netfilter: nf_conntrack: add efficient mark to zone mapping
[deliverable/linux.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/types.h>
16 #include <linux/netfilter.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/skbuff.h>
20 #include <linux/proc_fs.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/random.h>
25 #include <linux/jhash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l3proto.h>
39 #include <net/netfilter/nf_conntrack_l4proto.h>
40 #include <net/netfilter/nf_conntrack_expect.h>
41 #include <net/netfilter/nf_conntrack_helper.h>
42 #include <net/netfilter/nf_conntrack_seqadj.h>
43 #include <net/netfilter/nf_conntrack_core.h>
44 #include <net/netfilter/nf_conntrack_extend.h>
45 #include <net/netfilter/nf_conntrack_acct.h>
46 #include <net/netfilter/nf_conntrack_ecache.h>
47 #include <net/netfilter/nf_conntrack_zones.h>
48 #include <net/netfilter/nf_conntrack_timestamp.h>
49 #include <net/netfilter/nf_conntrack_timeout.h>
50 #include <net/netfilter/nf_conntrack_labels.h>
51 #include <net/netfilter/nf_conntrack_synproxy.h>
52 #include <net/netfilter/nf_nat.h>
53 #include <net/netfilter/nf_nat_core.h>
54 #include <net/netfilter/nf_nat_helper.h>
55
56 #define NF_CONNTRACK_VERSION "0.5.0"
57
58 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
59 enum nf_nat_manip_type manip,
60 const struct nlattr *attr) __read_mostly;
61 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
62
63 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
64 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
65
66 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
67 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
68
69 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
70 {
71 h1 %= CONNTRACK_LOCKS;
72 h2 %= CONNTRACK_LOCKS;
73 spin_unlock(&nf_conntrack_locks[h1]);
74 if (h1 != h2)
75 spin_unlock(&nf_conntrack_locks[h2]);
76 }
77
78 /* return true if we need to recompute hashes (in case hash table was resized) */
79 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
80 unsigned int h2, unsigned int sequence)
81 {
82 h1 %= CONNTRACK_LOCKS;
83 h2 %= CONNTRACK_LOCKS;
84 if (h1 <= h2) {
85 spin_lock(&nf_conntrack_locks[h1]);
86 if (h1 != h2)
87 spin_lock_nested(&nf_conntrack_locks[h2],
88 SINGLE_DEPTH_NESTING);
89 } else {
90 spin_lock(&nf_conntrack_locks[h2]);
91 spin_lock_nested(&nf_conntrack_locks[h1],
92 SINGLE_DEPTH_NESTING);
93 }
94 if (read_seqcount_retry(&net->ct.generation, sequence)) {
95 nf_conntrack_double_unlock(h1, h2);
96 return true;
97 }
98 return false;
99 }
100
101 static void nf_conntrack_all_lock(void)
102 {
103 int i;
104
105 for (i = 0; i < CONNTRACK_LOCKS; i++)
106 spin_lock_nested(&nf_conntrack_locks[i], i);
107 }
108
109 static void nf_conntrack_all_unlock(void)
110 {
111 int i;
112
113 for (i = 0; i < CONNTRACK_LOCKS; i++)
114 spin_unlock(&nf_conntrack_locks[i]);
115 }
116
117 unsigned int nf_conntrack_htable_size __read_mostly;
118 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
119
120 unsigned int nf_conntrack_max __read_mostly;
121 EXPORT_SYMBOL_GPL(nf_conntrack_max);
122
123 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
124 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
125
126 unsigned int nf_conntrack_hash_rnd __read_mostly;
127 EXPORT_SYMBOL_GPL(nf_conntrack_hash_rnd);
128
129 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple)
130 {
131 unsigned int n;
132
133 /* The direction must be ignored, so we hash everything up to the
134 * destination ports (which is a multiple of 4) and treat the last
135 * three bytes manually.
136 */
137 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
138 return jhash2((u32 *)tuple, n, nf_conntrack_hash_rnd ^
139 (((__force __u16)tuple->dst.u.all << 16) |
140 tuple->dst.protonum));
141 }
142
143 static u32 __hash_bucket(u32 hash, unsigned int size)
144 {
145 return reciprocal_scale(hash, size);
146 }
147
148 static u32 hash_bucket(u32 hash, const struct net *net)
149 {
150 return __hash_bucket(hash, net->ct.htable_size);
151 }
152
153 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
154 unsigned int size)
155 {
156 return __hash_bucket(hash_conntrack_raw(tuple), size);
157 }
158
159 static inline u_int32_t hash_conntrack(const struct net *net,
160 const struct nf_conntrack_tuple *tuple)
161 {
162 return __hash_conntrack(tuple, net->ct.htable_size);
163 }
164
165 bool
166 nf_ct_get_tuple(const struct sk_buff *skb,
167 unsigned int nhoff,
168 unsigned int dataoff,
169 u_int16_t l3num,
170 u_int8_t protonum,
171 struct nf_conntrack_tuple *tuple,
172 const struct nf_conntrack_l3proto *l3proto,
173 const struct nf_conntrack_l4proto *l4proto)
174 {
175 memset(tuple, 0, sizeof(*tuple));
176
177 tuple->src.l3num = l3num;
178 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
179 return false;
180
181 tuple->dst.protonum = protonum;
182 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
183
184 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
185 }
186 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
187
188 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
189 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
190 {
191 struct nf_conntrack_l3proto *l3proto;
192 struct nf_conntrack_l4proto *l4proto;
193 unsigned int protoff;
194 u_int8_t protonum;
195 int ret;
196
197 rcu_read_lock();
198
199 l3proto = __nf_ct_l3proto_find(l3num);
200 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
201 if (ret != NF_ACCEPT) {
202 rcu_read_unlock();
203 return false;
204 }
205
206 l4proto = __nf_ct_l4proto_find(l3num, protonum);
207
208 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
209 l3proto, l4proto);
210
211 rcu_read_unlock();
212 return ret;
213 }
214 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
215
216 bool
217 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
218 const struct nf_conntrack_tuple *orig,
219 const struct nf_conntrack_l3proto *l3proto,
220 const struct nf_conntrack_l4proto *l4proto)
221 {
222 memset(inverse, 0, sizeof(*inverse));
223
224 inverse->src.l3num = orig->src.l3num;
225 if (l3proto->invert_tuple(inverse, orig) == 0)
226 return false;
227
228 inverse->dst.dir = !orig->dst.dir;
229
230 inverse->dst.protonum = orig->dst.protonum;
231 return l4proto->invert_tuple(inverse, orig);
232 }
233 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
234
235 static void
236 clean_from_lists(struct nf_conn *ct)
237 {
238 pr_debug("clean_from_lists(%p)\n", ct);
239 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
240 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
241
242 /* Destroy all pending expectations */
243 nf_ct_remove_expectations(ct);
244 }
245
246 /* must be called with local_bh_disable */
247 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
248 {
249 struct ct_pcpu *pcpu;
250
251 /* add this conntrack to the (per cpu) dying list */
252 ct->cpu = smp_processor_id();
253 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
254
255 spin_lock(&pcpu->lock);
256 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
257 &pcpu->dying);
258 spin_unlock(&pcpu->lock);
259 }
260
261 /* must be called with local_bh_disable */
262 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
263 {
264 struct ct_pcpu *pcpu;
265
266 /* add this conntrack to the (per cpu) unconfirmed list */
267 ct->cpu = smp_processor_id();
268 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
269
270 spin_lock(&pcpu->lock);
271 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
272 &pcpu->unconfirmed);
273 spin_unlock(&pcpu->lock);
274 }
275
276 /* must be called with local_bh_disable */
277 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
278 {
279 struct ct_pcpu *pcpu;
280
281 /* We overload first tuple to link into unconfirmed or dying list.*/
282 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
283
284 spin_lock(&pcpu->lock);
285 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
286 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
287 spin_unlock(&pcpu->lock);
288 }
289
290 /* Released via destroy_conntrack() */
291 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
292 const struct nf_conntrack_zone *zone,
293 gfp_t flags)
294 {
295 struct nf_conn *tmpl;
296
297 tmpl = kzalloc(sizeof(struct nf_conn), GFP_KERNEL);
298 if (tmpl == NULL)
299 return NULL;
300
301 tmpl->status = IPS_TEMPLATE;
302 write_pnet(&tmpl->ct_net, net);
303
304 if (nf_ct_zone_add(tmpl, flags, zone) < 0)
305 goto out_free;
306
307 atomic_set(&tmpl->ct_general.use, 0);
308
309 return tmpl;
310 out_free:
311 kfree(tmpl);
312 return NULL;
313 }
314 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
315
316 static void nf_ct_tmpl_free(struct nf_conn *tmpl)
317 {
318 nf_ct_ext_destroy(tmpl);
319 nf_ct_ext_free(tmpl);
320 kfree(tmpl);
321 }
322
323 static void
324 destroy_conntrack(struct nf_conntrack *nfct)
325 {
326 struct nf_conn *ct = (struct nf_conn *)nfct;
327 struct net *net = nf_ct_net(ct);
328 struct nf_conntrack_l4proto *l4proto;
329
330 pr_debug("destroy_conntrack(%p)\n", ct);
331 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
332 NF_CT_ASSERT(!timer_pending(&ct->timeout));
333
334 if (unlikely(nf_ct_is_template(ct))) {
335 nf_ct_tmpl_free(ct);
336 return;
337 }
338 rcu_read_lock();
339 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
340 if (l4proto && l4proto->destroy)
341 l4proto->destroy(ct);
342
343 rcu_read_unlock();
344
345 local_bh_disable();
346 /* Expectations will have been removed in clean_from_lists,
347 * except TFTP can create an expectation on the first packet,
348 * before connection is in the list, so we need to clean here,
349 * too.
350 */
351 nf_ct_remove_expectations(ct);
352
353 nf_ct_del_from_dying_or_unconfirmed_list(ct);
354
355 NF_CT_STAT_INC(net, delete);
356 local_bh_enable();
357
358 if (ct->master)
359 nf_ct_put(ct->master);
360
361 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
362 nf_conntrack_free(ct);
363 }
364
365 static void nf_ct_delete_from_lists(struct nf_conn *ct)
366 {
367 struct net *net = nf_ct_net(ct);
368 unsigned int hash, reply_hash;
369 unsigned int sequence;
370
371 nf_ct_helper_destroy(ct);
372
373 local_bh_disable();
374 do {
375 sequence = read_seqcount_begin(&net->ct.generation);
376 hash = hash_conntrack(net,
377 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
378 reply_hash = hash_conntrack(net,
379 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
380 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
381
382 clean_from_lists(ct);
383 nf_conntrack_double_unlock(hash, reply_hash);
384
385 nf_ct_add_to_dying_list(ct);
386
387 NF_CT_STAT_INC(net, delete_list);
388 local_bh_enable();
389 }
390
391 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
392 {
393 struct nf_conn_tstamp *tstamp;
394
395 tstamp = nf_conn_tstamp_find(ct);
396 if (tstamp && tstamp->stop == 0)
397 tstamp->stop = ktime_get_real_ns();
398
399 if (nf_ct_is_dying(ct))
400 goto delete;
401
402 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
403 portid, report) < 0) {
404 /* destroy event was not delivered */
405 nf_ct_delete_from_lists(ct);
406 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
407 return false;
408 }
409
410 nf_conntrack_ecache_work(nf_ct_net(ct));
411 set_bit(IPS_DYING_BIT, &ct->status);
412 delete:
413 nf_ct_delete_from_lists(ct);
414 nf_ct_put(ct);
415 return true;
416 }
417 EXPORT_SYMBOL_GPL(nf_ct_delete);
418
419 static void death_by_timeout(unsigned long ul_conntrack)
420 {
421 nf_ct_delete((struct nf_conn *)ul_conntrack, 0, 0);
422 }
423
424 static inline bool
425 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
426 const struct nf_conntrack_tuple *tuple,
427 const struct nf_conntrack_zone *zone)
428 {
429 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
430
431 /* A conntrack can be recreated with the equal tuple,
432 * so we need to check that the conntrack is confirmed
433 */
434 return nf_ct_tuple_equal(tuple, &h->tuple) &&
435 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
436 nf_ct_is_confirmed(ct);
437 }
438
439 /*
440 * Warning :
441 * - Caller must take a reference on returned object
442 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
443 */
444 static struct nf_conntrack_tuple_hash *
445 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
446 const struct nf_conntrack_tuple *tuple, u32 hash)
447 {
448 struct nf_conntrack_tuple_hash *h;
449 struct hlist_nulls_node *n;
450 unsigned int bucket = hash_bucket(hash, net);
451
452 /* Disable BHs the entire time since we normally need to disable them
453 * at least once for the stats anyway.
454 */
455 local_bh_disable();
456 begin:
457 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
458 if (nf_ct_key_equal(h, tuple, zone)) {
459 NF_CT_STAT_INC(net, found);
460 local_bh_enable();
461 return h;
462 }
463 NF_CT_STAT_INC(net, searched);
464 }
465 /*
466 * if the nulls value we got at the end of this lookup is
467 * not the expected one, we must restart lookup.
468 * We probably met an item that was moved to another chain.
469 */
470 if (get_nulls_value(n) != bucket) {
471 NF_CT_STAT_INC(net, search_restart);
472 goto begin;
473 }
474 local_bh_enable();
475
476 return NULL;
477 }
478
479 /* Find a connection corresponding to a tuple. */
480 static struct nf_conntrack_tuple_hash *
481 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
482 const struct nf_conntrack_tuple *tuple, u32 hash)
483 {
484 struct nf_conntrack_tuple_hash *h;
485 struct nf_conn *ct;
486
487 rcu_read_lock();
488 begin:
489 h = ____nf_conntrack_find(net, zone, tuple, hash);
490 if (h) {
491 ct = nf_ct_tuplehash_to_ctrack(h);
492 if (unlikely(nf_ct_is_dying(ct) ||
493 !atomic_inc_not_zero(&ct->ct_general.use)))
494 h = NULL;
495 else {
496 if (unlikely(!nf_ct_key_equal(h, tuple, zone))) {
497 nf_ct_put(ct);
498 goto begin;
499 }
500 }
501 }
502 rcu_read_unlock();
503
504 return h;
505 }
506
507 struct nf_conntrack_tuple_hash *
508 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
509 const struct nf_conntrack_tuple *tuple)
510 {
511 return __nf_conntrack_find_get(net, zone, tuple,
512 hash_conntrack_raw(tuple));
513 }
514 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
515
516 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
517 unsigned int hash,
518 unsigned int reply_hash)
519 {
520 struct net *net = nf_ct_net(ct);
521
522 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
523 &net->ct.hash[hash]);
524 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
525 &net->ct.hash[reply_hash]);
526 }
527
528 int
529 nf_conntrack_hash_check_insert(struct nf_conn *ct)
530 {
531 const struct nf_conntrack_zone *zone;
532 struct net *net = nf_ct_net(ct);
533 unsigned int hash, reply_hash;
534 struct nf_conntrack_tuple_hash *h;
535 struct hlist_nulls_node *n;
536 unsigned int sequence;
537
538 zone = nf_ct_zone(ct);
539
540 local_bh_disable();
541 do {
542 sequence = read_seqcount_begin(&net->ct.generation);
543 hash = hash_conntrack(net,
544 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
545 reply_hash = hash_conntrack(net,
546 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
547 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
548
549 /* See if there's one in the list already, including reverse */
550 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
551 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
552 &h->tuple) &&
553 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
554 NF_CT_DIRECTION(h)))
555 goto out;
556 hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
557 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
558 &h->tuple) &&
559 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
560 NF_CT_DIRECTION(h)))
561 goto out;
562
563 add_timer(&ct->timeout);
564 smp_wmb();
565 /* The caller holds a reference to this object */
566 atomic_set(&ct->ct_general.use, 2);
567 __nf_conntrack_hash_insert(ct, hash, reply_hash);
568 nf_conntrack_double_unlock(hash, reply_hash);
569 NF_CT_STAT_INC(net, insert);
570 local_bh_enable();
571 return 0;
572
573 out:
574 nf_conntrack_double_unlock(hash, reply_hash);
575 NF_CT_STAT_INC(net, insert_failed);
576 local_bh_enable();
577 return -EEXIST;
578 }
579 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
580
581 /* Confirm a connection given skb; places it in hash table */
582 int
583 __nf_conntrack_confirm(struct sk_buff *skb)
584 {
585 const struct nf_conntrack_zone *zone;
586 unsigned int hash, reply_hash;
587 struct nf_conntrack_tuple_hash *h;
588 struct nf_conn *ct;
589 struct nf_conn_help *help;
590 struct nf_conn_tstamp *tstamp;
591 struct hlist_nulls_node *n;
592 enum ip_conntrack_info ctinfo;
593 struct net *net;
594 unsigned int sequence;
595
596 ct = nf_ct_get(skb, &ctinfo);
597 net = nf_ct_net(ct);
598
599 /* ipt_REJECT uses nf_conntrack_attach to attach related
600 ICMP/TCP RST packets in other direction. Actual packet
601 which created connection will be IP_CT_NEW or for an
602 expected connection, IP_CT_RELATED. */
603 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
604 return NF_ACCEPT;
605
606 zone = nf_ct_zone(ct);
607 local_bh_disable();
608
609 do {
610 sequence = read_seqcount_begin(&net->ct.generation);
611 /* reuse the hash saved before */
612 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
613 hash = hash_bucket(hash, net);
614 reply_hash = hash_conntrack(net,
615 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
616
617 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
618
619 /* We're not in hash table, and we refuse to set up related
620 * connections for unconfirmed conns. But packet copies and
621 * REJECT will give spurious warnings here.
622 */
623 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
624
625 /* No external references means no one else could have
626 * confirmed us.
627 */
628 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
629 pr_debug("Confirming conntrack %p\n", ct);
630 /* We have to check the DYING flag after unlink to prevent
631 * a race against nf_ct_get_next_corpse() possibly called from
632 * user context, else we insert an already 'dead' hash, blocking
633 * further use of that particular connection -JM.
634 */
635 nf_ct_del_from_dying_or_unconfirmed_list(ct);
636
637 if (unlikely(nf_ct_is_dying(ct)))
638 goto out;
639
640 /* See if there's one in the list already, including reverse:
641 NAT could have grabbed it without realizing, since we're
642 not in the hash. If there is, we lost race. */
643 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
644 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
645 &h->tuple) &&
646 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
647 NF_CT_DIRECTION(h)))
648 goto out;
649 hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
650 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
651 &h->tuple) &&
652 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
653 NF_CT_DIRECTION(h)))
654 goto out;
655
656 /* Timer relative to confirmation time, not original
657 setting time, otherwise we'd get timer wrap in
658 weird delay cases. */
659 ct->timeout.expires += jiffies;
660 add_timer(&ct->timeout);
661 atomic_inc(&ct->ct_general.use);
662 ct->status |= IPS_CONFIRMED;
663
664 /* set conntrack timestamp, if enabled. */
665 tstamp = nf_conn_tstamp_find(ct);
666 if (tstamp) {
667 if (skb->tstamp.tv64 == 0)
668 __net_timestamp(skb);
669
670 tstamp->start = ktime_to_ns(skb->tstamp);
671 }
672 /* Since the lookup is lockless, hash insertion must be done after
673 * starting the timer and setting the CONFIRMED bit. The RCU barriers
674 * guarantee that no other CPU can find the conntrack before the above
675 * stores are visible.
676 */
677 __nf_conntrack_hash_insert(ct, hash, reply_hash);
678 nf_conntrack_double_unlock(hash, reply_hash);
679 NF_CT_STAT_INC(net, insert);
680 local_bh_enable();
681
682 help = nfct_help(ct);
683 if (help && help->helper)
684 nf_conntrack_event_cache(IPCT_HELPER, ct);
685
686 nf_conntrack_event_cache(master_ct(ct) ?
687 IPCT_RELATED : IPCT_NEW, ct);
688 return NF_ACCEPT;
689
690 out:
691 nf_ct_add_to_dying_list(ct);
692 nf_conntrack_double_unlock(hash, reply_hash);
693 NF_CT_STAT_INC(net, insert_failed);
694 local_bh_enable();
695 return NF_DROP;
696 }
697 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
698
699 /* Returns true if a connection correspondings to the tuple (required
700 for NAT). */
701 int
702 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
703 const struct nf_conn *ignored_conntrack)
704 {
705 struct net *net = nf_ct_net(ignored_conntrack);
706 const struct nf_conntrack_zone *zone;
707 struct nf_conntrack_tuple_hash *h;
708 struct hlist_nulls_node *n;
709 struct nf_conn *ct;
710 unsigned int hash;
711
712 zone = nf_ct_zone(ignored_conntrack);
713 hash = hash_conntrack(net, tuple);
714
715 /* Disable BHs the entire time since we need to disable them at
716 * least once for the stats anyway.
717 */
718 rcu_read_lock_bh();
719 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
720 ct = nf_ct_tuplehash_to_ctrack(h);
721 if (ct != ignored_conntrack &&
722 nf_ct_tuple_equal(tuple, &h->tuple) &&
723 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h))) {
724 NF_CT_STAT_INC(net, found);
725 rcu_read_unlock_bh();
726 return 1;
727 }
728 NF_CT_STAT_INC(net, searched);
729 }
730 rcu_read_unlock_bh();
731
732 return 0;
733 }
734 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
735
736 #define NF_CT_EVICTION_RANGE 8
737
738 /* There's a small race here where we may free a just-assured
739 connection. Too bad: we're in trouble anyway. */
740 static noinline int early_drop(struct net *net, unsigned int _hash)
741 {
742 /* Use oldest entry, which is roughly LRU */
743 struct nf_conntrack_tuple_hash *h;
744 struct nf_conn *ct = NULL, *tmp;
745 struct hlist_nulls_node *n;
746 unsigned int i = 0, cnt = 0;
747 int dropped = 0;
748 unsigned int hash, sequence;
749 spinlock_t *lockp;
750
751 local_bh_disable();
752 restart:
753 sequence = read_seqcount_begin(&net->ct.generation);
754 hash = hash_bucket(_hash, net);
755 for (; i < net->ct.htable_size; i++) {
756 lockp = &nf_conntrack_locks[hash % CONNTRACK_LOCKS];
757 spin_lock(lockp);
758 if (read_seqcount_retry(&net->ct.generation, sequence)) {
759 spin_unlock(lockp);
760 goto restart;
761 }
762 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
763 hnnode) {
764 tmp = nf_ct_tuplehash_to_ctrack(h);
765 if (!test_bit(IPS_ASSURED_BIT, &tmp->status) &&
766 !nf_ct_is_dying(tmp) &&
767 atomic_inc_not_zero(&tmp->ct_general.use)) {
768 ct = tmp;
769 break;
770 }
771 cnt++;
772 }
773
774 hash = (hash + 1) % net->ct.htable_size;
775 spin_unlock(lockp);
776
777 if (ct || cnt >= NF_CT_EVICTION_RANGE)
778 break;
779
780 }
781 local_bh_enable();
782
783 if (!ct)
784 return dropped;
785
786 if (del_timer(&ct->timeout)) {
787 if (nf_ct_delete(ct, 0, 0)) {
788 dropped = 1;
789 NF_CT_STAT_INC_ATOMIC(net, early_drop);
790 }
791 }
792 nf_ct_put(ct);
793 return dropped;
794 }
795
796 void init_nf_conntrack_hash_rnd(void)
797 {
798 unsigned int rand;
799
800 /*
801 * Why not initialize nf_conntrack_rnd in a "init()" function ?
802 * Because there isn't enough entropy when system initializing,
803 * and we initialize it as late as possible.
804 */
805 do {
806 get_random_bytes(&rand, sizeof(rand));
807 } while (!rand);
808 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
809 }
810
811 static struct nf_conn *
812 __nf_conntrack_alloc(struct net *net,
813 const struct nf_conntrack_zone *zone,
814 const struct nf_conntrack_tuple *orig,
815 const struct nf_conntrack_tuple *repl,
816 gfp_t gfp, u32 hash)
817 {
818 struct nf_conn *ct;
819
820 if (unlikely(!nf_conntrack_hash_rnd)) {
821 init_nf_conntrack_hash_rnd();
822 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
823 hash = hash_conntrack_raw(orig);
824 }
825
826 /* We don't want any race condition at early drop stage */
827 atomic_inc(&net->ct.count);
828
829 if (nf_conntrack_max &&
830 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
831 if (!early_drop(net, hash)) {
832 atomic_dec(&net->ct.count);
833 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
834 return ERR_PTR(-ENOMEM);
835 }
836 }
837
838 /*
839 * Do not use kmem_cache_zalloc(), as this cache uses
840 * SLAB_DESTROY_BY_RCU.
841 */
842 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
843 if (ct == NULL)
844 goto out;
845
846 spin_lock_init(&ct->lock);
847 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
848 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
849 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
850 /* save hash for reusing when confirming */
851 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
852 ct->status = 0;
853 /* Don't set timer yet: wait for confirmation */
854 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
855 write_pnet(&ct->ct_net, net);
856 memset(&ct->__nfct_init_offset[0], 0,
857 offsetof(struct nf_conn, proto) -
858 offsetof(struct nf_conn, __nfct_init_offset[0]));
859
860 if (zone && nf_ct_zone_add(ct, GFP_ATOMIC, zone) < 0)
861 goto out_free;
862
863 /* Because we use RCU lookups, we set ct_general.use to zero before
864 * this is inserted in any list.
865 */
866 atomic_set(&ct->ct_general.use, 0);
867 return ct;
868 out_free:
869 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
870 out:
871 atomic_dec(&net->ct.count);
872 return ERR_PTR(-ENOMEM);
873 }
874
875 struct nf_conn *nf_conntrack_alloc(struct net *net,
876 const struct nf_conntrack_zone *zone,
877 const struct nf_conntrack_tuple *orig,
878 const struct nf_conntrack_tuple *repl,
879 gfp_t gfp)
880 {
881 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
882 }
883 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
884
885 void nf_conntrack_free(struct nf_conn *ct)
886 {
887 struct net *net = nf_ct_net(ct);
888
889 /* A freed object has refcnt == 0, that's
890 * the golden rule for SLAB_DESTROY_BY_RCU
891 */
892 NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
893
894 nf_ct_ext_destroy(ct);
895 nf_ct_ext_free(ct);
896 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
897 smp_mb__before_atomic();
898 atomic_dec(&net->ct.count);
899 }
900 EXPORT_SYMBOL_GPL(nf_conntrack_free);
901
902
903 /* Allocate a new conntrack: we return -ENOMEM if classification
904 failed due to stress. Otherwise it really is unclassifiable. */
905 static struct nf_conntrack_tuple_hash *
906 init_conntrack(struct net *net, struct nf_conn *tmpl,
907 const struct nf_conntrack_tuple *tuple,
908 struct nf_conntrack_l3proto *l3proto,
909 struct nf_conntrack_l4proto *l4proto,
910 struct sk_buff *skb,
911 unsigned int dataoff, u32 hash)
912 {
913 struct nf_conn *ct;
914 struct nf_conn_help *help;
915 struct nf_conntrack_tuple repl_tuple;
916 struct nf_conntrack_ecache *ecache;
917 struct nf_conntrack_expect *exp = NULL;
918 const struct nf_conntrack_zone *zone;
919 struct nf_conn_timeout *timeout_ext;
920 struct nf_conntrack_zone tmp;
921 unsigned int *timeouts;
922
923 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
924 pr_debug("Can't invert tuple.\n");
925 return NULL;
926 }
927
928 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
929 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
930 hash);
931 if (IS_ERR(ct))
932 return (struct nf_conntrack_tuple_hash *)ct;
933
934 if (tmpl && nfct_synproxy(tmpl)) {
935 nfct_seqadj_ext_add(ct);
936 nfct_synproxy_ext_add(ct);
937 }
938
939 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
940 if (timeout_ext)
941 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
942 else
943 timeouts = l4proto->get_timeouts(net);
944
945 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
946 nf_conntrack_free(ct);
947 pr_debug("init conntrack: can't track with proto module\n");
948 return NULL;
949 }
950
951 if (timeout_ext)
952 nf_ct_timeout_ext_add(ct, timeout_ext->timeout, GFP_ATOMIC);
953
954 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
955 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
956 nf_ct_labels_ext_add(ct);
957
958 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
959 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
960 ecache ? ecache->expmask : 0,
961 GFP_ATOMIC);
962
963 local_bh_disable();
964 if (net->ct.expect_count) {
965 spin_lock(&nf_conntrack_expect_lock);
966 exp = nf_ct_find_expectation(net, zone, tuple);
967 if (exp) {
968 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
969 ct, exp);
970 /* Welcome, Mr. Bond. We've been expecting you... */
971 __set_bit(IPS_EXPECTED_BIT, &ct->status);
972 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
973 ct->master = exp->master;
974 if (exp->helper) {
975 help = nf_ct_helper_ext_add(ct, exp->helper,
976 GFP_ATOMIC);
977 if (help)
978 rcu_assign_pointer(help->helper, exp->helper);
979 }
980
981 #ifdef CONFIG_NF_CONNTRACK_MARK
982 ct->mark = exp->master->mark;
983 #endif
984 #ifdef CONFIG_NF_CONNTRACK_SECMARK
985 ct->secmark = exp->master->secmark;
986 #endif
987 NF_CT_STAT_INC(net, expect_new);
988 }
989 spin_unlock(&nf_conntrack_expect_lock);
990 }
991 if (!exp) {
992 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
993 NF_CT_STAT_INC(net, new);
994 }
995
996 /* Now it is inserted into the unconfirmed list, bump refcount */
997 nf_conntrack_get(&ct->ct_general);
998 nf_ct_add_to_unconfirmed_list(ct);
999
1000 local_bh_enable();
1001
1002 if (exp) {
1003 if (exp->expectfn)
1004 exp->expectfn(ct, exp);
1005 nf_ct_expect_put(exp);
1006 }
1007
1008 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1009 }
1010
1011 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1012 static inline struct nf_conn *
1013 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1014 struct sk_buff *skb,
1015 unsigned int dataoff,
1016 u_int16_t l3num,
1017 u_int8_t protonum,
1018 struct nf_conntrack_l3proto *l3proto,
1019 struct nf_conntrack_l4proto *l4proto,
1020 int *set_reply,
1021 enum ip_conntrack_info *ctinfo)
1022 {
1023 const struct nf_conntrack_zone *zone;
1024 struct nf_conntrack_tuple tuple;
1025 struct nf_conntrack_tuple_hash *h;
1026 struct nf_conntrack_zone tmp;
1027 struct nf_conn *ct;
1028 u32 hash;
1029
1030 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1031 dataoff, l3num, protonum, &tuple, l3proto,
1032 l4proto)) {
1033 pr_debug("resolve_normal_ct: Can't get tuple\n");
1034 return NULL;
1035 }
1036
1037 /* look for tuple match */
1038 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1039 hash = hash_conntrack_raw(&tuple);
1040 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1041 if (!h) {
1042 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1043 skb, dataoff, hash);
1044 if (!h)
1045 return NULL;
1046 if (IS_ERR(h))
1047 return (void *)h;
1048 }
1049 ct = nf_ct_tuplehash_to_ctrack(h);
1050
1051 /* It exists; we have (non-exclusive) reference. */
1052 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1053 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1054 /* Please set reply bit if this packet OK */
1055 *set_reply = 1;
1056 } else {
1057 /* Once we've had two way comms, always ESTABLISHED. */
1058 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1059 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
1060 *ctinfo = IP_CT_ESTABLISHED;
1061 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1062 pr_debug("nf_conntrack_in: related packet for %p\n",
1063 ct);
1064 *ctinfo = IP_CT_RELATED;
1065 } else {
1066 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
1067 *ctinfo = IP_CT_NEW;
1068 }
1069 *set_reply = 0;
1070 }
1071 skb->nfct = &ct->ct_general;
1072 skb->nfctinfo = *ctinfo;
1073 return ct;
1074 }
1075
1076 unsigned int
1077 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1078 struct sk_buff *skb)
1079 {
1080 struct nf_conn *ct, *tmpl = NULL;
1081 enum ip_conntrack_info ctinfo;
1082 struct nf_conntrack_l3proto *l3proto;
1083 struct nf_conntrack_l4proto *l4proto;
1084 unsigned int *timeouts;
1085 unsigned int dataoff;
1086 u_int8_t protonum;
1087 int set_reply = 0;
1088 int ret;
1089
1090 if (skb->nfct) {
1091 /* Previously seen (loopback or untracked)? Ignore. */
1092 tmpl = (struct nf_conn *)skb->nfct;
1093 if (!nf_ct_is_template(tmpl)) {
1094 NF_CT_STAT_INC_ATOMIC(net, ignore);
1095 return NF_ACCEPT;
1096 }
1097 skb->nfct = NULL;
1098 }
1099
1100 /* rcu_read_lock()ed by nf_hook_slow */
1101 l3proto = __nf_ct_l3proto_find(pf);
1102 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1103 &dataoff, &protonum);
1104 if (ret <= 0) {
1105 pr_debug("not prepared to track yet or error occurred\n");
1106 NF_CT_STAT_INC_ATOMIC(net, error);
1107 NF_CT_STAT_INC_ATOMIC(net, invalid);
1108 ret = -ret;
1109 goto out;
1110 }
1111
1112 l4proto = __nf_ct_l4proto_find(pf, protonum);
1113
1114 /* It may be an special packet, error, unclean...
1115 * inverse of the return code tells to the netfilter
1116 * core what to do with the packet. */
1117 if (l4proto->error != NULL) {
1118 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1119 pf, hooknum);
1120 if (ret <= 0) {
1121 NF_CT_STAT_INC_ATOMIC(net, error);
1122 NF_CT_STAT_INC_ATOMIC(net, invalid);
1123 ret = -ret;
1124 goto out;
1125 }
1126 /* ICMP[v6] protocol trackers may assign one conntrack. */
1127 if (skb->nfct)
1128 goto out;
1129 }
1130
1131 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1132 l3proto, l4proto, &set_reply, &ctinfo);
1133 if (!ct) {
1134 /* Not valid part of a connection */
1135 NF_CT_STAT_INC_ATOMIC(net, invalid);
1136 ret = NF_ACCEPT;
1137 goto out;
1138 }
1139
1140 if (IS_ERR(ct)) {
1141 /* Too stressed to deal. */
1142 NF_CT_STAT_INC_ATOMIC(net, drop);
1143 ret = NF_DROP;
1144 goto out;
1145 }
1146
1147 NF_CT_ASSERT(skb->nfct);
1148
1149 /* Decide what timeout policy we want to apply to this flow. */
1150 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1151
1152 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1153 if (ret <= 0) {
1154 /* Invalid: inverse of the return code tells
1155 * the netfilter core what to do */
1156 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1157 nf_conntrack_put(skb->nfct);
1158 skb->nfct = NULL;
1159 NF_CT_STAT_INC_ATOMIC(net, invalid);
1160 if (ret == -NF_DROP)
1161 NF_CT_STAT_INC_ATOMIC(net, drop);
1162 ret = -ret;
1163 goto out;
1164 }
1165
1166 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1167 nf_conntrack_event_cache(IPCT_REPLY, ct);
1168 out:
1169 if (tmpl) {
1170 /* Special case: we have to repeat this hook, assign the
1171 * template again to this packet. We assume that this packet
1172 * has no conntrack assigned. This is used by nf_ct_tcp. */
1173 if (ret == NF_REPEAT)
1174 skb->nfct = (struct nf_conntrack *)tmpl;
1175 else
1176 nf_ct_put(tmpl);
1177 }
1178
1179 return ret;
1180 }
1181 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1182
1183 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1184 const struct nf_conntrack_tuple *orig)
1185 {
1186 bool ret;
1187
1188 rcu_read_lock();
1189 ret = nf_ct_invert_tuple(inverse, orig,
1190 __nf_ct_l3proto_find(orig->src.l3num),
1191 __nf_ct_l4proto_find(orig->src.l3num,
1192 orig->dst.protonum));
1193 rcu_read_unlock();
1194 return ret;
1195 }
1196 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1197
1198 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1199 implicitly racy: see __nf_conntrack_confirm */
1200 void nf_conntrack_alter_reply(struct nf_conn *ct,
1201 const struct nf_conntrack_tuple *newreply)
1202 {
1203 struct nf_conn_help *help = nfct_help(ct);
1204
1205 /* Should be unconfirmed, so not in hash table yet */
1206 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1207
1208 pr_debug("Altering reply tuple of %p to ", ct);
1209 nf_ct_dump_tuple(newreply);
1210
1211 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1212 if (ct->master || (help && !hlist_empty(&help->expectations)))
1213 return;
1214
1215 rcu_read_lock();
1216 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1217 rcu_read_unlock();
1218 }
1219 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1220
1221 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1222 void __nf_ct_refresh_acct(struct nf_conn *ct,
1223 enum ip_conntrack_info ctinfo,
1224 const struct sk_buff *skb,
1225 unsigned long extra_jiffies,
1226 int do_acct)
1227 {
1228 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1229 NF_CT_ASSERT(skb);
1230
1231 /* Only update if this is not a fixed timeout */
1232 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1233 goto acct;
1234
1235 /* If not in hash table, timer will not be active yet */
1236 if (!nf_ct_is_confirmed(ct)) {
1237 ct->timeout.expires = extra_jiffies;
1238 } else {
1239 unsigned long newtime = jiffies + extra_jiffies;
1240
1241 /* Only update the timeout if the new timeout is at least
1242 HZ jiffies from the old timeout. Need del_timer for race
1243 avoidance (may already be dying). */
1244 if (newtime - ct->timeout.expires >= HZ)
1245 mod_timer_pending(&ct->timeout, newtime);
1246 }
1247
1248 acct:
1249 if (do_acct) {
1250 struct nf_conn_acct *acct;
1251
1252 acct = nf_conn_acct_find(ct);
1253 if (acct) {
1254 struct nf_conn_counter *counter = acct->counter;
1255
1256 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
1257 atomic64_add(skb->len, &counter[CTINFO2DIR(ctinfo)].bytes);
1258 }
1259 }
1260 }
1261 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1262
1263 bool __nf_ct_kill_acct(struct nf_conn *ct,
1264 enum ip_conntrack_info ctinfo,
1265 const struct sk_buff *skb,
1266 int do_acct)
1267 {
1268 if (do_acct) {
1269 struct nf_conn_acct *acct;
1270
1271 acct = nf_conn_acct_find(ct);
1272 if (acct) {
1273 struct nf_conn_counter *counter = acct->counter;
1274
1275 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
1276 atomic64_add(skb->len - skb_network_offset(skb),
1277 &counter[CTINFO2DIR(ctinfo)].bytes);
1278 }
1279 }
1280
1281 if (del_timer(&ct->timeout)) {
1282 ct->timeout.function((unsigned long)ct);
1283 return true;
1284 }
1285 return false;
1286 }
1287 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1288
1289 /* Built-in default zone used e.g. by modules. */
1290 const struct nf_conntrack_zone nf_ct_zone_dflt = {
1291 .id = NF_CT_DEFAULT_ZONE_ID,
1292 .dir = NF_CT_DEFAULT_ZONE_DIR,
1293 };
1294 EXPORT_SYMBOL_GPL(nf_ct_zone_dflt);
1295
1296 #ifdef CONFIG_NF_CONNTRACK_ZONES
1297 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1298 .len = sizeof(struct nf_conntrack_zone),
1299 .align = __alignof__(struct nf_conntrack_zone),
1300 .id = NF_CT_EXT_ZONE,
1301 };
1302 #endif
1303
1304 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1305
1306 #include <linux/netfilter/nfnetlink.h>
1307 #include <linux/netfilter/nfnetlink_conntrack.h>
1308 #include <linux/mutex.h>
1309
1310 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1311 * in ip_conntrack_core, since we don't want the protocols to autoload
1312 * or depend on ctnetlink */
1313 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1314 const struct nf_conntrack_tuple *tuple)
1315 {
1316 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1317 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1318 goto nla_put_failure;
1319 return 0;
1320
1321 nla_put_failure:
1322 return -1;
1323 }
1324 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1325
1326 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1327 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1328 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1329 };
1330 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1331
1332 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1333 struct nf_conntrack_tuple *t)
1334 {
1335 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1336 return -EINVAL;
1337
1338 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1339 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1340
1341 return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1344
1345 int nf_ct_port_nlattr_tuple_size(void)
1346 {
1347 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1348 }
1349 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1350 #endif
1351
1352 /* Used by ipt_REJECT and ip6t_REJECT. */
1353 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1354 {
1355 struct nf_conn *ct;
1356 enum ip_conntrack_info ctinfo;
1357
1358 /* This ICMP is in reverse direction to the packet which caused it */
1359 ct = nf_ct_get(skb, &ctinfo);
1360 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1361 ctinfo = IP_CT_RELATED_REPLY;
1362 else
1363 ctinfo = IP_CT_RELATED;
1364
1365 /* Attach to new skbuff, and increment count */
1366 nskb->nfct = &ct->ct_general;
1367 nskb->nfctinfo = ctinfo;
1368 nf_conntrack_get(nskb->nfct);
1369 }
1370
1371 /* Bring out ya dead! */
1372 static struct nf_conn *
1373 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1374 void *data, unsigned int *bucket)
1375 {
1376 struct nf_conntrack_tuple_hash *h;
1377 struct nf_conn *ct;
1378 struct hlist_nulls_node *n;
1379 int cpu;
1380 spinlock_t *lockp;
1381
1382 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1383 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1384 local_bh_disable();
1385 spin_lock(lockp);
1386 if (*bucket < net->ct.htable_size) {
1387 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1388 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1389 continue;
1390 ct = nf_ct_tuplehash_to_ctrack(h);
1391 if (iter(ct, data))
1392 goto found;
1393 }
1394 }
1395 spin_unlock(lockp);
1396 local_bh_enable();
1397 }
1398
1399 for_each_possible_cpu(cpu) {
1400 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1401
1402 spin_lock_bh(&pcpu->lock);
1403 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1404 ct = nf_ct_tuplehash_to_ctrack(h);
1405 if (iter(ct, data))
1406 set_bit(IPS_DYING_BIT, &ct->status);
1407 }
1408 spin_unlock_bh(&pcpu->lock);
1409 }
1410 return NULL;
1411 found:
1412 atomic_inc(&ct->ct_general.use);
1413 spin_unlock(lockp);
1414 local_bh_enable();
1415 return ct;
1416 }
1417
1418 void nf_ct_iterate_cleanup(struct net *net,
1419 int (*iter)(struct nf_conn *i, void *data),
1420 void *data, u32 portid, int report)
1421 {
1422 struct nf_conn *ct;
1423 unsigned int bucket = 0;
1424
1425 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1426 /* Time to push up daises... */
1427 if (del_timer(&ct->timeout))
1428 nf_ct_delete(ct, portid, report);
1429
1430 /* ... else the timer will get him soon. */
1431
1432 nf_ct_put(ct);
1433 }
1434 }
1435 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1436
1437 static int kill_all(struct nf_conn *i, void *data)
1438 {
1439 return 1;
1440 }
1441
1442 void nf_ct_free_hashtable(void *hash, unsigned int size)
1443 {
1444 if (is_vmalloc_addr(hash))
1445 vfree(hash);
1446 else
1447 free_pages((unsigned long)hash,
1448 get_order(sizeof(struct hlist_head) * size));
1449 }
1450 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1451
1452 static int untrack_refs(void)
1453 {
1454 int cnt = 0, cpu;
1455
1456 for_each_possible_cpu(cpu) {
1457 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1458
1459 cnt += atomic_read(&ct->ct_general.use) - 1;
1460 }
1461 return cnt;
1462 }
1463
1464 void nf_conntrack_cleanup_start(void)
1465 {
1466 RCU_INIT_POINTER(ip_ct_attach, NULL);
1467 }
1468
1469 void nf_conntrack_cleanup_end(void)
1470 {
1471 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1472 while (untrack_refs() > 0)
1473 schedule();
1474
1475 #ifdef CONFIG_NF_CONNTRACK_ZONES
1476 nf_ct_extend_unregister(&nf_ct_zone_extend);
1477 #endif
1478 nf_conntrack_proto_fini();
1479 nf_conntrack_seqadj_fini();
1480 nf_conntrack_labels_fini();
1481 nf_conntrack_helper_fini();
1482 nf_conntrack_timeout_fini();
1483 nf_conntrack_ecache_fini();
1484 nf_conntrack_tstamp_fini();
1485 nf_conntrack_acct_fini();
1486 nf_conntrack_expect_fini();
1487 }
1488
1489 /*
1490 * Mishearing the voices in his head, our hero wonders how he's
1491 * supposed to kill the mall.
1492 */
1493 void nf_conntrack_cleanup_net(struct net *net)
1494 {
1495 LIST_HEAD(single);
1496
1497 list_add(&net->exit_list, &single);
1498 nf_conntrack_cleanup_net_list(&single);
1499 }
1500
1501 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1502 {
1503 int busy;
1504 struct net *net;
1505
1506 /*
1507 * This makes sure all current packets have passed through
1508 * netfilter framework. Roll on, two-stage module
1509 * delete...
1510 */
1511 synchronize_net();
1512 i_see_dead_people:
1513 busy = 0;
1514 list_for_each_entry(net, net_exit_list, exit_list) {
1515 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1516 if (atomic_read(&net->ct.count) != 0)
1517 busy = 1;
1518 }
1519 if (busy) {
1520 schedule();
1521 goto i_see_dead_people;
1522 }
1523
1524 list_for_each_entry(net, net_exit_list, exit_list) {
1525 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1526 nf_conntrack_proto_pernet_fini(net);
1527 nf_conntrack_helper_pernet_fini(net);
1528 nf_conntrack_ecache_pernet_fini(net);
1529 nf_conntrack_tstamp_pernet_fini(net);
1530 nf_conntrack_acct_pernet_fini(net);
1531 nf_conntrack_expect_pernet_fini(net);
1532 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1533 kfree(net->ct.slabname);
1534 free_percpu(net->ct.stat);
1535 free_percpu(net->ct.pcpu_lists);
1536 }
1537 }
1538
1539 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1540 {
1541 struct hlist_nulls_head *hash;
1542 unsigned int nr_slots, i;
1543 size_t sz;
1544
1545 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1546 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1547 sz = nr_slots * sizeof(struct hlist_nulls_head);
1548 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1549 get_order(sz));
1550 if (!hash) {
1551 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1552 hash = vzalloc(sz);
1553 }
1554
1555 if (hash && nulls)
1556 for (i = 0; i < nr_slots; i++)
1557 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1558
1559 return hash;
1560 }
1561 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1562
1563 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1564 {
1565 int i, bucket, rc;
1566 unsigned int hashsize, old_size;
1567 struct hlist_nulls_head *hash, *old_hash;
1568 struct nf_conntrack_tuple_hash *h;
1569 struct nf_conn *ct;
1570
1571 if (current->nsproxy->net_ns != &init_net)
1572 return -EOPNOTSUPP;
1573
1574 /* On boot, we can set this without any fancy locking. */
1575 if (!nf_conntrack_htable_size)
1576 return param_set_uint(val, kp);
1577
1578 rc = kstrtouint(val, 0, &hashsize);
1579 if (rc)
1580 return rc;
1581 if (!hashsize)
1582 return -EINVAL;
1583
1584 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1585 if (!hash)
1586 return -ENOMEM;
1587
1588 local_bh_disable();
1589 nf_conntrack_all_lock();
1590 write_seqcount_begin(&init_net.ct.generation);
1591
1592 /* Lookups in the old hash might happen in parallel, which means we
1593 * might get false negatives during connection lookup. New connections
1594 * created because of a false negative won't make it into the hash
1595 * though since that required taking the locks.
1596 */
1597
1598 for (i = 0; i < init_net.ct.htable_size; i++) {
1599 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1600 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1601 struct nf_conntrack_tuple_hash, hnnode);
1602 ct = nf_ct_tuplehash_to_ctrack(h);
1603 hlist_nulls_del_rcu(&h->hnnode);
1604 bucket = __hash_conntrack(&h->tuple, hashsize);
1605 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1606 }
1607 }
1608 old_size = init_net.ct.htable_size;
1609 old_hash = init_net.ct.hash;
1610
1611 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1612 init_net.ct.hash = hash;
1613
1614 write_seqcount_end(&init_net.ct.generation);
1615 nf_conntrack_all_unlock();
1616 local_bh_enable();
1617
1618 nf_ct_free_hashtable(old_hash, old_size);
1619 return 0;
1620 }
1621 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1622
1623 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1624 &nf_conntrack_htable_size, 0600);
1625
1626 void nf_ct_untracked_status_or(unsigned long bits)
1627 {
1628 int cpu;
1629
1630 for_each_possible_cpu(cpu)
1631 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1632 }
1633 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1634
1635 int nf_conntrack_init_start(void)
1636 {
1637 int max_factor = 8;
1638 int i, ret, cpu;
1639
1640 for (i = 0; i < CONNTRACK_LOCKS; i++)
1641 spin_lock_init(&nf_conntrack_locks[i]);
1642
1643 if (!nf_conntrack_htable_size) {
1644 /* Idea from tcp.c: use 1/16384 of memory.
1645 * On i386: 32MB machine has 512 buckets.
1646 * >= 1GB machines have 16384 buckets.
1647 * >= 4GB machines have 65536 buckets.
1648 */
1649 nf_conntrack_htable_size
1650 = (((totalram_pages << PAGE_SHIFT) / 16384)
1651 / sizeof(struct hlist_head));
1652 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1653 nf_conntrack_htable_size = 65536;
1654 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1655 nf_conntrack_htable_size = 16384;
1656 if (nf_conntrack_htable_size < 32)
1657 nf_conntrack_htable_size = 32;
1658
1659 /* Use a max. factor of four by default to get the same max as
1660 * with the old struct list_heads. When a table size is given
1661 * we use the old value of 8 to avoid reducing the max.
1662 * entries. */
1663 max_factor = 4;
1664 }
1665 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1666
1667 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1668 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1669 nf_conntrack_max);
1670
1671 ret = nf_conntrack_expect_init();
1672 if (ret < 0)
1673 goto err_expect;
1674
1675 ret = nf_conntrack_acct_init();
1676 if (ret < 0)
1677 goto err_acct;
1678
1679 ret = nf_conntrack_tstamp_init();
1680 if (ret < 0)
1681 goto err_tstamp;
1682
1683 ret = nf_conntrack_ecache_init();
1684 if (ret < 0)
1685 goto err_ecache;
1686
1687 ret = nf_conntrack_timeout_init();
1688 if (ret < 0)
1689 goto err_timeout;
1690
1691 ret = nf_conntrack_helper_init();
1692 if (ret < 0)
1693 goto err_helper;
1694
1695 ret = nf_conntrack_labels_init();
1696 if (ret < 0)
1697 goto err_labels;
1698
1699 ret = nf_conntrack_seqadj_init();
1700 if (ret < 0)
1701 goto err_seqadj;
1702
1703 #ifdef CONFIG_NF_CONNTRACK_ZONES
1704 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1705 if (ret < 0)
1706 goto err_extend;
1707 #endif
1708 ret = nf_conntrack_proto_init();
1709 if (ret < 0)
1710 goto err_proto;
1711
1712 /* Set up fake conntrack: to never be deleted, not in any hashes */
1713 for_each_possible_cpu(cpu) {
1714 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1715 write_pnet(&ct->ct_net, &init_net);
1716 atomic_set(&ct->ct_general.use, 1);
1717 }
1718 /* - and look it like as a confirmed connection */
1719 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1720 return 0;
1721
1722 err_proto:
1723 #ifdef CONFIG_NF_CONNTRACK_ZONES
1724 nf_ct_extend_unregister(&nf_ct_zone_extend);
1725 err_extend:
1726 #endif
1727 nf_conntrack_seqadj_fini();
1728 err_seqadj:
1729 nf_conntrack_labels_fini();
1730 err_labels:
1731 nf_conntrack_helper_fini();
1732 err_helper:
1733 nf_conntrack_timeout_fini();
1734 err_timeout:
1735 nf_conntrack_ecache_fini();
1736 err_ecache:
1737 nf_conntrack_tstamp_fini();
1738 err_tstamp:
1739 nf_conntrack_acct_fini();
1740 err_acct:
1741 nf_conntrack_expect_fini();
1742 err_expect:
1743 return ret;
1744 }
1745
1746 void nf_conntrack_init_end(void)
1747 {
1748 /* For use by REJECT target */
1749 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1750 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1751 }
1752
1753 /*
1754 * We need to use special "null" values, not used in hash table
1755 */
1756 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1757 #define DYING_NULLS_VAL ((1<<30)+1)
1758 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
1759
1760 int nf_conntrack_init_net(struct net *net)
1761 {
1762 int ret = -ENOMEM;
1763 int cpu;
1764
1765 atomic_set(&net->ct.count, 0);
1766 seqcount_init(&net->ct.generation);
1767
1768 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1769 if (!net->ct.pcpu_lists)
1770 goto err_stat;
1771
1772 for_each_possible_cpu(cpu) {
1773 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1774
1775 spin_lock_init(&pcpu->lock);
1776 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1777 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1778 }
1779
1780 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1781 if (!net->ct.stat)
1782 goto err_pcpu_lists;
1783
1784 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1785 if (!net->ct.slabname)
1786 goto err_slabname;
1787
1788 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1789 sizeof(struct nf_conn), 0,
1790 SLAB_DESTROY_BY_RCU, NULL);
1791 if (!net->ct.nf_conntrack_cachep) {
1792 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1793 goto err_cache;
1794 }
1795
1796 net->ct.htable_size = nf_conntrack_htable_size;
1797 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1798 if (!net->ct.hash) {
1799 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1800 goto err_hash;
1801 }
1802 ret = nf_conntrack_expect_pernet_init(net);
1803 if (ret < 0)
1804 goto err_expect;
1805 ret = nf_conntrack_acct_pernet_init(net);
1806 if (ret < 0)
1807 goto err_acct;
1808 ret = nf_conntrack_tstamp_pernet_init(net);
1809 if (ret < 0)
1810 goto err_tstamp;
1811 ret = nf_conntrack_ecache_pernet_init(net);
1812 if (ret < 0)
1813 goto err_ecache;
1814 ret = nf_conntrack_helper_pernet_init(net);
1815 if (ret < 0)
1816 goto err_helper;
1817 ret = nf_conntrack_proto_pernet_init(net);
1818 if (ret < 0)
1819 goto err_proto;
1820 return 0;
1821
1822 err_proto:
1823 nf_conntrack_helper_pernet_fini(net);
1824 err_helper:
1825 nf_conntrack_ecache_pernet_fini(net);
1826 err_ecache:
1827 nf_conntrack_tstamp_pernet_fini(net);
1828 err_tstamp:
1829 nf_conntrack_acct_pernet_fini(net);
1830 err_acct:
1831 nf_conntrack_expect_pernet_fini(net);
1832 err_expect:
1833 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1834 err_hash:
1835 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1836 err_cache:
1837 kfree(net->ct.slabname);
1838 err_slabname:
1839 free_percpu(net->ct.stat);
1840 err_pcpu_lists:
1841 free_percpu(net->ct.pcpu_lists);
1842 err_stat:
1843 return ret;
1844 }
This page took 0.254657 seconds and 5 git commands to generate.