_cac_timer_work);
2692
2693 if (sdata->wdev.cac_started) {
2694 chandef = sdata->vif.bss_conf.chandef;
2695 ieee80211_vif_release_channel(sdata);
2696 cfg80211_cac_event(sdata->dev,
2697 &chandef,
2698 NL80211_RADAR_CAC_ABORTED,
2699 GFP_KERNEL);
2700 }
2701 }
2702 mutex_unlock(&local->iflist_mtx);
2703 mutex_unlock(&local->mtx);
2704 }
2705
2706 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
2707 {
2708 struct ieee80211_local *local =
2709 container_of(work, struct ieee80211_local, radar_detected_work);
2710 struct cfg80211_chan_def chandef = local->hw.conf.chandef;
2711 struct ieee80211_chanctx *ctx;
2712 int num_chanctx = 0;
2713
2714 mutex_lock(&local->chanctx_mtx);
2715 list_for_each_entry(ctx, &local->chanctx_list, list) {
2716 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
2717 continue;
2718
2719 num_chanctx++;
2720 chandef = ctx->conf.def;
2721 }
2722 mutex_unlock(&local->chanctx_mtx);
2723
2724 ieee80211_dfs_cac_cancel(local);
2725
2726 if (num_chanctx > 1)
2727 /* XXX: multi-channel is not supported yet */
2728 WARN_ON(1);
2729 else
2730 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
2731 }
2732
2733 void ieee80211_radar_detected(struct ieee80211_hw *hw)
2734 {
2735 struct ieee80211_local *local = hw_to_local(hw);
2736
2737 trace_api_radar_detected(local);
2738
2739 ieee80211_queue_work(hw, &local->radar_detected_work);
2740 }
2741 EXPORT_SYMBOL(ieee80211_radar_detected);
2742
2743 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c)
2744 {
2745 u32 ret;
2746 int tmp;
2747
2748 switch (c->width) {
2749 case NL80211_CHAN_WIDTH_20:
2750 c->width = NL80211_CHAN_WIDTH_20_NOHT;
2751 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
2752 break;
2753 case NL80211_CHAN_WIDTH_40:
2754 c->width = NL80211_CHAN_WIDTH_20;
2755 c->center_freq1 = c->chan->center_freq;
2756 ret = IEEE80211_STA_DISABLE_40MHZ |
2757 IEEE80211_STA_DISABLE_VHT;
2758 break;
2759 case NL80211_CHAN_WIDTH_80:
2760 tmp = (30 + c->chan->center_freq - c->center_freq1)/20;
2761 /* n_P40 */
2762 tmp /= 2;
2763 /* freq_P40 */
2764 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp;
2765 c->width = NL80211_CHAN_WIDTH_40;
2766 ret = IEEE80211_STA_DISABLE_VHT;
2767 break;
2768 case NL80211_CHAN_WIDTH_80P80:
2769 c->center_freq2 = 0;
2770 c->width = NL80211_CHAN_WIDTH_80;
2771 ret = IEEE80211_STA_DISABLE_80P80MHZ |
2772 IEEE80211_STA_DISABLE_160MHZ;
2773 break;
2774 case NL80211_CHAN_WIDTH_160:
2775 /* n_P20 */
2776 tmp = (70 + c->chan->center_freq - c->center_freq1)/20;
2777 /* n_P80 */
2778 tmp /= 4;
2779 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp;
2780 c->width = NL80211_CHAN_WIDTH_80;
2781 ret = IEEE80211_STA_DISABLE_80P80MHZ |
2782 IEEE80211_STA_DISABLE_160MHZ;
2783 break;
2784 default:
2785 case NL80211_CHAN_WIDTH_20_NOHT:
2786 WARN_ON_ONCE(1);
2787 c->width = NL80211_CHAN_WIDTH_20_NOHT;
2788 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
2789 break;
2790 case NL80211_CHAN_WIDTH_5:
2791 case NL80211_CHAN_WIDTH_10:
2792 WARN_ON_ONCE(1);
2793 /* keep c->width */
2794 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
2795 break;
2796 }
2797
2798 WARN_ON_ONCE(!cfg80211_chandef_valid(c));
2799
2800 return ret;
2801 }
2802
2803 /*
2804 * Returns true if smps_mode_new is strictly more restrictive than
2805 * smps_mode_old.
2806 */
2807 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old,
2808 enum ieee80211_smps_mode smps_mode_new)
2809 {
2810 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC ||
2811 smps_mode_new == IEEE80211_SMPS_AUTOMATIC))
2812 return false;
2813
2814 switch (smps_mode_old) {
2815 case IEEE80211_SMPS_STATIC:
2816 return false;
2817 case IEEE80211_SMPS_DYNAMIC:
2818 return smps_mode_new == IEEE80211_SMPS_STATIC;
2819 case IEEE80211_SMPS_OFF:
2820 return smps_mode_new != IEEE80211_SMPS_OFF;
2821 default:
2822 WARN_ON(1);
2823 }
2824
2825 return false;
2826 }
2827
2828 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata,
2829 struct cfg80211_csa_settings *csa_settings)
2830 {
2831 struct sk_buff *skb;
2832 struct ieee80211_mgmt *mgmt;
2833 struct ieee80211_local *local = sdata->local;
2834 int freq;
2835 int hdr_len = offsetof(struct ieee80211_mgmt, u.action.u.chan_switch) +
2836 sizeof(mgmt->u.action.u.chan_switch);
2837 u8 *pos;
2838
2839 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2840 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2841 return -EOPNOTSUPP;
2842
2843 skb = dev_alloc_skb(local->tx_headroom + hdr_len +
2844 5 + /* channel switch announcement element */
2845 3 + /* secondary channel offset element */
2846 8); /* mesh channel switch parameters element */
2847 if (!skb)
2848 return -ENOMEM;
2849
2850 skb_reserve(skb, local->tx_headroom);
2851 mgmt = (struct ieee80211_mgmt *)skb_put(skb, hdr_len);
2852 memset(mgmt, 0, hdr_len);
2853 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2854 IEEE80211_STYPE_ACTION);
2855
2856 eth_broadcast_addr(mgmt->da);
2857 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2858 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2859 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2860 } else {
2861 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2862 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN);
2863 }
2864 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
2865 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH;
2866 pos = skb_put(skb, 5);
2867 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */
2868 *pos++ = 3; /* IE length */
2869 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */
2870 freq = csa_settings->chandef.chan->center_freq;
2871 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */
2872 *pos++ = csa_settings->count; /* count */
2873
2874 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) {
2875 enum nl80211_channel_type ch_type;
2876
2877 skb_put(skb, 3);
2878 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */
2879 *pos++ = 1; /* IE length */
2880 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef);
2881 if (ch_type == NL80211_CHAN_HT40PLUS)
2882 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
2883 else
2884 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
2885 }
2886
2887 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2888 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2889
2890 skb_put(skb, 8);
2891 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */
2892 *pos++ = 6; /* IE length */
2893 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */
2894 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */
2895 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR;
2896 *pos++ |= csa_settings->block_tx ?
2897 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00;
2898 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */
2899 pos += 2;
2900 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */
2901 pos += 2;
2902 }
2903
2904 ieee80211_tx_skb(sdata, skb);
2905 return 0;
2906 }
2907
2908 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs)
2909 {
2910 return !(cs == NULL || cs->cipher == 0 ||
2911 cs->hdr_len < cs->pn_len + cs->pn_off ||
2912 cs->hdr_len <= cs->key_idx_off ||
2913 cs->key_idx_shift > 7 ||
2914 cs->key_idx_mask == 0);
2915 }
2916
2917 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n)
2918 {
2919 int i;
2920
2921 /* Ensure we have enough iftype bitmap space for all iftype values */
2922 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype));
2923
2924 for (i = 0; i < n; i++)
2925 if (!ieee80211_cs_valid(&cs[i]))
2926 return false;
2927
2928 return true;
2929 }
2930
2931 const struct ieee80211_cipher_scheme *
2932 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher,
2933 enum nl80211_iftype iftype)
2934 {
2935 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes;
2936 int n = local->hw.n_cipher_schemes;
2937 int i;
2938 const struct ieee80211_cipher_scheme *cs = NULL;
2939
2940 for (i = 0; i < n; i++) {
2941 if (l[i].cipher == cipher) {
2942 cs = &l[i];
2943 break;
2944 }
2945 }
2946
2947 if (!cs || !(cs->iftype & BIT(iftype)))
2948 return NULL;
2949
2950 return cs;
2951 }
2952
2953 int ieee80211_cs_headroom(struct ieee80211_local *local,
2954 struct cfg80211_crypto_settings *crypto,
2955 enum nl80211_iftype iftype)
2956 {
2957 const struct ieee80211_cipher_scheme *cs;
2958 int headroom = IEEE80211_ENCRYPT_HEADROOM;
2959 int i;
2960
2961 for (i = 0; i < crypto->n_ciphers_pairwise; i++) {
2962 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i],
2963 iftype);
2964
2965 if (cs && headroom < cs->hdr_len)
2966 headroom = cs->hdr_len;
2967 }
2968
2969 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype);
2970 if (cs && headroom < cs->hdr_len)
2971 headroom = cs->hdr_len;
2972
2973 return headroom;
2974 }
2975
2976 static bool
2977 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i)
2978 {
2979 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1);
2980 int skip;
2981
2982 if (end > 0)
2983 return false;
2984
2985 /* One shot NOA */
2986 if (data->count[i] == 1)
2987 return false;
2988
2989 if (data->desc[i].interval == 0)
2990 return false;
2991
2992 /* End time is in the past, check for repetitions */
2993 skip = DIV_ROUND_UP(-end, data->desc[i].interval);
2994 if (data->count[i] < 255) {
2995 if (data->count[i] <= skip) {
2996 data->count[i] = 0;
2997 return false;
2998 }
2999
3000 data->count[i] -= skip;
3001 }
3002
3003 data->desc[i].start += skip * data->desc[i].interval;
3004
3005 return true;
3006 }
3007
3008 static bool
3009 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf,
3010 s32 *offset)
3011 {
3012 bool ret = false;
3013 int i;
3014
3015 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
3016 s32 cur;
3017
3018 if (!data->count[i])
3019 continue;
3020
3021 if (ieee80211_extend_noa_desc(data, tsf + *offset, i))
3022 ret = true;
3023
3024 cur = data->desc[i].start - tsf;
3025 if (cur > *offset)
3026 continue;
3027
3028 cur = data->desc[i].start + data->desc[i].duration - tsf;
3029 if (cur > *offset)
3030 *offset = cur;
3031 }
3032
3033 return ret;
3034 }
3035
3036 static u32
3037 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf)
3038 {
3039 s32 offset = 0;
3040 int tries = 0;
3041 /*
3042 * arbitrary limit, used to avoid infinite loops when combined NoA
3043 * descriptors cover the full time period.
3044 */
3045 int max_tries = 5;
3046
3047 ieee80211_extend_absent_time(data, tsf, &offset);
3048 do {
3049 if (!ieee80211_extend_absent_time(data, tsf, &offset))
3050 break;
3051
3052 tries++;
3053 } while (tries < max_tries);
3054
3055 return offset;
3056 }
3057
3058 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf)
3059 {
3060 u32 next_offset = BIT(31) - 1;
3061 int i;
3062
3063 data->absent = 0;
3064 data->has_next_tsf = false;
3065 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
3066 s32 start;
3067
3068 if (!data->count[i])
3069 continue;
3070
3071 ieee80211_extend_noa_desc(data, tsf, i);
3072 start = data->desc[i].start - tsf;
3073 if (start <= 0)
3074 data->absent |= BIT(i);
3075
3076 if (next_offset > start)
3077 next_offset = start;
3078
3079 data->has_next_tsf = true;
3080 }
3081
3082 if (data->absent)
3083 next_offset = ieee80211_get_noa_absent_time(data, tsf);
3084
3085 data->next_tsf = tsf + next_offset;
3086 }
3087 EXPORT_SYMBOL(ieee80211_update_p2p_noa);
3088
3089 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
3090 struct ieee80211_noa_data *data, u32 tsf)
3091 {
3092 int ret = 0;
3093 int i;
3094
3095 memset(data, 0, sizeof(*data));
3096
3097 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
3098 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i];
3099
3100 if (!desc->count || !desc->duration)
3101 continue;
3102
3103 data->count[i] = desc->count;
3104 data->desc[i].start = le32_to_cpu(desc->start_time);
3105 data->desc[i].duration = le32_to_cpu(desc->duration);
3106 data->desc[i].interval = le32_to_cpu(desc->interval);
3107
3108 if (data->count[i] > 1 &&
3109 data->desc[i].interval < data->desc[i].duration)
3110 continue;
3111
3112 ieee80211_extend_noa_desc(data, tsf, i);
3113 ret++;
3114 }
3115
3116 if (ret)
3117 ieee80211_update_p2p_noa(data, tsf);
3118
3119 return ret;
3120 }
3121 EXPORT_SYMBOL(ieee80211_parse_p2p_noa);
3122
3123 void ieee80211_recalc_dtim(struct ieee80211_local *local,
3124 struct ieee80211_sub_if_data *sdata)
3125 {
3126 u64 tsf = drv_get_tsf(local, sdata);
3127 u64 dtim_count = 0;
3128 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
3129 u8 dtim_period = sdata->vif.bss_conf.dtim_period;
3130 struct ps_data *ps;
3131 u8 bcns_from_dtim;
3132
3133 if (tsf == -1ULL || !beacon_int || !dtim_period)
3134 return;
3135
3136 if (sdata->vif.type == NL80211_IFTYPE_AP ||
3137 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
3138 if (!sdata->bss)
3139 return;
3140
3141 ps = &sdata->bss->ps;
3142 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
3143 ps = &sdata->u.mesh.ps;
3144 } else {
3145 return;
3146 }
3147
3148 /*
3149 * actually finds last dtim_count, mac80211 will update in
3150 * __beacon_add_tim().
3151 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period
3152 */
3153 do_div(tsf, beacon_int);
3154 bcns_from_dtim = do_div(tsf, dtim_period);
3155 /* just had a DTIM */
3156 if (!bcns_from_dtim)
3157 dtim_count = 0;
3158 else
3159 dtim_count = dtim_period - bcns_from_dtim;
3160
3161 ps->dtim_count = dtim_count;
3162 }
3163
3164 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local,
3165 struct ieee80211_chanctx *ctx)
3166 {
3167 struct ieee80211_sub_if_data *sdata;
3168 u8 radar_detect = 0;
3169
3170 lockdep_assert_held(&local->chanctx_mtx);
3171
3172 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED))
3173 return 0;
3174
3175 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list)
3176 if (sdata->reserved_radar_required)
3177 radar_detect |= BIT(sdata->reserved_chandef.width);
3178
3179 /*
3180 * An in-place reservation context should not have any assigned vifs
3181 * until it replaces the other context.
3182 */
3183 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER &&
3184 !list_empty(&ctx->assigned_vifs));
3185
3186 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list)
3187 if (sdata->radar_required)
3188 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width);
3189
3190 return radar_detect;
3191 }
3192
3193 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata,
3194 const struct cfg80211_chan_def *chandef,
3195 enum ieee80211_chanctx_mode chanmode,
3196 u8 radar_detect)
3197 {
3198 struct ieee80211_local *local = sdata->local;
3199 struct ieee80211_sub_if_data *sdata_iter;
3200 enum nl80211_iftype iftype = sdata->wdev.iftype;
3201 int num[NUM_NL80211_IFTYPES];
3202 struct ieee80211_chanctx *ctx;
3203 int num_different_channels = 0;
3204 int total = 1;
3205
3206 lockdep_assert_held(&local->chanctx_mtx);
3207
3208 if (WARN_ON(hweight32(radar_detect) > 1))
3209 return -EINVAL;
3210
3211 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
3212 !chandef->chan))
3213 return -EINVAL;
3214
3215 if (chandef)
3216 num_different_channels = 1;
3217
3218 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
3219 return -EINVAL;
3220
3221 /* Always allow software iftypes */
3222 if (local->hw.wiphy->software_iftypes & BIT(iftype)) {
3223 if (radar_detect)
3224 return -EINVAL;
3225 return 0;
3226 }
3227
3228 memset(num, 0, sizeof(num));
3229
3230 if (iftype != NL80211_IFTYPE_UNSPECIFIED)
3231 num[iftype] = 1;
3232
3233 list_for_each_entry(ctx, &local->chanctx_list, list) {
3234 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
3235 continue;
3236 radar_detect |= ieee80211_chanctx_radar_detect(local, ctx);
3237 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) {
3238 num_different_channels++;
3239 continue;
3240 }
3241 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
3242 cfg80211_chandef_compatible(chandef,
3243 &ctx->conf.def))
3244 continue;
3245 num_different_channels++;
3246 }
3247
3248 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) {
3249 struct wireless_dev *wdev_iter;
3250
3251 wdev_iter = &sdata_iter->wdev;
3252
3253 if (sdata_iter == sdata ||
3254 !ieee80211_sdata_running(sdata_iter) ||
3255 local->hw.wiphy->software_iftypes & BIT(wdev_iter->iftype))
3256 continue;
3257
3258 num[wdev_iter->iftype]++;
3259 total++;
3260 }
3261
3262 if (total == 1 && !radar_detect)
3263 return 0;
3264
3265 return cfg80211_check_combinations(local->hw.wiphy,
3266 num_different_channels,
3267 radar_detect, num);
3268 }
3269
3270 static void
3271 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c,
3272 void *data)
3273 {
3274 u32 *max_num_different_channels = data;
3275
3276 *max_num_different_channels = max(*max_num_different_channels,
3277 c->num_different_channels);
3278 }
3279
3280 int ieee80211_max_num_channels(struct ieee80211_local *local)
3281 {
3282 struct ieee80211_sub_if_data *sdata;
3283 int num[NUM_NL80211_IFTYPES] = {};
3284 struct ieee80211_chanctx *ctx;
3285 int num_different_channels = 0;
3286 u8 radar_detect = 0;
3287 u32 max_num_different_channels = 1;
3288 int err;
3289
3290 lockdep_assert_held(&local->chanctx_mtx);
3291
3292 list_for_each_entry(ctx, &local->chanctx_list, list) {
3293 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
3294 continue;
3295
3296 num_different_channels++;
3297
3298 radar_detect |= ieee80211_chanctx_radar_detect(local, ctx);
3299 }
3300
3301 list_for_each_entry_rcu(sdata, &local->interfaces, list)
3302 num[sdata->wdev.iftype]++;
3303
3304 err = cfg80211_iter_combinations(local->hw.wiphy,
3305 num_different_channels, radar_detect,
3306 num, ieee80211_iter_max_chans,
3307 &max_num_different_channels);
3308 if (err < 0)
3309 return err;
3310
3311 return max_num_different_channels;
3312 }
3313
3314 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo)
3315 {
3316 *buf++ = WLAN_EID_VENDOR_SPECIFIC;
3317 *buf++ = 7; /* len */
3318 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */
3319 *buf++ = 0x50;
3320 *buf++ = 0xf2;
3321 *buf++ = 2; /* WME */
3322 *buf++ = 0; /* WME info */
3323 *buf++ = 1; /* WME ver */
3324 *buf++ = qosinfo; /* U-APSD no in use */
3325
3326 return buf;
3327 }
3328
3329 void ieee80211_init_tx_queue(struct ieee80211_sub_if_data *sdata,
3330 struct sta_info *sta,
3331 struct txq_info *txqi, int tid)
3332 {
3333 skb_queue_head_init(&txqi->queue);
3334 txqi->txq.vif = &sdata->vif;
3335
3336 if (sta) {
3337 txqi->txq.sta = &sta->sta;
3338 sta->sta.txq[tid] = &txqi->txq;
3339 txqi->txq.tid = tid;
3340 txqi->txq.ac = ieee802_1d_to_ac[tid & 7];
3341 } else {
3342 sdata->vif.txq = &txqi->txq;
3343 txqi->txq.tid = 0;
3344 txqi->txq.ac = IEEE80211_AC_BE;
3345 }
3346 }
This page took 0.102305 seconds and 6 git commands to generate.