Merge remote-tracking branch 'asoc/topic/log' into asoc-next
[deliverable/linux.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_l3proto.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_nat.h>
49 #include <net/netfilter/nf_nat_core.h>
50
51 #define NF_CONNTRACK_VERSION "0.5.0"
52
53 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
54 enum nf_nat_manip_type manip,
55 const struct nlattr *attr) __read_mostly;
56 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
57
58 int (*nf_nat_seq_adjust_hook)(struct sk_buff *skb,
59 struct nf_conn *ct,
60 enum ip_conntrack_info ctinfo,
61 unsigned int protoff);
62 EXPORT_SYMBOL_GPL(nf_nat_seq_adjust_hook);
63
64 DEFINE_SPINLOCK(nf_conntrack_lock);
65 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
66
67 unsigned int nf_conntrack_htable_size __read_mostly;
68 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
69
70 unsigned int nf_conntrack_max __read_mostly;
71 EXPORT_SYMBOL_GPL(nf_conntrack_max);
72
73 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
74 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
75
76 unsigned int nf_conntrack_hash_rnd __read_mostly;
77 EXPORT_SYMBOL_GPL(nf_conntrack_hash_rnd);
78
79 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple, u16 zone)
80 {
81 unsigned int n;
82
83 /* The direction must be ignored, so we hash everything up to the
84 * destination ports (which is a multiple of 4) and treat the last
85 * three bytes manually.
86 */
87 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
88 return jhash2((u32 *)tuple, n, zone ^ nf_conntrack_hash_rnd ^
89 (((__force __u16)tuple->dst.u.all << 16) |
90 tuple->dst.protonum));
91 }
92
93 static u32 __hash_bucket(u32 hash, unsigned int size)
94 {
95 return ((u64)hash * size) >> 32;
96 }
97
98 static u32 hash_bucket(u32 hash, const struct net *net)
99 {
100 return __hash_bucket(hash, net->ct.htable_size);
101 }
102
103 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
104 u16 zone, unsigned int size)
105 {
106 return __hash_bucket(hash_conntrack_raw(tuple, zone), size);
107 }
108
109 static inline u_int32_t hash_conntrack(const struct net *net, u16 zone,
110 const struct nf_conntrack_tuple *tuple)
111 {
112 return __hash_conntrack(tuple, zone, net->ct.htable_size);
113 }
114
115 bool
116 nf_ct_get_tuple(const struct sk_buff *skb,
117 unsigned int nhoff,
118 unsigned int dataoff,
119 u_int16_t l3num,
120 u_int8_t protonum,
121 struct nf_conntrack_tuple *tuple,
122 const struct nf_conntrack_l3proto *l3proto,
123 const struct nf_conntrack_l4proto *l4proto)
124 {
125 memset(tuple, 0, sizeof(*tuple));
126
127 tuple->src.l3num = l3num;
128 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
129 return false;
130
131 tuple->dst.protonum = protonum;
132 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
133
134 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
135 }
136 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
137
138 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
139 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
140 {
141 struct nf_conntrack_l3proto *l3proto;
142 struct nf_conntrack_l4proto *l4proto;
143 unsigned int protoff;
144 u_int8_t protonum;
145 int ret;
146
147 rcu_read_lock();
148
149 l3proto = __nf_ct_l3proto_find(l3num);
150 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
151 if (ret != NF_ACCEPT) {
152 rcu_read_unlock();
153 return false;
154 }
155
156 l4proto = __nf_ct_l4proto_find(l3num, protonum);
157
158 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
159 l3proto, l4proto);
160
161 rcu_read_unlock();
162 return ret;
163 }
164 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
165
166 bool
167 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
168 const struct nf_conntrack_tuple *orig,
169 const struct nf_conntrack_l3proto *l3proto,
170 const struct nf_conntrack_l4proto *l4proto)
171 {
172 memset(inverse, 0, sizeof(*inverse));
173
174 inverse->src.l3num = orig->src.l3num;
175 if (l3proto->invert_tuple(inverse, orig) == 0)
176 return false;
177
178 inverse->dst.dir = !orig->dst.dir;
179
180 inverse->dst.protonum = orig->dst.protonum;
181 return l4proto->invert_tuple(inverse, orig);
182 }
183 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
184
185 static void
186 clean_from_lists(struct nf_conn *ct)
187 {
188 pr_debug("clean_from_lists(%p)\n", ct);
189 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
190 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
191
192 /* Destroy all pending expectations */
193 nf_ct_remove_expectations(ct);
194 }
195
196 static void
197 destroy_conntrack(struct nf_conntrack *nfct)
198 {
199 struct nf_conn *ct = (struct nf_conn *)nfct;
200 struct net *net = nf_ct_net(ct);
201 struct nf_conntrack_l4proto *l4proto;
202
203 pr_debug("destroy_conntrack(%p)\n", ct);
204 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
205 NF_CT_ASSERT(!timer_pending(&ct->timeout));
206
207 /* To make sure we don't get any weird locking issues here:
208 * destroy_conntrack() MUST NOT be called with a write lock
209 * to nf_conntrack_lock!!! -HW */
210 rcu_read_lock();
211 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
212 if (l4proto && l4proto->destroy)
213 l4proto->destroy(ct);
214
215 rcu_read_unlock();
216
217 spin_lock_bh(&nf_conntrack_lock);
218 /* Expectations will have been removed in clean_from_lists,
219 * except TFTP can create an expectation on the first packet,
220 * before connection is in the list, so we need to clean here,
221 * too. */
222 nf_ct_remove_expectations(ct);
223
224 /* We overload first tuple to link into unconfirmed list. */
225 if (!nf_ct_is_confirmed(ct)) {
226 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
227 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
228 }
229
230 NF_CT_STAT_INC(net, delete);
231 spin_unlock_bh(&nf_conntrack_lock);
232
233 if (ct->master)
234 nf_ct_put(ct->master);
235
236 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
237 nf_conntrack_free(ct);
238 }
239
240 void nf_ct_delete_from_lists(struct nf_conn *ct)
241 {
242 struct net *net = nf_ct_net(ct);
243
244 nf_ct_helper_destroy(ct);
245 spin_lock_bh(&nf_conntrack_lock);
246 /* Inside lock so preempt is disabled on module removal path.
247 * Otherwise we can get spurious warnings. */
248 NF_CT_STAT_INC(net, delete_list);
249 clean_from_lists(ct);
250 spin_unlock_bh(&nf_conntrack_lock);
251 }
252 EXPORT_SYMBOL_GPL(nf_ct_delete_from_lists);
253
254 static void death_by_event(unsigned long ul_conntrack)
255 {
256 struct nf_conn *ct = (void *)ul_conntrack;
257 struct net *net = nf_ct_net(ct);
258 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
259
260 BUG_ON(ecache == NULL);
261
262 if (nf_conntrack_event(IPCT_DESTROY, ct) < 0) {
263 /* bad luck, let's retry again */
264 ecache->timeout.expires = jiffies +
265 (random32() % net->ct.sysctl_events_retry_timeout);
266 add_timer(&ecache->timeout);
267 return;
268 }
269 /* we've got the event delivered, now it's dying */
270 set_bit(IPS_DYING_BIT, &ct->status);
271 spin_lock(&nf_conntrack_lock);
272 hlist_nulls_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
273 spin_unlock(&nf_conntrack_lock);
274 nf_ct_put(ct);
275 }
276
277 void nf_ct_insert_dying_list(struct nf_conn *ct)
278 {
279 struct net *net = nf_ct_net(ct);
280 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
281
282 BUG_ON(ecache == NULL);
283
284 /* add this conntrack to the dying list */
285 spin_lock_bh(&nf_conntrack_lock);
286 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
287 &net->ct.dying);
288 spin_unlock_bh(&nf_conntrack_lock);
289 /* set a new timer to retry event delivery */
290 setup_timer(&ecache->timeout, death_by_event, (unsigned long)ct);
291 ecache->timeout.expires = jiffies +
292 (random32() % net->ct.sysctl_events_retry_timeout);
293 add_timer(&ecache->timeout);
294 }
295 EXPORT_SYMBOL_GPL(nf_ct_insert_dying_list);
296
297 static void death_by_timeout(unsigned long ul_conntrack)
298 {
299 struct nf_conn *ct = (void *)ul_conntrack;
300 struct nf_conn_tstamp *tstamp;
301
302 tstamp = nf_conn_tstamp_find(ct);
303 if (tstamp && tstamp->stop == 0)
304 tstamp->stop = ktime_to_ns(ktime_get_real());
305
306 if (!test_bit(IPS_DYING_BIT, &ct->status) &&
307 unlikely(nf_conntrack_event(IPCT_DESTROY, ct) < 0)) {
308 /* destroy event was not delivered */
309 nf_ct_delete_from_lists(ct);
310 nf_ct_insert_dying_list(ct);
311 return;
312 }
313 set_bit(IPS_DYING_BIT, &ct->status);
314 nf_ct_delete_from_lists(ct);
315 nf_ct_put(ct);
316 }
317
318 /*
319 * Warning :
320 * - Caller must take a reference on returned object
321 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
322 * OR
323 * - Caller must lock nf_conntrack_lock before calling this function
324 */
325 static struct nf_conntrack_tuple_hash *
326 ____nf_conntrack_find(struct net *net, u16 zone,
327 const struct nf_conntrack_tuple *tuple, u32 hash)
328 {
329 struct nf_conntrack_tuple_hash *h;
330 struct hlist_nulls_node *n;
331 unsigned int bucket = hash_bucket(hash, net);
332
333 /* Disable BHs the entire time since we normally need to disable them
334 * at least once for the stats anyway.
335 */
336 local_bh_disable();
337 begin:
338 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
339 if (nf_ct_tuple_equal(tuple, &h->tuple) &&
340 nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)) == zone) {
341 NF_CT_STAT_INC(net, found);
342 local_bh_enable();
343 return h;
344 }
345 NF_CT_STAT_INC(net, searched);
346 }
347 /*
348 * if the nulls value we got at the end of this lookup is
349 * not the expected one, we must restart lookup.
350 * We probably met an item that was moved to another chain.
351 */
352 if (get_nulls_value(n) != bucket) {
353 NF_CT_STAT_INC(net, search_restart);
354 goto begin;
355 }
356 local_bh_enable();
357
358 return NULL;
359 }
360
361 struct nf_conntrack_tuple_hash *
362 __nf_conntrack_find(struct net *net, u16 zone,
363 const struct nf_conntrack_tuple *tuple)
364 {
365 return ____nf_conntrack_find(net, zone, tuple,
366 hash_conntrack_raw(tuple, zone));
367 }
368 EXPORT_SYMBOL_GPL(__nf_conntrack_find);
369
370 /* Find a connection corresponding to a tuple. */
371 static struct nf_conntrack_tuple_hash *
372 __nf_conntrack_find_get(struct net *net, u16 zone,
373 const struct nf_conntrack_tuple *tuple, u32 hash)
374 {
375 struct nf_conntrack_tuple_hash *h;
376 struct nf_conn *ct;
377
378 rcu_read_lock();
379 begin:
380 h = ____nf_conntrack_find(net, zone, tuple, hash);
381 if (h) {
382 ct = nf_ct_tuplehash_to_ctrack(h);
383 if (unlikely(nf_ct_is_dying(ct) ||
384 !atomic_inc_not_zero(&ct->ct_general.use)))
385 h = NULL;
386 else {
387 if (unlikely(!nf_ct_tuple_equal(tuple, &h->tuple) ||
388 nf_ct_zone(ct) != zone)) {
389 nf_ct_put(ct);
390 goto begin;
391 }
392 }
393 }
394 rcu_read_unlock();
395
396 return h;
397 }
398
399 struct nf_conntrack_tuple_hash *
400 nf_conntrack_find_get(struct net *net, u16 zone,
401 const struct nf_conntrack_tuple *tuple)
402 {
403 return __nf_conntrack_find_get(net, zone, tuple,
404 hash_conntrack_raw(tuple, zone));
405 }
406 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
407
408 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
409 unsigned int hash,
410 unsigned int repl_hash)
411 {
412 struct net *net = nf_ct_net(ct);
413
414 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
415 &net->ct.hash[hash]);
416 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
417 &net->ct.hash[repl_hash]);
418 }
419
420 int
421 nf_conntrack_hash_check_insert(struct nf_conn *ct)
422 {
423 struct net *net = nf_ct_net(ct);
424 unsigned int hash, repl_hash;
425 struct nf_conntrack_tuple_hash *h;
426 struct hlist_nulls_node *n;
427 u16 zone;
428
429 zone = nf_ct_zone(ct);
430 hash = hash_conntrack(net, zone,
431 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
432 repl_hash = hash_conntrack(net, zone,
433 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
434
435 spin_lock_bh(&nf_conntrack_lock);
436
437 /* See if there's one in the list already, including reverse */
438 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
439 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
440 &h->tuple) &&
441 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
442 goto out;
443 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
444 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
445 &h->tuple) &&
446 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
447 goto out;
448
449 add_timer(&ct->timeout);
450 nf_conntrack_get(&ct->ct_general);
451 __nf_conntrack_hash_insert(ct, hash, repl_hash);
452 NF_CT_STAT_INC(net, insert);
453 spin_unlock_bh(&nf_conntrack_lock);
454
455 return 0;
456
457 out:
458 NF_CT_STAT_INC(net, insert_failed);
459 spin_unlock_bh(&nf_conntrack_lock);
460 return -EEXIST;
461 }
462 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
463
464 /* Confirm a connection given skb; places it in hash table */
465 int
466 __nf_conntrack_confirm(struct sk_buff *skb)
467 {
468 unsigned int hash, repl_hash;
469 struct nf_conntrack_tuple_hash *h;
470 struct nf_conn *ct;
471 struct nf_conn_help *help;
472 struct nf_conn_tstamp *tstamp;
473 struct hlist_nulls_node *n;
474 enum ip_conntrack_info ctinfo;
475 struct net *net;
476 u16 zone;
477
478 ct = nf_ct_get(skb, &ctinfo);
479 net = nf_ct_net(ct);
480
481 /* ipt_REJECT uses nf_conntrack_attach to attach related
482 ICMP/TCP RST packets in other direction. Actual packet
483 which created connection will be IP_CT_NEW or for an
484 expected connection, IP_CT_RELATED. */
485 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
486 return NF_ACCEPT;
487
488 zone = nf_ct_zone(ct);
489 /* reuse the hash saved before */
490 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
491 hash = hash_bucket(hash, net);
492 repl_hash = hash_conntrack(net, zone,
493 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
494
495 /* We're not in hash table, and we refuse to set up related
496 connections for unconfirmed conns. But packet copies and
497 REJECT will give spurious warnings here. */
498 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
499
500 /* No external references means no one else could have
501 confirmed us. */
502 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
503 pr_debug("Confirming conntrack %p\n", ct);
504
505 spin_lock_bh(&nf_conntrack_lock);
506
507 /* We have to check the DYING flag inside the lock to prevent
508 a race against nf_ct_get_next_corpse() possibly called from
509 user context, else we insert an already 'dead' hash, blocking
510 further use of that particular connection -JM */
511
512 if (unlikely(nf_ct_is_dying(ct))) {
513 spin_unlock_bh(&nf_conntrack_lock);
514 return NF_ACCEPT;
515 }
516
517 /* See if there's one in the list already, including reverse:
518 NAT could have grabbed it without realizing, since we're
519 not in the hash. If there is, we lost race. */
520 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
521 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
522 &h->tuple) &&
523 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
524 goto out;
525 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
526 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
527 &h->tuple) &&
528 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
529 goto out;
530
531 /* Remove from unconfirmed list */
532 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
533
534 /* Timer relative to confirmation time, not original
535 setting time, otherwise we'd get timer wrap in
536 weird delay cases. */
537 ct->timeout.expires += jiffies;
538 add_timer(&ct->timeout);
539 atomic_inc(&ct->ct_general.use);
540 ct->status |= IPS_CONFIRMED;
541
542 /* set conntrack timestamp, if enabled. */
543 tstamp = nf_conn_tstamp_find(ct);
544 if (tstamp) {
545 if (skb->tstamp.tv64 == 0)
546 __net_timestamp(skb);
547
548 tstamp->start = ktime_to_ns(skb->tstamp);
549 }
550 /* Since the lookup is lockless, hash insertion must be done after
551 * starting the timer and setting the CONFIRMED bit. The RCU barriers
552 * guarantee that no other CPU can find the conntrack before the above
553 * stores are visible.
554 */
555 __nf_conntrack_hash_insert(ct, hash, repl_hash);
556 NF_CT_STAT_INC(net, insert);
557 spin_unlock_bh(&nf_conntrack_lock);
558
559 help = nfct_help(ct);
560 if (help && help->helper)
561 nf_conntrack_event_cache(IPCT_HELPER, ct);
562
563 nf_conntrack_event_cache(master_ct(ct) ?
564 IPCT_RELATED : IPCT_NEW, ct);
565 return NF_ACCEPT;
566
567 out:
568 NF_CT_STAT_INC(net, insert_failed);
569 spin_unlock_bh(&nf_conntrack_lock);
570 return NF_DROP;
571 }
572 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
573
574 /* Returns true if a connection correspondings to the tuple (required
575 for NAT). */
576 int
577 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
578 const struct nf_conn *ignored_conntrack)
579 {
580 struct net *net = nf_ct_net(ignored_conntrack);
581 struct nf_conntrack_tuple_hash *h;
582 struct hlist_nulls_node *n;
583 struct nf_conn *ct;
584 u16 zone = nf_ct_zone(ignored_conntrack);
585 unsigned int hash = hash_conntrack(net, zone, tuple);
586
587 /* Disable BHs the entire time since we need to disable them at
588 * least once for the stats anyway.
589 */
590 rcu_read_lock_bh();
591 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
592 ct = nf_ct_tuplehash_to_ctrack(h);
593 if (ct != ignored_conntrack &&
594 nf_ct_tuple_equal(tuple, &h->tuple) &&
595 nf_ct_zone(ct) == zone) {
596 NF_CT_STAT_INC(net, found);
597 rcu_read_unlock_bh();
598 return 1;
599 }
600 NF_CT_STAT_INC(net, searched);
601 }
602 rcu_read_unlock_bh();
603
604 return 0;
605 }
606 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
607
608 #define NF_CT_EVICTION_RANGE 8
609
610 /* There's a small race here where we may free a just-assured
611 connection. Too bad: we're in trouble anyway. */
612 static noinline int early_drop(struct net *net, unsigned int hash)
613 {
614 /* Use oldest entry, which is roughly LRU */
615 struct nf_conntrack_tuple_hash *h;
616 struct nf_conn *ct = NULL, *tmp;
617 struct hlist_nulls_node *n;
618 unsigned int i, cnt = 0;
619 int dropped = 0;
620
621 rcu_read_lock();
622 for (i = 0; i < net->ct.htable_size; i++) {
623 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
624 hnnode) {
625 tmp = nf_ct_tuplehash_to_ctrack(h);
626 if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
627 ct = tmp;
628 cnt++;
629 }
630
631 if (ct != NULL) {
632 if (likely(!nf_ct_is_dying(ct) &&
633 atomic_inc_not_zero(&ct->ct_general.use)))
634 break;
635 else
636 ct = NULL;
637 }
638
639 if (cnt >= NF_CT_EVICTION_RANGE)
640 break;
641
642 hash = (hash + 1) % net->ct.htable_size;
643 }
644 rcu_read_unlock();
645
646 if (!ct)
647 return dropped;
648
649 if (del_timer(&ct->timeout)) {
650 death_by_timeout((unsigned long)ct);
651 /* Check if we indeed killed this entry. Reliable event
652 delivery may have inserted it into the dying list. */
653 if (test_bit(IPS_DYING_BIT, &ct->status)) {
654 dropped = 1;
655 NF_CT_STAT_INC_ATOMIC(net, early_drop);
656 }
657 }
658 nf_ct_put(ct);
659 return dropped;
660 }
661
662 void init_nf_conntrack_hash_rnd(void)
663 {
664 unsigned int rand;
665
666 /*
667 * Why not initialize nf_conntrack_rnd in a "init()" function ?
668 * Because there isn't enough entropy when system initializing,
669 * and we initialize it as late as possible.
670 */
671 do {
672 get_random_bytes(&rand, sizeof(rand));
673 } while (!rand);
674 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
675 }
676
677 static struct nf_conn *
678 __nf_conntrack_alloc(struct net *net, u16 zone,
679 const struct nf_conntrack_tuple *orig,
680 const struct nf_conntrack_tuple *repl,
681 gfp_t gfp, u32 hash)
682 {
683 struct nf_conn *ct;
684
685 if (unlikely(!nf_conntrack_hash_rnd)) {
686 init_nf_conntrack_hash_rnd();
687 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
688 hash = hash_conntrack_raw(orig, zone);
689 }
690
691 /* We don't want any race condition at early drop stage */
692 atomic_inc(&net->ct.count);
693
694 if (nf_conntrack_max &&
695 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
696 if (!early_drop(net, hash_bucket(hash, net))) {
697 atomic_dec(&net->ct.count);
698 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
699 return ERR_PTR(-ENOMEM);
700 }
701 }
702
703 /*
704 * Do not use kmem_cache_zalloc(), as this cache uses
705 * SLAB_DESTROY_BY_RCU.
706 */
707 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
708 if (ct == NULL) {
709 atomic_dec(&net->ct.count);
710 return ERR_PTR(-ENOMEM);
711 }
712 /*
713 * Let ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.next
714 * and ct->tuplehash[IP_CT_DIR_REPLY].hnnode.next unchanged.
715 */
716 memset(&ct->tuplehash[IP_CT_DIR_MAX], 0,
717 offsetof(struct nf_conn, proto) -
718 offsetof(struct nf_conn, tuplehash[IP_CT_DIR_MAX]));
719 spin_lock_init(&ct->lock);
720 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
721 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
722 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
723 /* save hash for reusing when confirming */
724 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
725 /* Don't set timer yet: wait for confirmation */
726 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
727 write_pnet(&ct->ct_net, net);
728 #ifdef CONFIG_NF_CONNTRACK_ZONES
729 if (zone) {
730 struct nf_conntrack_zone *nf_ct_zone;
731
732 nf_ct_zone = nf_ct_ext_add(ct, NF_CT_EXT_ZONE, GFP_ATOMIC);
733 if (!nf_ct_zone)
734 goto out_free;
735 nf_ct_zone->id = zone;
736 }
737 #endif
738 /*
739 * changes to lookup keys must be done before setting refcnt to 1
740 */
741 smp_wmb();
742 atomic_set(&ct->ct_general.use, 1);
743 return ct;
744
745 #ifdef CONFIG_NF_CONNTRACK_ZONES
746 out_free:
747 atomic_dec(&net->ct.count);
748 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
749 return ERR_PTR(-ENOMEM);
750 #endif
751 }
752
753 struct nf_conn *nf_conntrack_alloc(struct net *net, u16 zone,
754 const struct nf_conntrack_tuple *orig,
755 const struct nf_conntrack_tuple *repl,
756 gfp_t gfp)
757 {
758 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
759 }
760 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
761
762 void nf_conntrack_free(struct nf_conn *ct)
763 {
764 struct net *net = nf_ct_net(ct);
765
766 nf_ct_ext_destroy(ct);
767 atomic_dec(&net->ct.count);
768 nf_ct_ext_free(ct);
769 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
770 }
771 EXPORT_SYMBOL_GPL(nf_conntrack_free);
772
773 /* Allocate a new conntrack: we return -ENOMEM if classification
774 failed due to stress. Otherwise it really is unclassifiable. */
775 static struct nf_conntrack_tuple_hash *
776 init_conntrack(struct net *net, struct nf_conn *tmpl,
777 const struct nf_conntrack_tuple *tuple,
778 struct nf_conntrack_l3proto *l3proto,
779 struct nf_conntrack_l4proto *l4proto,
780 struct sk_buff *skb,
781 unsigned int dataoff, u32 hash)
782 {
783 struct nf_conn *ct;
784 struct nf_conn_help *help;
785 struct nf_conntrack_tuple repl_tuple;
786 struct nf_conntrack_ecache *ecache;
787 struct nf_conntrack_expect *exp;
788 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
789 struct nf_conn_timeout *timeout_ext;
790 unsigned int *timeouts;
791
792 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
793 pr_debug("Can't invert tuple.\n");
794 return NULL;
795 }
796
797 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
798 hash);
799 if (IS_ERR(ct))
800 return (struct nf_conntrack_tuple_hash *)ct;
801
802 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
803 if (timeout_ext)
804 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
805 else
806 timeouts = l4proto->get_timeouts(net);
807
808 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
809 nf_conntrack_free(ct);
810 pr_debug("init conntrack: can't track with proto module\n");
811 return NULL;
812 }
813
814 if (timeout_ext)
815 nf_ct_timeout_ext_add(ct, timeout_ext->timeout, GFP_ATOMIC);
816
817 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
818 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
819
820 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
821 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
822 ecache ? ecache->expmask : 0,
823 GFP_ATOMIC);
824
825 spin_lock_bh(&nf_conntrack_lock);
826 exp = nf_ct_find_expectation(net, zone, tuple);
827 if (exp) {
828 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
829 ct, exp);
830 /* Welcome, Mr. Bond. We've been expecting you... */
831 __set_bit(IPS_EXPECTED_BIT, &ct->status);
832 ct->master = exp->master;
833 if (exp->helper) {
834 help = nf_ct_helper_ext_add(ct, exp->helper,
835 GFP_ATOMIC);
836 if (help)
837 rcu_assign_pointer(help->helper, exp->helper);
838 }
839
840 #ifdef CONFIG_NF_CONNTRACK_MARK
841 ct->mark = exp->master->mark;
842 #endif
843 #ifdef CONFIG_NF_CONNTRACK_SECMARK
844 ct->secmark = exp->master->secmark;
845 #endif
846 nf_conntrack_get(&ct->master->ct_general);
847 NF_CT_STAT_INC(net, expect_new);
848 } else {
849 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
850 NF_CT_STAT_INC(net, new);
851 }
852
853 /* Overload tuple linked list to put us in unconfirmed list. */
854 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
855 &net->ct.unconfirmed);
856
857 spin_unlock_bh(&nf_conntrack_lock);
858
859 if (exp) {
860 if (exp->expectfn)
861 exp->expectfn(ct, exp);
862 nf_ct_expect_put(exp);
863 }
864
865 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
866 }
867
868 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
869 static inline struct nf_conn *
870 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
871 struct sk_buff *skb,
872 unsigned int dataoff,
873 u_int16_t l3num,
874 u_int8_t protonum,
875 struct nf_conntrack_l3proto *l3proto,
876 struct nf_conntrack_l4proto *l4proto,
877 int *set_reply,
878 enum ip_conntrack_info *ctinfo)
879 {
880 struct nf_conntrack_tuple tuple;
881 struct nf_conntrack_tuple_hash *h;
882 struct nf_conn *ct;
883 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
884 u32 hash;
885
886 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
887 dataoff, l3num, protonum, &tuple, l3proto,
888 l4proto)) {
889 pr_debug("resolve_normal_ct: Can't get tuple\n");
890 return NULL;
891 }
892
893 /* look for tuple match */
894 hash = hash_conntrack_raw(&tuple, zone);
895 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
896 if (!h) {
897 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
898 skb, dataoff, hash);
899 if (!h)
900 return NULL;
901 if (IS_ERR(h))
902 return (void *)h;
903 }
904 ct = nf_ct_tuplehash_to_ctrack(h);
905
906 /* It exists; we have (non-exclusive) reference. */
907 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
908 *ctinfo = IP_CT_ESTABLISHED_REPLY;
909 /* Please set reply bit if this packet OK */
910 *set_reply = 1;
911 } else {
912 /* Once we've had two way comms, always ESTABLISHED. */
913 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
914 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
915 *ctinfo = IP_CT_ESTABLISHED;
916 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
917 pr_debug("nf_conntrack_in: related packet for %p\n",
918 ct);
919 *ctinfo = IP_CT_RELATED;
920 } else {
921 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
922 *ctinfo = IP_CT_NEW;
923 }
924 *set_reply = 0;
925 }
926 skb->nfct = &ct->ct_general;
927 skb->nfctinfo = *ctinfo;
928 return ct;
929 }
930
931 unsigned int
932 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
933 struct sk_buff *skb)
934 {
935 struct nf_conn *ct, *tmpl = NULL;
936 enum ip_conntrack_info ctinfo;
937 struct nf_conntrack_l3proto *l3proto;
938 struct nf_conntrack_l4proto *l4proto;
939 unsigned int *timeouts;
940 unsigned int dataoff;
941 u_int8_t protonum;
942 int set_reply = 0;
943 int ret;
944
945 if (skb->nfct) {
946 /* Previously seen (loopback or untracked)? Ignore. */
947 tmpl = (struct nf_conn *)skb->nfct;
948 if (!nf_ct_is_template(tmpl)) {
949 NF_CT_STAT_INC_ATOMIC(net, ignore);
950 return NF_ACCEPT;
951 }
952 skb->nfct = NULL;
953 }
954
955 /* rcu_read_lock()ed by nf_hook_slow */
956 l3proto = __nf_ct_l3proto_find(pf);
957 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
958 &dataoff, &protonum);
959 if (ret <= 0) {
960 pr_debug("not prepared to track yet or error occurred\n");
961 NF_CT_STAT_INC_ATOMIC(net, error);
962 NF_CT_STAT_INC_ATOMIC(net, invalid);
963 ret = -ret;
964 goto out;
965 }
966
967 l4proto = __nf_ct_l4proto_find(pf, protonum);
968
969 /* It may be an special packet, error, unclean...
970 * inverse of the return code tells to the netfilter
971 * core what to do with the packet. */
972 if (l4proto->error != NULL) {
973 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
974 pf, hooknum);
975 if (ret <= 0) {
976 NF_CT_STAT_INC_ATOMIC(net, error);
977 NF_CT_STAT_INC_ATOMIC(net, invalid);
978 ret = -ret;
979 goto out;
980 }
981 /* ICMP[v6] protocol trackers may assign one conntrack. */
982 if (skb->nfct)
983 goto out;
984 }
985
986 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
987 l3proto, l4proto, &set_reply, &ctinfo);
988 if (!ct) {
989 /* Not valid part of a connection */
990 NF_CT_STAT_INC_ATOMIC(net, invalid);
991 ret = NF_ACCEPT;
992 goto out;
993 }
994
995 if (IS_ERR(ct)) {
996 /* Too stressed to deal. */
997 NF_CT_STAT_INC_ATOMIC(net, drop);
998 ret = NF_DROP;
999 goto out;
1000 }
1001
1002 NF_CT_ASSERT(skb->nfct);
1003
1004 /* Decide what timeout policy we want to apply to this flow. */
1005 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1006
1007 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1008 if (ret <= 0) {
1009 /* Invalid: inverse of the return code tells
1010 * the netfilter core what to do */
1011 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1012 nf_conntrack_put(skb->nfct);
1013 skb->nfct = NULL;
1014 NF_CT_STAT_INC_ATOMIC(net, invalid);
1015 if (ret == -NF_DROP)
1016 NF_CT_STAT_INC_ATOMIC(net, drop);
1017 ret = -ret;
1018 goto out;
1019 }
1020
1021 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1022 nf_conntrack_event_cache(IPCT_REPLY, ct);
1023 out:
1024 if (tmpl) {
1025 /* Special case: we have to repeat this hook, assign the
1026 * template again to this packet. We assume that this packet
1027 * has no conntrack assigned. This is used by nf_ct_tcp. */
1028 if (ret == NF_REPEAT)
1029 skb->nfct = (struct nf_conntrack *)tmpl;
1030 else
1031 nf_ct_put(tmpl);
1032 }
1033
1034 return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1037
1038 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1039 const struct nf_conntrack_tuple *orig)
1040 {
1041 bool ret;
1042
1043 rcu_read_lock();
1044 ret = nf_ct_invert_tuple(inverse, orig,
1045 __nf_ct_l3proto_find(orig->src.l3num),
1046 __nf_ct_l4proto_find(orig->src.l3num,
1047 orig->dst.protonum));
1048 rcu_read_unlock();
1049 return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1052
1053 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1054 implicitly racy: see __nf_conntrack_confirm */
1055 void nf_conntrack_alter_reply(struct nf_conn *ct,
1056 const struct nf_conntrack_tuple *newreply)
1057 {
1058 struct nf_conn_help *help = nfct_help(ct);
1059
1060 /* Should be unconfirmed, so not in hash table yet */
1061 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1062
1063 pr_debug("Altering reply tuple of %p to ", ct);
1064 nf_ct_dump_tuple(newreply);
1065
1066 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1067 if (ct->master || (help && !hlist_empty(&help->expectations)))
1068 return;
1069
1070 rcu_read_lock();
1071 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1072 rcu_read_unlock();
1073 }
1074 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1075
1076 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1077 void __nf_ct_refresh_acct(struct nf_conn *ct,
1078 enum ip_conntrack_info ctinfo,
1079 const struct sk_buff *skb,
1080 unsigned long extra_jiffies,
1081 int do_acct)
1082 {
1083 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1084 NF_CT_ASSERT(skb);
1085
1086 /* Only update if this is not a fixed timeout */
1087 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1088 goto acct;
1089
1090 /* If not in hash table, timer will not be active yet */
1091 if (!nf_ct_is_confirmed(ct)) {
1092 ct->timeout.expires = extra_jiffies;
1093 } else {
1094 unsigned long newtime = jiffies + extra_jiffies;
1095
1096 /* Only update the timeout if the new timeout is at least
1097 HZ jiffies from the old timeout. Need del_timer for race
1098 avoidance (may already be dying). */
1099 if (newtime - ct->timeout.expires >= HZ)
1100 mod_timer_pending(&ct->timeout, newtime);
1101 }
1102
1103 acct:
1104 if (do_acct) {
1105 struct nf_conn_counter *acct;
1106
1107 acct = nf_conn_acct_find(ct);
1108 if (acct) {
1109 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1110 atomic64_add(skb->len, &acct[CTINFO2DIR(ctinfo)].bytes);
1111 }
1112 }
1113 }
1114 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1115
1116 bool __nf_ct_kill_acct(struct nf_conn *ct,
1117 enum ip_conntrack_info ctinfo,
1118 const struct sk_buff *skb,
1119 int do_acct)
1120 {
1121 if (do_acct) {
1122 struct nf_conn_counter *acct;
1123
1124 acct = nf_conn_acct_find(ct);
1125 if (acct) {
1126 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1127 atomic64_add(skb->len - skb_network_offset(skb),
1128 &acct[CTINFO2DIR(ctinfo)].bytes);
1129 }
1130 }
1131
1132 if (del_timer(&ct->timeout)) {
1133 ct->timeout.function((unsigned long)ct);
1134 return true;
1135 }
1136 return false;
1137 }
1138 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1139
1140 #ifdef CONFIG_NF_CONNTRACK_ZONES
1141 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1142 .len = sizeof(struct nf_conntrack_zone),
1143 .align = __alignof__(struct nf_conntrack_zone),
1144 .id = NF_CT_EXT_ZONE,
1145 };
1146 #endif
1147
1148 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1149
1150 #include <linux/netfilter/nfnetlink.h>
1151 #include <linux/netfilter/nfnetlink_conntrack.h>
1152 #include <linux/mutex.h>
1153
1154 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1155 * in ip_conntrack_core, since we don't want the protocols to autoload
1156 * or depend on ctnetlink */
1157 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1158 const struct nf_conntrack_tuple *tuple)
1159 {
1160 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1161 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1162 goto nla_put_failure;
1163 return 0;
1164
1165 nla_put_failure:
1166 return -1;
1167 }
1168 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1169
1170 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1171 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1172 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1173 };
1174 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1175
1176 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1177 struct nf_conntrack_tuple *t)
1178 {
1179 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1180 return -EINVAL;
1181
1182 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1183 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1184
1185 return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1188
1189 int nf_ct_port_nlattr_tuple_size(void)
1190 {
1191 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1192 }
1193 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1194 #endif
1195
1196 /* Used by ipt_REJECT and ip6t_REJECT. */
1197 static void nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
1198 {
1199 struct nf_conn *ct;
1200 enum ip_conntrack_info ctinfo;
1201
1202 /* This ICMP is in reverse direction to the packet which caused it */
1203 ct = nf_ct_get(skb, &ctinfo);
1204 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1205 ctinfo = IP_CT_RELATED_REPLY;
1206 else
1207 ctinfo = IP_CT_RELATED;
1208
1209 /* Attach to new skbuff, and increment count */
1210 nskb->nfct = &ct->ct_general;
1211 nskb->nfctinfo = ctinfo;
1212 nf_conntrack_get(nskb->nfct);
1213 }
1214
1215 /* Bring out ya dead! */
1216 static struct nf_conn *
1217 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1218 void *data, unsigned int *bucket)
1219 {
1220 struct nf_conntrack_tuple_hash *h;
1221 struct nf_conn *ct;
1222 struct hlist_nulls_node *n;
1223
1224 spin_lock_bh(&nf_conntrack_lock);
1225 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1226 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1227 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1228 continue;
1229 ct = nf_ct_tuplehash_to_ctrack(h);
1230 if (iter(ct, data))
1231 goto found;
1232 }
1233 }
1234 hlist_nulls_for_each_entry(h, n, &net->ct.unconfirmed, hnnode) {
1235 ct = nf_ct_tuplehash_to_ctrack(h);
1236 if (iter(ct, data))
1237 set_bit(IPS_DYING_BIT, &ct->status);
1238 }
1239 spin_unlock_bh(&nf_conntrack_lock);
1240 return NULL;
1241 found:
1242 atomic_inc(&ct->ct_general.use);
1243 spin_unlock_bh(&nf_conntrack_lock);
1244 return ct;
1245 }
1246
1247 void nf_ct_iterate_cleanup(struct net *net,
1248 int (*iter)(struct nf_conn *i, void *data),
1249 void *data)
1250 {
1251 struct nf_conn *ct;
1252 unsigned int bucket = 0;
1253
1254 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1255 /* Time to push up daises... */
1256 if (del_timer(&ct->timeout))
1257 death_by_timeout((unsigned long)ct);
1258 /* ... else the timer will get him soon. */
1259
1260 nf_ct_put(ct);
1261 }
1262 }
1263 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1264
1265 struct __nf_ct_flush_report {
1266 u32 pid;
1267 int report;
1268 };
1269
1270 static int kill_report(struct nf_conn *i, void *data)
1271 {
1272 struct __nf_ct_flush_report *fr = (struct __nf_ct_flush_report *)data;
1273 struct nf_conn_tstamp *tstamp;
1274
1275 tstamp = nf_conn_tstamp_find(i);
1276 if (tstamp && tstamp->stop == 0)
1277 tstamp->stop = ktime_to_ns(ktime_get_real());
1278
1279 /* If we fail to deliver the event, death_by_timeout() will retry */
1280 if (nf_conntrack_event_report(IPCT_DESTROY, i,
1281 fr->pid, fr->report) < 0)
1282 return 1;
1283
1284 /* Avoid the delivery of the destroy event in death_by_timeout(). */
1285 set_bit(IPS_DYING_BIT, &i->status);
1286 return 1;
1287 }
1288
1289 static int kill_all(struct nf_conn *i, void *data)
1290 {
1291 return 1;
1292 }
1293
1294 void nf_ct_free_hashtable(void *hash, unsigned int size)
1295 {
1296 if (is_vmalloc_addr(hash))
1297 vfree(hash);
1298 else
1299 free_pages((unsigned long)hash,
1300 get_order(sizeof(struct hlist_head) * size));
1301 }
1302 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1303
1304 void nf_conntrack_flush_report(struct net *net, u32 pid, int report)
1305 {
1306 struct __nf_ct_flush_report fr = {
1307 .pid = pid,
1308 .report = report,
1309 };
1310 nf_ct_iterate_cleanup(net, kill_report, &fr);
1311 }
1312 EXPORT_SYMBOL_GPL(nf_conntrack_flush_report);
1313
1314 static void nf_ct_release_dying_list(struct net *net)
1315 {
1316 struct nf_conntrack_tuple_hash *h;
1317 struct nf_conn *ct;
1318 struct hlist_nulls_node *n;
1319
1320 spin_lock_bh(&nf_conntrack_lock);
1321 hlist_nulls_for_each_entry(h, n, &net->ct.dying, hnnode) {
1322 ct = nf_ct_tuplehash_to_ctrack(h);
1323 /* never fails to remove them, no listeners at this point */
1324 nf_ct_kill(ct);
1325 }
1326 spin_unlock_bh(&nf_conntrack_lock);
1327 }
1328
1329 static int untrack_refs(void)
1330 {
1331 int cnt = 0, cpu;
1332
1333 for_each_possible_cpu(cpu) {
1334 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1335
1336 cnt += atomic_read(&ct->ct_general.use) - 1;
1337 }
1338 return cnt;
1339 }
1340
1341 static void nf_conntrack_cleanup_init_net(void)
1342 {
1343 while (untrack_refs() > 0)
1344 schedule();
1345
1346 #ifdef CONFIG_NF_CONNTRACK_ZONES
1347 nf_ct_extend_unregister(&nf_ct_zone_extend);
1348 #endif
1349 }
1350
1351 static void nf_conntrack_cleanup_net(struct net *net)
1352 {
1353 i_see_dead_people:
1354 nf_ct_iterate_cleanup(net, kill_all, NULL);
1355 nf_ct_release_dying_list(net);
1356 if (atomic_read(&net->ct.count) != 0) {
1357 schedule();
1358 goto i_see_dead_people;
1359 }
1360
1361 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1362 nf_conntrack_helper_fini(net);
1363 nf_conntrack_timeout_fini(net);
1364 nf_conntrack_ecache_fini(net);
1365 nf_conntrack_tstamp_fini(net);
1366 nf_conntrack_acct_fini(net);
1367 nf_conntrack_expect_fini(net);
1368 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1369 kfree(net->ct.slabname);
1370 free_percpu(net->ct.stat);
1371 }
1372
1373 /* Mishearing the voices in his head, our hero wonders how he's
1374 supposed to kill the mall. */
1375 void nf_conntrack_cleanup(struct net *net)
1376 {
1377 if (net_eq(net, &init_net))
1378 RCU_INIT_POINTER(ip_ct_attach, NULL);
1379
1380 /* This makes sure all current packets have passed through
1381 netfilter framework. Roll on, two-stage module
1382 delete... */
1383 synchronize_net();
1384 nf_conntrack_proto_fini(net);
1385 nf_conntrack_cleanup_net(net);
1386
1387 if (net_eq(net, &init_net)) {
1388 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1389 nf_conntrack_cleanup_init_net();
1390 }
1391 }
1392
1393 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1394 {
1395 struct hlist_nulls_head *hash;
1396 unsigned int nr_slots, i;
1397 size_t sz;
1398
1399 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1400 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1401 sz = nr_slots * sizeof(struct hlist_nulls_head);
1402 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1403 get_order(sz));
1404 if (!hash) {
1405 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1406 hash = vzalloc(sz);
1407 }
1408
1409 if (hash && nulls)
1410 for (i = 0; i < nr_slots; i++)
1411 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1412
1413 return hash;
1414 }
1415 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1416
1417 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1418 {
1419 int i, bucket;
1420 unsigned int hashsize, old_size;
1421 struct hlist_nulls_head *hash, *old_hash;
1422 struct nf_conntrack_tuple_hash *h;
1423 struct nf_conn *ct;
1424
1425 if (current->nsproxy->net_ns != &init_net)
1426 return -EOPNOTSUPP;
1427
1428 /* On boot, we can set this without any fancy locking. */
1429 if (!nf_conntrack_htable_size)
1430 return param_set_uint(val, kp);
1431
1432 hashsize = simple_strtoul(val, NULL, 0);
1433 if (!hashsize)
1434 return -EINVAL;
1435
1436 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1437 if (!hash)
1438 return -ENOMEM;
1439
1440 /* Lookups in the old hash might happen in parallel, which means we
1441 * might get false negatives during connection lookup. New connections
1442 * created because of a false negative won't make it into the hash
1443 * though since that required taking the lock.
1444 */
1445 spin_lock_bh(&nf_conntrack_lock);
1446 for (i = 0; i < init_net.ct.htable_size; i++) {
1447 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1448 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1449 struct nf_conntrack_tuple_hash, hnnode);
1450 ct = nf_ct_tuplehash_to_ctrack(h);
1451 hlist_nulls_del_rcu(&h->hnnode);
1452 bucket = __hash_conntrack(&h->tuple, nf_ct_zone(ct),
1453 hashsize);
1454 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1455 }
1456 }
1457 old_size = init_net.ct.htable_size;
1458 old_hash = init_net.ct.hash;
1459
1460 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1461 init_net.ct.hash = hash;
1462 spin_unlock_bh(&nf_conntrack_lock);
1463
1464 nf_ct_free_hashtable(old_hash, old_size);
1465 return 0;
1466 }
1467 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1468
1469 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1470 &nf_conntrack_htable_size, 0600);
1471
1472 void nf_ct_untracked_status_or(unsigned long bits)
1473 {
1474 int cpu;
1475
1476 for_each_possible_cpu(cpu)
1477 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1478 }
1479 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1480
1481 static int nf_conntrack_init_init_net(void)
1482 {
1483 int max_factor = 8;
1484 int ret, cpu;
1485
1486 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1487 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1488 if (!nf_conntrack_htable_size) {
1489 nf_conntrack_htable_size
1490 = (((totalram_pages << PAGE_SHIFT) / 16384)
1491 / sizeof(struct hlist_head));
1492 if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1493 nf_conntrack_htable_size = 16384;
1494 if (nf_conntrack_htable_size < 32)
1495 nf_conntrack_htable_size = 32;
1496
1497 /* Use a max. factor of four by default to get the same max as
1498 * with the old struct list_heads. When a table size is given
1499 * we use the old value of 8 to avoid reducing the max.
1500 * entries. */
1501 max_factor = 4;
1502 }
1503 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1504
1505 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1506 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1507 nf_conntrack_max);
1508 #ifdef CONFIG_NF_CONNTRACK_ZONES
1509 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1510 if (ret < 0)
1511 goto err_extend;
1512 #endif
1513 /* Set up fake conntrack: to never be deleted, not in any hashes */
1514 for_each_possible_cpu(cpu) {
1515 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1516 write_pnet(&ct->ct_net, &init_net);
1517 atomic_set(&ct->ct_general.use, 1);
1518 }
1519 /* - and look it like as a confirmed connection */
1520 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1521 return 0;
1522
1523 #ifdef CONFIG_NF_CONNTRACK_ZONES
1524 err_extend:
1525 #endif
1526 return ret;
1527 }
1528
1529 /*
1530 * We need to use special "null" values, not used in hash table
1531 */
1532 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1533 #define DYING_NULLS_VAL ((1<<30)+1)
1534
1535 static int nf_conntrack_init_net(struct net *net)
1536 {
1537 int ret;
1538
1539 atomic_set(&net->ct.count, 0);
1540 INIT_HLIST_NULLS_HEAD(&net->ct.unconfirmed, UNCONFIRMED_NULLS_VAL);
1541 INIT_HLIST_NULLS_HEAD(&net->ct.dying, DYING_NULLS_VAL);
1542 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1543 if (!net->ct.stat) {
1544 ret = -ENOMEM;
1545 goto err_stat;
1546 }
1547
1548 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1549 if (!net->ct.slabname) {
1550 ret = -ENOMEM;
1551 goto err_slabname;
1552 }
1553
1554 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1555 sizeof(struct nf_conn), 0,
1556 SLAB_DESTROY_BY_RCU, NULL);
1557 if (!net->ct.nf_conntrack_cachep) {
1558 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1559 ret = -ENOMEM;
1560 goto err_cache;
1561 }
1562
1563 net->ct.htable_size = nf_conntrack_htable_size;
1564 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1565 if (!net->ct.hash) {
1566 ret = -ENOMEM;
1567 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1568 goto err_hash;
1569 }
1570 ret = nf_conntrack_expect_init(net);
1571 if (ret < 0)
1572 goto err_expect;
1573 ret = nf_conntrack_acct_init(net);
1574 if (ret < 0)
1575 goto err_acct;
1576 ret = nf_conntrack_tstamp_init(net);
1577 if (ret < 0)
1578 goto err_tstamp;
1579 ret = nf_conntrack_ecache_init(net);
1580 if (ret < 0)
1581 goto err_ecache;
1582 ret = nf_conntrack_timeout_init(net);
1583 if (ret < 0)
1584 goto err_timeout;
1585 ret = nf_conntrack_helper_init(net);
1586 if (ret < 0)
1587 goto err_helper;
1588 return 0;
1589 err_helper:
1590 nf_conntrack_timeout_fini(net);
1591 err_timeout:
1592 nf_conntrack_ecache_fini(net);
1593 err_ecache:
1594 nf_conntrack_tstamp_fini(net);
1595 err_tstamp:
1596 nf_conntrack_acct_fini(net);
1597 err_acct:
1598 nf_conntrack_expect_fini(net);
1599 err_expect:
1600 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1601 err_hash:
1602 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1603 err_cache:
1604 kfree(net->ct.slabname);
1605 err_slabname:
1606 free_percpu(net->ct.stat);
1607 err_stat:
1608 return ret;
1609 }
1610
1611 s16 (*nf_ct_nat_offset)(const struct nf_conn *ct,
1612 enum ip_conntrack_dir dir,
1613 u32 seq);
1614 EXPORT_SYMBOL_GPL(nf_ct_nat_offset);
1615
1616 int nf_conntrack_init(struct net *net)
1617 {
1618 int ret;
1619
1620 if (net_eq(net, &init_net)) {
1621 ret = nf_conntrack_init_init_net();
1622 if (ret < 0)
1623 goto out_init_net;
1624 }
1625 ret = nf_conntrack_proto_init(net);
1626 if (ret < 0)
1627 goto out_proto;
1628 ret = nf_conntrack_init_net(net);
1629 if (ret < 0)
1630 goto out_net;
1631
1632 if (net_eq(net, &init_net)) {
1633 /* For use by REJECT target */
1634 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1635 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1636
1637 /* Howto get NAT offsets */
1638 RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
1639 }
1640 return 0;
1641
1642 out_net:
1643 nf_conntrack_proto_fini(net);
1644 out_proto:
1645 if (net_eq(net, &init_net))
1646 nf_conntrack_cleanup_init_net();
1647 out_init_net:
1648 return ret;
1649 }
This page took 0.067423 seconds and 5 git commands to generate.