acc06222ce6abe1a9a41cb0b9784b8e7ff1e1509
[deliverable/linux.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/types.h>
16 #include <linux/netfilter.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/skbuff.h>
20 #include <linux/proc_fs.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/random.h>
25 #include <linux/jhash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l3proto.h>
39 #include <net/netfilter/nf_conntrack_l4proto.h>
40 #include <net/netfilter/nf_conntrack_expect.h>
41 #include <net/netfilter/nf_conntrack_helper.h>
42 #include <net/netfilter/nf_conntrack_seqadj.h>
43 #include <net/netfilter/nf_conntrack_core.h>
44 #include <net/netfilter/nf_conntrack_extend.h>
45 #include <net/netfilter/nf_conntrack_acct.h>
46 #include <net/netfilter/nf_conntrack_ecache.h>
47 #include <net/netfilter/nf_conntrack_zones.h>
48 #include <net/netfilter/nf_conntrack_timestamp.h>
49 #include <net/netfilter/nf_conntrack_timeout.h>
50 #include <net/netfilter/nf_conntrack_labels.h>
51 #include <net/netfilter/nf_conntrack_synproxy.h>
52 #include <net/netfilter/nf_nat.h>
53 #include <net/netfilter/nf_nat_core.h>
54 #include <net/netfilter/nf_nat_helper.h>
55
56 #define NF_CONNTRACK_VERSION "0.5.0"
57
58 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
59 enum nf_nat_manip_type manip,
60 const struct nlattr *attr) __read_mostly;
61 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
62
63 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
64 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
65
66 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
67 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
68
69 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
70 {
71 h1 %= CONNTRACK_LOCKS;
72 h2 %= CONNTRACK_LOCKS;
73 spin_unlock(&nf_conntrack_locks[h1]);
74 if (h1 != h2)
75 spin_unlock(&nf_conntrack_locks[h2]);
76 }
77
78 /* return true if we need to recompute hashes (in case hash table was resized) */
79 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
80 unsigned int h2, unsigned int sequence)
81 {
82 h1 %= CONNTRACK_LOCKS;
83 h2 %= CONNTRACK_LOCKS;
84 if (h1 <= h2) {
85 spin_lock(&nf_conntrack_locks[h1]);
86 if (h1 != h2)
87 spin_lock_nested(&nf_conntrack_locks[h2],
88 SINGLE_DEPTH_NESTING);
89 } else {
90 spin_lock(&nf_conntrack_locks[h2]);
91 spin_lock_nested(&nf_conntrack_locks[h1],
92 SINGLE_DEPTH_NESTING);
93 }
94 if (read_seqcount_retry(&net->ct.generation, sequence)) {
95 nf_conntrack_double_unlock(h1, h2);
96 return true;
97 }
98 return false;
99 }
100
101 static void nf_conntrack_all_lock(void)
102 {
103 int i;
104
105 for (i = 0; i < CONNTRACK_LOCKS; i++)
106 spin_lock_nested(&nf_conntrack_locks[i], i);
107 }
108
109 static void nf_conntrack_all_unlock(void)
110 {
111 int i;
112
113 for (i = 0; i < CONNTRACK_LOCKS; i++)
114 spin_unlock(&nf_conntrack_locks[i]);
115 }
116
117 unsigned int nf_conntrack_htable_size __read_mostly;
118 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
119
120 unsigned int nf_conntrack_max __read_mostly;
121 EXPORT_SYMBOL_GPL(nf_conntrack_max);
122
123 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
124 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
125
126 unsigned int nf_conntrack_hash_rnd __read_mostly;
127 EXPORT_SYMBOL_GPL(nf_conntrack_hash_rnd);
128
129 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple)
130 {
131 unsigned int n;
132
133 /* The direction must be ignored, so we hash everything up to the
134 * destination ports (which is a multiple of 4) and treat the last
135 * three bytes manually.
136 */
137 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
138 return jhash2((u32 *)tuple, n, nf_conntrack_hash_rnd ^
139 (((__force __u16)tuple->dst.u.all << 16) |
140 tuple->dst.protonum));
141 }
142
143 static u32 __hash_bucket(u32 hash, unsigned int size)
144 {
145 return reciprocal_scale(hash, size);
146 }
147
148 static u32 hash_bucket(u32 hash, const struct net *net)
149 {
150 return __hash_bucket(hash, net->ct.htable_size);
151 }
152
153 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
154 unsigned int size)
155 {
156 return __hash_bucket(hash_conntrack_raw(tuple), size);
157 }
158
159 static inline u_int32_t hash_conntrack(const struct net *net,
160 const struct nf_conntrack_tuple *tuple)
161 {
162 return __hash_conntrack(tuple, net->ct.htable_size);
163 }
164
165 bool
166 nf_ct_get_tuple(const struct sk_buff *skb,
167 unsigned int nhoff,
168 unsigned int dataoff,
169 u_int16_t l3num,
170 u_int8_t protonum,
171 struct nf_conntrack_tuple *tuple,
172 const struct nf_conntrack_l3proto *l3proto,
173 const struct nf_conntrack_l4proto *l4proto)
174 {
175 memset(tuple, 0, sizeof(*tuple));
176
177 tuple->src.l3num = l3num;
178 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
179 return false;
180
181 tuple->dst.protonum = protonum;
182 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
183
184 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
185 }
186 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
187
188 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
189 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
190 {
191 struct nf_conntrack_l3proto *l3proto;
192 struct nf_conntrack_l4proto *l4proto;
193 unsigned int protoff;
194 u_int8_t protonum;
195 int ret;
196
197 rcu_read_lock();
198
199 l3proto = __nf_ct_l3proto_find(l3num);
200 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
201 if (ret != NF_ACCEPT) {
202 rcu_read_unlock();
203 return false;
204 }
205
206 l4proto = __nf_ct_l4proto_find(l3num, protonum);
207
208 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
209 l3proto, l4proto);
210
211 rcu_read_unlock();
212 return ret;
213 }
214 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
215
216 bool
217 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
218 const struct nf_conntrack_tuple *orig,
219 const struct nf_conntrack_l3proto *l3proto,
220 const struct nf_conntrack_l4proto *l4proto)
221 {
222 memset(inverse, 0, sizeof(*inverse));
223
224 inverse->src.l3num = orig->src.l3num;
225 if (l3proto->invert_tuple(inverse, orig) == 0)
226 return false;
227
228 inverse->dst.dir = !orig->dst.dir;
229
230 inverse->dst.protonum = orig->dst.protonum;
231 return l4proto->invert_tuple(inverse, orig);
232 }
233 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
234
235 static void
236 clean_from_lists(struct nf_conn *ct)
237 {
238 pr_debug("clean_from_lists(%p)\n", ct);
239 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
240 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
241
242 /* Destroy all pending expectations */
243 nf_ct_remove_expectations(ct);
244 }
245
246 /* must be called with local_bh_disable */
247 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
248 {
249 struct ct_pcpu *pcpu;
250
251 /* add this conntrack to the (per cpu) dying list */
252 ct->cpu = smp_processor_id();
253 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
254
255 spin_lock(&pcpu->lock);
256 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
257 &pcpu->dying);
258 spin_unlock(&pcpu->lock);
259 }
260
261 /* must be called with local_bh_disable */
262 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
263 {
264 struct ct_pcpu *pcpu;
265
266 /* add this conntrack to the (per cpu) unconfirmed list */
267 ct->cpu = smp_processor_id();
268 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
269
270 spin_lock(&pcpu->lock);
271 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
272 &pcpu->unconfirmed);
273 spin_unlock(&pcpu->lock);
274 }
275
276 /* must be called with local_bh_disable */
277 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
278 {
279 struct ct_pcpu *pcpu;
280
281 /* We overload first tuple to link into unconfirmed or dying list.*/
282 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
283
284 spin_lock(&pcpu->lock);
285 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
286 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
287 spin_unlock(&pcpu->lock);
288 }
289
290 /* Released via destroy_conntrack() */
291 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
292 const struct nf_conntrack_zone *zone,
293 gfp_t flags)
294 {
295 struct nf_conn *tmpl;
296
297 tmpl = kzalloc(sizeof(struct nf_conn), GFP_KERNEL);
298 if (tmpl == NULL)
299 return NULL;
300
301 tmpl->status = IPS_TEMPLATE;
302 write_pnet(&tmpl->ct_net, net);
303
304 #ifdef CONFIG_NF_CONNTRACK_ZONES
305 if (zone) {
306 struct nf_conntrack_zone *nf_ct_zone;
307
308 nf_ct_zone = nf_ct_ext_add(tmpl, NF_CT_EXT_ZONE, GFP_ATOMIC);
309 if (!nf_ct_zone)
310 goto out_free;
311 nf_ct_zone->id = zone->id;
312 nf_ct_zone->dir = zone->dir;
313 }
314 #endif
315 atomic_set(&tmpl->ct_general.use, 0);
316
317 return tmpl;
318 #ifdef CONFIG_NF_CONNTRACK_ZONES
319 out_free:
320 kfree(tmpl);
321 return NULL;
322 #endif
323 }
324 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
325
326 static void nf_ct_tmpl_free(struct nf_conn *tmpl)
327 {
328 nf_ct_ext_destroy(tmpl);
329 nf_ct_ext_free(tmpl);
330 kfree(tmpl);
331 }
332
333 static void
334 destroy_conntrack(struct nf_conntrack *nfct)
335 {
336 struct nf_conn *ct = (struct nf_conn *)nfct;
337 struct net *net = nf_ct_net(ct);
338 struct nf_conntrack_l4proto *l4proto;
339
340 pr_debug("destroy_conntrack(%p)\n", ct);
341 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
342 NF_CT_ASSERT(!timer_pending(&ct->timeout));
343
344 if (unlikely(nf_ct_is_template(ct))) {
345 nf_ct_tmpl_free(ct);
346 return;
347 }
348 rcu_read_lock();
349 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
350 if (l4proto && l4proto->destroy)
351 l4proto->destroy(ct);
352
353 rcu_read_unlock();
354
355 local_bh_disable();
356 /* Expectations will have been removed in clean_from_lists,
357 * except TFTP can create an expectation on the first packet,
358 * before connection is in the list, so we need to clean here,
359 * too.
360 */
361 nf_ct_remove_expectations(ct);
362
363 nf_ct_del_from_dying_or_unconfirmed_list(ct);
364
365 NF_CT_STAT_INC(net, delete);
366 local_bh_enable();
367
368 if (ct->master)
369 nf_ct_put(ct->master);
370
371 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
372 nf_conntrack_free(ct);
373 }
374
375 static void nf_ct_delete_from_lists(struct nf_conn *ct)
376 {
377 struct net *net = nf_ct_net(ct);
378 unsigned int hash, reply_hash;
379 unsigned int sequence;
380
381 nf_ct_helper_destroy(ct);
382
383 local_bh_disable();
384 do {
385 sequence = read_seqcount_begin(&net->ct.generation);
386 hash = hash_conntrack(net,
387 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
388 reply_hash = hash_conntrack(net,
389 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
390 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
391
392 clean_from_lists(ct);
393 nf_conntrack_double_unlock(hash, reply_hash);
394
395 nf_ct_add_to_dying_list(ct);
396
397 NF_CT_STAT_INC(net, delete_list);
398 local_bh_enable();
399 }
400
401 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
402 {
403 struct nf_conn_tstamp *tstamp;
404
405 tstamp = nf_conn_tstamp_find(ct);
406 if (tstamp && tstamp->stop == 0)
407 tstamp->stop = ktime_get_real_ns();
408
409 if (nf_ct_is_dying(ct))
410 goto delete;
411
412 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
413 portid, report) < 0) {
414 /* destroy event was not delivered */
415 nf_ct_delete_from_lists(ct);
416 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
417 return false;
418 }
419
420 nf_conntrack_ecache_work(nf_ct_net(ct));
421 set_bit(IPS_DYING_BIT, &ct->status);
422 delete:
423 nf_ct_delete_from_lists(ct);
424 nf_ct_put(ct);
425 return true;
426 }
427 EXPORT_SYMBOL_GPL(nf_ct_delete);
428
429 static void death_by_timeout(unsigned long ul_conntrack)
430 {
431 nf_ct_delete((struct nf_conn *)ul_conntrack, 0, 0);
432 }
433
434 static inline bool
435 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
436 const struct nf_conntrack_tuple *tuple,
437 const struct nf_conntrack_zone *zone)
438 {
439 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
440
441 /* A conntrack can be recreated with the equal tuple,
442 * so we need to check that the conntrack is confirmed
443 */
444 return nf_ct_tuple_equal(tuple, &h->tuple) &&
445 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
446 nf_ct_is_confirmed(ct);
447 }
448
449 /*
450 * Warning :
451 * - Caller must take a reference on returned object
452 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
453 */
454 static struct nf_conntrack_tuple_hash *
455 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
456 const struct nf_conntrack_tuple *tuple, u32 hash)
457 {
458 struct nf_conntrack_tuple_hash *h;
459 struct hlist_nulls_node *n;
460 unsigned int bucket = hash_bucket(hash, net);
461
462 /* Disable BHs the entire time since we normally need to disable them
463 * at least once for the stats anyway.
464 */
465 local_bh_disable();
466 begin:
467 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
468 if (nf_ct_key_equal(h, tuple, zone)) {
469 NF_CT_STAT_INC(net, found);
470 local_bh_enable();
471 return h;
472 }
473 NF_CT_STAT_INC(net, searched);
474 }
475 /*
476 * if the nulls value we got at the end of this lookup is
477 * not the expected one, we must restart lookup.
478 * We probably met an item that was moved to another chain.
479 */
480 if (get_nulls_value(n) != bucket) {
481 NF_CT_STAT_INC(net, search_restart);
482 goto begin;
483 }
484 local_bh_enable();
485
486 return NULL;
487 }
488
489 /* Find a connection corresponding to a tuple. */
490 static struct nf_conntrack_tuple_hash *
491 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
492 const struct nf_conntrack_tuple *tuple, u32 hash)
493 {
494 struct nf_conntrack_tuple_hash *h;
495 struct nf_conn *ct;
496
497 rcu_read_lock();
498 begin:
499 h = ____nf_conntrack_find(net, zone, tuple, hash);
500 if (h) {
501 ct = nf_ct_tuplehash_to_ctrack(h);
502 if (unlikely(nf_ct_is_dying(ct) ||
503 !atomic_inc_not_zero(&ct->ct_general.use)))
504 h = NULL;
505 else {
506 if (unlikely(!nf_ct_key_equal(h, tuple, zone))) {
507 nf_ct_put(ct);
508 goto begin;
509 }
510 }
511 }
512 rcu_read_unlock();
513
514 return h;
515 }
516
517 struct nf_conntrack_tuple_hash *
518 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
519 const struct nf_conntrack_tuple *tuple)
520 {
521 return __nf_conntrack_find_get(net, zone, tuple,
522 hash_conntrack_raw(tuple));
523 }
524 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
525
526 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
527 unsigned int hash,
528 unsigned int reply_hash)
529 {
530 struct net *net = nf_ct_net(ct);
531
532 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
533 &net->ct.hash[hash]);
534 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
535 &net->ct.hash[reply_hash]);
536 }
537
538 int
539 nf_conntrack_hash_check_insert(struct nf_conn *ct)
540 {
541 const struct nf_conntrack_zone *zone;
542 struct net *net = nf_ct_net(ct);
543 unsigned int hash, reply_hash;
544 struct nf_conntrack_tuple_hash *h;
545 struct hlist_nulls_node *n;
546 unsigned int sequence;
547
548 zone = nf_ct_zone(ct);
549
550 local_bh_disable();
551 do {
552 sequence = read_seqcount_begin(&net->ct.generation);
553 hash = hash_conntrack(net,
554 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
555 reply_hash = hash_conntrack(net,
556 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
557 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
558
559 /* See if there's one in the list already, including reverse */
560 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
561 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
562 &h->tuple) &&
563 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
564 NF_CT_DIRECTION(h)))
565 goto out;
566 hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
567 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
568 &h->tuple) &&
569 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
570 NF_CT_DIRECTION(h)))
571 goto out;
572
573 add_timer(&ct->timeout);
574 smp_wmb();
575 /* The caller holds a reference to this object */
576 atomic_set(&ct->ct_general.use, 2);
577 __nf_conntrack_hash_insert(ct, hash, reply_hash);
578 nf_conntrack_double_unlock(hash, reply_hash);
579 NF_CT_STAT_INC(net, insert);
580 local_bh_enable();
581 return 0;
582
583 out:
584 nf_conntrack_double_unlock(hash, reply_hash);
585 NF_CT_STAT_INC(net, insert_failed);
586 local_bh_enable();
587 return -EEXIST;
588 }
589 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
590
591 /* Confirm a connection given skb; places it in hash table */
592 int
593 __nf_conntrack_confirm(struct sk_buff *skb)
594 {
595 const struct nf_conntrack_zone *zone;
596 unsigned int hash, reply_hash;
597 struct nf_conntrack_tuple_hash *h;
598 struct nf_conn *ct;
599 struct nf_conn_help *help;
600 struct nf_conn_tstamp *tstamp;
601 struct hlist_nulls_node *n;
602 enum ip_conntrack_info ctinfo;
603 struct net *net;
604 unsigned int sequence;
605
606 ct = nf_ct_get(skb, &ctinfo);
607 net = nf_ct_net(ct);
608
609 /* ipt_REJECT uses nf_conntrack_attach to attach related
610 ICMP/TCP RST packets in other direction. Actual packet
611 which created connection will be IP_CT_NEW or for an
612 expected connection, IP_CT_RELATED. */
613 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
614 return NF_ACCEPT;
615
616 zone = nf_ct_zone(ct);
617 local_bh_disable();
618
619 do {
620 sequence = read_seqcount_begin(&net->ct.generation);
621 /* reuse the hash saved before */
622 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
623 hash = hash_bucket(hash, net);
624 reply_hash = hash_conntrack(net,
625 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
626
627 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
628
629 /* We're not in hash table, and we refuse to set up related
630 * connections for unconfirmed conns. But packet copies and
631 * REJECT will give spurious warnings here.
632 */
633 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
634
635 /* No external references means no one else could have
636 * confirmed us.
637 */
638 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
639 pr_debug("Confirming conntrack %p\n", ct);
640 /* We have to check the DYING flag after unlink to prevent
641 * a race against nf_ct_get_next_corpse() possibly called from
642 * user context, else we insert an already 'dead' hash, blocking
643 * further use of that particular connection -JM.
644 */
645 nf_ct_del_from_dying_or_unconfirmed_list(ct);
646
647 if (unlikely(nf_ct_is_dying(ct)))
648 goto out;
649
650 /* See if there's one in the list already, including reverse:
651 NAT could have grabbed it without realizing, since we're
652 not in the hash. If there is, we lost race. */
653 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
654 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
655 &h->tuple) &&
656 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
657 NF_CT_DIRECTION(h)))
658 goto out;
659 hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
660 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
661 &h->tuple) &&
662 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
663 NF_CT_DIRECTION(h)))
664 goto out;
665
666 /* Timer relative to confirmation time, not original
667 setting time, otherwise we'd get timer wrap in
668 weird delay cases. */
669 ct->timeout.expires += jiffies;
670 add_timer(&ct->timeout);
671 atomic_inc(&ct->ct_general.use);
672 ct->status |= IPS_CONFIRMED;
673
674 /* set conntrack timestamp, if enabled. */
675 tstamp = nf_conn_tstamp_find(ct);
676 if (tstamp) {
677 if (skb->tstamp.tv64 == 0)
678 __net_timestamp(skb);
679
680 tstamp->start = ktime_to_ns(skb->tstamp);
681 }
682 /* Since the lookup is lockless, hash insertion must be done after
683 * starting the timer and setting the CONFIRMED bit. The RCU barriers
684 * guarantee that no other CPU can find the conntrack before the above
685 * stores are visible.
686 */
687 __nf_conntrack_hash_insert(ct, hash, reply_hash);
688 nf_conntrack_double_unlock(hash, reply_hash);
689 NF_CT_STAT_INC(net, insert);
690 local_bh_enable();
691
692 help = nfct_help(ct);
693 if (help && help->helper)
694 nf_conntrack_event_cache(IPCT_HELPER, ct);
695
696 nf_conntrack_event_cache(master_ct(ct) ?
697 IPCT_RELATED : IPCT_NEW, ct);
698 return NF_ACCEPT;
699
700 out:
701 nf_ct_add_to_dying_list(ct);
702 nf_conntrack_double_unlock(hash, reply_hash);
703 NF_CT_STAT_INC(net, insert_failed);
704 local_bh_enable();
705 return NF_DROP;
706 }
707 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
708
709 /* Returns true if a connection correspondings to the tuple (required
710 for NAT). */
711 int
712 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
713 const struct nf_conn *ignored_conntrack)
714 {
715 struct net *net = nf_ct_net(ignored_conntrack);
716 const struct nf_conntrack_zone *zone;
717 struct nf_conntrack_tuple_hash *h;
718 struct hlist_nulls_node *n;
719 struct nf_conn *ct;
720 unsigned int hash;
721
722 zone = nf_ct_zone(ignored_conntrack);
723 hash = hash_conntrack(net, tuple);
724
725 /* Disable BHs the entire time since we need to disable them at
726 * least once for the stats anyway.
727 */
728 rcu_read_lock_bh();
729 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
730 ct = nf_ct_tuplehash_to_ctrack(h);
731 if (ct != ignored_conntrack &&
732 nf_ct_tuple_equal(tuple, &h->tuple) &&
733 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h))) {
734 NF_CT_STAT_INC(net, found);
735 rcu_read_unlock_bh();
736 return 1;
737 }
738 NF_CT_STAT_INC(net, searched);
739 }
740 rcu_read_unlock_bh();
741
742 return 0;
743 }
744 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
745
746 #define NF_CT_EVICTION_RANGE 8
747
748 /* There's a small race here where we may free a just-assured
749 connection. Too bad: we're in trouble anyway. */
750 static noinline int early_drop(struct net *net, unsigned int _hash)
751 {
752 /* Use oldest entry, which is roughly LRU */
753 struct nf_conntrack_tuple_hash *h;
754 struct nf_conn *ct = NULL, *tmp;
755 struct hlist_nulls_node *n;
756 unsigned int i = 0, cnt = 0;
757 int dropped = 0;
758 unsigned int hash, sequence;
759 spinlock_t *lockp;
760
761 local_bh_disable();
762 restart:
763 sequence = read_seqcount_begin(&net->ct.generation);
764 hash = hash_bucket(_hash, net);
765 for (; i < net->ct.htable_size; i++) {
766 lockp = &nf_conntrack_locks[hash % CONNTRACK_LOCKS];
767 spin_lock(lockp);
768 if (read_seqcount_retry(&net->ct.generation, sequence)) {
769 spin_unlock(lockp);
770 goto restart;
771 }
772 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
773 hnnode) {
774 tmp = nf_ct_tuplehash_to_ctrack(h);
775 if (!test_bit(IPS_ASSURED_BIT, &tmp->status) &&
776 !nf_ct_is_dying(tmp) &&
777 atomic_inc_not_zero(&tmp->ct_general.use)) {
778 ct = tmp;
779 break;
780 }
781 cnt++;
782 }
783
784 hash = (hash + 1) % net->ct.htable_size;
785 spin_unlock(lockp);
786
787 if (ct || cnt >= NF_CT_EVICTION_RANGE)
788 break;
789
790 }
791 local_bh_enable();
792
793 if (!ct)
794 return dropped;
795
796 if (del_timer(&ct->timeout)) {
797 if (nf_ct_delete(ct, 0, 0)) {
798 dropped = 1;
799 NF_CT_STAT_INC_ATOMIC(net, early_drop);
800 }
801 }
802 nf_ct_put(ct);
803 return dropped;
804 }
805
806 void init_nf_conntrack_hash_rnd(void)
807 {
808 unsigned int rand;
809
810 /*
811 * Why not initialize nf_conntrack_rnd in a "init()" function ?
812 * Because there isn't enough entropy when system initializing,
813 * and we initialize it as late as possible.
814 */
815 do {
816 get_random_bytes(&rand, sizeof(rand));
817 } while (!rand);
818 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
819 }
820
821 static struct nf_conn *
822 __nf_conntrack_alloc(struct net *net,
823 const struct nf_conntrack_zone *zone,
824 const struct nf_conntrack_tuple *orig,
825 const struct nf_conntrack_tuple *repl,
826 gfp_t gfp, u32 hash)
827 {
828 struct nf_conn *ct;
829
830 if (unlikely(!nf_conntrack_hash_rnd)) {
831 init_nf_conntrack_hash_rnd();
832 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
833 hash = hash_conntrack_raw(orig);
834 }
835
836 /* We don't want any race condition at early drop stage */
837 atomic_inc(&net->ct.count);
838
839 if (nf_conntrack_max &&
840 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
841 if (!early_drop(net, hash)) {
842 atomic_dec(&net->ct.count);
843 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
844 return ERR_PTR(-ENOMEM);
845 }
846 }
847
848 /*
849 * Do not use kmem_cache_zalloc(), as this cache uses
850 * SLAB_DESTROY_BY_RCU.
851 */
852 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
853 if (ct == NULL) {
854 atomic_dec(&net->ct.count);
855 return ERR_PTR(-ENOMEM);
856 }
857 spin_lock_init(&ct->lock);
858 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
859 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
860 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
861 /* save hash for reusing when confirming */
862 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
863 ct->status = 0;
864 /* Don't set timer yet: wait for confirmation */
865 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
866 write_pnet(&ct->ct_net, net);
867 memset(&ct->__nfct_init_offset[0], 0,
868 offsetof(struct nf_conn, proto) -
869 offsetof(struct nf_conn, __nfct_init_offset[0]));
870 #ifdef CONFIG_NF_CONNTRACK_ZONES
871 if (zone) {
872 struct nf_conntrack_zone *nf_ct_zone;
873
874 nf_ct_zone = nf_ct_ext_add(ct, NF_CT_EXT_ZONE, GFP_ATOMIC);
875 if (!nf_ct_zone)
876 goto out_free;
877 nf_ct_zone->id = zone->id;
878 nf_ct_zone->dir = zone->dir;
879 }
880 #endif
881 /* Because we use RCU lookups, we set ct_general.use to zero before
882 * this is inserted in any list.
883 */
884 atomic_set(&ct->ct_general.use, 0);
885 return ct;
886
887 #ifdef CONFIG_NF_CONNTRACK_ZONES
888 out_free:
889 atomic_dec(&net->ct.count);
890 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
891 return ERR_PTR(-ENOMEM);
892 #endif
893 }
894
895 struct nf_conn *nf_conntrack_alloc(struct net *net,
896 const struct nf_conntrack_zone *zone,
897 const struct nf_conntrack_tuple *orig,
898 const struct nf_conntrack_tuple *repl,
899 gfp_t gfp)
900 {
901 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
902 }
903 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
904
905 void nf_conntrack_free(struct nf_conn *ct)
906 {
907 struct net *net = nf_ct_net(ct);
908
909 /* A freed object has refcnt == 0, that's
910 * the golden rule for SLAB_DESTROY_BY_RCU
911 */
912 NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
913
914 nf_ct_ext_destroy(ct);
915 nf_ct_ext_free(ct);
916 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
917 smp_mb__before_atomic();
918 atomic_dec(&net->ct.count);
919 }
920 EXPORT_SYMBOL_GPL(nf_conntrack_free);
921
922
923 /* Allocate a new conntrack: we return -ENOMEM if classification
924 failed due to stress. Otherwise it really is unclassifiable. */
925 static struct nf_conntrack_tuple_hash *
926 init_conntrack(struct net *net, struct nf_conn *tmpl,
927 const struct nf_conntrack_tuple *tuple,
928 struct nf_conntrack_l3proto *l3proto,
929 struct nf_conntrack_l4proto *l4proto,
930 struct sk_buff *skb,
931 unsigned int dataoff, u32 hash)
932 {
933 struct nf_conn *ct;
934 struct nf_conn_help *help;
935 struct nf_conntrack_tuple repl_tuple;
936 struct nf_conntrack_ecache *ecache;
937 struct nf_conntrack_expect *exp = NULL;
938 const struct nf_conntrack_zone *zone;
939 struct nf_conn_timeout *timeout_ext;
940 unsigned int *timeouts;
941
942 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
943 pr_debug("Can't invert tuple.\n");
944 return NULL;
945 }
946
947 zone = nf_ct_zone_tmpl(tmpl);
948 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
949 hash);
950 if (IS_ERR(ct))
951 return (struct nf_conntrack_tuple_hash *)ct;
952
953 if (tmpl && nfct_synproxy(tmpl)) {
954 nfct_seqadj_ext_add(ct);
955 nfct_synproxy_ext_add(ct);
956 }
957
958 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
959 if (timeout_ext)
960 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
961 else
962 timeouts = l4proto->get_timeouts(net);
963
964 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
965 nf_conntrack_free(ct);
966 pr_debug("init conntrack: can't track with proto module\n");
967 return NULL;
968 }
969
970 if (timeout_ext)
971 nf_ct_timeout_ext_add(ct, timeout_ext->timeout, GFP_ATOMIC);
972
973 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
974 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
975 nf_ct_labels_ext_add(ct);
976
977 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
978 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
979 ecache ? ecache->expmask : 0,
980 GFP_ATOMIC);
981
982 local_bh_disable();
983 if (net->ct.expect_count) {
984 spin_lock(&nf_conntrack_expect_lock);
985 exp = nf_ct_find_expectation(net, zone, tuple);
986 if (exp) {
987 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
988 ct, exp);
989 /* Welcome, Mr. Bond. We've been expecting you... */
990 __set_bit(IPS_EXPECTED_BIT, &ct->status);
991 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
992 ct->master = exp->master;
993 if (exp->helper) {
994 help = nf_ct_helper_ext_add(ct, exp->helper,
995 GFP_ATOMIC);
996 if (help)
997 rcu_assign_pointer(help->helper, exp->helper);
998 }
999
1000 #ifdef CONFIG_NF_CONNTRACK_MARK
1001 ct->mark = exp->master->mark;
1002 #endif
1003 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1004 ct->secmark = exp->master->secmark;
1005 #endif
1006 NF_CT_STAT_INC(net, expect_new);
1007 }
1008 spin_unlock(&nf_conntrack_expect_lock);
1009 }
1010 if (!exp) {
1011 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1012 NF_CT_STAT_INC(net, new);
1013 }
1014
1015 /* Now it is inserted into the unconfirmed list, bump refcount */
1016 nf_conntrack_get(&ct->ct_general);
1017 nf_ct_add_to_unconfirmed_list(ct);
1018
1019 local_bh_enable();
1020
1021 if (exp) {
1022 if (exp->expectfn)
1023 exp->expectfn(ct, exp);
1024 nf_ct_expect_put(exp);
1025 }
1026
1027 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1028 }
1029
1030 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1031 static inline struct nf_conn *
1032 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1033 struct sk_buff *skb,
1034 unsigned int dataoff,
1035 u_int16_t l3num,
1036 u_int8_t protonum,
1037 struct nf_conntrack_l3proto *l3proto,
1038 struct nf_conntrack_l4proto *l4proto,
1039 int *set_reply,
1040 enum ip_conntrack_info *ctinfo)
1041 {
1042 const struct nf_conntrack_zone *zone;
1043 struct nf_conntrack_tuple tuple;
1044 struct nf_conntrack_tuple_hash *h;
1045 struct nf_conn *ct;
1046 u32 hash;
1047
1048 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1049 dataoff, l3num, protonum, &tuple, l3proto,
1050 l4proto)) {
1051 pr_debug("resolve_normal_ct: Can't get tuple\n");
1052 return NULL;
1053 }
1054
1055 /* look for tuple match */
1056 zone = nf_ct_zone_tmpl(tmpl);
1057 hash = hash_conntrack_raw(&tuple);
1058 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1059 if (!h) {
1060 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1061 skb, dataoff, hash);
1062 if (!h)
1063 return NULL;
1064 if (IS_ERR(h))
1065 return (void *)h;
1066 }
1067 ct = nf_ct_tuplehash_to_ctrack(h);
1068
1069 /* It exists; we have (non-exclusive) reference. */
1070 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1071 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1072 /* Please set reply bit if this packet OK */
1073 *set_reply = 1;
1074 } else {
1075 /* Once we've had two way comms, always ESTABLISHED. */
1076 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1077 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
1078 *ctinfo = IP_CT_ESTABLISHED;
1079 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1080 pr_debug("nf_conntrack_in: related packet for %p\n",
1081 ct);
1082 *ctinfo = IP_CT_RELATED;
1083 } else {
1084 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
1085 *ctinfo = IP_CT_NEW;
1086 }
1087 *set_reply = 0;
1088 }
1089 skb->nfct = &ct->ct_general;
1090 skb->nfctinfo = *ctinfo;
1091 return ct;
1092 }
1093
1094 unsigned int
1095 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1096 struct sk_buff *skb)
1097 {
1098 struct nf_conn *ct, *tmpl = NULL;
1099 enum ip_conntrack_info ctinfo;
1100 struct nf_conntrack_l3proto *l3proto;
1101 struct nf_conntrack_l4proto *l4proto;
1102 unsigned int *timeouts;
1103 unsigned int dataoff;
1104 u_int8_t protonum;
1105 int set_reply = 0;
1106 int ret;
1107
1108 if (skb->nfct) {
1109 /* Previously seen (loopback or untracked)? Ignore. */
1110 tmpl = (struct nf_conn *)skb->nfct;
1111 if (!nf_ct_is_template(tmpl)) {
1112 NF_CT_STAT_INC_ATOMIC(net, ignore);
1113 return NF_ACCEPT;
1114 }
1115 skb->nfct = NULL;
1116 }
1117
1118 /* rcu_read_lock()ed by nf_hook_slow */
1119 l3proto = __nf_ct_l3proto_find(pf);
1120 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1121 &dataoff, &protonum);
1122 if (ret <= 0) {
1123 pr_debug("not prepared to track yet or error occurred\n");
1124 NF_CT_STAT_INC_ATOMIC(net, error);
1125 NF_CT_STAT_INC_ATOMIC(net, invalid);
1126 ret = -ret;
1127 goto out;
1128 }
1129
1130 l4proto = __nf_ct_l4proto_find(pf, protonum);
1131
1132 /* It may be an special packet, error, unclean...
1133 * inverse of the return code tells to the netfilter
1134 * core what to do with the packet. */
1135 if (l4proto->error != NULL) {
1136 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1137 pf, hooknum);
1138 if (ret <= 0) {
1139 NF_CT_STAT_INC_ATOMIC(net, error);
1140 NF_CT_STAT_INC_ATOMIC(net, invalid);
1141 ret = -ret;
1142 goto out;
1143 }
1144 /* ICMP[v6] protocol trackers may assign one conntrack. */
1145 if (skb->nfct)
1146 goto out;
1147 }
1148
1149 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1150 l3proto, l4proto, &set_reply, &ctinfo);
1151 if (!ct) {
1152 /* Not valid part of a connection */
1153 NF_CT_STAT_INC_ATOMIC(net, invalid);
1154 ret = NF_ACCEPT;
1155 goto out;
1156 }
1157
1158 if (IS_ERR(ct)) {
1159 /* Too stressed to deal. */
1160 NF_CT_STAT_INC_ATOMIC(net, drop);
1161 ret = NF_DROP;
1162 goto out;
1163 }
1164
1165 NF_CT_ASSERT(skb->nfct);
1166
1167 /* Decide what timeout policy we want to apply to this flow. */
1168 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1169
1170 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1171 if (ret <= 0) {
1172 /* Invalid: inverse of the return code tells
1173 * the netfilter core what to do */
1174 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1175 nf_conntrack_put(skb->nfct);
1176 skb->nfct = NULL;
1177 NF_CT_STAT_INC_ATOMIC(net, invalid);
1178 if (ret == -NF_DROP)
1179 NF_CT_STAT_INC_ATOMIC(net, drop);
1180 ret = -ret;
1181 goto out;
1182 }
1183
1184 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1185 nf_conntrack_event_cache(IPCT_REPLY, ct);
1186 out:
1187 if (tmpl) {
1188 /* Special case: we have to repeat this hook, assign the
1189 * template again to this packet. We assume that this packet
1190 * has no conntrack assigned. This is used by nf_ct_tcp. */
1191 if (ret == NF_REPEAT)
1192 skb->nfct = (struct nf_conntrack *)tmpl;
1193 else
1194 nf_ct_put(tmpl);
1195 }
1196
1197 return ret;
1198 }
1199 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1200
1201 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1202 const struct nf_conntrack_tuple *orig)
1203 {
1204 bool ret;
1205
1206 rcu_read_lock();
1207 ret = nf_ct_invert_tuple(inverse, orig,
1208 __nf_ct_l3proto_find(orig->src.l3num),
1209 __nf_ct_l4proto_find(orig->src.l3num,
1210 orig->dst.protonum));
1211 rcu_read_unlock();
1212 return ret;
1213 }
1214 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1215
1216 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1217 implicitly racy: see __nf_conntrack_confirm */
1218 void nf_conntrack_alter_reply(struct nf_conn *ct,
1219 const struct nf_conntrack_tuple *newreply)
1220 {
1221 struct nf_conn_help *help = nfct_help(ct);
1222
1223 /* Should be unconfirmed, so not in hash table yet */
1224 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1225
1226 pr_debug("Altering reply tuple of %p to ", ct);
1227 nf_ct_dump_tuple(newreply);
1228
1229 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1230 if (ct->master || (help && !hlist_empty(&help->expectations)))
1231 return;
1232
1233 rcu_read_lock();
1234 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1235 rcu_read_unlock();
1236 }
1237 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1238
1239 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1240 void __nf_ct_refresh_acct(struct nf_conn *ct,
1241 enum ip_conntrack_info ctinfo,
1242 const struct sk_buff *skb,
1243 unsigned long extra_jiffies,
1244 int do_acct)
1245 {
1246 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1247 NF_CT_ASSERT(skb);
1248
1249 /* Only update if this is not a fixed timeout */
1250 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1251 goto acct;
1252
1253 /* If not in hash table, timer will not be active yet */
1254 if (!nf_ct_is_confirmed(ct)) {
1255 ct->timeout.expires = extra_jiffies;
1256 } else {
1257 unsigned long newtime = jiffies + extra_jiffies;
1258
1259 /* Only update the timeout if the new timeout is at least
1260 HZ jiffies from the old timeout. Need del_timer for race
1261 avoidance (may already be dying). */
1262 if (newtime - ct->timeout.expires >= HZ)
1263 mod_timer_pending(&ct->timeout, newtime);
1264 }
1265
1266 acct:
1267 if (do_acct) {
1268 struct nf_conn_acct *acct;
1269
1270 acct = nf_conn_acct_find(ct);
1271 if (acct) {
1272 struct nf_conn_counter *counter = acct->counter;
1273
1274 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
1275 atomic64_add(skb->len, &counter[CTINFO2DIR(ctinfo)].bytes);
1276 }
1277 }
1278 }
1279 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1280
1281 bool __nf_ct_kill_acct(struct nf_conn *ct,
1282 enum ip_conntrack_info ctinfo,
1283 const struct sk_buff *skb,
1284 int do_acct)
1285 {
1286 if (do_acct) {
1287 struct nf_conn_acct *acct;
1288
1289 acct = nf_conn_acct_find(ct);
1290 if (acct) {
1291 struct nf_conn_counter *counter = acct->counter;
1292
1293 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
1294 atomic64_add(skb->len - skb_network_offset(skb),
1295 &counter[CTINFO2DIR(ctinfo)].bytes);
1296 }
1297 }
1298
1299 if (del_timer(&ct->timeout)) {
1300 ct->timeout.function((unsigned long)ct);
1301 return true;
1302 }
1303 return false;
1304 }
1305 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1306
1307 /* Built-in default zone used e.g. by modules. */
1308 const struct nf_conntrack_zone nf_ct_zone_dflt = {
1309 .id = NF_CT_DEFAULT_ZONE_ID,
1310 .dir = NF_CT_DEFAULT_ZONE_DIR,
1311 };
1312 EXPORT_SYMBOL_GPL(nf_ct_zone_dflt);
1313
1314 #ifdef CONFIG_NF_CONNTRACK_ZONES
1315 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1316 .len = sizeof(struct nf_conntrack_zone),
1317 .align = __alignof__(struct nf_conntrack_zone),
1318 .id = NF_CT_EXT_ZONE,
1319 };
1320 #endif
1321
1322 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1323
1324 #include <linux/netfilter/nfnetlink.h>
1325 #include <linux/netfilter/nfnetlink_conntrack.h>
1326 #include <linux/mutex.h>
1327
1328 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1329 * in ip_conntrack_core, since we don't want the protocols to autoload
1330 * or depend on ctnetlink */
1331 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1332 const struct nf_conntrack_tuple *tuple)
1333 {
1334 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1335 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1336 goto nla_put_failure;
1337 return 0;
1338
1339 nla_put_failure:
1340 return -1;
1341 }
1342 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1343
1344 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1345 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1346 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1347 };
1348 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1349
1350 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1351 struct nf_conntrack_tuple *t)
1352 {
1353 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1354 return -EINVAL;
1355
1356 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1357 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1358
1359 return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1362
1363 int nf_ct_port_nlattr_tuple_size(void)
1364 {
1365 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1366 }
1367 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1368 #endif
1369
1370 /* Used by ipt_REJECT and ip6t_REJECT. */
1371 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1372 {
1373 struct nf_conn *ct;
1374 enum ip_conntrack_info ctinfo;
1375
1376 /* This ICMP is in reverse direction to the packet which caused it */
1377 ct = nf_ct_get(skb, &ctinfo);
1378 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1379 ctinfo = IP_CT_RELATED_REPLY;
1380 else
1381 ctinfo = IP_CT_RELATED;
1382
1383 /* Attach to new skbuff, and increment count */
1384 nskb->nfct = &ct->ct_general;
1385 nskb->nfctinfo = ctinfo;
1386 nf_conntrack_get(nskb->nfct);
1387 }
1388
1389 /* Bring out ya dead! */
1390 static struct nf_conn *
1391 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1392 void *data, unsigned int *bucket)
1393 {
1394 struct nf_conntrack_tuple_hash *h;
1395 struct nf_conn *ct;
1396 struct hlist_nulls_node *n;
1397 int cpu;
1398 spinlock_t *lockp;
1399
1400 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1401 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1402 local_bh_disable();
1403 spin_lock(lockp);
1404 if (*bucket < net->ct.htable_size) {
1405 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1406 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1407 continue;
1408 ct = nf_ct_tuplehash_to_ctrack(h);
1409 if (iter(ct, data))
1410 goto found;
1411 }
1412 }
1413 spin_unlock(lockp);
1414 local_bh_enable();
1415 }
1416
1417 for_each_possible_cpu(cpu) {
1418 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1419
1420 spin_lock_bh(&pcpu->lock);
1421 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1422 ct = nf_ct_tuplehash_to_ctrack(h);
1423 if (iter(ct, data))
1424 set_bit(IPS_DYING_BIT, &ct->status);
1425 }
1426 spin_unlock_bh(&pcpu->lock);
1427 }
1428 return NULL;
1429 found:
1430 atomic_inc(&ct->ct_general.use);
1431 spin_unlock(lockp);
1432 local_bh_enable();
1433 return ct;
1434 }
1435
1436 void nf_ct_iterate_cleanup(struct net *net,
1437 int (*iter)(struct nf_conn *i, void *data),
1438 void *data, u32 portid, int report)
1439 {
1440 struct nf_conn *ct;
1441 unsigned int bucket = 0;
1442
1443 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1444 /* Time to push up daises... */
1445 if (del_timer(&ct->timeout))
1446 nf_ct_delete(ct, portid, report);
1447
1448 /* ... else the timer will get him soon. */
1449
1450 nf_ct_put(ct);
1451 }
1452 }
1453 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1454
1455 static int kill_all(struct nf_conn *i, void *data)
1456 {
1457 return 1;
1458 }
1459
1460 void nf_ct_free_hashtable(void *hash, unsigned int size)
1461 {
1462 if (is_vmalloc_addr(hash))
1463 vfree(hash);
1464 else
1465 free_pages((unsigned long)hash,
1466 get_order(sizeof(struct hlist_head) * size));
1467 }
1468 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1469
1470 static int untrack_refs(void)
1471 {
1472 int cnt = 0, cpu;
1473
1474 for_each_possible_cpu(cpu) {
1475 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1476
1477 cnt += atomic_read(&ct->ct_general.use) - 1;
1478 }
1479 return cnt;
1480 }
1481
1482 void nf_conntrack_cleanup_start(void)
1483 {
1484 RCU_INIT_POINTER(ip_ct_attach, NULL);
1485 }
1486
1487 void nf_conntrack_cleanup_end(void)
1488 {
1489 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1490 while (untrack_refs() > 0)
1491 schedule();
1492
1493 #ifdef CONFIG_NF_CONNTRACK_ZONES
1494 nf_ct_extend_unregister(&nf_ct_zone_extend);
1495 #endif
1496 nf_conntrack_proto_fini();
1497 nf_conntrack_seqadj_fini();
1498 nf_conntrack_labels_fini();
1499 nf_conntrack_helper_fini();
1500 nf_conntrack_timeout_fini();
1501 nf_conntrack_ecache_fini();
1502 nf_conntrack_tstamp_fini();
1503 nf_conntrack_acct_fini();
1504 nf_conntrack_expect_fini();
1505 }
1506
1507 /*
1508 * Mishearing the voices in his head, our hero wonders how he's
1509 * supposed to kill the mall.
1510 */
1511 void nf_conntrack_cleanup_net(struct net *net)
1512 {
1513 LIST_HEAD(single);
1514
1515 list_add(&net->exit_list, &single);
1516 nf_conntrack_cleanup_net_list(&single);
1517 }
1518
1519 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1520 {
1521 int busy;
1522 struct net *net;
1523
1524 /*
1525 * This makes sure all current packets have passed through
1526 * netfilter framework. Roll on, two-stage module
1527 * delete...
1528 */
1529 synchronize_net();
1530 i_see_dead_people:
1531 busy = 0;
1532 list_for_each_entry(net, net_exit_list, exit_list) {
1533 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1534 if (atomic_read(&net->ct.count) != 0)
1535 busy = 1;
1536 }
1537 if (busy) {
1538 schedule();
1539 goto i_see_dead_people;
1540 }
1541
1542 list_for_each_entry(net, net_exit_list, exit_list) {
1543 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1544 nf_conntrack_proto_pernet_fini(net);
1545 nf_conntrack_helper_pernet_fini(net);
1546 nf_conntrack_ecache_pernet_fini(net);
1547 nf_conntrack_tstamp_pernet_fini(net);
1548 nf_conntrack_acct_pernet_fini(net);
1549 nf_conntrack_expect_pernet_fini(net);
1550 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1551 kfree(net->ct.slabname);
1552 free_percpu(net->ct.stat);
1553 free_percpu(net->ct.pcpu_lists);
1554 }
1555 }
1556
1557 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1558 {
1559 struct hlist_nulls_head *hash;
1560 unsigned int nr_slots, i;
1561 size_t sz;
1562
1563 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1564 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1565 sz = nr_slots * sizeof(struct hlist_nulls_head);
1566 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1567 get_order(sz));
1568 if (!hash) {
1569 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1570 hash = vzalloc(sz);
1571 }
1572
1573 if (hash && nulls)
1574 for (i = 0; i < nr_slots; i++)
1575 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1576
1577 return hash;
1578 }
1579 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1580
1581 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1582 {
1583 int i, bucket, rc;
1584 unsigned int hashsize, old_size;
1585 struct hlist_nulls_head *hash, *old_hash;
1586 struct nf_conntrack_tuple_hash *h;
1587 struct nf_conn *ct;
1588
1589 if (current->nsproxy->net_ns != &init_net)
1590 return -EOPNOTSUPP;
1591
1592 /* On boot, we can set this without any fancy locking. */
1593 if (!nf_conntrack_htable_size)
1594 return param_set_uint(val, kp);
1595
1596 rc = kstrtouint(val, 0, &hashsize);
1597 if (rc)
1598 return rc;
1599 if (!hashsize)
1600 return -EINVAL;
1601
1602 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1603 if (!hash)
1604 return -ENOMEM;
1605
1606 local_bh_disable();
1607 nf_conntrack_all_lock();
1608 write_seqcount_begin(&init_net.ct.generation);
1609
1610 /* Lookups in the old hash might happen in parallel, which means we
1611 * might get false negatives during connection lookup. New connections
1612 * created because of a false negative won't make it into the hash
1613 * though since that required taking the locks.
1614 */
1615
1616 for (i = 0; i < init_net.ct.htable_size; i++) {
1617 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1618 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1619 struct nf_conntrack_tuple_hash, hnnode);
1620 ct = nf_ct_tuplehash_to_ctrack(h);
1621 hlist_nulls_del_rcu(&h->hnnode);
1622 bucket = __hash_conntrack(&h->tuple, hashsize);
1623 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1624 }
1625 }
1626 old_size = init_net.ct.htable_size;
1627 old_hash = init_net.ct.hash;
1628
1629 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1630 init_net.ct.hash = hash;
1631
1632 write_seqcount_end(&init_net.ct.generation);
1633 nf_conntrack_all_unlock();
1634 local_bh_enable();
1635
1636 nf_ct_free_hashtable(old_hash, old_size);
1637 return 0;
1638 }
1639 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1640
1641 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1642 &nf_conntrack_htable_size, 0600);
1643
1644 void nf_ct_untracked_status_or(unsigned long bits)
1645 {
1646 int cpu;
1647
1648 for_each_possible_cpu(cpu)
1649 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1650 }
1651 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1652
1653 int nf_conntrack_init_start(void)
1654 {
1655 int max_factor = 8;
1656 int i, ret, cpu;
1657
1658 for (i = 0; i < CONNTRACK_LOCKS; i++)
1659 spin_lock_init(&nf_conntrack_locks[i]);
1660
1661 if (!nf_conntrack_htable_size) {
1662 /* Idea from tcp.c: use 1/16384 of memory.
1663 * On i386: 32MB machine has 512 buckets.
1664 * >= 1GB machines have 16384 buckets.
1665 * >= 4GB machines have 65536 buckets.
1666 */
1667 nf_conntrack_htable_size
1668 = (((totalram_pages << PAGE_SHIFT) / 16384)
1669 / sizeof(struct hlist_head));
1670 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1671 nf_conntrack_htable_size = 65536;
1672 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1673 nf_conntrack_htable_size = 16384;
1674 if (nf_conntrack_htable_size < 32)
1675 nf_conntrack_htable_size = 32;
1676
1677 /* Use a max. factor of four by default to get the same max as
1678 * with the old struct list_heads. When a table size is given
1679 * we use the old value of 8 to avoid reducing the max.
1680 * entries. */
1681 max_factor = 4;
1682 }
1683 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1684
1685 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1686 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1687 nf_conntrack_max);
1688
1689 ret = nf_conntrack_expect_init();
1690 if (ret < 0)
1691 goto err_expect;
1692
1693 ret = nf_conntrack_acct_init();
1694 if (ret < 0)
1695 goto err_acct;
1696
1697 ret = nf_conntrack_tstamp_init();
1698 if (ret < 0)
1699 goto err_tstamp;
1700
1701 ret = nf_conntrack_ecache_init();
1702 if (ret < 0)
1703 goto err_ecache;
1704
1705 ret = nf_conntrack_timeout_init();
1706 if (ret < 0)
1707 goto err_timeout;
1708
1709 ret = nf_conntrack_helper_init();
1710 if (ret < 0)
1711 goto err_helper;
1712
1713 ret = nf_conntrack_labels_init();
1714 if (ret < 0)
1715 goto err_labels;
1716
1717 ret = nf_conntrack_seqadj_init();
1718 if (ret < 0)
1719 goto err_seqadj;
1720
1721 #ifdef CONFIG_NF_CONNTRACK_ZONES
1722 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1723 if (ret < 0)
1724 goto err_extend;
1725 #endif
1726 ret = nf_conntrack_proto_init();
1727 if (ret < 0)
1728 goto err_proto;
1729
1730 /* Set up fake conntrack: to never be deleted, not in any hashes */
1731 for_each_possible_cpu(cpu) {
1732 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1733 write_pnet(&ct->ct_net, &init_net);
1734 atomic_set(&ct->ct_general.use, 1);
1735 }
1736 /* - and look it like as a confirmed connection */
1737 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1738 return 0;
1739
1740 err_proto:
1741 #ifdef CONFIG_NF_CONNTRACK_ZONES
1742 nf_ct_extend_unregister(&nf_ct_zone_extend);
1743 err_extend:
1744 #endif
1745 nf_conntrack_seqadj_fini();
1746 err_seqadj:
1747 nf_conntrack_labels_fini();
1748 err_labels:
1749 nf_conntrack_helper_fini();
1750 err_helper:
1751 nf_conntrack_timeout_fini();
1752 err_timeout:
1753 nf_conntrack_ecache_fini();
1754 err_ecache:
1755 nf_conntrack_tstamp_fini();
1756 err_tstamp:
1757 nf_conntrack_acct_fini();
1758 err_acct:
1759 nf_conntrack_expect_fini();
1760 err_expect:
1761 return ret;
1762 }
1763
1764 void nf_conntrack_init_end(void)
1765 {
1766 /* For use by REJECT target */
1767 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1768 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1769 }
1770
1771 /*
1772 * We need to use special "null" values, not used in hash table
1773 */
1774 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1775 #define DYING_NULLS_VAL ((1<<30)+1)
1776 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
1777
1778 int nf_conntrack_init_net(struct net *net)
1779 {
1780 int ret = -ENOMEM;
1781 int cpu;
1782
1783 atomic_set(&net->ct.count, 0);
1784 seqcount_init(&net->ct.generation);
1785
1786 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1787 if (!net->ct.pcpu_lists)
1788 goto err_stat;
1789
1790 for_each_possible_cpu(cpu) {
1791 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1792
1793 spin_lock_init(&pcpu->lock);
1794 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1795 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1796 }
1797
1798 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1799 if (!net->ct.stat)
1800 goto err_pcpu_lists;
1801
1802 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1803 if (!net->ct.slabname)
1804 goto err_slabname;
1805
1806 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1807 sizeof(struct nf_conn), 0,
1808 SLAB_DESTROY_BY_RCU, NULL);
1809 if (!net->ct.nf_conntrack_cachep) {
1810 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1811 goto err_cache;
1812 }
1813
1814 net->ct.htable_size = nf_conntrack_htable_size;
1815 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1816 if (!net->ct.hash) {
1817 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1818 goto err_hash;
1819 }
1820 ret = nf_conntrack_expect_pernet_init(net);
1821 if (ret < 0)
1822 goto err_expect;
1823 ret = nf_conntrack_acct_pernet_init(net);
1824 if (ret < 0)
1825 goto err_acct;
1826 ret = nf_conntrack_tstamp_pernet_init(net);
1827 if (ret < 0)
1828 goto err_tstamp;
1829 ret = nf_conntrack_ecache_pernet_init(net);
1830 if (ret < 0)
1831 goto err_ecache;
1832 ret = nf_conntrack_helper_pernet_init(net);
1833 if (ret < 0)
1834 goto err_helper;
1835 ret = nf_conntrack_proto_pernet_init(net);
1836 if (ret < 0)
1837 goto err_proto;
1838 return 0;
1839
1840 err_proto:
1841 nf_conntrack_helper_pernet_fini(net);
1842 err_helper:
1843 nf_conntrack_ecache_pernet_fini(net);
1844 err_ecache:
1845 nf_conntrack_tstamp_pernet_fini(net);
1846 err_tstamp:
1847 nf_conntrack_acct_pernet_fini(net);
1848 err_acct:
1849 nf_conntrack_expect_pernet_fini(net);
1850 err_expect:
1851 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1852 err_hash:
1853 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1854 err_cache:
1855 kfree(net->ct.slabname);
1856 err_slabname:
1857 free_percpu(net->ct.stat);
1858 err_pcpu_lists:
1859 free_percpu(net->ct.pcpu_lists);
1860 err_stat:
1861 return ret;
1862 }
This page took 0.244245 seconds and 4 git commands to generate.