ext4: check bh in ext4_read_block_bitmap()
[deliverable/linux.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_l3proto.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_nat.h>
49 #include <net/netfilter/nf_nat_core.h>
50
51 #define NF_CONNTRACK_VERSION "0.5.0"
52
53 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
54 enum nf_nat_manip_type manip,
55 const struct nlattr *attr) __read_mostly;
56 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
57
58 int (*nf_nat_seq_adjust_hook)(struct sk_buff *skb,
59 struct nf_conn *ct,
60 enum ip_conntrack_info ctinfo,
61 unsigned int protoff);
62 EXPORT_SYMBOL_GPL(nf_nat_seq_adjust_hook);
63
64 DEFINE_SPINLOCK(nf_conntrack_lock);
65 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
66
67 unsigned int nf_conntrack_htable_size __read_mostly;
68 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
69
70 unsigned int nf_conntrack_max __read_mostly;
71 EXPORT_SYMBOL_GPL(nf_conntrack_max);
72
73 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
74 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
75
76 unsigned int nf_conntrack_hash_rnd __read_mostly;
77 EXPORT_SYMBOL_GPL(nf_conntrack_hash_rnd);
78
79 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple, u16 zone)
80 {
81 unsigned int n;
82
83 /* The direction must be ignored, so we hash everything up to the
84 * destination ports (which is a multiple of 4) and treat the last
85 * three bytes manually.
86 */
87 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
88 return jhash2((u32 *)tuple, n, zone ^ nf_conntrack_hash_rnd ^
89 (((__force __u16)tuple->dst.u.all << 16) |
90 tuple->dst.protonum));
91 }
92
93 static u32 __hash_bucket(u32 hash, unsigned int size)
94 {
95 return ((u64)hash * size) >> 32;
96 }
97
98 static u32 hash_bucket(u32 hash, const struct net *net)
99 {
100 return __hash_bucket(hash, net->ct.htable_size);
101 }
102
103 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
104 u16 zone, unsigned int size)
105 {
106 return __hash_bucket(hash_conntrack_raw(tuple, zone), size);
107 }
108
109 static inline u_int32_t hash_conntrack(const struct net *net, u16 zone,
110 const struct nf_conntrack_tuple *tuple)
111 {
112 return __hash_conntrack(tuple, zone, net->ct.htable_size);
113 }
114
115 bool
116 nf_ct_get_tuple(const struct sk_buff *skb,
117 unsigned int nhoff,
118 unsigned int dataoff,
119 u_int16_t l3num,
120 u_int8_t protonum,
121 struct nf_conntrack_tuple *tuple,
122 const struct nf_conntrack_l3proto *l3proto,
123 const struct nf_conntrack_l4proto *l4proto)
124 {
125 memset(tuple, 0, sizeof(*tuple));
126
127 tuple->src.l3num = l3num;
128 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
129 return false;
130
131 tuple->dst.protonum = protonum;
132 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
133
134 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
135 }
136 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
137
138 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
139 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
140 {
141 struct nf_conntrack_l3proto *l3proto;
142 struct nf_conntrack_l4proto *l4proto;
143 unsigned int protoff;
144 u_int8_t protonum;
145 int ret;
146
147 rcu_read_lock();
148
149 l3proto = __nf_ct_l3proto_find(l3num);
150 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
151 if (ret != NF_ACCEPT) {
152 rcu_read_unlock();
153 return false;
154 }
155
156 l4proto = __nf_ct_l4proto_find(l3num, protonum);
157
158 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
159 l3proto, l4proto);
160
161 rcu_read_unlock();
162 return ret;
163 }
164 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
165
166 bool
167 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
168 const struct nf_conntrack_tuple *orig,
169 const struct nf_conntrack_l3proto *l3proto,
170 const struct nf_conntrack_l4proto *l4proto)
171 {
172 memset(inverse, 0, sizeof(*inverse));
173
174 inverse->src.l3num = orig->src.l3num;
175 if (l3proto->invert_tuple(inverse, orig) == 0)
176 return false;
177
178 inverse->dst.dir = !orig->dst.dir;
179
180 inverse->dst.protonum = orig->dst.protonum;
181 return l4proto->invert_tuple(inverse, orig);
182 }
183 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
184
185 static void
186 clean_from_lists(struct nf_conn *ct)
187 {
188 pr_debug("clean_from_lists(%p)\n", ct);
189 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
190 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
191
192 /* Destroy all pending expectations */
193 nf_ct_remove_expectations(ct);
194 }
195
196 static void
197 destroy_conntrack(struct nf_conntrack *nfct)
198 {
199 struct nf_conn *ct = (struct nf_conn *)nfct;
200 struct net *net = nf_ct_net(ct);
201 struct nf_conntrack_l4proto *l4proto;
202
203 pr_debug("destroy_conntrack(%p)\n", ct);
204 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
205 NF_CT_ASSERT(!timer_pending(&ct->timeout));
206
207 /* To make sure we don't get any weird locking issues here:
208 * destroy_conntrack() MUST NOT be called with a write lock
209 * to nf_conntrack_lock!!! -HW */
210 rcu_read_lock();
211 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
212 if (l4proto && l4proto->destroy)
213 l4proto->destroy(ct);
214
215 rcu_read_unlock();
216
217 spin_lock_bh(&nf_conntrack_lock);
218 /* Expectations will have been removed in clean_from_lists,
219 * except TFTP can create an expectation on the first packet,
220 * before connection is in the list, so we need to clean here,
221 * too. */
222 nf_ct_remove_expectations(ct);
223
224 /* We overload first tuple to link into unconfirmed or dying list.*/
225 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
226 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
227
228 NF_CT_STAT_INC(net, delete);
229 spin_unlock_bh(&nf_conntrack_lock);
230
231 if (ct->master)
232 nf_ct_put(ct->master);
233
234 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
235 nf_conntrack_free(ct);
236 }
237
238 void nf_ct_delete_from_lists(struct nf_conn *ct)
239 {
240 struct net *net = nf_ct_net(ct);
241
242 nf_ct_helper_destroy(ct);
243 spin_lock_bh(&nf_conntrack_lock);
244 /* Inside lock so preempt is disabled on module removal path.
245 * Otherwise we can get spurious warnings. */
246 NF_CT_STAT_INC(net, delete_list);
247 clean_from_lists(ct);
248 /* add this conntrack to the dying list */
249 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
250 &net->ct.dying);
251 spin_unlock_bh(&nf_conntrack_lock);
252 }
253 EXPORT_SYMBOL_GPL(nf_ct_delete_from_lists);
254
255 static void death_by_event(unsigned long ul_conntrack)
256 {
257 struct nf_conn *ct = (void *)ul_conntrack;
258 struct net *net = nf_ct_net(ct);
259 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
260
261 BUG_ON(ecache == NULL);
262
263 if (nf_conntrack_event(IPCT_DESTROY, ct) < 0) {
264 /* bad luck, let's retry again */
265 ecache->timeout.expires = jiffies +
266 (random32() % net->ct.sysctl_events_retry_timeout);
267 add_timer(&ecache->timeout);
268 return;
269 }
270 /* we've got the event delivered, now it's dying */
271 set_bit(IPS_DYING_BIT, &ct->status);
272 nf_ct_put(ct);
273 }
274
275 void nf_ct_dying_timeout(struct nf_conn *ct)
276 {
277 struct net *net = nf_ct_net(ct);
278 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
279
280 BUG_ON(ecache == NULL);
281
282 /* set a new timer to retry event delivery */
283 setup_timer(&ecache->timeout, death_by_event, (unsigned long)ct);
284 ecache->timeout.expires = jiffies +
285 (random32() % net->ct.sysctl_events_retry_timeout);
286 add_timer(&ecache->timeout);
287 }
288 EXPORT_SYMBOL_GPL(nf_ct_dying_timeout);
289
290 static void death_by_timeout(unsigned long ul_conntrack)
291 {
292 struct nf_conn *ct = (void *)ul_conntrack;
293 struct nf_conn_tstamp *tstamp;
294
295 tstamp = nf_conn_tstamp_find(ct);
296 if (tstamp && tstamp->stop == 0)
297 tstamp->stop = ktime_to_ns(ktime_get_real());
298
299 if (!test_bit(IPS_DYING_BIT, &ct->status) &&
300 unlikely(nf_conntrack_event(IPCT_DESTROY, ct) < 0)) {
301 /* destroy event was not delivered */
302 nf_ct_delete_from_lists(ct);
303 nf_ct_dying_timeout(ct);
304 return;
305 }
306 set_bit(IPS_DYING_BIT, &ct->status);
307 nf_ct_delete_from_lists(ct);
308 nf_ct_put(ct);
309 }
310
311 /*
312 * Warning :
313 * - Caller must take a reference on returned object
314 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
315 * OR
316 * - Caller must lock nf_conntrack_lock before calling this function
317 */
318 static struct nf_conntrack_tuple_hash *
319 ____nf_conntrack_find(struct net *net, u16 zone,
320 const struct nf_conntrack_tuple *tuple, u32 hash)
321 {
322 struct nf_conntrack_tuple_hash *h;
323 struct hlist_nulls_node *n;
324 unsigned int bucket = hash_bucket(hash, net);
325
326 /* Disable BHs the entire time since we normally need to disable them
327 * at least once for the stats anyway.
328 */
329 local_bh_disable();
330 begin:
331 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
332 if (nf_ct_tuple_equal(tuple, &h->tuple) &&
333 nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)) == zone) {
334 NF_CT_STAT_INC(net, found);
335 local_bh_enable();
336 return h;
337 }
338 NF_CT_STAT_INC(net, searched);
339 }
340 /*
341 * if the nulls value we got at the end of this lookup is
342 * not the expected one, we must restart lookup.
343 * We probably met an item that was moved to another chain.
344 */
345 if (get_nulls_value(n) != bucket) {
346 NF_CT_STAT_INC(net, search_restart);
347 goto begin;
348 }
349 local_bh_enable();
350
351 return NULL;
352 }
353
354 struct nf_conntrack_tuple_hash *
355 __nf_conntrack_find(struct net *net, u16 zone,
356 const struct nf_conntrack_tuple *tuple)
357 {
358 return ____nf_conntrack_find(net, zone, tuple,
359 hash_conntrack_raw(tuple, zone));
360 }
361 EXPORT_SYMBOL_GPL(__nf_conntrack_find);
362
363 /* Find a connection corresponding to a tuple. */
364 static struct nf_conntrack_tuple_hash *
365 __nf_conntrack_find_get(struct net *net, u16 zone,
366 const struct nf_conntrack_tuple *tuple, u32 hash)
367 {
368 struct nf_conntrack_tuple_hash *h;
369 struct nf_conn *ct;
370
371 rcu_read_lock();
372 begin:
373 h = ____nf_conntrack_find(net, zone, tuple, hash);
374 if (h) {
375 ct = nf_ct_tuplehash_to_ctrack(h);
376 if (unlikely(nf_ct_is_dying(ct) ||
377 !atomic_inc_not_zero(&ct->ct_general.use)))
378 h = NULL;
379 else {
380 if (unlikely(!nf_ct_tuple_equal(tuple, &h->tuple) ||
381 nf_ct_zone(ct) != zone)) {
382 nf_ct_put(ct);
383 goto begin;
384 }
385 }
386 }
387 rcu_read_unlock();
388
389 return h;
390 }
391
392 struct nf_conntrack_tuple_hash *
393 nf_conntrack_find_get(struct net *net, u16 zone,
394 const struct nf_conntrack_tuple *tuple)
395 {
396 return __nf_conntrack_find_get(net, zone, tuple,
397 hash_conntrack_raw(tuple, zone));
398 }
399 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
400
401 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
402 unsigned int hash,
403 unsigned int repl_hash)
404 {
405 struct net *net = nf_ct_net(ct);
406
407 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
408 &net->ct.hash[hash]);
409 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
410 &net->ct.hash[repl_hash]);
411 }
412
413 int
414 nf_conntrack_hash_check_insert(struct nf_conn *ct)
415 {
416 struct net *net = nf_ct_net(ct);
417 unsigned int hash, repl_hash;
418 struct nf_conntrack_tuple_hash *h;
419 struct hlist_nulls_node *n;
420 u16 zone;
421
422 zone = nf_ct_zone(ct);
423 hash = hash_conntrack(net, zone,
424 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
425 repl_hash = hash_conntrack(net, zone,
426 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
427
428 spin_lock_bh(&nf_conntrack_lock);
429
430 /* See if there's one in the list already, including reverse */
431 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
432 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
433 &h->tuple) &&
434 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
435 goto out;
436 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
437 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
438 &h->tuple) &&
439 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
440 goto out;
441
442 add_timer(&ct->timeout);
443 nf_conntrack_get(&ct->ct_general);
444 __nf_conntrack_hash_insert(ct, hash, repl_hash);
445 NF_CT_STAT_INC(net, insert);
446 spin_unlock_bh(&nf_conntrack_lock);
447
448 return 0;
449
450 out:
451 NF_CT_STAT_INC(net, insert_failed);
452 spin_unlock_bh(&nf_conntrack_lock);
453 return -EEXIST;
454 }
455 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
456
457 /* Confirm a connection given skb; places it in hash table */
458 int
459 __nf_conntrack_confirm(struct sk_buff *skb)
460 {
461 unsigned int hash, repl_hash;
462 struct nf_conntrack_tuple_hash *h;
463 struct nf_conn *ct;
464 struct nf_conn_help *help;
465 struct nf_conn_tstamp *tstamp;
466 struct hlist_nulls_node *n;
467 enum ip_conntrack_info ctinfo;
468 struct net *net;
469 u16 zone;
470
471 ct = nf_ct_get(skb, &ctinfo);
472 net = nf_ct_net(ct);
473
474 /* ipt_REJECT uses nf_conntrack_attach to attach related
475 ICMP/TCP RST packets in other direction. Actual packet
476 which created connection will be IP_CT_NEW or for an
477 expected connection, IP_CT_RELATED. */
478 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
479 return NF_ACCEPT;
480
481 zone = nf_ct_zone(ct);
482 /* reuse the hash saved before */
483 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
484 hash = hash_bucket(hash, net);
485 repl_hash = hash_conntrack(net, zone,
486 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
487
488 /* We're not in hash table, and we refuse to set up related
489 connections for unconfirmed conns. But packet copies and
490 REJECT will give spurious warnings here. */
491 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
492
493 /* No external references means no one else could have
494 confirmed us. */
495 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
496 pr_debug("Confirming conntrack %p\n", ct);
497
498 spin_lock_bh(&nf_conntrack_lock);
499
500 /* We have to check the DYING flag inside the lock to prevent
501 a race against nf_ct_get_next_corpse() possibly called from
502 user context, else we insert an already 'dead' hash, blocking
503 further use of that particular connection -JM */
504
505 if (unlikely(nf_ct_is_dying(ct))) {
506 spin_unlock_bh(&nf_conntrack_lock);
507 return NF_ACCEPT;
508 }
509
510 /* See if there's one in the list already, including reverse:
511 NAT could have grabbed it without realizing, since we're
512 not in the hash. If there is, we lost race. */
513 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
514 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
515 &h->tuple) &&
516 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
517 goto out;
518 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
519 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
520 &h->tuple) &&
521 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
522 goto out;
523
524 /* Remove from unconfirmed list */
525 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
526
527 /* Timer relative to confirmation time, not original
528 setting time, otherwise we'd get timer wrap in
529 weird delay cases. */
530 ct->timeout.expires += jiffies;
531 add_timer(&ct->timeout);
532 atomic_inc(&ct->ct_general.use);
533 ct->status |= IPS_CONFIRMED;
534
535 /* set conntrack timestamp, if enabled. */
536 tstamp = nf_conn_tstamp_find(ct);
537 if (tstamp) {
538 if (skb->tstamp.tv64 == 0)
539 __net_timestamp(skb);
540
541 tstamp->start = ktime_to_ns(skb->tstamp);
542 }
543 /* Since the lookup is lockless, hash insertion must be done after
544 * starting the timer and setting the CONFIRMED bit. The RCU barriers
545 * guarantee that no other CPU can find the conntrack before the above
546 * stores are visible.
547 */
548 __nf_conntrack_hash_insert(ct, hash, repl_hash);
549 NF_CT_STAT_INC(net, insert);
550 spin_unlock_bh(&nf_conntrack_lock);
551
552 help = nfct_help(ct);
553 if (help && help->helper)
554 nf_conntrack_event_cache(IPCT_HELPER, ct);
555
556 nf_conntrack_event_cache(master_ct(ct) ?
557 IPCT_RELATED : IPCT_NEW, ct);
558 return NF_ACCEPT;
559
560 out:
561 NF_CT_STAT_INC(net, insert_failed);
562 spin_unlock_bh(&nf_conntrack_lock);
563 return NF_DROP;
564 }
565 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
566
567 /* Returns true if a connection correspondings to the tuple (required
568 for NAT). */
569 int
570 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
571 const struct nf_conn *ignored_conntrack)
572 {
573 struct net *net = nf_ct_net(ignored_conntrack);
574 struct nf_conntrack_tuple_hash *h;
575 struct hlist_nulls_node *n;
576 struct nf_conn *ct;
577 u16 zone = nf_ct_zone(ignored_conntrack);
578 unsigned int hash = hash_conntrack(net, zone, tuple);
579
580 /* Disable BHs the entire time since we need to disable them at
581 * least once for the stats anyway.
582 */
583 rcu_read_lock_bh();
584 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
585 ct = nf_ct_tuplehash_to_ctrack(h);
586 if (ct != ignored_conntrack &&
587 nf_ct_tuple_equal(tuple, &h->tuple) &&
588 nf_ct_zone(ct) == zone) {
589 NF_CT_STAT_INC(net, found);
590 rcu_read_unlock_bh();
591 return 1;
592 }
593 NF_CT_STAT_INC(net, searched);
594 }
595 rcu_read_unlock_bh();
596
597 return 0;
598 }
599 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
600
601 #define NF_CT_EVICTION_RANGE 8
602
603 /* There's a small race here where we may free a just-assured
604 connection. Too bad: we're in trouble anyway. */
605 static noinline int early_drop(struct net *net, unsigned int hash)
606 {
607 /* Use oldest entry, which is roughly LRU */
608 struct nf_conntrack_tuple_hash *h;
609 struct nf_conn *ct = NULL, *tmp;
610 struct hlist_nulls_node *n;
611 unsigned int i, cnt = 0;
612 int dropped = 0;
613
614 rcu_read_lock();
615 for (i = 0; i < net->ct.htable_size; i++) {
616 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
617 hnnode) {
618 tmp = nf_ct_tuplehash_to_ctrack(h);
619 if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
620 ct = tmp;
621 cnt++;
622 }
623
624 if (ct != NULL) {
625 if (likely(!nf_ct_is_dying(ct) &&
626 atomic_inc_not_zero(&ct->ct_general.use)))
627 break;
628 else
629 ct = NULL;
630 }
631
632 if (cnt >= NF_CT_EVICTION_RANGE)
633 break;
634
635 hash = (hash + 1) % net->ct.htable_size;
636 }
637 rcu_read_unlock();
638
639 if (!ct)
640 return dropped;
641
642 if (del_timer(&ct->timeout)) {
643 death_by_timeout((unsigned long)ct);
644 /* Check if we indeed killed this entry. Reliable event
645 delivery may have inserted it into the dying list. */
646 if (test_bit(IPS_DYING_BIT, &ct->status)) {
647 dropped = 1;
648 NF_CT_STAT_INC_ATOMIC(net, early_drop);
649 }
650 }
651 nf_ct_put(ct);
652 return dropped;
653 }
654
655 void init_nf_conntrack_hash_rnd(void)
656 {
657 unsigned int rand;
658
659 /*
660 * Why not initialize nf_conntrack_rnd in a "init()" function ?
661 * Because there isn't enough entropy when system initializing,
662 * and we initialize it as late as possible.
663 */
664 do {
665 get_random_bytes(&rand, sizeof(rand));
666 } while (!rand);
667 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
668 }
669
670 static struct nf_conn *
671 __nf_conntrack_alloc(struct net *net, u16 zone,
672 const struct nf_conntrack_tuple *orig,
673 const struct nf_conntrack_tuple *repl,
674 gfp_t gfp, u32 hash)
675 {
676 struct nf_conn *ct;
677
678 if (unlikely(!nf_conntrack_hash_rnd)) {
679 init_nf_conntrack_hash_rnd();
680 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
681 hash = hash_conntrack_raw(orig, zone);
682 }
683
684 /* We don't want any race condition at early drop stage */
685 atomic_inc(&net->ct.count);
686
687 if (nf_conntrack_max &&
688 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
689 if (!early_drop(net, hash_bucket(hash, net))) {
690 atomic_dec(&net->ct.count);
691 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
692 return ERR_PTR(-ENOMEM);
693 }
694 }
695
696 /*
697 * Do not use kmem_cache_zalloc(), as this cache uses
698 * SLAB_DESTROY_BY_RCU.
699 */
700 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
701 if (ct == NULL) {
702 atomic_dec(&net->ct.count);
703 return ERR_PTR(-ENOMEM);
704 }
705 /*
706 * Let ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.next
707 * and ct->tuplehash[IP_CT_DIR_REPLY].hnnode.next unchanged.
708 */
709 memset(&ct->tuplehash[IP_CT_DIR_MAX], 0,
710 offsetof(struct nf_conn, proto) -
711 offsetof(struct nf_conn, tuplehash[IP_CT_DIR_MAX]));
712 spin_lock_init(&ct->lock);
713 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
714 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
715 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
716 /* save hash for reusing when confirming */
717 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
718 /* Don't set timer yet: wait for confirmation */
719 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
720 write_pnet(&ct->ct_net, net);
721 #ifdef CONFIG_NF_CONNTRACK_ZONES
722 if (zone) {
723 struct nf_conntrack_zone *nf_ct_zone;
724
725 nf_ct_zone = nf_ct_ext_add(ct, NF_CT_EXT_ZONE, GFP_ATOMIC);
726 if (!nf_ct_zone)
727 goto out_free;
728 nf_ct_zone->id = zone;
729 }
730 #endif
731 /*
732 * changes to lookup keys must be done before setting refcnt to 1
733 */
734 smp_wmb();
735 atomic_set(&ct->ct_general.use, 1);
736 return ct;
737
738 #ifdef CONFIG_NF_CONNTRACK_ZONES
739 out_free:
740 atomic_dec(&net->ct.count);
741 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
742 return ERR_PTR(-ENOMEM);
743 #endif
744 }
745
746 struct nf_conn *nf_conntrack_alloc(struct net *net, u16 zone,
747 const struct nf_conntrack_tuple *orig,
748 const struct nf_conntrack_tuple *repl,
749 gfp_t gfp)
750 {
751 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
752 }
753 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
754
755 void nf_conntrack_free(struct nf_conn *ct)
756 {
757 struct net *net = nf_ct_net(ct);
758
759 nf_ct_ext_destroy(ct);
760 atomic_dec(&net->ct.count);
761 nf_ct_ext_free(ct);
762 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
763 }
764 EXPORT_SYMBOL_GPL(nf_conntrack_free);
765
766 /* Allocate a new conntrack: we return -ENOMEM if classification
767 failed due to stress. Otherwise it really is unclassifiable. */
768 static struct nf_conntrack_tuple_hash *
769 init_conntrack(struct net *net, struct nf_conn *tmpl,
770 const struct nf_conntrack_tuple *tuple,
771 struct nf_conntrack_l3proto *l3proto,
772 struct nf_conntrack_l4proto *l4proto,
773 struct sk_buff *skb,
774 unsigned int dataoff, u32 hash)
775 {
776 struct nf_conn *ct;
777 struct nf_conn_help *help;
778 struct nf_conntrack_tuple repl_tuple;
779 struct nf_conntrack_ecache *ecache;
780 struct nf_conntrack_expect *exp;
781 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
782 struct nf_conn_timeout *timeout_ext;
783 unsigned int *timeouts;
784
785 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
786 pr_debug("Can't invert tuple.\n");
787 return NULL;
788 }
789
790 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
791 hash);
792 if (IS_ERR(ct))
793 return (struct nf_conntrack_tuple_hash *)ct;
794
795 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
796 if (timeout_ext)
797 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
798 else
799 timeouts = l4proto->get_timeouts(net);
800
801 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
802 nf_conntrack_free(ct);
803 pr_debug("init conntrack: can't track with proto module\n");
804 return NULL;
805 }
806
807 if (timeout_ext)
808 nf_ct_timeout_ext_add(ct, timeout_ext->timeout, GFP_ATOMIC);
809
810 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
811 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
812
813 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
814 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
815 ecache ? ecache->expmask : 0,
816 GFP_ATOMIC);
817
818 spin_lock_bh(&nf_conntrack_lock);
819 exp = nf_ct_find_expectation(net, zone, tuple);
820 if (exp) {
821 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
822 ct, exp);
823 /* Welcome, Mr. Bond. We've been expecting you... */
824 __set_bit(IPS_EXPECTED_BIT, &ct->status);
825 ct->master = exp->master;
826 if (exp->helper) {
827 help = nf_ct_helper_ext_add(ct, exp->helper,
828 GFP_ATOMIC);
829 if (help)
830 rcu_assign_pointer(help->helper, exp->helper);
831 }
832
833 #ifdef CONFIG_NF_CONNTRACK_MARK
834 ct->mark = exp->master->mark;
835 #endif
836 #ifdef CONFIG_NF_CONNTRACK_SECMARK
837 ct->secmark = exp->master->secmark;
838 #endif
839 nf_conntrack_get(&ct->master->ct_general);
840 NF_CT_STAT_INC(net, expect_new);
841 } else {
842 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
843 NF_CT_STAT_INC(net, new);
844 }
845
846 /* Overload tuple linked list to put us in unconfirmed list. */
847 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
848 &net->ct.unconfirmed);
849
850 spin_unlock_bh(&nf_conntrack_lock);
851
852 if (exp) {
853 if (exp->expectfn)
854 exp->expectfn(ct, exp);
855 nf_ct_expect_put(exp);
856 }
857
858 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
859 }
860
861 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
862 static inline struct nf_conn *
863 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
864 struct sk_buff *skb,
865 unsigned int dataoff,
866 u_int16_t l3num,
867 u_int8_t protonum,
868 struct nf_conntrack_l3proto *l3proto,
869 struct nf_conntrack_l4proto *l4proto,
870 int *set_reply,
871 enum ip_conntrack_info *ctinfo)
872 {
873 struct nf_conntrack_tuple tuple;
874 struct nf_conntrack_tuple_hash *h;
875 struct nf_conn *ct;
876 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
877 u32 hash;
878
879 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
880 dataoff, l3num, protonum, &tuple, l3proto,
881 l4proto)) {
882 pr_debug("resolve_normal_ct: Can't get tuple\n");
883 return NULL;
884 }
885
886 /* look for tuple match */
887 hash = hash_conntrack_raw(&tuple, zone);
888 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
889 if (!h) {
890 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
891 skb, dataoff, hash);
892 if (!h)
893 return NULL;
894 if (IS_ERR(h))
895 return (void *)h;
896 }
897 ct = nf_ct_tuplehash_to_ctrack(h);
898
899 /* It exists; we have (non-exclusive) reference. */
900 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
901 *ctinfo = IP_CT_ESTABLISHED_REPLY;
902 /* Please set reply bit if this packet OK */
903 *set_reply = 1;
904 } else {
905 /* Once we've had two way comms, always ESTABLISHED. */
906 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
907 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
908 *ctinfo = IP_CT_ESTABLISHED;
909 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
910 pr_debug("nf_conntrack_in: related packet for %p\n",
911 ct);
912 *ctinfo = IP_CT_RELATED;
913 } else {
914 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
915 *ctinfo = IP_CT_NEW;
916 }
917 *set_reply = 0;
918 }
919 skb->nfct = &ct->ct_general;
920 skb->nfctinfo = *ctinfo;
921 return ct;
922 }
923
924 unsigned int
925 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
926 struct sk_buff *skb)
927 {
928 struct nf_conn *ct, *tmpl = NULL;
929 enum ip_conntrack_info ctinfo;
930 struct nf_conntrack_l3proto *l3proto;
931 struct nf_conntrack_l4proto *l4proto;
932 unsigned int *timeouts;
933 unsigned int dataoff;
934 u_int8_t protonum;
935 int set_reply = 0;
936 int ret;
937
938 if (skb->nfct) {
939 /* Previously seen (loopback or untracked)? Ignore. */
940 tmpl = (struct nf_conn *)skb->nfct;
941 if (!nf_ct_is_template(tmpl)) {
942 NF_CT_STAT_INC_ATOMIC(net, ignore);
943 return NF_ACCEPT;
944 }
945 skb->nfct = NULL;
946 }
947
948 /* rcu_read_lock()ed by nf_hook_slow */
949 l3proto = __nf_ct_l3proto_find(pf);
950 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
951 &dataoff, &protonum);
952 if (ret <= 0) {
953 pr_debug("not prepared to track yet or error occurred\n");
954 NF_CT_STAT_INC_ATOMIC(net, error);
955 NF_CT_STAT_INC_ATOMIC(net, invalid);
956 ret = -ret;
957 goto out;
958 }
959
960 l4proto = __nf_ct_l4proto_find(pf, protonum);
961
962 /* It may be an special packet, error, unclean...
963 * inverse of the return code tells to the netfilter
964 * core what to do with the packet. */
965 if (l4proto->error != NULL) {
966 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
967 pf, hooknum);
968 if (ret <= 0) {
969 NF_CT_STAT_INC_ATOMIC(net, error);
970 NF_CT_STAT_INC_ATOMIC(net, invalid);
971 ret = -ret;
972 goto out;
973 }
974 /* ICMP[v6] protocol trackers may assign one conntrack. */
975 if (skb->nfct)
976 goto out;
977 }
978
979 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
980 l3proto, l4proto, &set_reply, &ctinfo);
981 if (!ct) {
982 /* Not valid part of a connection */
983 NF_CT_STAT_INC_ATOMIC(net, invalid);
984 ret = NF_ACCEPT;
985 goto out;
986 }
987
988 if (IS_ERR(ct)) {
989 /* Too stressed to deal. */
990 NF_CT_STAT_INC_ATOMIC(net, drop);
991 ret = NF_DROP;
992 goto out;
993 }
994
995 NF_CT_ASSERT(skb->nfct);
996
997 /* Decide what timeout policy we want to apply to this flow. */
998 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
999
1000 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1001 if (ret <= 0) {
1002 /* Invalid: inverse of the return code tells
1003 * the netfilter core what to do */
1004 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1005 nf_conntrack_put(skb->nfct);
1006 skb->nfct = NULL;
1007 NF_CT_STAT_INC_ATOMIC(net, invalid);
1008 if (ret == -NF_DROP)
1009 NF_CT_STAT_INC_ATOMIC(net, drop);
1010 ret = -ret;
1011 goto out;
1012 }
1013
1014 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1015 nf_conntrack_event_cache(IPCT_REPLY, ct);
1016 out:
1017 if (tmpl) {
1018 /* Special case: we have to repeat this hook, assign the
1019 * template again to this packet. We assume that this packet
1020 * has no conntrack assigned. This is used by nf_ct_tcp. */
1021 if (ret == NF_REPEAT)
1022 skb->nfct = (struct nf_conntrack *)tmpl;
1023 else
1024 nf_ct_put(tmpl);
1025 }
1026
1027 return ret;
1028 }
1029 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1030
1031 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1032 const struct nf_conntrack_tuple *orig)
1033 {
1034 bool ret;
1035
1036 rcu_read_lock();
1037 ret = nf_ct_invert_tuple(inverse, orig,
1038 __nf_ct_l3proto_find(orig->src.l3num),
1039 __nf_ct_l4proto_find(orig->src.l3num,
1040 orig->dst.protonum));
1041 rcu_read_unlock();
1042 return ret;
1043 }
1044 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1045
1046 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1047 implicitly racy: see __nf_conntrack_confirm */
1048 void nf_conntrack_alter_reply(struct nf_conn *ct,
1049 const struct nf_conntrack_tuple *newreply)
1050 {
1051 struct nf_conn_help *help = nfct_help(ct);
1052
1053 /* Should be unconfirmed, so not in hash table yet */
1054 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1055
1056 pr_debug("Altering reply tuple of %p to ", ct);
1057 nf_ct_dump_tuple(newreply);
1058
1059 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1060 if (ct->master || (help && !hlist_empty(&help->expectations)))
1061 return;
1062
1063 rcu_read_lock();
1064 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1065 rcu_read_unlock();
1066 }
1067 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1068
1069 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1070 void __nf_ct_refresh_acct(struct nf_conn *ct,
1071 enum ip_conntrack_info ctinfo,
1072 const struct sk_buff *skb,
1073 unsigned long extra_jiffies,
1074 int do_acct)
1075 {
1076 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1077 NF_CT_ASSERT(skb);
1078
1079 /* Only update if this is not a fixed timeout */
1080 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1081 goto acct;
1082
1083 /* If not in hash table, timer will not be active yet */
1084 if (!nf_ct_is_confirmed(ct)) {
1085 ct->timeout.expires = extra_jiffies;
1086 } else {
1087 unsigned long newtime = jiffies + extra_jiffies;
1088
1089 /* Only update the timeout if the new timeout is at least
1090 HZ jiffies from the old timeout. Need del_timer for race
1091 avoidance (may already be dying). */
1092 if (newtime - ct->timeout.expires >= HZ)
1093 mod_timer_pending(&ct->timeout, newtime);
1094 }
1095
1096 acct:
1097 if (do_acct) {
1098 struct nf_conn_counter *acct;
1099
1100 acct = nf_conn_acct_find(ct);
1101 if (acct) {
1102 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1103 atomic64_add(skb->len, &acct[CTINFO2DIR(ctinfo)].bytes);
1104 }
1105 }
1106 }
1107 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1108
1109 bool __nf_ct_kill_acct(struct nf_conn *ct,
1110 enum ip_conntrack_info ctinfo,
1111 const struct sk_buff *skb,
1112 int do_acct)
1113 {
1114 if (do_acct) {
1115 struct nf_conn_counter *acct;
1116
1117 acct = nf_conn_acct_find(ct);
1118 if (acct) {
1119 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1120 atomic64_add(skb->len - skb_network_offset(skb),
1121 &acct[CTINFO2DIR(ctinfo)].bytes);
1122 }
1123 }
1124
1125 if (del_timer(&ct->timeout)) {
1126 ct->timeout.function((unsigned long)ct);
1127 return true;
1128 }
1129 return false;
1130 }
1131 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1132
1133 #ifdef CONFIG_NF_CONNTRACK_ZONES
1134 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1135 .len = sizeof(struct nf_conntrack_zone),
1136 .align = __alignof__(struct nf_conntrack_zone),
1137 .id = NF_CT_EXT_ZONE,
1138 };
1139 #endif
1140
1141 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1142
1143 #include <linux/netfilter/nfnetlink.h>
1144 #include <linux/netfilter/nfnetlink_conntrack.h>
1145 #include <linux/mutex.h>
1146
1147 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1148 * in ip_conntrack_core, since we don't want the protocols to autoload
1149 * or depend on ctnetlink */
1150 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1151 const struct nf_conntrack_tuple *tuple)
1152 {
1153 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1154 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1155 goto nla_put_failure;
1156 return 0;
1157
1158 nla_put_failure:
1159 return -1;
1160 }
1161 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1162
1163 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1164 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1165 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1166 };
1167 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1168
1169 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1170 struct nf_conntrack_tuple *t)
1171 {
1172 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1173 return -EINVAL;
1174
1175 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1176 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1177
1178 return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1181
1182 int nf_ct_port_nlattr_tuple_size(void)
1183 {
1184 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1185 }
1186 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1187 #endif
1188
1189 /* Used by ipt_REJECT and ip6t_REJECT. */
1190 static void nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
1191 {
1192 struct nf_conn *ct;
1193 enum ip_conntrack_info ctinfo;
1194
1195 /* This ICMP is in reverse direction to the packet which caused it */
1196 ct = nf_ct_get(skb, &ctinfo);
1197 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1198 ctinfo = IP_CT_RELATED_REPLY;
1199 else
1200 ctinfo = IP_CT_RELATED;
1201
1202 /* Attach to new skbuff, and increment count */
1203 nskb->nfct = &ct->ct_general;
1204 nskb->nfctinfo = ctinfo;
1205 nf_conntrack_get(nskb->nfct);
1206 }
1207
1208 /* Bring out ya dead! */
1209 static struct nf_conn *
1210 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1211 void *data, unsigned int *bucket)
1212 {
1213 struct nf_conntrack_tuple_hash *h;
1214 struct nf_conn *ct;
1215 struct hlist_nulls_node *n;
1216
1217 spin_lock_bh(&nf_conntrack_lock);
1218 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1219 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1220 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1221 continue;
1222 ct = nf_ct_tuplehash_to_ctrack(h);
1223 if (iter(ct, data))
1224 goto found;
1225 }
1226 }
1227 hlist_nulls_for_each_entry(h, n, &net->ct.unconfirmed, hnnode) {
1228 ct = nf_ct_tuplehash_to_ctrack(h);
1229 if (iter(ct, data))
1230 set_bit(IPS_DYING_BIT, &ct->status);
1231 }
1232 spin_unlock_bh(&nf_conntrack_lock);
1233 return NULL;
1234 found:
1235 atomic_inc(&ct->ct_general.use);
1236 spin_unlock_bh(&nf_conntrack_lock);
1237 return ct;
1238 }
1239
1240 void nf_ct_iterate_cleanup(struct net *net,
1241 int (*iter)(struct nf_conn *i, void *data),
1242 void *data)
1243 {
1244 struct nf_conn *ct;
1245 unsigned int bucket = 0;
1246
1247 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1248 /* Time to push up daises... */
1249 if (del_timer(&ct->timeout))
1250 death_by_timeout((unsigned long)ct);
1251 /* ... else the timer will get him soon. */
1252
1253 nf_ct_put(ct);
1254 }
1255 }
1256 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1257
1258 struct __nf_ct_flush_report {
1259 u32 pid;
1260 int report;
1261 };
1262
1263 static int kill_report(struct nf_conn *i, void *data)
1264 {
1265 struct __nf_ct_flush_report *fr = (struct __nf_ct_flush_report *)data;
1266 struct nf_conn_tstamp *tstamp;
1267
1268 tstamp = nf_conn_tstamp_find(i);
1269 if (tstamp && tstamp->stop == 0)
1270 tstamp->stop = ktime_to_ns(ktime_get_real());
1271
1272 /* If we fail to deliver the event, death_by_timeout() will retry */
1273 if (nf_conntrack_event_report(IPCT_DESTROY, i,
1274 fr->pid, fr->report) < 0)
1275 return 1;
1276
1277 /* Avoid the delivery of the destroy event in death_by_timeout(). */
1278 set_bit(IPS_DYING_BIT, &i->status);
1279 return 1;
1280 }
1281
1282 static int kill_all(struct nf_conn *i, void *data)
1283 {
1284 return 1;
1285 }
1286
1287 void nf_ct_free_hashtable(void *hash, unsigned int size)
1288 {
1289 if (is_vmalloc_addr(hash))
1290 vfree(hash);
1291 else
1292 free_pages((unsigned long)hash,
1293 get_order(sizeof(struct hlist_head) * size));
1294 }
1295 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1296
1297 void nf_conntrack_flush_report(struct net *net, u32 pid, int report)
1298 {
1299 struct __nf_ct_flush_report fr = {
1300 .pid = pid,
1301 .report = report,
1302 };
1303 nf_ct_iterate_cleanup(net, kill_report, &fr);
1304 }
1305 EXPORT_SYMBOL_GPL(nf_conntrack_flush_report);
1306
1307 static void nf_ct_release_dying_list(struct net *net)
1308 {
1309 struct nf_conntrack_tuple_hash *h;
1310 struct nf_conn *ct;
1311 struct hlist_nulls_node *n;
1312
1313 spin_lock_bh(&nf_conntrack_lock);
1314 hlist_nulls_for_each_entry(h, n, &net->ct.dying, hnnode) {
1315 ct = nf_ct_tuplehash_to_ctrack(h);
1316 /* never fails to remove them, no listeners at this point */
1317 nf_ct_kill(ct);
1318 }
1319 spin_unlock_bh(&nf_conntrack_lock);
1320 }
1321
1322 static int untrack_refs(void)
1323 {
1324 int cnt = 0, cpu;
1325
1326 for_each_possible_cpu(cpu) {
1327 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1328
1329 cnt += atomic_read(&ct->ct_general.use) - 1;
1330 }
1331 return cnt;
1332 }
1333
1334 static void nf_conntrack_cleanup_init_net(void)
1335 {
1336 while (untrack_refs() > 0)
1337 schedule();
1338
1339 #ifdef CONFIG_NF_CONNTRACK_ZONES
1340 nf_ct_extend_unregister(&nf_ct_zone_extend);
1341 #endif
1342 }
1343
1344 static void nf_conntrack_cleanup_net(struct net *net)
1345 {
1346 i_see_dead_people:
1347 nf_ct_iterate_cleanup(net, kill_all, NULL);
1348 nf_ct_release_dying_list(net);
1349 if (atomic_read(&net->ct.count) != 0) {
1350 schedule();
1351 goto i_see_dead_people;
1352 }
1353
1354 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1355 nf_conntrack_helper_fini(net);
1356 nf_conntrack_timeout_fini(net);
1357 nf_conntrack_ecache_fini(net);
1358 nf_conntrack_tstamp_fini(net);
1359 nf_conntrack_acct_fini(net);
1360 nf_conntrack_expect_fini(net);
1361 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1362 kfree(net->ct.slabname);
1363 free_percpu(net->ct.stat);
1364 }
1365
1366 /* Mishearing the voices in his head, our hero wonders how he's
1367 supposed to kill the mall. */
1368 void nf_conntrack_cleanup(struct net *net)
1369 {
1370 if (net_eq(net, &init_net))
1371 RCU_INIT_POINTER(ip_ct_attach, NULL);
1372
1373 /* This makes sure all current packets have passed through
1374 netfilter framework. Roll on, two-stage module
1375 delete... */
1376 synchronize_net();
1377 nf_conntrack_proto_fini(net);
1378 nf_conntrack_cleanup_net(net);
1379
1380 if (net_eq(net, &init_net)) {
1381 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1382 nf_conntrack_cleanup_init_net();
1383 }
1384 }
1385
1386 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1387 {
1388 struct hlist_nulls_head *hash;
1389 unsigned int nr_slots, i;
1390 size_t sz;
1391
1392 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1393 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1394 sz = nr_slots * sizeof(struct hlist_nulls_head);
1395 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1396 get_order(sz));
1397 if (!hash) {
1398 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1399 hash = vzalloc(sz);
1400 }
1401
1402 if (hash && nulls)
1403 for (i = 0; i < nr_slots; i++)
1404 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1405
1406 return hash;
1407 }
1408 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1409
1410 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1411 {
1412 int i, bucket, rc;
1413 unsigned int hashsize, old_size;
1414 struct hlist_nulls_head *hash, *old_hash;
1415 struct nf_conntrack_tuple_hash *h;
1416 struct nf_conn *ct;
1417
1418 if (current->nsproxy->net_ns != &init_net)
1419 return -EOPNOTSUPP;
1420
1421 /* On boot, we can set this without any fancy locking. */
1422 if (!nf_conntrack_htable_size)
1423 return param_set_uint(val, kp);
1424
1425 rc = kstrtouint(val, 0, &hashsize);
1426 if (rc)
1427 return rc;
1428 if (!hashsize)
1429 return -EINVAL;
1430
1431 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1432 if (!hash)
1433 return -ENOMEM;
1434
1435 /* Lookups in the old hash might happen in parallel, which means we
1436 * might get false negatives during connection lookup. New connections
1437 * created because of a false negative won't make it into the hash
1438 * though since that required taking the lock.
1439 */
1440 spin_lock_bh(&nf_conntrack_lock);
1441 for (i = 0; i < init_net.ct.htable_size; i++) {
1442 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1443 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1444 struct nf_conntrack_tuple_hash, hnnode);
1445 ct = nf_ct_tuplehash_to_ctrack(h);
1446 hlist_nulls_del_rcu(&h->hnnode);
1447 bucket = __hash_conntrack(&h->tuple, nf_ct_zone(ct),
1448 hashsize);
1449 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1450 }
1451 }
1452 old_size = init_net.ct.htable_size;
1453 old_hash = init_net.ct.hash;
1454
1455 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1456 init_net.ct.hash = hash;
1457 spin_unlock_bh(&nf_conntrack_lock);
1458
1459 nf_ct_free_hashtable(old_hash, old_size);
1460 return 0;
1461 }
1462 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1463
1464 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1465 &nf_conntrack_htable_size, 0600);
1466
1467 void nf_ct_untracked_status_or(unsigned long bits)
1468 {
1469 int cpu;
1470
1471 for_each_possible_cpu(cpu)
1472 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1473 }
1474 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1475
1476 static int nf_conntrack_init_init_net(void)
1477 {
1478 int max_factor = 8;
1479 int ret, cpu;
1480
1481 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1482 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1483 if (!nf_conntrack_htable_size) {
1484 nf_conntrack_htable_size
1485 = (((totalram_pages << PAGE_SHIFT) / 16384)
1486 / sizeof(struct hlist_head));
1487 if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1488 nf_conntrack_htable_size = 16384;
1489 if (nf_conntrack_htable_size < 32)
1490 nf_conntrack_htable_size = 32;
1491
1492 /* Use a max. factor of four by default to get the same max as
1493 * with the old struct list_heads. When a table size is given
1494 * we use the old value of 8 to avoid reducing the max.
1495 * entries. */
1496 max_factor = 4;
1497 }
1498 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1499
1500 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1501 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1502 nf_conntrack_max);
1503 #ifdef CONFIG_NF_CONNTRACK_ZONES
1504 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1505 if (ret < 0)
1506 goto err_extend;
1507 #endif
1508 /* Set up fake conntrack: to never be deleted, not in any hashes */
1509 for_each_possible_cpu(cpu) {
1510 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1511 write_pnet(&ct->ct_net, &init_net);
1512 atomic_set(&ct->ct_general.use, 1);
1513 }
1514 /* - and look it like as a confirmed connection */
1515 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1516 return 0;
1517
1518 #ifdef CONFIG_NF_CONNTRACK_ZONES
1519 err_extend:
1520 #endif
1521 return ret;
1522 }
1523
1524 /*
1525 * We need to use special "null" values, not used in hash table
1526 */
1527 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1528 #define DYING_NULLS_VAL ((1<<30)+1)
1529 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
1530
1531 static int nf_conntrack_init_net(struct net *net)
1532 {
1533 int ret;
1534
1535 atomic_set(&net->ct.count, 0);
1536 INIT_HLIST_NULLS_HEAD(&net->ct.unconfirmed, UNCONFIRMED_NULLS_VAL);
1537 INIT_HLIST_NULLS_HEAD(&net->ct.dying, DYING_NULLS_VAL);
1538 INIT_HLIST_NULLS_HEAD(&net->ct.tmpl, TEMPLATE_NULLS_VAL);
1539 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1540 if (!net->ct.stat) {
1541 ret = -ENOMEM;
1542 goto err_stat;
1543 }
1544
1545 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1546 if (!net->ct.slabname) {
1547 ret = -ENOMEM;
1548 goto err_slabname;
1549 }
1550
1551 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1552 sizeof(struct nf_conn), 0,
1553 SLAB_DESTROY_BY_RCU, NULL);
1554 if (!net->ct.nf_conntrack_cachep) {
1555 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1556 ret = -ENOMEM;
1557 goto err_cache;
1558 }
1559
1560 net->ct.htable_size = nf_conntrack_htable_size;
1561 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1562 if (!net->ct.hash) {
1563 ret = -ENOMEM;
1564 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1565 goto err_hash;
1566 }
1567 ret = nf_conntrack_expect_init(net);
1568 if (ret < 0)
1569 goto err_expect;
1570 ret = nf_conntrack_acct_init(net);
1571 if (ret < 0)
1572 goto err_acct;
1573 ret = nf_conntrack_tstamp_init(net);
1574 if (ret < 0)
1575 goto err_tstamp;
1576 ret = nf_conntrack_ecache_init(net);
1577 if (ret < 0)
1578 goto err_ecache;
1579 ret = nf_conntrack_timeout_init(net);
1580 if (ret < 0)
1581 goto err_timeout;
1582 ret = nf_conntrack_helper_init(net);
1583 if (ret < 0)
1584 goto err_helper;
1585 return 0;
1586 err_helper:
1587 nf_conntrack_timeout_fini(net);
1588 err_timeout:
1589 nf_conntrack_ecache_fini(net);
1590 err_ecache:
1591 nf_conntrack_tstamp_fini(net);
1592 err_tstamp:
1593 nf_conntrack_acct_fini(net);
1594 err_acct:
1595 nf_conntrack_expect_fini(net);
1596 err_expect:
1597 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1598 err_hash:
1599 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1600 err_cache:
1601 kfree(net->ct.slabname);
1602 err_slabname:
1603 free_percpu(net->ct.stat);
1604 err_stat:
1605 return ret;
1606 }
1607
1608 s16 (*nf_ct_nat_offset)(const struct nf_conn *ct,
1609 enum ip_conntrack_dir dir,
1610 u32 seq);
1611 EXPORT_SYMBOL_GPL(nf_ct_nat_offset);
1612
1613 int nf_conntrack_init(struct net *net)
1614 {
1615 int ret;
1616
1617 if (net_eq(net, &init_net)) {
1618 ret = nf_conntrack_init_init_net();
1619 if (ret < 0)
1620 goto out_init_net;
1621 }
1622 ret = nf_conntrack_proto_init(net);
1623 if (ret < 0)
1624 goto out_proto;
1625 ret = nf_conntrack_init_net(net);
1626 if (ret < 0)
1627 goto out_net;
1628
1629 if (net_eq(net, &init_net)) {
1630 /* For use by REJECT target */
1631 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1632 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1633
1634 /* Howto get NAT offsets */
1635 RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
1636 }
1637 return 0;
1638
1639 out_net:
1640 nf_conntrack_proto_fini(net);
1641 out_proto:
1642 if (net_eq(net, &init_net))
1643 nf_conntrack_cleanup_init_net();
1644 out_init_net:
1645 return ret;
1646 }
This page took 0.089202 seconds and 5 git commands to generate.