Merge branch 'x86-setup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / netfilter / ipvs / ip_vs_ctl.c
1 /*
2 * IPVS An implementation of the IP virtual server support for the
3 * LINUX operating system. IPVS is now implemented as a module
4 * over the NetFilter framework. IPVS can be used to build a
5 * high-performance and highly available server based on a
6 * cluster of servers.
7 *
8 * Authors: Wensong Zhang <wensong@linuxvirtualserver.org>
9 * Peter Kese <peter.kese@ijs.si>
10 * Julian Anastasov <ja@ssi.bg>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Changes:
18 *
19 */
20
21 #define KMSG_COMPONENT "IPVS"
22 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/types.h>
27 #include <linux/capability.h>
28 #include <linux/fs.h>
29 #include <linux/sysctl.h>
30 #include <linux/proc_fs.h>
31 #include <linux/workqueue.h>
32 #include <linux/swap.h>
33 #include <linux/seq_file.h>
34 #include <linux/slab.h>
35
36 #include <linux/netfilter.h>
37 #include <linux/netfilter_ipv4.h>
38 #include <linux/mutex.h>
39
40 #include <net/net_namespace.h>
41 #include <net/ip.h>
42 #ifdef CONFIG_IP_VS_IPV6
43 #include <net/ipv6.h>
44 #include <net/ip6_route.h>
45 #endif
46 #include <net/route.h>
47 #include <net/sock.h>
48 #include <net/genetlink.h>
49
50 #include <asm/uaccess.h>
51
52 #include <net/ip_vs.h>
53
54 /* semaphore for IPVS sockopts. And, [gs]etsockopt may sleep. */
55 static DEFINE_MUTEX(__ip_vs_mutex);
56
57 /* lock for service table */
58 static DEFINE_RWLOCK(__ip_vs_svc_lock);
59
60 /* lock for table with the real services */
61 static DEFINE_RWLOCK(__ip_vs_rs_lock);
62
63 /* lock for state and timeout tables */
64 static DEFINE_RWLOCK(__ip_vs_securetcp_lock);
65
66 /* lock for drop entry handling */
67 static DEFINE_SPINLOCK(__ip_vs_dropentry_lock);
68
69 /* lock for drop packet handling */
70 static DEFINE_SPINLOCK(__ip_vs_droppacket_lock);
71
72 /* 1/rate drop and drop-entry variables */
73 int ip_vs_drop_rate = 0;
74 int ip_vs_drop_counter = 0;
75 static atomic_t ip_vs_dropentry = ATOMIC_INIT(0);
76
77 /* number of virtual services */
78 static int ip_vs_num_services = 0;
79
80 /* sysctl variables */
81 static int sysctl_ip_vs_drop_entry = 0;
82 static int sysctl_ip_vs_drop_packet = 0;
83 static int sysctl_ip_vs_secure_tcp = 0;
84 static int sysctl_ip_vs_amemthresh = 1024;
85 static int sysctl_ip_vs_am_droprate = 10;
86 int sysctl_ip_vs_cache_bypass = 0;
87 int sysctl_ip_vs_expire_nodest_conn = 0;
88 int sysctl_ip_vs_expire_quiescent_template = 0;
89 int sysctl_ip_vs_sync_threshold[2] = { 3, 50 };
90 int sysctl_ip_vs_nat_icmp_send = 0;
91
92
93 #ifdef CONFIG_IP_VS_DEBUG
94 static int sysctl_ip_vs_debug_level = 0;
95
96 int ip_vs_get_debug_level(void)
97 {
98 return sysctl_ip_vs_debug_level;
99 }
100 #endif
101
102 #ifdef CONFIG_IP_VS_IPV6
103 /* Taken from rt6_fill_node() in net/ipv6/route.c, is there a better way? */
104 static int __ip_vs_addr_is_local_v6(const struct in6_addr *addr)
105 {
106 struct rt6_info *rt;
107 struct flowi fl = {
108 .oif = 0,
109 .nl_u = {
110 .ip6_u = {
111 .daddr = *addr,
112 .saddr = { .s6_addr32 = {0, 0, 0, 0} }, } },
113 };
114
115 rt = (struct rt6_info *)ip6_route_output(&init_net, NULL, &fl);
116 if (rt && rt->rt6i_dev && (rt->rt6i_dev->flags & IFF_LOOPBACK))
117 return 1;
118
119 return 0;
120 }
121 #endif
122 /*
123 * update_defense_level is called from keventd and from sysctl,
124 * so it needs to protect itself from softirqs
125 */
126 static void update_defense_level(void)
127 {
128 struct sysinfo i;
129 static int old_secure_tcp = 0;
130 int availmem;
131 int nomem;
132 int to_change = -1;
133
134 /* we only count free and buffered memory (in pages) */
135 si_meminfo(&i);
136 availmem = i.freeram + i.bufferram;
137 /* however in linux 2.5 the i.bufferram is total page cache size,
138 we need adjust it */
139 /* si_swapinfo(&i); */
140 /* availmem = availmem - (i.totalswap - i.freeswap); */
141
142 nomem = (availmem < sysctl_ip_vs_amemthresh);
143
144 local_bh_disable();
145
146 /* drop_entry */
147 spin_lock(&__ip_vs_dropentry_lock);
148 switch (sysctl_ip_vs_drop_entry) {
149 case 0:
150 atomic_set(&ip_vs_dropentry, 0);
151 break;
152 case 1:
153 if (nomem) {
154 atomic_set(&ip_vs_dropentry, 1);
155 sysctl_ip_vs_drop_entry = 2;
156 } else {
157 atomic_set(&ip_vs_dropentry, 0);
158 }
159 break;
160 case 2:
161 if (nomem) {
162 atomic_set(&ip_vs_dropentry, 1);
163 } else {
164 atomic_set(&ip_vs_dropentry, 0);
165 sysctl_ip_vs_drop_entry = 1;
166 };
167 break;
168 case 3:
169 atomic_set(&ip_vs_dropentry, 1);
170 break;
171 }
172 spin_unlock(&__ip_vs_dropentry_lock);
173
174 /* drop_packet */
175 spin_lock(&__ip_vs_droppacket_lock);
176 switch (sysctl_ip_vs_drop_packet) {
177 case 0:
178 ip_vs_drop_rate = 0;
179 break;
180 case 1:
181 if (nomem) {
182 ip_vs_drop_rate = ip_vs_drop_counter
183 = sysctl_ip_vs_amemthresh /
184 (sysctl_ip_vs_amemthresh-availmem);
185 sysctl_ip_vs_drop_packet = 2;
186 } else {
187 ip_vs_drop_rate = 0;
188 }
189 break;
190 case 2:
191 if (nomem) {
192 ip_vs_drop_rate = ip_vs_drop_counter
193 = sysctl_ip_vs_amemthresh /
194 (sysctl_ip_vs_amemthresh-availmem);
195 } else {
196 ip_vs_drop_rate = 0;
197 sysctl_ip_vs_drop_packet = 1;
198 }
199 break;
200 case 3:
201 ip_vs_drop_rate = sysctl_ip_vs_am_droprate;
202 break;
203 }
204 spin_unlock(&__ip_vs_droppacket_lock);
205
206 /* secure_tcp */
207 write_lock(&__ip_vs_securetcp_lock);
208 switch (sysctl_ip_vs_secure_tcp) {
209 case 0:
210 if (old_secure_tcp >= 2)
211 to_change = 0;
212 break;
213 case 1:
214 if (nomem) {
215 if (old_secure_tcp < 2)
216 to_change = 1;
217 sysctl_ip_vs_secure_tcp = 2;
218 } else {
219 if (old_secure_tcp >= 2)
220 to_change = 0;
221 }
222 break;
223 case 2:
224 if (nomem) {
225 if (old_secure_tcp < 2)
226 to_change = 1;
227 } else {
228 if (old_secure_tcp >= 2)
229 to_change = 0;
230 sysctl_ip_vs_secure_tcp = 1;
231 }
232 break;
233 case 3:
234 if (old_secure_tcp < 2)
235 to_change = 1;
236 break;
237 }
238 old_secure_tcp = sysctl_ip_vs_secure_tcp;
239 if (to_change >= 0)
240 ip_vs_protocol_timeout_change(sysctl_ip_vs_secure_tcp>1);
241 write_unlock(&__ip_vs_securetcp_lock);
242
243 local_bh_enable();
244 }
245
246
247 /*
248 * Timer for checking the defense
249 */
250 #define DEFENSE_TIMER_PERIOD 1*HZ
251 static void defense_work_handler(struct work_struct *work);
252 static DECLARE_DELAYED_WORK(defense_work, defense_work_handler);
253
254 static void defense_work_handler(struct work_struct *work)
255 {
256 update_defense_level();
257 if (atomic_read(&ip_vs_dropentry))
258 ip_vs_random_dropentry();
259
260 schedule_delayed_work(&defense_work, DEFENSE_TIMER_PERIOD);
261 }
262
263 int
264 ip_vs_use_count_inc(void)
265 {
266 return try_module_get(THIS_MODULE);
267 }
268
269 void
270 ip_vs_use_count_dec(void)
271 {
272 module_put(THIS_MODULE);
273 }
274
275
276 /*
277 * Hash table: for virtual service lookups
278 */
279 #define IP_VS_SVC_TAB_BITS 8
280 #define IP_VS_SVC_TAB_SIZE (1 << IP_VS_SVC_TAB_BITS)
281 #define IP_VS_SVC_TAB_MASK (IP_VS_SVC_TAB_SIZE - 1)
282
283 /* the service table hashed by <protocol, addr, port> */
284 static struct list_head ip_vs_svc_table[IP_VS_SVC_TAB_SIZE];
285 /* the service table hashed by fwmark */
286 static struct list_head ip_vs_svc_fwm_table[IP_VS_SVC_TAB_SIZE];
287
288 /*
289 * Hash table: for real service lookups
290 */
291 #define IP_VS_RTAB_BITS 4
292 #define IP_VS_RTAB_SIZE (1 << IP_VS_RTAB_BITS)
293 #define IP_VS_RTAB_MASK (IP_VS_RTAB_SIZE - 1)
294
295 static struct list_head ip_vs_rtable[IP_VS_RTAB_SIZE];
296
297 /*
298 * Trash for destinations
299 */
300 static LIST_HEAD(ip_vs_dest_trash);
301
302 /*
303 * FTP & NULL virtual service counters
304 */
305 static atomic_t ip_vs_ftpsvc_counter = ATOMIC_INIT(0);
306 static atomic_t ip_vs_nullsvc_counter = ATOMIC_INIT(0);
307
308
309 /*
310 * Returns hash value for virtual service
311 */
312 static __inline__ unsigned
313 ip_vs_svc_hashkey(int af, unsigned proto, const union nf_inet_addr *addr,
314 __be16 port)
315 {
316 register unsigned porth = ntohs(port);
317 __be32 addr_fold = addr->ip;
318
319 #ifdef CONFIG_IP_VS_IPV6
320 if (af == AF_INET6)
321 addr_fold = addr->ip6[0]^addr->ip6[1]^
322 addr->ip6[2]^addr->ip6[3];
323 #endif
324
325 return (proto^ntohl(addr_fold)^(porth>>IP_VS_SVC_TAB_BITS)^porth)
326 & IP_VS_SVC_TAB_MASK;
327 }
328
329 /*
330 * Returns hash value of fwmark for virtual service lookup
331 */
332 static __inline__ unsigned ip_vs_svc_fwm_hashkey(__u32 fwmark)
333 {
334 return fwmark & IP_VS_SVC_TAB_MASK;
335 }
336
337 /*
338 * Hashes a service in the ip_vs_svc_table by <proto,addr,port>
339 * or in the ip_vs_svc_fwm_table by fwmark.
340 * Should be called with locked tables.
341 */
342 static int ip_vs_svc_hash(struct ip_vs_service *svc)
343 {
344 unsigned hash;
345
346 if (svc->flags & IP_VS_SVC_F_HASHED) {
347 pr_err("%s(): request for already hashed, called from %pF\n",
348 __func__, __builtin_return_address(0));
349 return 0;
350 }
351
352 if (svc->fwmark == 0) {
353 /*
354 * Hash it by <protocol,addr,port> in ip_vs_svc_table
355 */
356 hash = ip_vs_svc_hashkey(svc->af, svc->protocol, &svc->addr,
357 svc->port);
358 list_add(&svc->s_list, &ip_vs_svc_table[hash]);
359 } else {
360 /*
361 * Hash it by fwmark in ip_vs_svc_fwm_table
362 */
363 hash = ip_vs_svc_fwm_hashkey(svc->fwmark);
364 list_add(&svc->f_list, &ip_vs_svc_fwm_table[hash]);
365 }
366
367 svc->flags |= IP_VS_SVC_F_HASHED;
368 /* increase its refcnt because it is referenced by the svc table */
369 atomic_inc(&svc->refcnt);
370 return 1;
371 }
372
373
374 /*
375 * Unhashes a service from ip_vs_svc_table/ip_vs_svc_fwm_table.
376 * Should be called with locked tables.
377 */
378 static int ip_vs_svc_unhash(struct ip_vs_service *svc)
379 {
380 if (!(svc->flags & IP_VS_SVC_F_HASHED)) {
381 pr_err("%s(): request for unhash flagged, called from %pF\n",
382 __func__, __builtin_return_address(0));
383 return 0;
384 }
385
386 if (svc->fwmark == 0) {
387 /* Remove it from the ip_vs_svc_table table */
388 list_del(&svc->s_list);
389 } else {
390 /* Remove it from the ip_vs_svc_fwm_table table */
391 list_del(&svc->f_list);
392 }
393
394 svc->flags &= ~IP_VS_SVC_F_HASHED;
395 atomic_dec(&svc->refcnt);
396 return 1;
397 }
398
399
400 /*
401 * Get service by {proto,addr,port} in the service table.
402 */
403 static inline struct ip_vs_service *
404 __ip_vs_service_get(int af, __u16 protocol, const union nf_inet_addr *vaddr,
405 __be16 vport)
406 {
407 unsigned hash;
408 struct ip_vs_service *svc;
409
410 /* Check for "full" addressed entries */
411 hash = ip_vs_svc_hashkey(af, protocol, vaddr, vport);
412
413 list_for_each_entry(svc, &ip_vs_svc_table[hash], s_list){
414 if ((svc->af == af)
415 && ip_vs_addr_equal(af, &svc->addr, vaddr)
416 && (svc->port == vport)
417 && (svc->protocol == protocol)) {
418 /* HIT */
419 atomic_inc(&svc->usecnt);
420 return svc;
421 }
422 }
423
424 return NULL;
425 }
426
427
428 /*
429 * Get service by {fwmark} in the service table.
430 */
431 static inline struct ip_vs_service *
432 __ip_vs_svc_fwm_get(int af, __u32 fwmark)
433 {
434 unsigned hash;
435 struct ip_vs_service *svc;
436
437 /* Check for fwmark addressed entries */
438 hash = ip_vs_svc_fwm_hashkey(fwmark);
439
440 list_for_each_entry(svc, &ip_vs_svc_fwm_table[hash], f_list) {
441 if (svc->fwmark == fwmark && svc->af == af) {
442 /* HIT */
443 atomic_inc(&svc->usecnt);
444 return svc;
445 }
446 }
447
448 return NULL;
449 }
450
451 struct ip_vs_service *
452 ip_vs_service_get(int af, __u32 fwmark, __u16 protocol,
453 const union nf_inet_addr *vaddr, __be16 vport)
454 {
455 struct ip_vs_service *svc;
456
457 read_lock(&__ip_vs_svc_lock);
458
459 /*
460 * Check the table hashed by fwmark first
461 */
462 if (fwmark && (svc = __ip_vs_svc_fwm_get(af, fwmark)))
463 goto out;
464
465 /*
466 * Check the table hashed by <protocol,addr,port>
467 * for "full" addressed entries
468 */
469 svc = __ip_vs_service_get(af, protocol, vaddr, vport);
470
471 if (svc == NULL
472 && protocol == IPPROTO_TCP
473 && atomic_read(&ip_vs_ftpsvc_counter)
474 && (vport == FTPDATA || ntohs(vport) >= PROT_SOCK)) {
475 /*
476 * Check if ftp service entry exists, the packet
477 * might belong to FTP data connections.
478 */
479 svc = __ip_vs_service_get(af, protocol, vaddr, FTPPORT);
480 }
481
482 if (svc == NULL
483 && atomic_read(&ip_vs_nullsvc_counter)) {
484 /*
485 * Check if the catch-all port (port zero) exists
486 */
487 svc = __ip_vs_service_get(af, protocol, vaddr, 0);
488 }
489
490 out:
491 read_unlock(&__ip_vs_svc_lock);
492
493 IP_VS_DBG_BUF(9, "lookup service: fwm %u %s %s:%u %s\n",
494 fwmark, ip_vs_proto_name(protocol),
495 IP_VS_DBG_ADDR(af, vaddr), ntohs(vport),
496 svc ? "hit" : "not hit");
497
498 return svc;
499 }
500
501
502 static inline void
503 __ip_vs_bind_svc(struct ip_vs_dest *dest, struct ip_vs_service *svc)
504 {
505 atomic_inc(&svc->refcnt);
506 dest->svc = svc;
507 }
508
509 static inline void
510 __ip_vs_unbind_svc(struct ip_vs_dest *dest)
511 {
512 struct ip_vs_service *svc = dest->svc;
513
514 dest->svc = NULL;
515 if (atomic_dec_and_test(&svc->refcnt))
516 kfree(svc);
517 }
518
519
520 /*
521 * Returns hash value for real service
522 */
523 static inline unsigned ip_vs_rs_hashkey(int af,
524 const union nf_inet_addr *addr,
525 __be16 port)
526 {
527 register unsigned porth = ntohs(port);
528 __be32 addr_fold = addr->ip;
529
530 #ifdef CONFIG_IP_VS_IPV6
531 if (af == AF_INET6)
532 addr_fold = addr->ip6[0]^addr->ip6[1]^
533 addr->ip6[2]^addr->ip6[3];
534 #endif
535
536 return (ntohl(addr_fold)^(porth>>IP_VS_RTAB_BITS)^porth)
537 & IP_VS_RTAB_MASK;
538 }
539
540 /*
541 * Hashes ip_vs_dest in ip_vs_rtable by <proto,addr,port>.
542 * should be called with locked tables.
543 */
544 static int ip_vs_rs_hash(struct ip_vs_dest *dest)
545 {
546 unsigned hash;
547
548 if (!list_empty(&dest->d_list)) {
549 return 0;
550 }
551
552 /*
553 * Hash by proto,addr,port,
554 * which are the parameters of the real service.
555 */
556 hash = ip_vs_rs_hashkey(dest->af, &dest->addr, dest->port);
557
558 list_add(&dest->d_list, &ip_vs_rtable[hash]);
559
560 return 1;
561 }
562
563 /*
564 * UNhashes ip_vs_dest from ip_vs_rtable.
565 * should be called with locked tables.
566 */
567 static int ip_vs_rs_unhash(struct ip_vs_dest *dest)
568 {
569 /*
570 * Remove it from the ip_vs_rtable table.
571 */
572 if (!list_empty(&dest->d_list)) {
573 list_del(&dest->d_list);
574 INIT_LIST_HEAD(&dest->d_list);
575 }
576
577 return 1;
578 }
579
580 /*
581 * Lookup real service by <proto,addr,port> in the real service table.
582 */
583 struct ip_vs_dest *
584 ip_vs_lookup_real_service(int af, __u16 protocol,
585 const union nf_inet_addr *daddr,
586 __be16 dport)
587 {
588 unsigned hash;
589 struct ip_vs_dest *dest;
590
591 /*
592 * Check for "full" addressed entries
593 * Return the first found entry
594 */
595 hash = ip_vs_rs_hashkey(af, daddr, dport);
596
597 read_lock(&__ip_vs_rs_lock);
598 list_for_each_entry(dest, &ip_vs_rtable[hash], d_list) {
599 if ((dest->af == af)
600 && ip_vs_addr_equal(af, &dest->addr, daddr)
601 && (dest->port == dport)
602 && ((dest->protocol == protocol) ||
603 dest->vfwmark)) {
604 /* HIT */
605 read_unlock(&__ip_vs_rs_lock);
606 return dest;
607 }
608 }
609 read_unlock(&__ip_vs_rs_lock);
610
611 return NULL;
612 }
613
614 /*
615 * Lookup destination by {addr,port} in the given service
616 */
617 static struct ip_vs_dest *
618 ip_vs_lookup_dest(struct ip_vs_service *svc, const union nf_inet_addr *daddr,
619 __be16 dport)
620 {
621 struct ip_vs_dest *dest;
622
623 /*
624 * Find the destination for the given service
625 */
626 list_for_each_entry(dest, &svc->destinations, n_list) {
627 if ((dest->af == svc->af)
628 && ip_vs_addr_equal(svc->af, &dest->addr, daddr)
629 && (dest->port == dport)) {
630 /* HIT */
631 return dest;
632 }
633 }
634
635 return NULL;
636 }
637
638 /*
639 * Find destination by {daddr,dport,vaddr,protocol}
640 * Cretaed to be used in ip_vs_process_message() in
641 * the backup synchronization daemon. It finds the
642 * destination to be bound to the received connection
643 * on the backup.
644 *
645 * ip_vs_lookup_real_service() looked promissing, but
646 * seems not working as expected.
647 */
648 struct ip_vs_dest *ip_vs_find_dest(int af, const union nf_inet_addr *daddr,
649 __be16 dport,
650 const union nf_inet_addr *vaddr,
651 __be16 vport, __u16 protocol)
652 {
653 struct ip_vs_dest *dest;
654 struct ip_vs_service *svc;
655
656 svc = ip_vs_service_get(af, 0, protocol, vaddr, vport);
657 if (!svc)
658 return NULL;
659 dest = ip_vs_lookup_dest(svc, daddr, dport);
660 if (dest)
661 atomic_inc(&dest->refcnt);
662 ip_vs_service_put(svc);
663 return dest;
664 }
665
666 /*
667 * Lookup dest by {svc,addr,port} in the destination trash.
668 * The destination trash is used to hold the destinations that are removed
669 * from the service table but are still referenced by some conn entries.
670 * The reason to add the destination trash is when the dest is temporary
671 * down (either by administrator or by monitor program), the dest can be
672 * picked back from the trash, the remaining connections to the dest can
673 * continue, and the counting information of the dest is also useful for
674 * scheduling.
675 */
676 static struct ip_vs_dest *
677 ip_vs_trash_get_dest(struct ip_vs_service *svc, const union nf_inet_addr *daddr,
678 __be16 dport)
679 {
680 struct ip_vs_dest *dest, *nxt;
681
682 /*
683 * Find the destination in trash
684 */
685 list_for_each_entry_safe(dest, nxt, &ip_vs_dest_trash, n_list) {
686 IP_VS_DBG_BUF(3, "Destination %u/%s:%u still in trash, "
687 "dest->refcnt=%d\n",
688 dest->vfwmark,
689 IP_VS_DBG_ADDR(svc->af, &dest->addr),
690 ntohs(dest->port),
691 atomic_read(&dest->refcnt));
692 if (dest->af == svc->af &&
693 ip_vs_addr_equal(svc->af, &dest->addr, daddr) &&
694 dest->port == dport &&
695 dest->vfwmark == svc->fwmark &&
696 dest->protocol == svc->protocol &&
697 (svc->fwmark ||
698 (ip_vs_addr_equal(svc->af, &dest->vaddr, &svc->addr) &&
699 dest->vport == svc->port))) {
700 /* HIT */
701 return dest;
702 }
703
704 /*
705 * Try to purge the destination from trash if not referenced
706 */
707 if (atomic_read(&dest->refcnt) == 1) {
708 IP_VS_DBG_BUF(3, "Removing destination %u/%s:%u "
709 "from trash\n",
710 dest->vfwmark,
711 IP_VS_DBG_ADDR(svc->af, &dest->addr),
712 ntohs(dest->port));
713 list_del(&dest->n_list);
714 ip_vs_dst_reset(dest);
715 __ip_vs_unbind_svc(dest);
716 kfree(dest);
717 }
718 }
719
720 return NULL;
721 }
722
723
724 /*
725 * Clean up all the destinations in the trash
726 * Called by the ip_vs_control_cleanup()
727 *
728 * When the ip_vs_control_clearup is activated by ipvs module exit,
729 * the service tables must have been flushed and all the connections
730 * are expired, and the refcnt of each destination in the trash must
731 * be 1, so we simply release them here.
732 */
733 static void ip_vs_trash_cleanup(void)
734 {
735 struct ip_vs_dest *dest, *nxt;
736
737 list_for_each_entry_safe(dest, nxt, &ip_vs_dest_trash, n_list) {
738 list_del(&dest->n_list);
739 ip_vs_dst_reset(dest);
740 __ip_vs_unbind_svc(dest);
741 kfree(dest);
742 }
743 }
744
745
746 static void
747 ip_vs_zero_stats(struct ip_vs_stats *stats)
748 {
749 spin_lock_bh(&stats->lock);
750
751 memset(&stats->ustats, 0, sizeof(stats->ustats));
752 ip_vs_zero_estimator(stats);
753
754 spin_unlock_bh(&stats->lock);
755 }
756
757 /*
758 * Update a destination in the given service
759 */
760 static void
761 __ip_vs_update_dest(struct ip_vs_service *svc,
762 struct ip_vs_dest *dest, struct ip_vs_dest_user_kern *udest)
763 {
764 int conn_flags;
765
766 /* set the weight and the flags */
767 atomic_set(&dest->weight, udest->weight);
768 conn_flags = udest->conn_flags | IP_VS_CONN_F_INACTIVE;
769
770 /* check if local node and update the flags */
771 #ifdef CONFIG_IP_VS_IPV6
772 if (svc->af == AF_INET6) {
773 if (__ip_vs_addr_is_local_v6(&udest->addr.in6)) {
774 conn_flags = (conn_flags & ~IP_VS_CONN_F_FWD_MASK)
775 | IP_VS_CONN_F_LOCALNODE;
776 }
777 } else
778 #endif
779 if (inet_addr_type(&init_net, udest->addr.ip) == RTN_LOCAL) {
780 conn_flags = (conn_flags & ~IP_VS_CONN_F_FWD_MASK)
781 | IP_VS_CONN_F_LOCALNODE;
782 }
783
784 /* set the IP_VS_CONN_F_NOOUTPUT flag if not masquerading/NAT */
785 if ((conn_flags & IP_VS_CONN_F_FWD_MASK) != 0) {
786 conn_flags |= IP_VS_CONN_F_NOOUTPUT;
787 } else {
788 /*
789 * Put the real service in ip_vs_rtable if not present.
790 * For now only for NAT!
791 */
792 write_lock_bh(&__ip_vs_rs_lock);
793 ip_vs_rs_hash(dest);
794 write_unlock_bh(&__ip_vs_rs_lock);
795 }
796 atomic_set(&dest->conn_flags, conn_flags);
797
798 /* bind the service */
799 if (!dest->svc) {
800 __ip_vs_bind_svc(dest, svc);
801 } else {
802 if (dest->svc != svc) {
803 __ip_vs_unbind_svc(dest);
804 ip_vs_zero_stats(&dest->stats);
805 __ip_vs_bind_svc(dest, svc);
806 }
807 }
808
809 /* set the dest status flags */
810 dest->flags |= IP_VS_DEST_F_AVAILABLE;
811
812 if (udest->u_threshold == 0 || udest->u_threshold > dest->u_threshold)
813 dest->flags &= ~IP_VS_DEST_F_OVERLOAD;
814 dest->u_threshold = udest->u_threshold;
815 dest->l_threshold = udest->l_threshold;
816 }
817
818
819 /*
820 * Create a destination for the given service
821 */
822 static int
823 ip_vs_new_dest(struct ip_vs_service *svc, struct ip_vs_dest_user_kern *udest,
824 struct ip_vs_dest **dest_p)
825 {
826 struct ip_vs_dest *dest;
827 unsigned atype;
828
829 EnterFunction(2);
830
831 #ifdef CONFIG_IP_VS_IPV6
832 if (svc->af == AF_INET6) {
833 atype = ipv6_addr_type(&udest->addr.in6);
834 if ((!(atype & IPV6_ADDR_UNICAST) ||
835 atype & IPV6_ADDR_LINKLOCAL) &&
836 !__ip_vs_addr_is_local_v6(&udest->addr.in6))
837 return -EINVAL;
838 } else
839 #endif
840 {
841 atype = inet_addr_type(&init_net, udest->addr.ip);
842 if (atype != RTN_LOCAL && atype != RTN_UNICAST)
843 return -EINVAL;
844 }
845
846 dest = kzalloc(sizeof(struct ip_vs_dest), GFP_ATOMIC);
847 if (dest == NULL) {
848 pr_err("%s(): no memory.\n", __func__);
849 return -ENOMEM;
850 }
851
852 dest->af = svc->af;
853 dest->protocol = svc->protocol;
854 dest->vaddr = svc->addr;
855 dest->vport = svc->port;
856 dest->vfwmark = svc->fwmark;
857 ip_vs_addr_copy(svc->af, &dest->addr, &udest->addr);
858 dest->port = udest->port;
859
860 atomic_set(&dest->activeconns, 0);
861 atomic_set(&dest->inactconns, 0);
862 atomic_set(&dest->persistconns, 0);
863 atomic_set(&dest->refcnt, 0);
864
865 INIT_LIST_HEAD(&dest->d_list);
866 spin_lock_init(&dest->dst_lock);
867 spin_lock_init(&dest->stats.lock);
868 __ip_vs_update_dest(svc, dest, udest);
869 ip_vs_new_estimator(&dest->stats);
870
871 *dest_p = dest;
872
873 LeaveFunction(2);
874 return 0;
875 }
876
877
878 /*
879 * Add a destination into an existing service
880 */
881 static int
882 ip_vs_add_dest(struct ip_vs_service *svc, struct ip_vs_dest_user_kern *udest)
883 {
884 struct ip_vs_dest *dest;
885 union nf_inet_addr daddr;
886 __be16 dport = udest->port;
887 int ret;
888
889 EnterFunction(2);
890
891 if (udest->weight < 0) {
892 pr_err("%s(): server weight less than zero\n", __func__);
893 return -ERANGE;
894 }
895
896 if (udest->l_threshold > udest->u_threshold) {
897 pr_err("%s(): lower threshold is higher than upper threshold\n",
898 __func__);
899 return -ERANGE;
900 }
901
902 ip_vs_addr_copy(svc->af, &daddr, &udest->addr);
903
904 /*
905 * Check if the dest already exists in the list
906 */
907 dest = ip_vs_lookup_dest(svc, &daddr, dport);
908
909 if (dest != NULL) {
910 IP_VS_DBG(1, "%s(): dest already exists\n", __func__);
911 return -EEXIST;
912 }
913
914 /*
915 * Check if the dest already exists in the trash and
916 * is from the same service
917 */
918 dest = ip_vs_trash_get_dest(svc, &daddr, dport);
919
920 if (dest != NULL) {
921 IP_VS_DBG_BUF(3, "Get destination %s:%u from trash, "
922 "dest->refcnt=%d, service %u/%s:%u\n",
923 IP_VS_DBG_ADDR(svc->af, &daddr), ntohs(dport),
924 atomic_read(&dest->refcnt),
925 dest->vfwmark,
926 IP_VS_DBG_ADDR(svc->af, &dest->vaddr),
927 ntohs(dest->vport));
928
929 __ip_vs_update_dest(svc, dest, udest);
930
931 /*
932 * Get the destination from the trash
933 */
934 list_del(&dest->n_list);
935
936 ip_vs_new_estimator(&dest->stats);
937
938 write_lock_bh(&__ip_vs_svc_lock);
939
940 /*
941 * Wait until all other svc users go away.
942 */
943 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
944
945 list_add(&dest->n_list, &svc->destinations);
946 svc->num_dests++;
947
948 /* call the update_service function of its scheduler */
949 if (svc->scheduler->update_service)
950 svc->scheduler->update_service(svc);
951
952 write_unlock_bh(&__ip_vs_svc_lock);
953 return 0;
954 }
955
956 /*
957 * Allocate and initialize the dest structure
958 */
959 ret = ip_vs_new_dest(svc, udest, &dest);
960 if (ret) {
961 return ret;
962 }
963
964 /*
965 * Add the dest entry into the list
966 */
967 atomic_inc(&dest->refcnt);
968
969 write_lock_bh(&__ip_vs_svc_lock);
970
971 /*
972 * Wait until all other svc users go away.
973 */
974 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
975
976 list_add(&dest->n_list, &svc->destinations);
977 svc->num_dests++;
978
979 /* call the update_service function of its scheduler */
980 if (svc->scheduler->update_service)
981 svc->scheduler->update_service(svc);
982
983 write_unlock_bh(&__ip_vs_svc_lock);
984
985 LeaveFunction(2);
986
987 return 0;
988 }
989
990
991 /*
992 * Edit a destination in the given service
993 */
994 static int
995 ip_vs_edit_dest(struct ip_vs_service *svc, struct ip_vs_dest_user_kern *udest)
996 {
997 struct ip_vs_dest *dest;
998 union nf_inet_addr daddr;
999 __be16 dport = udest->port;
1000
1001 EnterFunction(2);
1002
1003 if (udest->weight < 0) {
1004 pr_err("%s(): server weight less than zero\n", __func__);
1005 return -ERANGE;
1006 }
1007
1008 if (udest->l_threshold > udest->u_threshold) {
1009 pr_err("%s(): lower threshold is higher than upper threshold\n",
1010 __func__);
1011 return -ERANGE;
1012 }
1013
1014 ip_vs_addr_copy(svc->af, &daddr, &udest->addr);
1015
1016 /*
1017 * Lookup the destination list
1018 */
1019 dest = ip_vs_lookup_dest(svc, &daddr, dport);
1020
1021 if (dest == NULL) {
1022 IP_VS_DBG(1, "%s(): dest doesn't exist\n", __func__);
1023 return -ENOENT;
1024 }
1025
1026 __ip_vs_update_dest(svc, dest, udest);
1027
1028 write_lock_bh(&__ip_vs_svc_lock);
1029
1030 /* Wait until all other svc users go away */
1031 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
1032
1033 /* call the update_service, because server weight may be changed */
1034 if (svc->scheduler->update_service)
1035 svc->scheduler->update_service(svc);
1036
1037 write_unlock_bh(&__ip_vs_svc_lock);
1038
1039 LeaveFunction(2);
1040
1041 return 0;
1042 }
1043
1044
1045 /*
1046 * Delete a destination (must be already unlinked from the service)
1047 */
1048 static void __ip_vs_del_dest(struct ip_vs_dest *dest)
1049 {
1050 ip_vs_kill_estimator(&dest->stats);
1051
1052 /*
1053 * Remove it from the d-linked list with the real services.
1054 */
1055 write_lock_bh(&__ip_vs_rs_lock);
1056 ip_vs_rs_unhash(dest);
1057 write_unlock_bh(&__ip_vs_rs_lock);
1058
1059 /*
1060 * Decrease the refcnt of the dest, and free the dest
1061 * if nobody refers to it (refcnt=0). Otherwise, throw
1062 * the destination into the trash.
1063 */
1064 if (atomic_dec_and_test(&dest->refcnt)) {
1065 ip_vs_dst_reset(dest);
1066 /* simply decrease svc->refcnt here, let the caller check
1067 and release the service if nobody refers to it.
1068 Only user context can release destination and service,
1069 and only one user context can update virtual service at a
1070 time, so the operation here is OK */
1071 atomic_dec(&dest->svc->refcnt);
1072 kfree(dest);
1073 } else {
1074 IP_VS_DBG_BUF(3, "Moving dest %s:%u into trash, "
1075 "dest->refcnt=%d\n",
1076 IP_VS_DBG_ADDR(dest->af, &dest->addr),
1077 ntohs(dest->port),
1078 atomic_read(&dest->refcnt));
1079 list_add(&dest->n_list, &ip_vs_dest_trash);
1080 atomic_inc(&dest->refcnt);
1081 }
1082 }
1083
1084
1085 /*
1086 * Unlink a destination from the given service
1087 */
1088 static void __ip_vs_unlink_dest(struct ip_vs_service *svc,
1089 struct ip_vs_dest *dest,
1090 int svcupd)
1091 {
1092 dest->flags &= ~IP_VS_DEST_F_AVAILABLE;
1093
1094 /*
1095 * Remove it from the d-linked destination list.
1096 */
1097 list_del(&dest->n_list);
1098 svc->num_dests--;
1099
1100 /*
1101 * Call the update_service function of its scheduler
1102 */
1103 if (svcupd && svc->scheduler->update_service)
1104 svc->scheduler->update_service(svc);
1105 }
1106
1107
1108 /*
1109 * Delete a destination server in the given service
1110 */
1111 static int
1112 ip_vs_del_dest(struct ip_vs_service *svc, struct ip_vs_dest_user_kern *udest)
1113 {
1114 struct ip_vs_dest *dest;
1115 __be16 dport = udest->port;
1116
1117 EnterFunction(2);
1118
1119 dest = ip_vs_lookup_dest(svc, &udest->addr, dport);
1120
1121 if (dest == NULL) {
1122 IP_VS_DBG(1, "%s(): destination not found!\n", __func__);
1123 return -ENOENT;
1124 }
1125
1126 write_lock_bh(&__ip_vs_svc_lock);
1127
1128 /*
1129 * Wait until all other svc users go away.
1130 */
1131 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
1132
1133 /*
1134 * Unlink dest from the service
1135 */
1136 __ip_vs_unlink_dest(svc, dest, 1);
1137
1138 write_unlock_bh(&__ip_vs_svc_lock);
1139
1140 /*
1141 * Delete the destination
1142 */
1143 __ip_vs_del_dest(dest);
1144
1145 LeaveFunction(2);
1146
1147 return 0;
1148 }
1149
1150
1151 /*
1152 * Add a service into the service hash table
1153 */
1154 static int
1155 ip_vs_add_service(struct ip_vs_service_user_kern *u,
1156 struct ip_vs_service **svc_p)
1157 {
1158 int ret = 0;
1159 struct ip_vs_scheduler *sched = NULL;
1160 struct ip_vs_service *svc = NULL;
1161
1162 /* increase the module use count */
1163 ip_vs_use_count_inc();
1164
1165 /* Lookup the scheduler by 'u->sched_name' */
1166 sched = ip_vs_scheduler_get(u->sched_name);
1167 if (sched == NULL) {
1168 pr_info("Scheduler module ip_vs_%s not found\n", u->sched_name);
1169 ret = -ENOENT;
1170 goto out_mod_dec;
1171 }
1172
1173 #ifdef CONFIG_IP_VS_IPV6
1174 if (u->af == AF_INET6 && (u->netmask < 1 || u->netmask > 128)) {
1175 ret = -EINVAL;
1176 goto out_err;
1177 }
1178 #endif
1179
1180 svc = kzalloc(sizeof(struct ip_vs_service), GFP_ATOMIC);
1181 if (svc == NULL) {
1182 IP_VS_DBG(1, "%s(): no memory\n", __func__);
1183 ret = -ENOMEM;
1184 goto out_err;
1185 }
1186
1187 /* I'm the first user of the service */
1188 atomic_set(&svc->usecnt, 1);
1189 atomic_set(&svc->refcnt, 0);
1190
1191 svc->af = u->af;
1192 svc->protocol = u->protocol;
1193 ip_vs_addr_copy(svc->af, &svc->addr, &u->addr);
1194 svc->port = u->port;
1195 svc->fwmark = u->fwmark;
1196 svc->flags = u->flags;
1197 svc->timeout = u->timeout * HZ;
1198 svc->netmask = u->netmask;
1199
1200 INIT_LIST_HEAD(&svc->destinations);
1201 rwlock_init(&svc->sched_lock);
1202 spin_lock_init(&svc->stats.lock);
1203
1204 /* Bind the scheduler */
1205 ret = ip_vs_bind_scheduler(svc, sched);
1206 if (ret)
1207 goto out_err;
1208 sched = NULL;
1209
1210 /* Update the virtual service counters */
1211 if (svc->port == FTPPORT)
1212 atomic_inc(&ip_vs_ftpsvc_counter);
1213 else if (svc->port == 0)
1214 atomic_inc(&ip_vs_nullsvc_counter);
1215
1216 ip_vs_new_estimator(&svc->stats);
1217
1218 /* Count only IPv4 services for old get/setsockopt interface */
1219 if (svc->af == AF_INET)
1220 ip_vs_num_services++;
1221
1222 /* Hash the service into the service table */
1223 write_lock_bh(&__ip_vs_svc_lock);
1224 ip_vs_svc_hash(svc);
1225 write_unlock_bh(&__ip_vs_svc_lock);
1226
1227 *svc_p = svc;
1228 return 0;
1229
1230 out_err:
1231 if (svc != NULL) {
1232 if (svc->scheduler)
1233 ip_vs_unbind_scheduler(svc);
1234 if (svc->inc) {
1235 local_bh_disable();
1236 ip_vs_app_inc_put(svc->inc);
1237 local_bh_enable();
1238 }
1239 kfree(svc);
1240 }
1241 ip_vs_scheduler_put(sched);
1242
1243 out_mod_dec:
1244 /* decrease the module use count */
1245 ip_vs_use_count_dec();
1246
1247 return ret;
1248 }
1249
1250
1251 /*
1252 * Edit a service and bind it with a new scheduler
1253 */
1254 static int
1255 ip_vs_edit_service(struct ip_vs_service *svc, struct ip_vs_service_user_kern *u)
1256 {
1257 struct ip_vs_scheduler *sched, *old_sched;
1258 int ret = 0;
1259
1260 /*
1261 * Lookup the scheduler, by 'u->sched_name'
1262 */
1263 sched = ip_vs_scheduler_get(u->sched_name);
1264 if (sched == NULL) {
1265 pr_info("Scheduler module ip_vs_%s not found\n", u->sched_name);
1266 return -ENOENT;
1267 }
1268 old_sched = sched;
1269
1270 #ifdef CONFIG_IP_VS_IPV6
1271 if (u->af == AF_INET6 && (u->netmask < 1 || u->netmask > 128)) {
1272 ret = -EINVAL;
1273 goto out;
1274 }
1275 #endif
1276
1277 write_lock_bh(&__ip_vs_svc_lock);
1278
1279 /*
1280 * Wait until all other svc users go away.
1281 */
1282 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
1283
1284 /*
1285 * Set the flags and timeout value
1286 */
1287 svc->flags = u->flags | IP_VS_SVC_F_HASHED;
1288 svc->timeout = u->timeout * HZ;
1289 svc->netmask = u->netmask;
1290
1291 old_sched = svc->scheduler;
1292 if (sched != old_sched) {
1293 /*
1294 * Unbind the old scheduler
1295 */
1296 if ((ret = ip_vs_unbind_scheduler(svc))) {
1297 old_sched = sched;
1298 goto out_unlock;
1299 }
1300
1301 /*
1302 * Bind the new scheduler
1303 */
1304 if ((ret = ip_vs_bind_scheduler(svc, sched))) {
1305 /*
1306 * If ip_vs_bind_scheduler fails, restore the old
1307 * scheduler.
1308 * The main reason of failure is out of memory.
1309 *
1310 * The question is if the old scheduler can be
1311 * restored all the time. TODO: if it cannot be
1312 * restored some time, we must delete the service,
1313 * otherwise the system may crash.
1314 */
1315 ip_vs_bind_scheduler(svc, old_sched);
1316 old_sched = sched;
1317 goto out_unlock;
1318 }
1319 }
1320
1321 out_unlock:
1322 write_unlock_bh(&__ip_vs_svc_lock);
1323 #ifdef CONFIG_IP_VS_IPV6
1324 out:
1325 #endif
1326
1327 if (old_sched)
1328 ip_vs_scheduler_put(old_sched);
1329
1330 return ret;
1331 }
1332
1333
1334 /*
1335 * Delete a service from the service list
1336 * - The service must be unlinked, unlocked and not referenced!
1337 * - We are called under _bh lock
1338 */
1339 static void __ip_vs_del_service(struct ip_vs_service *svc)
1340 {
1341 struct ip_vs_dest *dest, *nxt;
1342 struct ip_vs_scheduler *old_sched;
1343
1344 /* Count only IPv4 services for old get/setsockopt interface */
1345 if (svc->af == AF_INET)
1346 ip_vs_num_services--;
1347
1348 ip_vs_kill_estimator(&svc->stats);
1349
1350 /* Unbind scheduler */
1351 old_sched = svc->scheduler;
1352 ip_vs_unbind_scheduler(svc);
1353 if (old_sched)
1354 ip_vs_scheduler_put(old_sched);
1355
1356 /* Unbind app inc */
1357 if (svc->inc) {
1358 ip_vs_app_inc_put(svc->inc);
1359 svc->inc = NULL;
1360 }
1361
1362 /*
1363 * Unlink the whole destination list
1364 */
1365 list_for_each_entry_safe(dest, nxt, &svc->destinations, n_list) {
1366 __ip_vs_unlink_dest(svc, dest, 0);
1367 __ip_vs_del_dest(dest);
1368 }
1369
1370 /*
1371 * Update the virtual service counters
1372 */
1373 if (svc->port == FTPPORT)
1374 atomic_dec(&ip_vs_ftpsvc_counter);
1375 else if (svc->port == 0)
1376 atomic_dec(&ip_vs_nullsvc_counter);
1377
1378 /*
1379 * Free the service if nobody refers to it
1380 */
1381 if (atomic_read(&svc->refcnt) == 0)
1382 kfree(svc);
1383
1384 /* decrease the module use count */
1385 ip_vs_use_count_dec();
1386 }
1387
1388 /*
1389 * Delete a service from the service list
1390 */
1391 static int ip_vs_del_service(struct ip_vs_service *svc)
1392 {
1393 if (svc == NULL)
1394 return -EEXIST;
1395
1396 /*
1397 * Unhash it from the service table
1398 */
1399 write_lock_bh(&__ip_vs_svc_lock);
1400
1401 ip_vs_svc_unhash(svc);
1402
1403 /*
1404 * Wait until all the svc users go away.
1405 */
1406 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
1407
1408 __ip_vs_del_service(svc);
1409
1410 write_unlock_bh(&__ip_vs_svc_lock);
1411
1412 return 0;
1413 }
1414
1415
1416 /*
1417 * Flush all the virtual services
1418 */
1419 static int ip_vs_flush(void)
1420 {
1421 int idx;
1422 struct ip_vs_service *svc, *nxt;
1423
1424 /*
1425 * Flush the service table hashed by <protocol,addr,port>
1426 */
1427 for(idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1428 list_for_each_entry_safe(svc, nxt, &ip_vs_svc_table[idx], s_list) {
1429 write_lock_bh(&__ip_vs_svc_lock);
1430 ip_vs_svc_unhash(svc);
1431 /*
1432 * Wait until all the svc users go away.
1433 */
1434 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 0);
1435 __ip_vs_del_service(svc);
1436 write_unlock_bh(&__ip_vs_svc_lock);
1437 }
1438 }
1439
1440 /*
1441 * Flush the service table hashed by fwmark
1442 */
1443 for(idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1444 list_for_each_entry_safe(svc, nxt,
1445 &ip_vs_svc_fwm_table[idx], f_list) {
1446 write_lock_bh(&__ip_vs_svc_lock);
1447 ip_vs_svc_unhash(svc);
1448 /*
1449 * Wait until all the svc users go away.
1450 */
1451 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 0);
1452 __ip_vs_del_service(svc);
1453 write_unlock_bh(&__ip_vs_svc_lock);
1454 }
1455 }
1456
1457 return 0;
1458 }
1459
1460
1461 /*
1462 * Zero counters in a service or all services
1463 */
1464 static int ip_vs_zero_service(struct ip_vs_service *svc)
1465 {
1466 struct ip_vs_dest *dest;
1467
1468 write_lock_bh(&__ip_vs_svc_lock);
1469 list_for_each_entry(dest, &svc->destinations, n_list) {
1470 ip_vs_zero_stats(&dest->stats);
1471 }
1472 ip_vs_zero_stats(&svc->stats);
1473 write_unlock_bh(&__ip_vs_svc_lock);
1474 return 0;
1475 }
1476
1477 static int ip_vs_zero_all(void)
1478 {
1479 int idx;
1480 struct ip_vs_service *svc;
1481
1482 for(idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1483 list_for_each_entry(svc, &ip_vs_svc_table[idx], s_list) {
1484 ip_vs_zero_service(svc);
1485 }
1486 }
1487
1488 for(idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1489 list_for_each_entry(svc, &ip_vs_svc_fwm_table[idx], f_list) {
1490 ip_vs_zero_service(svc);
1491 }
1492 }
1493
1494 ip_vs_zero_stats(&ip_vs_stats);
1495 return 0;
1496 }
1497
1498
1499 static int
1500 proc_do_defense_mode(ctl_table *table, int write,
1501 void __user *buffer, size_t *lenp, loff_t *ppos)
1502 {
1503 int *valp = table->data;
1504 int val = *valp;
1505 int rc;
1506
1507 rc = proc_dointvec(table, write, buffer, lenp, ppos);
1508 if (write && (*valp != val)) {
1509 if ((*valp < 0) || (*valp > 3)) {
1510 /* Restore the correct value */
1511 *valp = val;
1512 } else {
1513 update_defense_level();
1514 }
1515 }
1516 return rc;
1517 }
1518
1519
1520 static int
1521 proc_do_sync_threshold(ctl_table *table, int write,
1522 void __user *buffer, size_t *lenp, loff_t *ppos)
1523 {
1524 int *valp = table->data;
1525 int val[2];
1526 int rc;
1527
1528 /* backup the value first */
1529 memcpy(val, valp, sizeof(val));
1530
1531 rc = proc_dointvec(table, write, buffer, lenp, ppos);
1532 if (write && (valp[0] < 0 || valp[1] < 0 || valp[0] >= valp[1])) {
1533 /* Restore the correct value */
1534 memcpy(valp, val, sizeof(val));
1535 }
1536 return rc;
1537 }
1538
1539
1540 /*
1541 * IPVS sysctl table (under the /proc/sys/net/ipv4/vs/)
1542 */
1543
1544 static struct ctl_table vs_vars[] = {
1545 {
1546 .procname = "amemthresh",
1547 .data = &sysctl_ip_vs_amemthresh,
1548 .maxlen = sizeof(int),
1549 .mode = 0644,
1550 .proc_handler = proc_dointvec,
1551 },
1552 #ifdef CONFIG_IP_VS_DEBUG
1553 {
1554 .procname = "debug_level",
1555 .data = &sysctl_ip_vs_debug_level,
1556 .maxlen = sizeof(int),
1557 .mode = 0644,
1558 .proc_handler = proc_dointvec,
1559 },
1560 #endif
1561 {
1562 .procname = "am_droprate",
1563 .data = &sysctl_ip_vs_am_droprate,
1564 .maxlen = sizeof(int),
1565 .mode = 0644,
1566 .proc_handler = proc_dointvec,
1567 },
1568 {
1569 .procname = "drop_entry",
1570 .data = &sysctl_ip_vs_drop_entry,
1571 .maxlen = sizeof(int),
1572 .mode = 0644,
1573 .proc_handler = proc_do_defense_mode,
1574 },
1575 {
1576 .procname = "drop_packet",
1577 .data = &sysctl_ip_vs_drop_packet,
1578 .maxlen = sizeof(int),
1579 .mode = 0644,
1580 .proc_handler = proc_do_defense_mode,
1581 },
1582 {
1583 .procname = "secure_tcp",
1584 .data = &sysctl_ip_vs_secure_tcp,
1585 .maxlen = sizeof(int),
1586 .mode = 0644,
1587 .proc_handler = proc_do_defense_mode,
1588 },
1589 #if 0
1590 {
1591 .procname = "timeout_established",
1592 .data = &vs_timeout_table_dos.timeout[IP_VS_S_ESTABLISHED],
1593 .maxlen = sizeof(int),
1594 .mode = 0644,
1595 .proc_handler = proc_dointvec_jiffies,
1596 },
1597 {
1598 .procname = "timeout_synsent",
1599 .data = &vs_timeout_table_dos.timeout[IP_VS_S_SYN_SENT],
1600 .maxlen = sizeof(int),
1601 .mode = 0644,
1602 .proc_handler = proc_dointvec_jiffies,
1603 },
1604 {
1605 .procname = "timeout_synrecv",
1606 .data = &vs_timeout_table_dos.timeout[IP_VS_S_SYN_RECV],
1607 .maxlen = sizeof(int),
1608 .mode = 0644,
1609 .proc_handler = proc_dointvec_jiffies,
1610 },
1611 {
1612 .procname = "timeout_finwait",
1613 .data = &vs_timeout_table_dos.timeout[IP_VS_S_FIN_WAIT],
1614 .maxlen = sizeof(int),
1615 .mode = 0644,
1616 .proc_handler = proc_dointvec_jiffies,
1617 },
1618 {
1619 .procname = "timeout_timewait",
1620 .data = &vs_timeout_table_dos.timeout[IP_VS_S_TIME_WAIT],
1621 .maxlen = sizeof(int),
1622 .mode = 0644,
1623 .proc_handler = proc_dointvec_jiffies,
1624 },
1625 {
1626 .procname = "timeout_close",
1627 .data = &vs_timeout_table_dos.timeout[IP_VS_S_CLOSE],
1628 .maxlen = sizeof(int),
1629 .mode = 0644,
1630 .proc_handler = proc_dointvec_jiffies,
1631 },
1632 {
1633 .procname = "timeout_closewait",
1634 .data = &vs_timeout_table_dos.timeout[IP_VS_S_CLOSE_WAIT],
1635 .maxlen = sizeof(int),
1636 .mode = 0644,
1637 .proc_handler = proc_dointvec_jiffies,
1638 },
1639 {
1640 .procname = "timeout_lastack",
1641 .data = &vs_timeout_table_dos.timeout[IP_VS_S_LAST_ACK],
1642 .maxlen = sizeof(int),
1643 .mode = 0644,
1644 .proc_handler = proc_dointvec_jiffies,
1645 },
1646 {
1647 .procname = "timeout_listen",
1648 .data = &vs_timeout_table_dos.timeout[IP_VS_S_LISTEN],
1649 .maxlen = sizeof(int),
1650 .mode = 0644,
1651 .proc_handler = proc_dointvec_jiffies,
1652 },
1653 {
1654 .procname = "timeout_synack",
1655 .data = &vs_timeout_table_dos.timeout[IP_VS_S_SYNACK],
1656 .maxlen = sizeof(int),
1657 .mode = 0644,
1658 .proc_handler = proc_dointvec_jiffies,
1659 },
1660 {
1661 .procname = "timeout_udp",
1662 .data = &vs_timeout_table_dos.timeout[IP_VS_S_UDP],
1663 .maxlen = sizeof(int),
1664 .mode = 0644,
1665 .proc_handler = proc_dointvec_jiffies,
1666 },
1667 {
1668 .procname = "timeout_icmp",
1669 .data = &vs_timeout_table_dos.timeout[IP_VS_S_ICMP],
1670 .maxlen = sizeof(int),
1671 .mode = 0644,
1672 .proc_handler = proc_dointvec_jiffies,
1673 },
1674 #endif
1675 {
1676 .procname = "cache_bypass",
1677 .data = &sysctl_ip_vs_cache_bypass,
1678 .maxlen = sizeof(int),
1679 .mode = 0644,
1680 .proc_handler = proc_dointvec,
1681 },
1682 {
1683 .procname = "expire_nodest_conn",
1684 .data = &sysctl_ip_vs_expire_nodest_conn,
1685 .maxlen = sizeof(int),
1686 .mode = 0644,
1687 .proc_handler = proc_dointvec,
1688 },
1689 {
1690 .procname = "expire_quiescent_template",
1691 .data = &sysctl_ip_vs_expire_quiescent_template,
1692 .maxlen = sizeof(int),
1693 .mode = 0644,
1694 .proc_handler = proc_dointvec,
1695 },
1696 {
1697 .procname = "sync_threshold",
1698 .data = &sysctl_ip_vs_sync_threshold,
1699 .maxlen = sizeof(sysctl_ip_vs_sync_threshold),
1700 .mode = 0644,
1701 .proc_handler = proc_do_sync_threshold,
1702 },
1703 {
1704 .procname = "nat_icmp_send",
1705 .data = &sysctl_ip_vs_nat_icmp_send,
1706 .maxlen = sizeof(int),
1707 .mode = 0644,
1708 .proc_handler = proc_dointvec,
1709 },
1710 { }
1711 };
1712
1713 const struct ctl_path net_vs_ctl_path[] = {
1714 { .procname = "net", },
1715 { .procname = "ipv4", },
1716 { .procname = "vs", },
1717 { }
1718 };
1719 EXPORT_SYMBOL_GPL(net_vs_ctl_path);
1720
1721 static struct ctl_table_header * sysctl_header;
1722
1723 #ifdef CONFIG_PROC_FS
1724
1725 struct ip_vs_iter {
1726 struct list_head *table;
1727 int bucket;
1728 };
1729
1730 /*
1731 * Write the contents of the VS rule table to a PROCfs file.
1732 * (It is kept just for backward compatibility)
1733 */
1734 static inline const char *ip_vs_fwd_name(unsigned flags)
1735 {
1736 switch (flags & IP_VS_CONN_F_FWD_MASK) {
1737 case IP_VS_CONN_F_LOCALNODE:
1738 return "Local";
1739 case IP_VS_CONN_F_TUNNEL:
1740 return "Tunnel";
1741 case IP_VS_CONN_F_DROUTE:
1742 return "Route";
1743 default:
1744 return "Masq";
1745 }
1746 }
1747
1748
1749 /* Get the Nth entry in the two lists */
1750 static struct ip_vs_service *ip_vs_info_array(struct seq_file *seq, loff_t pos)
1751 {
1752 struct ip_vs_iter *iter = seq->private;
1753 int idx;
1754 struct ip_vs_service *svc;
1755
1756 /* look in hash by protocol */
1757 for (idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1758 list_for_each_entry(svc, &ip_vs_svc_table[idx], s_list) {
1759 if (pos-- == 0){
1760 iter->table = ip_vs_svc_table;
1761 iter->bucket = idx;
1762 return svc;
1763 }
1764 }
1765 }
1766
1767 /* keep looking in fwmark */
1768 for (idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1769 list_for_each_entry(svc, &ip_vs_svc_fwm_table[idx], f_list) {
1770 if (pos-- == 0) {
1771 iter->table = ip_vs_svc_fwm_table;
1772 iter->bucket = idx;
1773 return svc;
1774 }
1775 }
1776 }
1777
1778 return NULL;
1779 }
1780
1781 static void *ip_vs_info_seq_start(struct seq_file *seq, loff_t *pos)
1782 __acquires(__ip_vs_svc_lock)
1783 {
1784
1785 read_lock_bh(&__ip_vs_svc_lock);
1786 return *pos ? ip_vs_info_array(seq, *pos - 1) : SEQ_START_TOKEN;
1787 }
1788
1789
1790 static void *ip_vs_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1791 {
1792 struct list_head *e;
1793 struct ip_vs_iter *iter;
1794 struct ip_vs_service *svc;
1795
1796 ++*pos;
1797 if (v == SEQ_START_TOKEN)
1798 return ip_vs_info_array(seq,0);
1799
1800 svc = v;
1801 iter = seq->private;
1802
1803 if (iter->table == ip_vs_svc_table) {
1804 /* next service in table hashed by protocol */
1805 if ((e = svc->s_list.next) != &ip_vs_svc_table[iter->bucket])
1806 return list_entry(e, struct ip_vs_service, s_list);
1807
1808
1809 while (++iter->bucket < IP_VS_SVC_TAB_SIZE) {
1810 list_for_each_entry(svc,&ip_vs_svc_table[iter->bucket],
1811 s_list) {
1812 return svc;
1813 }
1814 }
1815
1816 iter->table = ip_vs_svc_fwm_table;
1817 iter->bucket = -1;
1818 goto scan_fwmark;
1819 }
1820
1821 /* next service in hashed by fwmark */
1822 if ((e = svc->f_list.next) != &ip_vs_svc_fwm_table[iter->bucket])
1823 return list_entry(e, struct ip_vs_service, f_list);
1824
1825 scan_fwmark:
1826 while (++iter->bucket < IP_VS_SVC_TAB_SIZE) {
1827 list_for_each_entry(svc, &ip_vs_svc_fwm_table[iter->bucket],
1828 f_list)
1829 return svc;
1830 }
1831
1832 return NULL;
1833 }
1834
1835 static void ip_vs_info_seq_stop(struct seq_file *seq, void *v)
1836 __releases(__ip_vs_svc_lock)
1837 {
1838 read_unlock_bh(&__ip_vs_svc_lock);
1839 }
1840
1841
1842 static int ip_vs_info_seq_show(struct seq_file *seq, void *v)
1843 {
1844 if (v == SEQ_START_TOKEN) {
1845 seq_printf(seq,
1846 "IP Virtual Server version %d.%d.%d (size=%d)\n",
1847 NVERSION(IP_VS_VERSION_CODE), ip_vs_conn_tab_size);
1848 seq_puts(seq,
1849 "Prot LocalAddress:Port Scheduler Flags\n");
1850 seq_puts(seq,
1851 " -> RemoteAddress:Port Forward Weight ActiveConn InActConn\n");
1852 } else {
1853 const struct ip_vs_service *svc = v;
1854 const struct ip_vs_iter *iter = seq->private;
1855 const struct ip_vs_dest *dest;
1856
1857 if (iter->table == ip_vs_svc_table) {
1858 #ifdef CONFIG_IP_VS_IPV6
1859 if (svc->af == AF_INET6)
1860 seq_printf(seq, "%s [%pI6]:%04X %s ",
1861 ip_vs_proto_name(svc->protocol),
1862 &svc->addr.in6,
1863 ntohs(svc->port),
1864 svc->scheduler->name);
1865 else
1866 #endif
1867 seq_printf(seq, "%s %08X:%04X %s %s ",
1868 ip_vs_proto_name(svc->protocol),
1869 ntohl(svc->addr.ip),
1870 ntohs(svc->port),
1871 svc->scheduler->name,
1872 (svc->flags & IP_VS_SVC_F_ONEPACKET)?"ops ":"");
1873 } else {
1874 seq_printf(seq, "FWM %08X %s %s",
1875 svc->fwmark, svc->scheduler->name,
1876 (svc->flags & IP_VS_SVC_F_ONEPACKET)?"ops ":"");
1877 }
1878
1879 if (svc->flags & IP_VS_SVC_F_PERSISTENT)
1880 seq_printf(seq, "persistent %d %08X\n",
1881 svc->timeout,
1882 ntohl(svc->netmask));
1883 else
1884 seq_putc(seq, '\n');
1885
1886 list_for_each_entry(dest, &svc->destinations, n_list) {
1887 #ifdef CONFIG_IP_VS_IPV6
1888 if (dest->af == AF_INET6)
1889 seq_printf(seq,
1890 " -> [%pI6]:%04X"
1891 " %-7s %-6d %-10d %-10d\n",
1892 &dest->addr.in6,
1893 ntohs(dest->port),
1894 ip_vs_fwd_name(atomic_read(&dest->conn_flags)),
1895 atomic_read(&dest->weight),
1896 atomic_read(&dest->activeconns),
1897 atomic_read(&dest->inactconns));
1898 else
1899 #endif
1900 seq_printf(seq,
1901 " -> %08X:%04X "
1902 "%-7s %-6d %-10d %-10d\n",
1903 ntohl(dest->addr.ip),
1904 ntohs(dest->port),
1905 ip_vs_fwd_name(atomic_read(&dest->conn_flags)),
1906 atomic_read(&dest->weight),
1907 atomic_read(&dest->activeconns),
1908 atomic_read(&dest->inactconns));
1909
1910 }
1911 }
1912 return 0;
1913 }
1914
1915 static const struct seq_operations ip_vs_info_seq_ops = {
1916 .start = ip_vs_info_seq_start,
1917 .next = ip_vs_info_seq_next,
1918 .stop = ip_vs_info_seq_stop,
1919 .show = ip_vs_info_seq_show,
1920 };
1921
1922 static int ip_vs_info_open(struct inode *inode, struct file *file)
1923 {
1924 return seq_open_private(file, &ip_vs_info_seq_ops,
1925 sizeof(struct ip_vs_iter));
1926 }
1927
1928 static const struct file_operations ip_vs_info_fops = {
1929 .owner = THIS_MODULE,
1930 .open = ip_vs_info_open,
1931 .read = seq_read,
1932 .llseek = seq_lseek,
1933 .release = seq_release_private,
1934 };
1935
1936 #endif
1937
1938 struct ip_vs_stats ip_vs_stats = {
1939 .lock = __SPIN_LOCK_UNLOCKED(ip_vs_stats.lock),
1940 };
1941
1942 #ifdef CONFIG_PROC_FS
1943 static int ip_vs_stats_show(struct seq_file *seq, void *v)
1944 {
1945
1946 /* 01234567 01234567 01234567 0123456701234567 0123456701234567 */
1947 seq_puts(seq,
1948 " Total Incoming Outgoing Incoming Outgoing\n");
1949 seq_printf(seq,
1950 " Conns Packets Packets Bytes Bytes\n");
1951
1952 spin_lock_bh(&ip_vs_stats.lock);
1953 seq_printf(seq, "%8X %8X %8X %16LX %16LX\n\n", ip_vs_stats.ustats.conns,
1954 ip_vs_stats.ustats.inpkts, ip_vs_stats.ustats.outpkts,
1955 (unsigned long long) ip_vs_stats.ustats.inbytes,
1956 (unsigned long long) ip_vs_stats.ustats.outbytes);
1957
1958 /* 01234567 01234567 01234567 0123456701234567 0123456701234567 */
1959 seq_puts(seq,
1960 " Conns/s Pkts/s Pkts/s Bytes/s Bytes/s\n");
1961 seq_printf(seq,"%8X %8X %8X %16X %16X\n",
1962 ip_vs_stats.ustats.cps,
1963 ip_vs_stats.ustats.inpps,
1964 ip_vs_stats.ustats.outpps,
1965 ip_vs_stats.ustats.inbps,
1966 ip_vs_stats.ustats.outbps);
1967 spin_unlock_bh(&ip_vs_stats.lock);
1968
1969 return 0;
1970 }
1971
1972 static int ip_vs_stats_seq_open(struct inode *inode, struct file *file)
1973 {
1974 return single_open(file, ip_vs_stats_show, NULL);
1975 }
1976
1977 static const struct file_operations ip_vs_stats_fops = {
1978 .owner = THIS_MODULE,
1979 .open = ip_vs_stats_seq_open,
1980 .read = seq_read,
1981 .llseek = seq_lseek,
1982 .release = single_release,
1983 };
1984
1985 #endif
1986
1987 /*
1988 * Set timeout values for tcp tcpfin udp in the timeout_table.
1989 */
1990 static int ip_vs_set_timeout(struct ip_vs_timeout_user *u)
1991 {
1992 IP_VS_DBG(2, "Setting timeout tcp:%d tcpfin:%d udp:%d\n",
1993 u->tcp_timeout,
1994 u->tcp_fin_timeout,
1995 u->udp_timeout);
1996
1997 #ifdef CONFIG_IP_VS_PROTO_TCP
1998 if (u->tcp_timeout) {
1999 ip_vs_protocol_tcp.timeout_table[IP_VS_TCP_S_ESTABLISHED]
2000 = u->tcp_timeout * HZ;
2001 }
2002
2003 if (u->tcp_fin_timeout) {
2004 ip_vs_protocol_tcp.timeout_table[IP_VS_TCP_S_FIN_WAIT]
2005 = u->tcp_fin_timeout * HZ;
2006 }
2007 #endif
2008
2009 #ifdef CONFIG_IP_VS_PROTO_UDP
2010 if (u->udp_timeout) {
2011 ip_vs_protocol_udp.timeout_table[IP_VS_UDP_S_NORMAL]
2012 = u->udp_timeout * HZ;
2013 }
2014 #endif
2015 return 0;
2016 }
2017
2018
2019 #define SET_CMDID(cmd) (cmd - IP_VS_BASE_CTL)
2020 #define SERVICE_ARG_LEN (sizeof(struct ip_vs_service_user))
2021 #define SVCDEST_ARG_LEN (sizeof(struct ip_vs_service_user) + \
2022 sizeof(struct ip_vs_dest_user))
2023 #define TIMEOUT_ARG_LEN (sizeof(struct ip_vs_timeout_user))
2024 #define DAEMON_ARG_LEN (sizeof(struct ip_vs_daemon_user))
2025 #define MAX_ARG_LEN SVCDEST_ARG_LEN
2026
2027 static const unsigned char set_arglen[SET_CMDID(IP_VS_SO_SET_MAX)+1] = {
2028 [SET_CMDID(IP_VS_SO_SET_ADD)] = SERVICE_ARG_LEN,
2029 [SET_CMDID(IP_VS_SO_SET_EDIT)] = SERVICE_ARG_LEN,
2030 [SET_CMDID(IP_VS_SO_SET_DEL)] = SERVICE_ARG_LEN,
2031 [SET_CMDID(IP_VS_SO_SET_FLUSH)] = 0,
2032 [SET_CMDID(IP_VS_SO_SET_ADDDEST)] = SVCDEST_ARG_LEN,
2033 [SET_CMDID(IP_VS_SO_SET_DELDEST)] = SVCDEST_ARG_LEN,
2034 [SET_CMDID(IP_VS_SO_SET_EDITDEST)] = SVCDEST_ARG_LEN,
2035 [SET_CMDID(IP_VS_SO_SET_TIMEOUT)] = TIMEOUT_ARG_LEN,
2036 [SET_CMDID(IP_VS_SO_SET_STARTDAEMON)] = DAEMON_ARG_LEN,
2037 [SET_CMDID(IP_VS_SO_SET_STOPDAEMON)] = DAEMON_ARG_LEN,
2038 [SET_CMDID(IP_VS_SO_SET_ZERO)] = SERVICE_ARG_LEN,
2039 };
2040
2041 static void ip_vs_copy_usvc_compat(struct ip_vs_service_user_kern *usvc,
2042 struct ip_vs_service_user *usvc_compat)
2043 {
2044 usvc->af = AF_INET;
2045 usvc->protocol = usvc_compat->protocol;
2046 usvc->addr.ip = usvc_compat->addr;
2047 usvc->port = usvc_compat->port;
2048 usvc->fwmark = usvc_compat->fwmark;
2049
2050 /* Deep copy of sched_name is not needed here */
2051 usvc->sched_name = usvc_compat->sched_name;
2052
2053 usvc->flags = usvc_compat->flags;
2054 usvc->timeout = usvc_compat->timeout;
2055 usvc->netmask = usvc_compat->netmask;
2056 }
2057
2058 static void ip_vs_copy_udest_compat(struct ip_vs_dest_user_kern *udest,
2059 struct ip_vs_dest_user *udest_compat)
2060 {
2061 udest->addr.ip = udest_compat->addr;
2062 udest->port = udest_compat->port;
2063 udest->conn_flags = udest_compat->conn_flags;
2064 udest->weight = udest_compat->weight;
2065 udest->u_threshold = udest_compat->u_threshold;
2066 udest->l_threshold = udest_compat->l_threshold;
2067 }
2068
2069 static int
2070 do_ip_vs_set_ctl(struct sock *sk, int cmd, void __user *user, unsigned int len)
2071 {
2072 int ret;
2073 unsigned char arg[MAX_ARG_LEN];
2074 struct ip_vs_service_user *usvc_compat;
2075 struct ip_vs_service_user_kern usvc;
2076 struct ip_vs_service *svc;
2077 struct ip_vs_dest_user *udest_compat;
2078 struct ip_vs_dest_user_kern udest;
2079
2080 if (!capable(CAP_NET_ADMIN))
2081 return -EPERM;
2082
2083 if (cmd < IP_VS_BASE_CTL || cmd > IP_VS_SO_SET_MAX)
2084 return -EINVAL;
2085 if (len < 0 || len > MAX_ARG_LEN)
2086 return -EINVAL;
2087 if (len != set_arglen[SET_CMDID(cmd)]) {
2088 pr_err("set_ctl: len %u != %u\n",
2089 len, set_arglen[SET_CMDID(cmd)]);
2090 return -EINVAL;
2091 }
2092
2093 if (copy_from_user(arg, user, len) != 0)
2094 return -EFAULT;
2095
2096 /* increase the module use count */
2097 ip_vs_use_count_inc();
2098
2099 if (mutex_lock_interruptible(&__ip_vs_mutex)) {
2100 ret = -ERESTARTSYS;
2101 goto out_dec;
2102 }
2103
2104 if (cmd == IP_VS_SO_SET_FLUSH) {
2105 /* Flush the virtual service */
2106 ret = ip_vs_flush();
2107 goto out_unlock;
2108 } else if (cmd == IP_VS_SO_SET_TIMEOUT) {
2109 /* Set timeout values for (tcp tcpfin udp) */
2110 ret = ip_vs_set_timeout((struct ip_vs_timeout_user *)arg);
2111 goto out_unlock;
2112 } else if (cmd == IP_VS_SO_SET_STARTDAEMON) {
2113 struct ip_vs_daemon_user *dm = (struct ip_vs_daemon_user *)arg;
2114 ret = start_sync_thread(dm->state, dm->mcast_ifn, dm->syncid);
2115 goto out_unlock;
2116 } else if (cmd == IP_VS_SO_SET_STOPDAEMON) {
2117 struct ip_vs_daemon_user *dm = (struct ip_vs_daemon_user *)arg;
2118 ret = stop_sync_thread(dm->state);
2119 goto out_unlock;
2120 }
2121
2122 usvc_compat = (struct ip_vs_service_user *)arg;
2123 udest_compat = (struct ip_vs_dest_user *)(usvc_compat + 1);
2124
2125 /* We only use the new structs internally, so copy userspace compat
2126 * structs to extended internal versions */
2127 ip_vs_copy_usvc_compat(&usvc, usvc_compat);
2128 ip_vs_copy_udest_compat(&udest, udest_compat);
2129
2130 if (cmd == IP_VS_SO_SET_ZERO) {
2131 /* if no service address is set, zero counters in all */
2132 if (!usvc.fwmark && !usvc.addr.ip && !usvc.port) {
2133 ret = ip_vs_zero_all();
2134 goto out_unlock;
2135 }
2136 }
2137
2138 /* Check for valid protocol: TCP or UDP or SCTP, even for fwmark!=0 */
2139 if (usvc.protocol != IPPROTO_TCP && usvc.protocol != IPPROTO_UDP &&
2140 usvc.protocol != IPPROTO_SCTP) {
2141 pr_err("set_ctl: invalid protocol: %d %pI4:%d %s\n",
2142 usvc.protocol, &usvc.addr.ip,
2143 ntohs(usvc.port), usvc.sched_name);
2144 ret = -EFAULT;
2145 goto out_unlock;
2146 }
2147
2148 /* Lookup the exact service by <protocol, addr, port> or fwmark */
2149 if (usvc.fwmark == 0)
2150 svc = __ip_vs_service_get(usvc.af, usvc.protocol,
2151 &usvc.addr, usvc.port);
2152 else
2153 svc = __ip_vs_svc_fwm_get(usvc.af, usvc.fwmark);
2154
2155 if (cmd != IP_VS_SO_SET_ADD
2156 && (svc == NULL || svc->protocol != usvc.protocol)) {
2157 ret = -ESRCH;
2158 goto out_unlock;
2159 }
2160
2161 switch (cmd) {
2162 case IP_VS_SO_SET_ADD:
2163 if (svc != NULL)
2164 ret = -EEXIST;
2165 else
2166 ret = ip_vs_add_service(&usvc, &svc);
2167 break;
2168 case IP_VS_SO_SET_EDIT:
2169 ret = ip_vs_edit_service(svc, &usvc);
2170 break;
2171 case IP_VS_SO_SET_DEL:
2172 ret = ip_vs_del_service(svc);
2173 if (!ret)
2174 goto out_unlock;
2175 break;
2176 case IP_VS_SO_SET_ZERO:
2177 ret = ip_vs_zero_service(svc);
2178 break;
2179 case IP_VS_SO_SET_ADDDEST:
2180 ret = ip_vs_add_dest(svc, &udest);
2181 break;
2182 case IP_VS_SO_SET_EDITDEST:
2183 ret = ip_vs_edit_dest(svc, &udest);
2184 break;
2185 case IP_VS_SO_SET_DELDEST:
2186 ret = ip_vs_del_dest(svc, &udest);
2187 break;
2188 default:
2189 ret = -EINVAL;
2190 }
2191
2192 if (svc)
2193 ip_vs_service_put(svc);
2194
2195 out_unlock:
2196 mutex_unlock(&__ip_vs_mutex);
2197 out_dec:
2198 /* decrease the module use count */
2199 ip_vs_use_count_dec();
2200
2201 return ret;
2202 }
2203
2204
2205 static void
2206 ip_vs_copy_stats(struct ip_vs_stats_user *dst, struct ip_vs_stats *src)
2207 {
2208 spin_lock_bh(&src->lock);
2209 memcpy(dst, &src->ustats, sizeof(*dst));
2210 spin_unlock_bh(&src->lock);
2211 }
2212
2213 static void
2214 ip_vs_copy_service(struct ip_vs_service_entry *dst, struct ip_vs_service *src)
2215 {
2216 dst->protocol = src->protocol;
2217 dst->addr = src->addr.ip;
2218 dst->port = src->port;
2219 dst->fwmark = src->fwmark;
2220 strlcpy(dst->sched_name, src->scheduler->name, sizeof(dst->sched_name));
2221 dst->flags = src->flags;
2222 dst->timeout = src->timeout / HZ;
2223 dst->netmask = src->netmask;
2224 dst->num_dests = src->num_dests;
2225 ip_vs_copy_stats(&dst->stats, &src->stats);
2226 }
2227
2228 static inline int
2229 __ip_vs_get_service_entries(const struct ip_vs_get_services *get,
2230 struct ip_vs_get_services __user *uptr)
2231 {
2232 int idx, count=0;
2233 struct ip_vs_service *svc;
2234 struct ip_vs_service_entry entry;
2235 int ret = 0;
2236
2237 for (idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
2238 list_for_each_entry(svc, &ip_vs_svc_table[idx], s_list) {
2239 /* Only expose IPv4 entries to old interface */
2240 if (svc->af != AF_INET)
2241 continue;
2242
2243 if (count >= get->num_services)
2244 goto out;
2245 memset(&entry, 0, sizeof(entry));
2246 ip_vs_copy_service(&entry, svc);
2247 if (copy_to_user(&uptr->entrytable[count],
2248 &entry, sizeof(entry))) {
2249 ret = -EFAULT;
2250 goto out;
2251 }
2252 count++;
2253 }
2254 }
2255
2256 for (idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
2257 list_for_each_entry(svc, &ip_vs_svc_fwm_table[idx], f_list) {
2258 /* Only expose IPv4 entries to old interface */
2259 if (svc->af != AF_INET)
2260 continue;
2261
2262 if (count >= get->num_services)
2263 goto out;
2264 memset(&entry, 0, sizeof(entry));
2265 ip_vs_copy_service(&entry, svc);
2266 if (copy_to_user(&uptr->entrytable[count],
2267 &entry, sizeof(entry))) {
2268 ret = -EFAULT;
2269 goto out;
2270 }
2271 count++;
2272 }
2273 }
2274 out:
2275 return ret;
2276 }
2277
2278 static inline int
2279 __ip_vs_get_dest_entries(const struct ip_vs_get_dests *get,
2280 struct ip_vs_get_dests __user *uptr)
2281 {
2282 struct ip_vs_service *svc;
2283 union nf_inet_addr addr = { .ip = get->addr };
2284 int ret = 0;
2285
2286 if (get->fwmark)
2287 svc = __ip_vs_svc_fwm_get(AF_INET, get->fwmark);
2288 else
2289 svc = __ip_vs_service_get(AF_INET, get->protocol, &addr,
2290 get->port);
2291
2292 if (svc) {
2293 int count = 0;
2294 struct ip_vs_dest *dest;
2295 struct ip_vs_dest_entry entry;
2296
2297 list_for_each_entry(dest, &svc->destinations, n_list) {
2298 if (count >= get->num_dests)
2299 break;
2300
2301 entry.addr = dest->addr.ip;
2302 entry.port = dest->port;
2303 entry.conn_flags = atomic_read(&dest->conn_flags);
2304 entry.weight = atomic_read(&dest->weight);
2305 entry.u_threshold = dest->u_threshold;
2306 entry.l_threshold = dest->l_threshold;
2307 entry.activeconns = atomic_read(&dest->activeconns);
2308 entry.inactconns = atomic_read(&dest->inactconns);
2309 entry.persistconns = atomic_read(&dest->persistconns);
2310 ip_vs_copy_stats(&entry.stats, &dest->stats);
2311 if (copy_to_user(&uptr->entrytable[count],
2312 &entry, sizeof(entry))) {
2313 ret = -EFAULT;
2314 break;
2315 }
2316 count++;
2317 }
2318 ip_vs_service_put(svc);
2319 } else
2320 ret = -ESRCH;
2321 return ret;
2322 }
2323
2324 static inline void
2325 __ip_vs_get_timeouts(struct ip_vs_timeout_user *u)
2326 {
2327 #ifdef CONFIG_IP_VS_PROTO_TCP
2328 u->tcp_timeout =
2329 ip_vs_protocol_tcp.timeout_table[IP_VS_TCP_S_ESTABLISHED] / HZ;
2330 u->tcp_fin_timeout =
2331 ip_vs_protocol_tcp.timeout_table[IP_VS_TCP_S_FIN_WAIT] / HZ;
2332 #endif
2333 #ifdef CONFIG_IP_VS_PROTO_UDP
2334 u->udp_timeout =
2335 ip_vs_protocol_udp.timeout_table[IP_VS_UDP_S_NORMAL] / HZ;
2336 #endif
2337 }
2338
2339
2340 #define GET_CMDID(cmd) (cmd - IP_VS_BASE_CTL)
2341 #define GET_INFO_ARG_LEN (sizeof(struct ip_vs_getinfo))
2342 #define GET_SERVICES_ARG_LEN (sizeof(struct ip_vs_get_services))
2343 #define GET_SERVICE_ARG_LEN (sizeof(struct ip_vs_service_entry))
2344 #define GET_DESTS_ARG_LEN (sizeof(struct ip_vs_get_dests))
2345 #define GET_TIMEOUT_ARG_LEN (sizeof(struct ip_vs_timeout_user))
2346 #define GET_DAEMON_ARG_LEN (sizeof(struct ip_vs_daemon_user) * 2)
2347
2348 static const unsigned char get_arglen[GET_CMDID(IP_VS_SO_GET_MAX)+1] = {
2349 [GET_CMDID(IP_VS_SO_GET_VERSION)] = 64,
2350 [GET_CMDID(IP_VS_SO_GET_INFO)] = GET_INFO_ARG_LEN,
2351 [GET_CMDID(IP_VS_SO_GET_SERVICES)] = GET_SERVICES_ARG_LEN,
2352 [GET_CMDID(IP_VS_SO_GET_SERVICE)] = GET_SERVICE_ARG_LEN,
2353 [GET_CMDID(IP_VS_SO_GET_DESTS)] = GET_DESTS_ARG_LEN,
2354 [GET_CMDID(IP_VS_SO_GET_TIMEOUT)] = GET_TIMEOUT_ARG_LEN,
2355 [GET_CMDID(IP_VS_SO_GET_DAEMON)] = GET_DAEMON_ARG_LEN,
2356 };
2357
2358 static int
2359 do_ip_vs_get_ctl(struct sock *sk, int cmd, void __user *user, int *len)
2360 {
2361 unsigned char arg[128];
2362 int ret = 0;
2363 unsigned int copylen;
2364
2365 if (!capable(CAP_NET_ADMIN))
2366 return -EPERM;
2367
2368 if (cmd < IP_VS_BASE_CTL || cmd > IP_VS_SO_GET_MAX)
2369 return -EINVAL;
2370
2371 if (*len < get_arglen[GET_CMDID(cmd)]) {
2372 pr_err("get_ctl: len %u < %u\n",
2373 *len, get_arglen[GET_CMDID(cmd)]);
2374 return -EINVAL;
2375 }
2376
2377 copylen = get_arglen[GET_CMDID(cmd)];
2378 if (copylen > 128)
2379 return -EINVAL;
2380
2381 if (copy_from_user(arg, user, copylen) != 0)
2382 return -EFAULT;
2383
2384 if (mutex_lock_interruptible(&__ip_vs_mutex))
2385 return -ERESTARTSYS;
2386
2387 switch (cmd) {
2388 case IP_VS_SO_GET_VERSION:
2389 {
2390 char buf[64];
2391
2392 sprintf(buf, "IP Virtual Server version %d.%d.%d (size=%d)",
2393 NVERSION(IP_VS_VERSION_CODE), ip_vs_conn_tab_size);
2394 if (copy_to_user(user, buf, strlen(buf)+1) != 0) {
2395 ret = -EFAULT;
2396 goto out;
2397 }
2398 *len = strlen(buf)+1;
2399 }
2400 break;
2401
2402 case IP_VS_SO_GET_INFO:
2403 {
2404 struct ip_vs_getinfo info;
2405 info.version = IP_VS_VERSION_CODE;
2406 info.size = ip_vs_conn_tab_size;
2407 info.num_services = ip_vs_num_services;
2408 if (copy_to_user(user, &info, sizeof(info)) != 0)
2409 ret = -EFAULT;
2410 }
2411 break;
2412
2413 case IP_VS_SO_GET_SERVICES:
2414 {
2415 struct ip_vs_get_services *get;
2416 int size;
2417
2418 get = (struct ip_vs_get_services *)arg;
2419 size = sizeof(*get) +
2420 sizeof(struct ip_vs_service_entry) * get->num_services;
2421 if (*len != size) {
2422 pr_err("length: %u != %u\n", *len, size);
2423 ret = -EINVAL;
2424 goto out;
2425 }
2426 ret = __ip_vs_get_service_entries(get, user);
2427 }
2428 break;
2429
2430 case IP_VS_SO_GET_SERVICE:
2431 {
2432 struct ip_vs_service_entry *entry;
2433 struct ip_vs_service *svc;
2434 union nf_inet_addr addr;
2435
2436 entry = (struct ip_vs_service_entry *)arg;
2437 addr.ip = entry->addr;
2438 if (entry->fwmark)
2439 svc = __ip_vs_svc_fwm_get(AF_INET, entry->fwmark);
2440 else
2441 svc = __ip_vs_service_get(AF_INET, entry->protocol,
2442 &addr, entry->port);
2443 if (svc) {
2444 ip_vs_copy_service(entry, svc);
2445 if (copy_to_user(user, entry, sizeof(*entry)) != 0)
2446 ret = -EFAULT;
2447 ip_vs_service_put(svc);
2448 } else
2449 ret = -ESRCH;
2450 }
2451 break;
2452
2453 case IP_VS_SO_GET_DESTS:
2454 {
2455 struct ip_vs_get_dests *get;
2456 int size;
2457
2458 get = (struct ip_vs_get_dests *)arg;
2459 size = sizeof(*get) +
2460 sizeof(struct ip_vs_dest_entry) * get->num_dests;
2461 if (*len != size) {
2462 pr_err("length: %u != %u\n", *len, size);
2463 ret = -EINVAL;
2464 goto out;
2465 }
2466 ret = __ip_vs_get_dest_entries(get, user);
2467 }
2468 break;
2469
2470 case IP_VS_SO_GET_TIMEOUT:
2471 {
2472 struct ip_vs_timeout_user t;
2473
2474 __ip_vs_get_timeouts(&t);
2475 if (copy_to_user(user, &t, sizeof(t)) != 0)
2476 ret = -EFAULT;
2477 }
2478 break;
2479
2480 case IP_VS_SO_GET_DAEMON:
2481 {
2482 struct ip_vs_daemon_user d[2];
2483
2484 memset(&d, 0, sizeof(d));
2485 if (ip_vs_sync_state & IP_VS_STATE_MASTER) {
2486 d[0].state = IP_VS_STATE_MASTER;
2487 strlcpy(d[0].mcast_ifn, ip_vs_master_mcast_ifn, sizeof(d[0].mcast_ifn));
2488 d[0].syncid = ip_vs_master_syncid;
2489 }
2490 if (ip_vs_sync_state & IP_VS_STATE_BACKUP) {
2491 d[1].state = IP_VS_STATE_BACKUP;
2492 strlcpy(d[1].mcast_ifn, ip_vs_backup_mcast_ifn, sizeof(d[1].mcast_ifn));
2493 d[1].syncid = ip_vs_backup_syncid;
2494 }
2495 if (copy_to_user(user, &d, sizeof(d)) != 0)
2496 ret = -EFAULT;
2497 }
2498 break;
2499
2500 default:
2501 ret = -EINVAL;
2502 }
2503
2504 out:
2505 mutex_unlock(&__ip_vs_mutex);
2506 return ret;
2507 }
2508
2509
2510 static struct nf_sockopt_ops ip_vs_sockopts = {
2511 .pf = PF_INET,
2512 .set_optmin = IP_VS_BASE_CTL,
2513 .set_optmax = IP_VS_SO_SET_MAX+1,
2514 .set = do_ip_vs_set_ctl,
2515 .get_optmin = IP_VS_BASE_CTL,
2516 .get_optmax = IP_VS_SO_GET_MAX+1,
2517 .get = do_ip_vs_get_ctl,
2518 .owner = THIS_MODULE,
2519 };
2520
2521 /*
2522 * Generic Netlink interface
2523 */
2524
2525 /* IPVS genetlink family */
2526 static struct genl_family ip_vs_genl_family = {
2527 .id = GENL_ID_GENERATE,
2528 .hdrsize = 0,
2529 .name = IPVS_GENL_NAME,
2530 .version = IPVS_GENL_VERSION,
2531 .maxattr = IPVS_CMD_MAX,
2532 };
2533
2534 /* Policy used for first-level command attributes */
2535 static const struct nla_policy ip_vs_cmd_policy[IPVS_CMD_ATTR_MAX + 1] = {
2536 [IPVS_CMD_ATTR_SERVICE] = { .type = NLA_NESTED },
2537 [IPVS_CMD_ATTR_DEST] = { .type = NLA_NESTED },
2538 [IPVS_CMD_ATTR_DAEMON] = { .type = NLA_NESTED },
2539 [IPVS_CMD_ATTR_TIMEOUT_TCP] = { .type = NLA_U32 },
2540 [IPVS_CMD_ATTR_TIMEOUT_TCP_FIN] = { .type = NLA_U32 },
2541 [IPVS_CMD_ATTR_TIMEOUT_UDP] = { .type = NLA_U32 },
2542 };
2543
2544 /* Policy used for attributes in nested attribute IPVS_CMD_ATTR_DAEMON */
2545 static const struct nla_policy ip_vs_daemon_policy[IPVS_DAEMON_ATTR_MAX + 1] = {
2546 [IPVS_DAEMON_ATTR_STATE] = { .type = NLA_U32 },
2547 [IPVS_DAEMON_ATTR_MCAST_IFN] = { .type = NLA_NUL_STRING,
2548 .len = IP_VS_IFNAME_MAXLEN },
2549 [IPVS_DAEMON_ATTR_SYNC_ID] = { .type = NLA_U32 },
2550 };
2551
2552 /* Policy used for attributes in nested attribute IPVS_CMD_ATTR_SERVICE */
2553 static const struct nla_policy ip_vs_svc_policy[IPVS_SVC_ATTR_MAX + 1] = {
2554 [IPVS_SVC_ATTR_AF] = { .type = NLA_U16 },
2555 [IPVS_SVC_ATTR_PROTOCOL] = { .type = NLA_U16 },
2556 [IPVS_SVC_ATTR_ADDR] = { .type = NLA_BINARY,
2557 .len = sizeof(union nf_inet_addr) },
2558 [IPVS_SVC_ATTR_PORT] = { .type = NLA_U16 },
2559 [IPVS_SVC_ATTR_FWMARK] = { .type = NLA_U32 },
2560 [IPVS_SVC_ATTR_SCHED_NAME] = { .type = NLA_NUL_STRING,
2561 .len = IP_VS_SCHEDNAME_MAXLEN },
2562 [IPVS_SVC_ATTR_FLAGS] = { .type = NLA_BINARY,
2563 .len = sizeof(struct ip_vs_flags) },
2564 [IPVS_SVC_ATTR_TIMEOUT] = { .type = NLA_U32 },
2565 [IPVS_SVC_ATTR_NETMASK] = { .type = NLA_U32 },
2566 [IPVS_SVC_ATTR_STATS] = { .type = NLA_NESTED },
2567 };
2568
2569 /* Policy used for attributes in nested attribute IPVS_CMD_ATTR_DEST */
2570 static const struct nla_policy ip_vs_dest_policy[IPVS_DEST_ATTR_MAX + 1] = {
2571 [IPVS_DEST_ATTR_ADDR] = { .type = NLA_BINARY,
2572 .len = sizeof(union nf_inet_addr) },
2573 [IPVS_DEST_ATTR_PORT] = { .type = NLA_U16 },
2574 [IPVS_DEST_ATTR_FWD_METHOD] = { .type = NLA_U32 },
2575 [IPVS_DEST_ATTR_WEIGHT] = { .type = NLA_U32 },
2576 [IPVS_DEST_ATTR_U_THRESH] = { .type = NLA_U32 },
2577 [IPVS_DEST_ATTR_L_THRESH] = { .type = NLA_U32 },
2578 [IPVS_DEST_ATTR_ACTIVE_CONNS] = { .type = NLA_U32 },
2579 [IPVS_DEST_ATTR_INACT_CONNS] = { .type = NLA_U32 },
2580 [IPVS_DEST_ATTR_PERSIST_CONNS] = { .type = NLA_U32 },
2581 [IPVS_DEST_ATTR_STATS] = { .type = NLA_NESTED },
2582 };
2583
2584 static int ip_vs_genl_fill_stats(struct sk_buff *skb, int container_type,
2585 struct ip_vs_stats *stats)
2586 {
2587 struct nlattr *nl_stats = nla_nest_start(skb, container_type);
2588 if (!nl_stats)
2589 return -EMSGSIZE;
2590
2591 spin_lock_bh(&stats->lock);
2592
2593 NLA_PUT_U32(skb, IPVS_STATS_ATTR_CONNS, stats->ustats.conns);
2594 NLA_PUT_U32(skb, IPVS_STATS_ATTR_INPKTS, stats->ustats.inpkts);
2595 NLA_PUT_U32(skb, IPVS_STATS_ATTR_OUTPKTS, stats->ustats.outpkts);
2596 NLA_PUT_U64(skb, IPVS_STATS_ATTR_INBYTES, stats->ustats.inbytes);
2597 NLA_PUT_U64(skb, IPVS_STATS_ATTR_OUTBYTES, stats->ustats.outbytes);
2598 NLA_PUT_U32(skb, IPVS_STATS_ATTR_CPS, stats->ustats.cps);
2599 NLA_PUT_U32(skb, IPVS_STATS_ATTR_INPPS, stats->ustats.inpps);
2600 NLA_PUT_U32(skb, IPVS_STATS_ATTR_OUTPPS, stats->ustats.outpps);
2601 NLA_PUT_U32(skb, IPVS_STATS_ATTR_INBPS, stats->ustats.inbps);
2602 NLA_PUT_U32(skb, IPVS_STATS_ATTR_OUTBPS, stats->ustats.outbps);
2603
2604 spin_unlock_bh(&stats->lock);
2605
2606 nla_nest_end(skb, nl_stats);
2607
2608 return 0;
2609
2610 nla_put_failure:
2611 spin_unlock_bh(&stats->lock);
2612 nla_nest_cancel(skb, nl_stats);
2613 return -EMSGSIZE;
2614 }
2615
2616 static int ip_vs_genl_fill_service(struct sk_buff *skb,
2617 struct ip_vs_service *svc)
2618 {
2619 struct nlattr *nl_service;
2620 struct ip_vs_flags flags = { .flags = svc->flags,
2621 .mask = ~0 };
2622
2623 nl_service = nla_nest_start(skb, IPVS_CMD_ATTR_SERVICE);
2624 if (!nl_service)
2625 return -EMSGSIZE;
2626
2627 NLA_PUT_U16(skb, IPVS_SVC_ATTR_AF, svc->af);
2628
2629 if (svc->fwmark) {
2630 NLA_PUT_U32(skb, IPVS_SVC_ATTR_FWMARK, svc->fwmark);
2631 } else {
2632 NLA_PUT_U16(skb, IPVS_SVC_ATTR_PROTOCOL, svc->protocol);
2633 NLA_PUT(skb, IPVS_SVC_ATTR_ADDR, sizeof(svc->addr), &svc->addr);
2634 NLA_PUT_U16(skb, IPVS_SVC_ATTR_PORT, svc->port);
2635 }
2636
2637 NLA_PUT_STRING(skb, IPVS_SVC_ATTR_SCHED_NAME, svc->scheduler->name);
2638 NLA_PUT(skb, IPVS_SVC_ATTR_FLAGS, sizeof(flags), &flags);
2639 NLA_PUT_U32(skb, IPVS_SVC_ATTR_TIMEOUT, svc->timeout / HZ);
2640 NLA_PUT_U32(skb, IPVS_SVC_ATTR_NETMASK, svc->netmask);
2641
2642 if (ip_vs_genl_fill_stats(skb, IPVS_SVC_ATTR_STATS, &svc->stats))
2643 goto nla_put_failure;
2644
2645 nla_nest_end(skb, nl_service);
2646
2647 return 0;
2648
2649 nla_put_failure:
2650 nla_nest_cancel(skb, nl_service);
2651 return -EMSGSIZE;
2652 }
2653
2654 static int ip_vs_genl_dump_service(struct sk_buff *skb,
2655 struct ip_vs_service *svc,
2656 struct netlink_callback *cb)
2657 {
2658 void *hdr;
2659
2660 hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq,
2661 &ip_vs_genl_family, NLM_F_MULTI,
2662 IPVS_CMD_NEW_SERVICE);
2663 if (!hdr)
2664 return -EMSGSIZE;
2665
2666 if (ip_vs_genl_fill_service(skb, svc) < 0)
2667 goto nla_put_failure;
2668
2669 return genlmsg_end(skb, hdr);
2670
2671 nla_put_failure:
2672 genlmsg_cancel(skb, hdr);
2673 return -EMSGSIZE;
2674 }
2675
2676 static int ip_vs_genl_dump_services(struct sk_buff *skb,
2677 struct netlink_callback *cb)
2678 {
2679 int idx = 0, i;
2680 int start = cb->args[0];
2681 struct ip_vs_service *svc;
2682
2683 mutex_lock(&__ip_vs_mutex);
2684 for (i = 0; i < IP_VS_SVC_TAB_SIZE; i++) {
2685 list_for_each_entry(svc, &ip_vs_svc_table[i], s_list) {
2686 if (++idx <= start)
2687 continue;
2688 if (ip_vs_genl_dump_service(skb, svc, cb) < 0) {
2689 idx--;
2690 goto nla_put_failure;
2691 }
2692 }
2693 }
2694
2695 for (i = 0; i < IP_VS_SVC_TAB_SIZE; i++) {
2696 list_for_each_entry(svc, &ip_vs_svc_fwm_table[i], f_list) {
2697 if (++idx <= start)
2698 continue;
2699 if (ip_vs_genl_dump_service(skb, svc, cb) < 0) {
2700 idx--;
2701 goto nla_put_failure;
2702 }
2703 }
2704 }
2705
2706 nla_put_failure:
2707 mutex_unlock(&__ip_vs_mutex);
2708 cb->args[0] = idx;
2709
2710 return skb->len;
2711 }
2712
2713 static int ip_vs_genl_parse_service(struct ip_vs_service_user_kern *usvc,
2714 struct nlattr *nla, int full_entry)
2715 {
2716 struct nlattr *attrs[IPVS_SVC_ATTR_MAX + 1];
2717 struct nlattr *nla_af, *nla_port, *nla_fwmark, *nla_protocol, *nla_addr;
2718
2719 /* Parse mandatory identifying service fields first */
2720 if (nla == NULL ||
2721 nla_parse_nested(attrs, IPVS_SVC_ATTR_MAX, nla, ip_vs_svc_policy))
2722 return -EINVAL;
2723
2724 nla_af = attrs[IPVS_SVC_ATTR_AF];
2725 nla_protocol = attrs[IPVS_SVC_ATTR_PROTOCOL];
2726 nla_addr = attrs[IPVS_SVC_ATTR_ADDR];
2727 nla_port = attrs[IPVS_SVC_ATTR_PORT];
2728 nla_fwmark = attrs[IPVS_SVC_ATTR_FWMARK];
2729
2730 if (!(nla_af && (nla_fwmark || (nla_port && nla_protocol && nla_addr))))
2731 return -EINVAL;
2732
2733 memset(usvc, 0, sizeof(*usvc));
2734
2735 usvc->af = nla_get_u16(nla_af);
2736 #ifdef CONFIG_IP_VS_IPV6
2737 if (usvc->af != AF_INET && usvc->af != AF_INET6)
2738 #else
2739 if (usvc->af != AF_INET)
2740 #endif
2741 return -EAFNOSUPPORT;
2742
2743 if (nla_fwmark) {
2744 usvc->protocol = IPPROTO_TCP;
2745 usvc->fwmark = nla_get_u32(nla_fwmark);
2746 } else {
2747 usvc->protocol = nla_get_u16(nla_protocol);
2748 nla_memcpy(&usvc->addr, nla_addr, sizeof(usvc->addr));
2749 usvc->port = nla_get_u16(nla_port);
2750 usvc->fwmark = 0;
2751 }
2752
2753 /* If a full entry was requested, check for the additional fields */
2754 if (full_entry) {
2755 struct nlattr *nla_sched, *nla_flags, *nla_timeout,
2756 *nla_netmask;
2757 struct ip_vs_flags flags;
2758 struct ip_vs_service *svc;
2759
2760 nla_sched = attrs[IPVS_SVC_ATTR_SCHED_NAME];
2761 nla_flags = attrs[IPVS_SVC_ATTR_FLAGS];
2762 nla_timeout = attrs[IPVS_SVC_ATTR_TIMEOUT];
2763 nla_netmask = attrs[IPVS_SVC_ATTR_NETMASK];
2764
2765 if (!(nla_sched && nla_flags && nla_timeout && nla_netmask))
2766 return -EINVAL;
2767
2768 nla_memcpy(&flags, nla_flags, sizeof(flags));
2769
2770 /* prefill flags from service if it already exists */
2771 if (usvc->fwmark)
2772 svc = __ip_vs_svc_fwm_get(usvc->af, usvc->fwmark);
2773 else
2774 svc = __ip_vs_service_get(usvc->af, usvc->protocol,
2775 &usvc->addr, usvc->port);
2776 if (svc) {
2777 usvc->flags = svc->flags;
2778 ip_vs_service_put(svc);
2779 } else
2780 usvc->flags = 0;
2781
2782 /* set new flags from userland */
2783 usvc->flags = (usvc->flags & ~flags.mask) |
2784 (flags.flags & flags.mask);
2785 usvc->sched_name = nla_data(nla_sched);
2786 usvc->timeout = nla_get_u32(nla_timeout);
2787 usvc->netmask = nla_get_u32(nla_netmask);
2788 }
2789
2790 return 0;
2791 }
2792
2793 static struct ip_vs_service *ip_vs_genl_find_service(struct nlattr *nla)
2794 {
2795 struct ip_vs_service_user_kern usvc;
2796 int ret;
2797
2798 ret = ip_vs_genl_parse_service(&usvc, nla, 0);
2799 if (ret)
2800 return ERR_PTR(ret);
2801
2802 if (usvc.fwmark)
2803 return __ip_vs_svc_fwm_get(usvc.af, usvc.fwmark);
2804 else
2805 return __ip_vs_service_get(usvc.af, usvc.protocol,
2806 &usvc.addr, usvc.port);
2807 }
2808
2809 static int ip_vs_genl_fill_dest(struct sk_buff *skb, struct ip_vs_dest *dest)
2810 {
2811 struct nlattr *nl_dest;
2812
2813 nl_dest = nla_nest_start(skb, IPVS_CMD_ATTR_DEST);
2814 if (!nl_dest)
2815 return -EMSGSIZE;
2816
2817 NLA_PUT(skb, IPVS_DEST_ATTR_ADDR, sizeof(dest->addr), &dest->addr);
2818 NLA_PUT_U16(skb, IPVS_DEST_ATTR_PORT, dest->port);
2819
2820 NLA_PUT_U32(skb, IPVS_DEST_ATTR_FWD_METHOD,
2821 atomic_read(&dest->conn_flags) & IP_VS_CONN_F_FWD_MASK);
2822 NLA_PUT_U32(skb, IPVS_DEST_ATTR_WEIGHT, atomic_read(&dest->weight));
2823 NLA_PUT_U32(skb, IPVS_DEST_ATTR_U_THRESH, dest->u_threshold);
2824 NLA_PUT_U32(skb, IPVS_DEST_ATTR_L_THRESH, dest->l_threshold);
2825 NLA_PUT_U32(skb, IPVS_DEST_ATTR_ACTIVE_CONNS,
2826 atomic_read(&dest->activeconns));
2827 NLA_PUT_U32(skb, IPVS_DEST_ATTR_INACT_CONNS,
2828 atomic_read(&dest->inactconns));
2829 NLA_PUT_U32(skb, IPVS_DEST_ATTR_PERSIST_CONNS,
2830 atomic_read(&dest->persistconns));
2831
2832 if (ip_vs_genl_fill_stats(skb, IPVS_DEST_ATTR_STATS, &dest->stats))
2833 goto nla_put_failure;
2834
2835 nla_nest_end(skb, nl_dest);
2836
2837 return 0;
2838
2839 nla_put_failure:
2840 nla_nest_cancel(skb, nl_dest);
2841 return -EMSGSIZE;
2842 }
2843
2844 static int ip_vs_genl_dump_dest(struct sk_buff *skb, struct ip_vs_dest *dest,
2845 struct netlink_callback *cb)
2846 {
2847 void *hdr;
2848
2849 hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq,
2850 &ip_vs_genl_family, NLM_F_MULTI,
2851 IPVS_CMD_NEW_DEST);
2852 if (!hdr)
2853 return -EMSGSIZE;
2854
2855 if (ip_vs_genl_fill_dest(skb, dest) < 0)
2856 goto nla_put_failure;
2857
2858 return genlmsg_end(skb, hdr);
2859
2860 nla_put_failure:
2861 genlmsg_cancel(skb, hdr);
2862 return -EMSGSIZE;
2863 }
2864
2865 static int ip_vs_genl_dump_dests(struct sk_buff *skb,
2866 struct netlink_callback *cb)
2867 {
2868 int idx = 0;
2869 int start = cb->args[0];
2870 struct ip_vs_service *svc;
2871 struct ip_vs_dest *dest;
2872 struct nlattr *attrs[IPVS_CMD_ATTR_MAX + 1];
2873
2874 mutex_lock(&__ip_vs_mutex);
2875
2876 /* Try to find the service for which to dump destinations */
2877 if (nlmsg_parse(cb->nlh, GENL_HDRLEN, attrs,
2878 IPVS_CMD_ATTR_MAX, ip_vs_cmd_policy))
2879 goto out_err;
2880
2881 svc = ip_vs_genl_find_service(attrs[IPVS_CMD_ATTR_SERVICE]);
2882 if (IS_ERR(svc) || svc == NULL)
2883 goto out_err;
2884
2885 /* Dump the destinations */
2886 list_for_each_entry(dest, &svc->destinations, n_list) {
2887 if (++idx <= start)
2888 continue;
2889 if (ip_vs_genl_dump_dest(skb, dest, cb) < 0) {
2890 idx--;
2891 goto nla_put_failure;
2892 }
2893 }
2894
2895 nla_put_failure:
2896 cb->args[0] = idx;
2897 ip_vs_service_put(svc);
2898
2899 out_err:
2900 mutex_unlock(&__ip_vs_mutex);
2901
2902 return skb->len;
2903 }
2904
2905 static int ip_vs_genl_parse_dest(struct ip_vs_dest_user_kern *udest,
2906 struct nlattr *nla, int full_entry)
2907 {
2908 struct nlattr *attrs[IPVS_DEST_ATTR_MAX + 1];
2909 struct nlattr *nla_addr, *nla_port;
2910
2911 /* Parse mandatory identifying destination fields first */
2912 if (nla == NULL ||
2913 nla_parse_nested(attrs, IPVS_DEST_ATTR_MAX, nla, ip_vs_dest_policy))
2914 return -EINVAL;
2915
2916 nla_addr = attrs[IPVS_DEST_ATTR_ADDR];
2917 nla_port = attrs[IPVS_DEST_ATTR_PORT];
2918
2919 if (!(nla_addr && nla_port))
2920 return -EINVAL;
2921
2922 memset(udest, 0, sizeof(*udest));
2923
2924 nla_memcpy(&udest->addr, nla_addr, sizeof(udest->addr));
2925 udest->port = nla_get_u16(nla_port);
2926
2927 /* If a full entry was requested, check for the additional fields */
2928 if (full_entry) {
2929 struct nlattr *nla_fwd, *nla_weight, *nla_u_thresh,
2930 *nla_l_thresh;
2931
2932 nla_fwd = attrs[IPVS_DEST_ATTR_FWD_METHOD];
2933 nla_weight = attrs[IPVS_DEST_ATTR_WEIGHT];
2934 nla_u_thresh = attrs[IPVS_DEST_ATTR_U_THRESH];
2935 nla_l_thresh = attrs[IPVS_DEST_ATTR_L_THRESH];
2936
2937 if (!(nla_fwd && nla_weight && nla_u_thresh && nla_l_thresh))
2938 return -EINVAL;
2939
2940 udest->conn_flags = nla_get_u32(nla_fwd)
2941 & IP_VS_CONN_F_FWD_MASK;
2942 udest->weight = nla_get_u32(nla_weight);
2943 udest->u_threshold = nla_get_u32(nla_u_thresh);
2944 udest->l_threshold = nla_get_u32(nla_l_thresh);
2945 }
2946
2947 return 0;
2948 }
2949
2950 static int ip_vs_genl_fill_daemon(struct sk_buff *skb, __be32 state,
2951 const char *mcast_ifn, __be32 syncid)
2952 {
2953 struct nlattr *nl_daemon;
2954
2955 nl_daemon = nla_nest_start(skb, IPVS_CMD_ATTR_DAEMON);
2956 if (!nl_daemon)
2957 return -EMSGSIZE;
2958
2959 NLA_PUT_U32(skb, IPVS_DAEMON_ATTR_STATE, state);
2960 NLA_PUT_STRING(skb, IPVS_DAEMON_ATTR_MCAST_IFN, mcast_ifn);
2961 NLA_PUT_U32(skb, IPVS_DAEMON_ATTR_SYNC_ID, syncid);
2962
2963 nla_nest_end(skb, nl_daemon);
2964
2965 return 0;
2966
2967 nla_put_failure:
2968 nla_nest_cancel(skb, nl_daemon);
2969 return -EMSGSIZE;
2970 }
2971
2972 static int ip_vs_genl_dump_daemon(struct sk_buff *skb, __be32 state,
2973 const char *mcast_ifn, __be32 syncid,
2974 struct netlink_callback *cb)
2975 {
2976 void *hdr;
2977 hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq,
2978 &ip_vs_genl_family, NLM_F_MULTI,
2979 IPVS_CMD_NEW_DAEMON);
2980 if (!hdr)
2981 return -EMSGSIZE;
2982
2983 if (ip_vs_genl_fill_daemon(skb, state, mcast_ifn, syncid))
2984 goto nla_put_failure;
2985
2986 return genlmsg_end(skb, hdr);
2987
2988 nla_put_failure:
2989 genlmsg_cancel(skb, hdr);
2990 return -EMSGSIZE;
2991 }
2992
2993 static int ip_vs_genl_dump_daemons(struct sk_buff *skb,
2994 struct netlink_callback *cb)
2995 {
2996 mutex_lock(&__ip_vs_mutex);
2997 if ((ip_vs_sync_state & IP_VS_STATE_MASTER) && !cb->args[0]) {
2998 if (ip_vs_genl_dump_daemon(skb, IP_VS_STATE_MASTER,
2999 ip_vs_master_mcast_ifn,
3000 ip_vs_master_syncid, cb) < 0)
3001 goto nla_put_failure;
3002
3003 cb->args[0] = 1;
3004 }
3005
3006 if ((ip_vs_sync_state & IP_VS_STATE_BACKUP) && !cb->args[1]) {
3007 if (ip_vs_genl_dump_daemon(skb, IP_VS_STATE_BACKUP,
3008 ip_vs_backup_mcast_ifn,
3009 ip_vs_backup_syncid, cb) < 0)
3010 goto nla_put_failure;
3011
3012 cb->args[1] = 1;
3013 }
3014
3015 nla_put_failure:
3016 mutex_unlock(&__ip_vs_mutex);
3017
3018 return skb->len;
3019 }
3020
3021 static int ip_vs_genl_new_daemon(struct nlattr **attrs)
3022 {
3023 if (!(attrs[IPVS_DAEMON_ATTR_STATE] &&
3024 attrs[IPVS_DAEMON_ATTR_MCAST_IFN] &&
3025 attrs[IPVS_DAEMON_ATTR_SYNC_ID]))
3026 return -EINVAL;
3027
3028 return start_sync_thread(nla_get_u32(attrs[IPVS_DAEMON_ATTR_STATE]),
3029 nla_data(attrs[IPVS_DAEMON_ATTR_MCAST_IFN]),
3030 nla_get_u32(attrs[IPVS_DAEMON_ATTR_SYNC_ID]));
3031 }
3032
3033 static int ip_vs_genl_del_daemon(struct nlattr **attrs)
3034 {
3035 if (!attrs[IPVS_DAEMON_ATTR_STATE])
3036 return -EINVAL;
3037
3038 return stop_sync_thread(nla_get_u32(attrs[IPVS_DAEMON_ATTR_STATE]));
3039 }
3040
3041 static int ip_vs_genl_set_config(struct nlattr **attrs)
3042 {
3043 struct ip_vs_timeout_user t;
3044
3045 __ip_vs_get_timeouts(&t);
3046
3047 if (attrs[IPVS_CMD_ATTR_TIMEOUT_TCP])
3048 t.tcp_timeout = nla_get_u32(attrs[IPVS_CMD_ATTR_TIMEOUT_TCP]);
3049
3050 if (attrs[IPVS_CMD_ATTR_TIMEOUT_TCP_FIN])
3051 t.tcp_fin_timeout =
3052 nla_get_u32(attrs[IPVS_CMD_ATTR_TIMEOUT_TCP_FIN]);
3053
3054 if (attrs[IPVS_CMD_ATTR_TIMEOUT_UDP])
3055 t.udp_timeout = nla_get_u32(attrs[IPVS_CMD_ATTR_TIMEOUT_UDP]);
3056
3057 return ip_vs_set_timeout(&t);
3058 }
3059
3060 static int ip_vs_genl_set_cmd(struct sk_buff *skb, struct genl_info *info)
3061 {
3062 struct ip_vs_service *svc = NULL;
3063 struct ip_vs_service_user_kern usvc;
3064 struct ip_vs_dest_user_kern udest;
3065 int ret = 0, cmd;
3066 int need_full_svc = 0, need_full_dest = 0;
3067
3068 cmd = info->genlhdr->cmd;
3069
3070 mutex_lock(&__ip_vs_mutex);
3071
3072 if (cmd == IPVS_CMD_FLUSH) {
3073 ret = ip_vs_flush();
3074 goto out;
3075 } else if (cmd == IPVS_CMD_SET_CONFIG) {
3076 ret = ip_vs_genl_set_config(info->attrs);
3077 goto out;
3078 } else if (cmd == IPVS_CMD_NEW_DAEMON ||
3079 cmd == IPVS_CMD_DEL_DAEMON) {
3080
3081 struct nlattr *daemon_attrs[IPVS_DAEMON_ATTR_MAX + 1];
3082
3083 if (!info->attrs[IPVS_CMD_ATTR_DAEMON] ||
3084 nla_parse_nested(daemon_attrs, IPVS_DAEMON_ATTR_MAX,
3085 info->attrs[IPVS_CMD_ATTR_DAEMON],
3086 ip_vs_daemon_policy)) {
3087 ret = -EINVAL;
3088 goto out;
3089 }
3090
3091 if (cmd == IPVS_CMD_NEW_DAEMON)
3092 ret = ip_vs_genl_new_daemon(daemon_attrs);
3093 else
3094 ret = ip_vs_genl_del_daemon(daemon_attrs);
3095 goto out;
3096 } else if (cmd == IPVS_CMD_ZERO &&
3097 !info->attrs[IPVS_CMD_ATTR_SERVICE]) {
3098 ret = ip_vs_zero_all();
3099 goto out;
3100 }
3101
3102 /* All following commands require a service argument, so check if we
3103 * received a valid one. We need a full service specification when
3104 * adding / editing a service. Only identifying members otherwise. */
3105 if (cmd == IPVS_CMD_NEW_SERVICE || cmd == IPVS_CMD_SET_SERVICE)
3106 need_full_svc = 1;
3107
3108 ret = ip_vs_genl_parse_service(&usvc,
3109 info->attrs[IPVS_CMD_ATTR_SERVICE],
3110 need_full_svc);
3111 if (ret)
3112 goto out;
3113
3114 /* Lookup the exact service by <protocol, addr, port> or fwmark */
3115 if (usvc.fwmark == 0)
3116 svc = __ip_vs_service_get(usvc.af, usvc.protocol,
3117 &usvc.addr, usvc.port);
3118 else
3119 svc = __ip_vs_svc_fwm_get(usvc.af, usvc.fwmark);
3120
3121 /* Unless we're adding a new service, the service must already exist */
3122 if ((cmd != IPVS_CMD_NEW_SERVICE) && (svc == NULL)) {
3123 ret = -ESRCH;
3124 goto out;
3125 }
3126
3127 /* Destination commands require a valid destination argument. For
3128 * adding / editing a destination, we need a full destination
3129 * specification. */
3130 if (cmd == IPVS_CMD_NEW_DEST || cmd == IPVS_CMD_SET_DEST ||
3131 cmd == IPVS_CMD_DEL_DEST) {
3132 if (cmd != IPVS_CMD_DEL_DEST)
3133 need_full_dest = 1;
3134
3135 ret = ip_vs_genl_parse_dest(&udest,
3136 info->attrs[IPVS_CMD_ATTR_DEST],
3137 need_full_dest);
3138 if (ret)
3139 goto out;
3140 }
3141
3142 switch (cmd) {
3143 case IPVS_CMD_NEW_SERVICE:
3144 if (svc == NULL)
3145 ret = ip_vs_add_service(&usvc, &svc);
3146 else
3147 ret = -EEXIST;
3148 break;
3149 case IPVS_CMD_SET_SERVICE:
3150 ret = ip_vs_edit_service(svc, &usvc);
3151 break;
3152 case IPVS_CMD_DEL_SERVICE:
3153 ret = ip_vs_del_service(svc);
3154 break;
3155 case IPVS_CMD_NEW_DEST:
3156 ret = ip_vs_add_dest(svc, &udest);
3157 break;
3158 case IPVS_CMD_SET_DEST:
3159 ret = ip_vs_edit_dest(svc, &udest);
3160 break;
3161 case IPVS_CMD_DEL_DEST:
3162 ret = ip_vs_del_dest(svc, &udest);
3163 break;
3164 case IPVS_CMD_ZERO:
3165 ret = ip_vs_zero_service(svc);
3166 break;
3167 default:
3168 ret = -EINVAL;
3169 }
3170
3171 out:
3172 if (svc)
3173 ip_vs_service_put(svc);
3174 mutex_unlock(&__ip_vs_mutex);
3175
3176 return ret;
3177 }
3178
3179 static int ip_vs_genl_get_cmd(struct sk_buff *skb, struct genl_info *info)
3180 {
3181 struct sk_buff *msg;
3182 void *reply;
3183 int ret, cmd, reply_cmd;
3184
3185 cmd = info->genlhdr->cmd;
3186
3187 if (cmd == IPVS_CMD_GET_SERVICE)
3188 reply_cmd = IPVS_CMD_NEW_SERVICE;
3189 else if (cmd == IPVS_CMD_GET_INFO)
3190 reply_cmd = IPVS_CMD_SET_INFO;
3191 else if (cmd == IPVS_CMD_GET_CONFIG)
3192 reply_cmd = IPVS_CMD_SET_CONFIG;
3193 else {
3194 pr_err("unknown Generic Netlink command\n");
3195 return -EINVAL;
3196 }
3197
3198 msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
3199 if (!msg)
3200 return -ENOMEM;
3201
3202 mutex_lock(&__ip_vs_mutex);
3203
3204 reply = genlmsg_put_reply(msg, info, &ip_vs_genl_family, 0, reply_cmd);
3205 if (reply == NULL)
3206 goto nla_put_failure;
3207
3208 switch (cmd) {
3209 case IPVS_CMD_GET_SERVICE:
3210 {
3211 struct ip_vs_service *svc;
3212
3213 svc = ip_vs_genl_find_service(info->attrs[IPVS_CMD_ATTR_SERVICE]);
3214 if (IS_ERR(svc)) {
3215 ret = PTR_ERR(svc);
3216 goto out_err;
3217 } else if (svc) {
3218 ret = ip_vs_genl_fill_service(msg, svc);
3219 ip_vs_service_put(svc);
3220 if (ret)
3221 goto nla_put_failure;
3222 } else {
3223 ret = -ESRCH;
3224 goto out_err;
3225 }
3226
3227 break;
3228 }
3229
3230 case IPVS_CMD_GET_CONFIG:
3231 {
3232 struct ip_vs_timeout_user t;
3233
3234 __ip_vs_get_timeouts(&t);
3235 #ifdef CONFIG_IP_VS_PROTO_TCP
3236 NLA_PUT_U32(msg, IPVS_CMD_ATTR_TIMEOUT_TCP, t.tcp_timeout);
3237 NLA_PUT_U32(msg, IPVS_CMD_ATTR_TIMEOUT_TCP_FIN,
3238 t.tcp_fin_timeout);
3239 #endif
3240 #ifdef CONFIG_IP_VS_PROTO_UDP
3241 NLA_PUT_U32(msg, IPVS_CMD_ATTR_TIMEOUT_UDP, t.udp_timeout);
3242 #endif
3243
3244 break;
3245 }
3246
3247 case IPVS_CMD_GET_INFO:
3248 NLA_PUT_U32(msg, IPVS_INFO_ATTR_VERSION, IP_VS_VERSION_CODE);
3249 NLA_PUT_U32(msg, IPVS_INFO_ATTR_CONN_TAB_SIZE,
3250 ip_vs_conn_tab_size);
3251 break;
3252 }
3253
3254 genlmsg_end(msg, reply);
3255 ret = genlmsg_reply(msg, info);
3256 goto out;
3257
3258 nla_put_failure:
3259 pr_err("not enough space in Netlink message\n");
3260 ret = -EMSGSIZE;
3261
3262 out_err:
3263 nlmsg_free(msg);
3264 out:
3265 mutex_unlock(&__ip_vs_mutex);
3266
3267 return ret;
3268 }
3269
3270
3271 static struct genl_ops ip_vs_genl_ops[] __read_mostly = {
3272 {
3273 .cmd = IPVS_CMD_NEW_SERVICE,
3274 .flags = GENL_ADMIN_PERM,
3275 .policy = ip_vs_cmd_policy,
3276 .doit = ip_vs_genl_set_cmd,
3277 },
3278 {
3279 .cmd = IPVS_CMD_SET_SERVICE,
3280 .flags = GENL_ADMIN_PERM,
3281 .policy = ip_vs_cmd_policy,
3282 .doit = ip_vs_genl_set_cmd,
3283 },
3284 {
3285 .cmd = IPVS_CMD_DEL_SERVICE,
3286 .flags = GENL_ADMIN_PERM,
3287 .policy = ip_vs_cmd_policy,
3288 .doit = ip_vs_genl_set_cmd,
3289 },
3290 {
3291 .cmd = IPVS_CMD_GET_SERVICE,
3292 .flags = GENL_ADMIN_PERM,
3293 .doit = ip_vs_genl_get_cmd,
3294 .dumpit = ip_vs_genl_dump_services,
3295 .policy = ip_vs_cmd_policy,
3296 },
3297 {
3298 .cmd = IPVS_CMD_NEW_DEST,
3299 .flags = GENL_ADMIN_PERM,
3300 .policy = ip_vs_cmd_policy,
3301 .doit = ip_vs_genl_set_cmd,
3302 },
3303 {
3304 .cmd = IPVS_CMD_SET_DEST,
3305 .flags = GENL_ADMIN_PERM,
3306 .policy = ip_vs_cmd_policy,
3307 .doit = ip_vs_genl_set_cmd,
3308 },
3309 {
3310 .cmd = IPVS_CMD_DEL_DEST,
3311 .flags = GENL_ADMIN_PERM,
3312 .policy = ip_vs_cmd_policy,
3313 .doit = ip_vs_genl_set_cmd,
3314 },
3315 {
3316 .cmd = IPVS_CMD_GET_DEST,
3317 .flags = GENL_ADMIN_PERM,
3318 .policy = ip_vs_cmd_policy,
3319 .dumpit = ip_vs_genl_dump_dests,
3320 },
3321 {
3322 .cmd = IPVS_CMD_NEW_DAEMON,
3323 .flags = GENL_ADMIN_PERM,
3324 .policy = ip_vs_cmd_policy,
3325 .doit = ip_vs_genl_set_cmd,
3326 },
3327 {
3328 .cmd = IPVS_CMD_DEL_DAEMON,
3329 .flags = GENL_ADMIN_PERM,
3330 .policy = ip_vs_cmd_policy,
3331 .doit = ip_vs_genl_set_cmd,
3332 },
3333 {
3334 .cmd = IPVS_CMD_GET_DAEMON,
3335 .flags = GENL_ADMIN_PERM,
3336 .dumpit = ip_vs_genl_dump_daemons,
3337 },
3338 {
3339 .cmd = IPVS_CMD_SET_CONFIG,
3340 .flags = GENL_ADMIN_PERM,
3341 .policy = ip_vs_cmd_policy,
3342 .doit = ip_vs_genl_set_cmd,
3343 },
3344 {
3345 .cmd = IPVS_CMD_GET_CONFIG,
3346 .flags = GENL_ADMIN_PERM,
3347 .doit = ip_vs_genl_get_cmd,
3348 },
3349 {
3350 .cmd = IPVS_CMD_GET_INFO,
3351 .flags = GENL_ADMIN_PERM,
3352 .doit = ip_vs_genl_get_cmd,
3353 },
3354 {
3355 .cmd = IPVS_CMD_ZERO,
3356 .flags = GENL_ADMIN_PERM,
3357 .policy = ip_vs_cmd_policy,
3358 .doit = ip_vs_genl_set_cmd,
3359 },
3360 {
3361 .cmd = IPVS_CMD_FLUSH,
3362 .flags = GENL_ADMIN_PERM,
3363 .doit = ip_vs_genl_set_cmd,
3364 },
3365 };
3366
3367 static int __init ip_vs_genl_register(void)
3368 {
3369 return genl_register_family_with_ops(&ip_vs_genl_family,
3370 ip_vs_genl_ops, ARRAY_SIZE(ip_vs_genl_ops));
3371 }
3372
3373 static void ip_vs_genl_unregister(void)
3374 {
3375 genl_unregister_family(&ip_vs_genl_family);
3376 }
3377
3378 /* End of Generic Netlink interface definitions */
3379
3380
3381 int __init ip_vs_control_init(void)
3382 {
3383 int ret;
3384 int idx;
3385
3386 EnterFunction(2);
3387
3388 ret = nf_register_sockopt(&ip_vs_sockopts);
3389 if (ret) {
3390 pr_err("cannot register sockopt.\n");
3391 return ret;
3392 }
3393
3394 ret = ip_vs_genl_register();
3395 if (ret) {
3396 pr_err("cannot register Generic Netlink interface.\n");
3397 nf_unregister_sockopt(&ip_vs_sockopts);
3398 return ret;
3399 }
3400
3401 proc_net_fops_create(&init_net, "ip_vs", 0, &ip_vs_info_fops);
3402 proc_net_fops_create(&init_net, "ip_vs_stats",0, &ip_vs_stats_fops);
3403
3404 sysctl_header = register_sysctl_paths(net_vs_ctl_path, vs_vars);
3405
3406 /* Initialize ip_vs_svc_table, ip_vs_svc_fwm_table, ip_vs_rtable */
3407 for(idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
3408 INIT_LIST_HEAD(&ip_vs_svc_table[idx]);
3409 INIT_LIST_HEAD(&ip_vs_svc_fwm_table[idx]);
3410 }
3411 for(idx = 0; idx < IP_VS_RTAB_SIZE; idx++) {
3412 INIT_LIST_HEAD(&ip_vs_rtable[idx]);
3413 }
3414
3415 ip_vs_new_estimator(&ip_vs_stats);
3416
3417 /* Hook the defense timer */
3418 schedule_delayed_work(&defense_work, DEFENSE_TIMER_PERIOD);
3419
3420 LeaveFunction(2);
3421 return 0;
3422 }
3423
3424
3425 void ip_vs_control_cleanup(void)
3426 {
3427 EnterFunction(2);
3428 ip_vs_trash_cleanup();
3429 cancel_rearming_delayed_work(&defense_work);
3430 cancel_work_sync(&defense_work.work);
3431 ip_vs_kill_estimator(&ip_vs_stats);
3432 unregister_sysctl_table(sysctl_header);
3433 proc_net_remove(&init_net, "ip_vs_stats");
3434 proc_net_remove(&init_net, "ip_vs");
3435 ip_vs_genl_unregister();
3436 nf_unregister_sockopt(&ip_vs_sockopts);
3437 LeaveFunction(2);
3438 }
This page took 0.157541 seconds and 6 git commands to generate.