[NETFILTER]: nf_conntrack: optimize __nf_conntrack_find()
[deliverable/linux.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/skbuff.h>
18 #include <linux/proc_fs.h>
19 #include <linux/vmalloc.h>
20 #include <linux/stddef.h>
21 #include <linux/slab.h>
22 #include <linux/random.h>
23 #include <linux/jhash.h>
24 #include <linux/err.h>
25 #include <linux/percpu.h>
26 #include <linux/moduleparam.h>
27 #include <linux/notifier.h>
28 #include <linux/kernel.h>
29 #include <linux/netdevice.h>
30 #include <linux/socket.h>
31 #include <linux/mm.h>
32
33 #include <net/netfilter/nf_conntrack.h>
34 #include <net/netfilter/nf_conntrack_l3proto.h>
35 #include <net/netfilter/nf_conntrack_l4proto.h>
36 #include <net/netfilter/nf_conntrack_expect.h>
37 #include <net/netfilter/nf_conntrack_helper.h>
38 #include <net/netfilter/nf_conntrack_core.h>
39 #include <net/netfilter/nf_conntrack_extend.h>
40
41 #define NF_CONNTRACK_VERSION "0.5.0"
42
43 DEFINE_SPINLOCK(nf_conntrack_lock);
44 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
45
46 /* nf_conntrack_standalone needs this */
47 atomic_t nf_conntrack_count = ATOMIC_INIT(0);
48 EXPORT_SYMBOL_GPL(nf_conntrack_count);
49
50 unsigned int nf_conntrack_htable_size __read_mostly;
51 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
52
53 int nf_conntrack_max __read_mostly;
54 EXPORT_SYMBOL_GPL(nf_conntrack_max);
55
56 struct hlist_head *nf_conntrack_hash __read_mostly;
57 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
58
59 struct nf_conn nf_conntrack_untracked __read_mostly;
60 EXPORT_SYMBOL_GPL(nf_conntrack_untracked);
61
62 unsigned int nf_ct_log_invalid __read_mostly;
63 HLIST_HEAD(unconfirmed);
64 static int nf_conntrack_vmalloc __read_mostly;
65 static struct kmem_cache *nf_conntrack_cachep __read_mostly;
66
67 DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
68 EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);
69
70 static int nf_conntrack_hash_rnd_initted;
71 static unsigned int nf_conntrack_hash_rnd;
72
73 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
74 unsigned int size, unsigned int rnd)
75 {
76 unsigned int a, b;
77
78 a = jhash2(tuple->src.u3.all, ARRAY_SIZE(tuple->src.u3.all),
79 (tuple->src.l3num << 16) | tuple->dst.protonum);
80 b = jhash2(tuple->dst.u3.all, ARRAY_SIZE(tuple->dst.u3.all),
81 ((__force __u16)tuple->src.u.all << 16) |
82 (__force __u16)tuple->dst.u.all);
83
84 return ((u64)jhash_2words(a, b, rnd) * size) >> 32;
85 }
86
87 static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
88 {
89 return __hash_conntrack(tuple, nf_conntrack_htable_size,
90 nf_conntrack_hash_rnd);
91 }
92
93 int
94 nf_ct_get_tuple(const struct sk_buff *skb,
95 unsigned int nhoff,
96 unsigned int dataoff,
97 u_int16_t l3num,
98 u_int8_t protonum,
99 struct nf_conntrack_tuple *tuple,
100 const struct nf_conntrack_l3proto *l3proto,
101 const struct nf_conntrack_l4proto *l4proto)
102 {
103 NF_CT_TUPLE_U_BLANK(tuple);
104
105 tuple->src.l3num = l3num;
106 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
107 return 0;
108
109 tuple->dst.protonum = protonum;
110 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
111
112 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
113 }
114 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
115
116 int nf_ct_get_tuplepr(const struct sk_buff *skb,
117 unsigned int nhoff,
118 u_int16_t l3num,
119 struct nf_conntrack_tuple *tuple)
120 {
121 struct nf_conntrack_l3proto *l3proto;
122 struct nf_conntrack_l4proto *l4proto;
123 unsigned int protoff;
124 u_int8_t protonum;
125 int ret;
126
127 rcu_read_lock();
128
129 l3proto = __nf_ct_l3proto_find(l3num);
130 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
131 if (ret != NF_ACCEPT) {
132 rcu_read_unlock();
133 return 0;
134 }
135
136 l4proto = __nf_ct_l4proto_find(l3num, protonum);
137
138 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
139 l3proto, l4proto);
140
141 rcu_read_unlock();
142 return ret;
143 }
144 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
145
146 int
147 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
148 const struct nf_conntrack_tuple *orig,
149 const struct nf_conntrack_l3proto *l3proto,
150 const struct nf_conntrack_l4proto *l4proto)
151 {
152 NF_CT_TUPLE_U_BLANK(inverse);
153
154 inverse->src.l3num = orig->src.l3num;
155 if (l3proto->invert_tuple(inverse, orig) == 0)
156 return 0;
157
158 inverse->dst.dir = !orig->dst.dir;
159
160 inverse->dst.protonum = orig->dst.protonum;
161 return l4proto->invert_tuple(inverse, orig);
162 }
163 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
164
165 static void
166 clean_from_lists(struct nf_conn *ct)
167 {
168 pr_debug("clean_from_lists(%p)\n", ct);
169 hlist_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode);
170 hlist_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnode);
171
172 /* Destroy all pending expectations */
173 nf_ct_remove_expectations(ct);
174 }
175
176 static void
177 destroy_conntrack(struct nf_conntrack *nfct)
178 {
179 struct nf_conn *ct = (struct nf_conn *)nfct;
180 struct nf_conntrack_l4proto *l4proto;
181
182 pr_debug("destroy_conntrack(%p)\n", ct);
183 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
184 NF_CT_ASSERT(!timer_pending(&ct->timeout));
185
186 nf_conntrack_event(IPCT_DESTROY, ct);
187 set_bit(IPS_DYING_BIT, &ct->status);
188
189 /* To make sure we don't get any weird locking issues here:
190 * destroy_conntrack() MUST NOT be called with a write lock
191 * to nf_conntrack_lock!!! -HW */
192 rcu_read_lock();
193 l4proto = __nf_ct_l4proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num,
194 ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
195 if (l4proto && l4proto->destroy)
196 l4proto->destroy(ct);
197
198 nf_ct_ext_destroy(ct);
199
200 rcu_read_unlock();
201
202 spin_lock_bh(&nf_conntrack_lock);
203 /* Expectations will have been removed in clean_from_lists,
204 * except TFTP can create an expectation on the first packet,
205 * before connection is in the list, so we need to clean here,
206 * too. */
207 nf_ct_remove_expectations(ct);
208
209 /* We overload first tuple to link into unconfirmed list. */
210 if (!nf_ct_is_confirmed(ct)) {
211 BUG_ON(hlist_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode));
212 hlist_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode);
213 }
214
215 NF_CT_STAT_INC(delete);
216 spin_unlock_bh(&nf_conntrack_lock);
217
218 if (ct->master)
219 nf_ct_put(ct->master);
220
221 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
222 nf_conntrack_free(ct);
223 }
224
225 static void death_by_timeout(unsigned long ul_conntrack)
226 {
227 struct nf_conn *ct = (void *)ul_conntrack;
228 struct nf_conn_help *help = nfct_help(ct);
229 struct nf_conntrack_helper *helper;
230
231 if (help) {
232 rcu_read_lock();
233 helper = rcu_dereference(help->helper);
234 if (helper && helper->destroy)
235 helper->destroy(ct);
236 rcu_read_unlock();
237 }
238
239 spin_lock_bh(&nf_conntrack_lock);
240 /* Inside lock so preempt is disabled on module removal path.
241 * Otherwise we can get spurious warnings. */
242 NF_CT_STAT_INC(delete_list);
243 clean_from_lists(ct);
244 spin_unlock_bh(&nf_conntrack_lock);
245 nf_ct_put(ct);
246 }
247
248 struct nf_conntrack_tuple_hash *
249 __nf_conntrack_find(const struct nf_conntrack_tuple *tuple)
250 {
251 struct nf_conntrack_tuple_hash *h;
252 struct hlist_node *n;
253 unsigned int hash = hash_conntrack(tuple);
254
255 hlist_for_each_entry_rcu(h, n, &nf_conntrack_hash[hash], hnode) {
256 if (nf_ct_tuple_equal(tuple, &h->tuple)) {
257 NF_CT_STAT_INC(found);
258 return h;
259 }
260 NF_CT_STAT_INC(searched);
261 }
262
263 return NULL;
264 }
265 EXPORT_SYMBOL_GPL(__nf_conntrack_find);
266
267 /* Find a connection corresponding to a tuple. */
268 struct nf_conntrack_tuple_hash *
269 nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple)
270 {
271 struct nf_conntrack_tuple_hash *h;
272 struct nf_conn *ct;
273
274 rcu_read_lock();
275 h = __nf_conntrack_find(tuple);
276 if (h) {
277 ct = nf_ct_tuplehash_to_ctrack(h);
278 if (unlikely(!atomic_inc_not_zero(&ct->ct_general.use)))
279 h = NULL;
280 }
281 rcu_read_unlock();
282
283 return h;
284 }
285 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
286
287 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
288 unsigned int hash,
289 unsigned int repl_hash)
290 {
291 hlist_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode,
292 &nf_conntrack_hash[hash]);
293 hlist_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnode,
294 &nf_conntrack_hash[repl_hash]);
295 }
296
297 void nf_conntrack_hash_insert(struct nf_conn *ct)
298 {
299 unsigned int hash, repl_hash;
300
301 hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
302 repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
303
304 spin_lock_bh(&nf_conntrack_lock);
305 __nf_conntrack_hash_insert(ct, hash, repl_hash);
306 spin_unlock_bh(&nf_conntrack_lock);
307 }
308 EXPORT_SYMBOL_GPL(nf_conntrack_hash_insert);
309
310 /* Confirm a connection given skb; places it in hash table */
311 int
312 __nf_conntrack_confirm(struct sk_buff *skb)
313 {
314 unsigned int hash, repl_hash;
315 struct nf_conntrack_tuple_hash *h;
316 struct nf_conn *ct;
317 struct nf_conn_help *help;
318 struct hlist_node *n;
319 enum ip_conntrack_info ctinfo;
320
321 ct = nf_ct_get(skb, &ctinfo);
322
323 /* ipt_REJECT uses nf_conntrack_attach to attach related
324 ICMP/TCP RST packets in other direction. Actual packet
325 which created connection will be IP_CT_NEW or for an
326 expected connection, IP_CT_RELATED. */
327 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
328 return NF_ACCEPT;
329
330 hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
331 repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
332
333 /* We're not in hash table, and we refuse to set up related
334 connections for unconfirmed conns. But packet copies and
335 REJECT will give spurious warnings here. */
336 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
337
338 /* No external references means noone else could have
339 confirmed us. */
340 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
341 pr_debug("Confirming conntrack %p\n", ct);
342
343 spin_lock_bh(&nf_conntrack_lock);
344
345 /* See if there's one in the list already, including reverse:
346 NAT could have grabbed it without realizing, since we're
347 not in the hash. If there is, we lost race. */
348 hlist_for_each_entry(h, n, &nf_conntrack_hash[hash], hnode)
349 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
350 &h->tuple))
351 goto out;
352 hlist_for_each_entry(h, n, &nf_conntrack_hash[repl_hash], hnode)
353 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
354 &h->tuple))
355 goto out;
356
357 /* Remove from unconfirmed list */
358 hlist_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode);
359
360 __nf_conntrack_hash_insert(ct, hash, repl_hash);
361 /* Timer relative to confirmation time, not original
362 setting time, otherwise we'd get timer wrap in
363 weird delay cases. */
364 ct->timeout.expires += jiffies;
365 add_timer(&ct->timeout);
366 atomic_inc(&ct->ct_general.use);
367 set_bit(IPS_CONFIRMED_BIT, &ct->status);
368 NF_CT_STAT_INC(insert);
369 spin_unlock_bh(&nf_conntrack_lock);
370 help = nfct_help(ct);
371 if (help && help->helper)
372 nf_conntrack_event_cache(IPCT_HELPER, skb);
373 #ifdef CONFIG_NF_NAT_NEEDED
374 if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
375 test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
376 nf_conntrack_event_cache(IPCT_NATINFO, skb);
377 #endif
378 nf_conntrack_event_cache(master_ct(ct) ?
379 IPCT_RELATED : IPCT_NEW, skb);
380 return NF_ACCEPT;
381
382 out:
383 NF_CT_STAT_INC(insert_failed);
384 spin_unlock_bh(&nf_conntrack_lock);
385 return NF_DROP;
386 }
387 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
388
389 /* Returns true if a connection correspondings to the tuple (required
390 for NAT). */
391 int
392 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
393 const struct nf_conn *ignored_conntrack)
394 {
395 struct nf_conntrack_tuple_hash *h;
396 struct hlist_node *n;
397 unsigned int hash = hash_conntrack(tuple);
398
399 rcu_read_lock();
400 hlist_for_each_entry_rcu(h, n, &nf_conntrack_hash[hash], hnode) {
401 if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
402 nf_ct_tuple_equal(tuple, &h->tuple)) {
403 NF_CT_STAT_INC(found);
404 rcu_read_unlock();
405 return 1;
406 }
407 NF_CT_STAT_INC(searched);
408 }
409 rcu_read_unlock();
410
411 return 0;
412 }
413 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
414
415 #define NF_CT_EVICTION_RANGE 8
416
417 /* There's a small race here where we may free a just-assured
418 connection. Too bad: we're in trouble anyway. */
419 static int early_drop(unsigned int hash)
420 {
421 /* Use oldest entry, which is roughly LRU */
422 struct nf_conntrack_tuple_hash *h;
423 struct nf_conn *ct = NULL, *tmp;
424 struct hlist_node *n;
425 unsigned int i, cnt = 0;
426 int dropped = 0;
427
428 rcu_read_lock();
429 for (i = 0; i < nf_conntrack_htable_size; i++) {
430 hlist_for_each_entry_rcu(h, n, &nf_conntrack_hash[hash],
431 hnode) {
432 tmp = nf_ct_tuplehash_to_ctrack(h);
433 if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
434 ct = tmp;
435 cnt++;
436 }
437
438 if (ct && unlikely(!atomic_inc_not_zero(&ct->ct_general.use)))
439 ct = NULL;
440 if (ct || cnt >= NF_CT_EVICTION_RANGE)
441 break;
442 hash = (hash + 1) % nf_conntrack_htable_size;
443 }
444 rcu_read_unlock();
445
446 if (!ct)
447 return dropped;
448
449 if (del_timer(&ct->timeout)) {
450 death_by_timeout((unsigned long)ct);
451 dropped = 1;
452 NF_CT_STAT_INC_ATOMIC(early_drop);
453 }
454 nf_ct_put(ct);
455 return dropped;
456 }
457
458 struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
459 const struct nf_conntrack_tuple *repl)
460 {
461 struct nf_conn *conntrack = NULL;
462
463 if (unlikely(!nf_conntrack_hash_rnd_initted)) {
464 get_random_bytes(&nf_conntrack_hash_rnd, 4);
465 nf_conntrack_hash_rnd_initted = 1;
466 }
467
468 /* We don't want any race condition at early drop stage */
469 atomic_inc(&nf_conntrack_count);
470
471 if (nf_conntrack_max
472 && atomic_read(&nf_conntrack_count) > nf_conntrack_max) {
473 unsigned int hash = hash_conntrack(orig);
474 if (!early_drop(hash)) {
475 atomic_dec(&nf_conntrack_count);
476 if (net_ratelimit())
477 printk(KERN_WARNING
478 "nf_conntrack: table full, dropping"
479 " packet.\n");
480 return ERR_PTR(-ENOMEM);
481 }
482 }
483
484 conntrack = kmem_cache_zalloc(nf_conntrack_cachep, GFP_ATOMIC);
485 if (conntrack == NULL) {
486 pr_debug("nf_conntrack_alloc: Can't alloc conntrack.\n");
487 atomic_dec(&nf_conntrack_count);
488 return ERR_PTR(-ENOMEM);
489 }
490
491 atomic_set(&conntrack->ct_general.use, 1);
492 conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
493 conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
494 /* Don't set timer yet: wait for confirmation */
495 setup_timer(&conntrack->timeout, death_by_timeout,
496 (unsigned long)conntrack);
497 INIT_RCU_HEAD(&conntrack->rcu);
498
499 return conntrack;
500 }
501 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
502
503 static void nf_conntrack_free_rcu(struct rcu_head *head)
504 {
505 struct nf_conn *ct = container_of(head, struct nf_conn, rcu);
506
507 nf_ct_ext_free(ct);
508 kmem_cache_free(nf_conntrack_cachep, ct);
509 atomic_dec(&nf_conntrack_count);
510 }
511
512 void nf_conntrack_free(struct nf_conn *conntrack)
513 {
514 call_rcu(&conntrack->rcu, nf_conntrack_free_rcu);
515 }
516 EXPORT_SYMBOL_GPL(nf_conntrack_free);
517
518 /* Allocate a new conntrack: we return -ENOMEM if classification
519 failed due to stress. Otherwise it really is unclassifiable. */
520 static struct nf_conntrack_tuple_hash *
521 init_conntrack(const struct nf_conntrack_tuple *tuple,
522 struct nf_conntrack_l3proto *l3proto,
523 struct nf_conntrack_l4proto *l4proto,
524 struct sk_buff *skb,
525 unsigned int dataoff)
526 {
527 struct nf_conn *conntrack;
528 struct nf_conn_help *help;
529 struct nf_conntrack_tuple repl_tuple;
530 struct nf_conntrack_expect *exp;
531
532 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
533 pr_debug("Can't invert tuple.\n");
534 return NULL;
535 }
536
537 conntrack = nf_conntrack_alloc(tuple, &repl_tuple);
538 if (conntrack == NULL || IS_ERR(conntrack)) {
539 pr_debug("Can't allocate conntrack.\n");
540 return (struct nf_conntrack_tuple_hash *)conntrack;
541 }
542
543 if (!l4proto->new(conntrack, skb, dataoff)) {
544 nf_conntrack_free(conntrack);
545 pr_debug("init conntrack: can't track with proto module\n");
546 return NULL;
547 }
548
549 spin_lock_bh(&nf_conntrack_lock);
550 exp = nf_ct_find_expectation(tuple);
551 if (exp) {
552 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
553 conntrack, exp);
554 /* Welcome, Mr. Bond. We've been expecting you... */
555 __set_bit(IPS_EXPECTED_BIT, &conntrack->status);
556 conntrack->master = exp->master;
557 if (exp->helper) {
558 help = nf_ct_helper_ext_add(conntrack, GFP_ATOMIC);
559 if (help)
560 rcu_assign_pointer(help->helper, exp->helper);
561 }
562
563 #ifdef CONFIG_NF_CONNTRACK_MARK
564 conntrack->mark = exp->master->mark;
565 #endif
566 #ifdef CONFIG_NF_CONNTRACK_SECMARK
567 conntrack->secmark = exp->master->secmark;
568 #endif
569 nf_conntrack_get(&conntrack->master->ct_general);
570 NF_CT_STAT_INC(expect_new);
571 } else {
572 struct nf_conntrack_helper *helper;
573
574 helper = __nf_ct_helper_find(&repl_tuple);
575 if (helper) {
576 help = nf_ct_helper_ext_add(conntrack, GFP_ATOMIC);
577 if (help)
578 rcu_assign_pointer(help->helper, helper);
579 }
580 NF_CT_STAT_INC(new);
581 }
582
583 /* Overload tuple linked list to put us in unconfirmed list. */
584 hlist_add_head(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].hnode,
585 &unconfirmed);
586
587 spin_unlock_bh(&nf_conntrack_lock);
588
589 if (exp) {
590 if (exp->expectfn)
591 exp->expectfn(conntrack, exp);
592 nf_ct_expect_put(exp);
593 }
594
595 return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
596 }
597
598 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
599 static inline struct nf_conn *
600 resolve_normal_ct(struct sk_buff *skb,
601 unsigned int dataoff,
602 u_int16_t l3num,
603 u_int8_t protonum,
604 struct nf_conntrack_l3proto *l3proto,
605 struct nf_conntrack_l4proto *l4proto,
606 int *set_reply,
607 enum ip_conntrack_info *ctinfo)
608 {
609 struct nf_conntrack_tuple tuple;
610 struct nf_conntrack_tuple_hash *h;
611 struct nf_conn *ct;
612
613 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
614 dataoff, l3num, protonum, &tuple, l3proto,
615 l4proto)) {
616 pr_debug("resolve_normal_ct: Can't get tuple\n");
617 return NULL;
618 }
619
620 /* look for tuple match */
621 h = nf_conntrack_find_get(&tuple);
622 if (!h) {
623 h = init_conntrack(&tuple, l3proto, l4proto, skb, dataoff);
624 if (!h)
625 return NULL;
626 if (IS_ERR(h))
627 return (void *)h;
628 }
629 ct = nf_ct_tuplehash_to_ctrack(h);
630
631 /* It exists; we have (non-exclusive) reference. */
632 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
633 *ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
634 /* Please set reply bit if this packet OK */
635 *set_reply = 1;
636 } else {
637 /* Once we've had two way comms, always ESTABLISHED. */
638 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
639 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
640 *ctinfo = IP_CT_ESTABLISHED;
641 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
642 pr_debug("nf_conntrack_in: related packet for %p\n",
643 ct);
644 *ctinfo = IP_CT_RELATED;
645 } else {
646 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
647 *ctinfo = IP_CT_NEW;
648 }
649 *set_reply = 0;
650 }
651 skb->nfct = &ct->ct_general;
652 skb->nfctinfo = *ctinfo;
653 return ct;
654 }
655
656 unsigned int
657 nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff *skb)
658 {
659 struct nf_conn *ct;
660 enum ip_conntrack_info ctinfo;
661 struct nf_conntrack_l3proto *l3proto;
662 struct nf_conntrack_l4proto *l4proto;
663 unsigned int dataoff;
664 u_int8_t protonum;
665 int set_reply = 0;
666 int ret;
667
668 /* Previously seen (loopback or untracked)? Ignore. */
669 if (skb->nfct) {
670 NF_CT_STAT_INC_ATOMIC(ignore);
671 return NF_ACCEPT;
672 }
673
674 /* rcu_read_lock()ed by nf_hook_slow */
675 l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
676 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
677 &dataoff, &protonum);
678 if (ret <= 0) {
679 pr_debug("not prepared to track yet or error occured\n");
680 NF_CT_STAT_INC_ATOMIC(error);
681 NF_CT_STAT_INC_ATOMIC(invalid);
682 return -ret;
683 }
684
685 l4proto = __nf_ct_l4proto_find((u_int16_t)pf, protonum);
686
687 /* It may be an special packet, error, unclean...
688 * inverse of the return code tells to the netfilter
689 * core what to do with the packet. */
690 if (l4proto->error != NULL &&
691 (ret = l4proto->error(skb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
692 NF_CT_STAT_INC_ATOMIC(error);
693 NF_CT_STAT_INC_ATOMIC(invalid);
694 return -ret;
695 }
696
697 ct = resolve_normal_ct(skb, dataoff, pf, protonum, l3proto, l4proto,
698 &set_reply, &ctinfo);
699 if (!ct) {
700 /* Not valid part of a connection */
701 NF_CT_STAT_INC_ATOMIC(invalid);
702 return NF_ACCEPT;
703 }
704
705 if (IS_ERR(ct)) {
706 /* Too stressed to deal. */
707 NF_CT_STAT_INC_ATOMIC(drop);
708 return NF_DROP;
709 }
710
711 NF_CT_ASSERT(skb->nfct);
712
713 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum);
714 if (ret < 0) {
715 /* Invalid: inverse of the return code tells
716 * the netfilter core what to do */
717 pr_debug("nf_conntrack_in: Can't track with proto module\n");
718 nf_conntrack_put(skb->nfct);
719 skb->nfct = NULL;
720 NF_CT_STAT_INC_ATOMIC(invalid);
721 return -ret;
722 }
723
724 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
725 nf_conntrack_event_cache(IPCT_STATUS, skb);
726
727 return ret;
728 }
729 EXPORT_SYMBOL_GPL(nf_conntrack_in);
730
731 int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
732 const struct nf_conntrack_tuple *orig)
733 {
734 int ret;
735
736 rcu_read_lock();
737 ret = nf_ct_invert_tuple(inverse, orig,
738 __nf_ct_l3proto_find(orig->src.l3num),
739 __nf_ct_l4proto_find(orig->src.l3num,
740 orig->dst.protonum));
741 rcu_read_unlock();
742 return ret;
743 }
744 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
745
746 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
747 implicitly racy: see __nf_conntrack_confirm */
748 void nf_conntrack_alter_reply(struct nf_conn *ct,
749 const struct nf_conntrack_tuple *newreply)
750 {
751 struct nf_conn_help *help = nfct_help(ct);
752 struct nf_conntrack_helper *helper;
753
754 /* Should be unconfirmed, so not in hash table yet */
755 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
756
757 pr_debug("Altering reply tuple of %p to ", ct);
758 NF_CT_DUMP_TUPLE(newreply);
759
760 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
761 if (ct->master || (help && help->expecting != 0))
762 return;
763
764 rcu_read_lock();
765 helper = __nf_ct_helper_find(newreply);
766 if (helper == NULL) {
767 if (help)
768 rcu_assign_pointer(help->helper, NULL);
769 goto out;
770 }
771
772 if (help == NULL) {
773 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
774 if (help == NULL)
775 goto out;
776 } else {
777 memset(&help->help, 0, sizeof(help->help));
778 }
779
780 rcu_assign_pointer(help->helper, helper);
781 out:
782 rcu_read_unlock();
783 }
784 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
785
786 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
787 void __nf_ct_refresh_acct(struct nf_conn *ct,
788 enum ip_conntrack_info ctinfo,
789 const struct sk_buff *skb,
790 unsigned long extra_jiffies,
791 int do_acct)
792 {
793 int event = 0;
794
795 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
796 NF_CT_ASSERT(skb);
797
798 spin_lock_bh(&nf_conntrack_lock);
799
800 /* Only update if this is not a fixed timeout */
801 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
802 goto acct;
803
804 /* If not in hash table, timer will not be active yet */
805 if (!nf_ct_is_confirmed(ct)) {
806 ct->timeout.expires = extra_jiffies;
807 event = IPCT_REFRESH;
808 } else {
809 unsigned long newtime = jiffies + extra_jiffies;
810
811 /* Only update the timeout if the new timeout is at least
812 HZ jiffies from the old timeout. Need del_timer for race
813 avoidance (may already be dying). */
814 if (newtime - ct->timeout.expires >= HZ
815 && del_timer(&ct->timeout)) {
816 ct->timeout.expires = newtime;
817 add_timer(&ct->timeout);
818 event = IPCT_REFRESH;
819 }
820 }
821
822 acct:
823 #ifdef CONFIG_NF_CT_ACCT
824 if (do_acct) {
825 ct->counters[CTINFO2DIR(ctinfo)].packets++;
826 ct->counters[CTINFO2DIR(ctinfo)].bytes +=
827 skb->len - skb_network_offset(skb);
828
829 if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
830 || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
831 event |= IPCT_COUNTER_FILLING;
832 }
833 #endif
834
835 spin_unlock_bh(&nf_conntrack_lock);
836
837 /* must be unlocked when calling event cache */
838 if (event)
839 nf_conntrack_event_cache(event, skb);
840 }
841 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
842
843 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
844
845 #include <linux/netfilter/nfnetlink.h>
846 #include <linux/netfilter/nfnetlink_conntrack.h>
847 #include <linux/mutex.h>
848
849 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
850 * in ip_conntrack_core, since we don't want the protocols to autoload
851 * or depend on ctnetlink */
852 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
853 const struct nf_conntrack_tuple *tuple)
854 {
855 NLA_PUT_BE16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port);
856 NLA_PUT_BE16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port);
857 return 0;
858
859 nla_put_failure:
860 return -1;
861 }
862 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
863
864 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
865 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
866 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
867 };
868 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
869
870 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
871 struct nf_conntrack_tuple *t)
872 {
873 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
874 return -EINVAL;
875
876 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
877 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
878
879 return 0;
880 }
881 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
882 #endif
883
884 /* Used by ipt_REJECT and ip6t_REJECT. */
885 static void nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
886 {
887 struct nf_conn *ct;
888 enum ip_conntrack_info ctinfo;
889
890 /* This ICMP is in reverse direction to the packet which caused it */
891 ct = nf_ct_get(skb, &ctinfo);
892 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
893 ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
894 else
895 ctinfo = IP_CT_RELATED;
896
897 /* Attach to new skbuff, and increment count */
898 nskb->nfct = &ct->ct_general;
899 nskb->nfctinfo = ctinfo;
900 nf_conntrack_get(nskb->nfct);
901 }
902
903 static inline int
904 do_iter(const struct nf_conntrack_tuple_hash *i,
905 int (*iter)(struct nf_conn *i, void *data),
906 void *data)
907 {
908 return iter(nf_ct_tuplehash_to_ctrack(i), data);
909 }
910
911 /* Bring out ya dead! */
912 static struct nf_conn *
913 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
914 void *data, unsigned int *bucket)
915 {
916 struct nf_conntrack_tuple_hash *h;
917 struct nf_conn *ct;
918 struct hlist_node *n;
919
920 spin_lock_bh(&nf_conntrack_lock);
921 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
922 hlist_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnode) {
923 ct = nf_ct_tuplehash_to_ctrack(h);
924 if (iter(ct, data))
925 goto found;
926 }
927 }
928 hlist_for_each_entry(h, n, &unconfirmed, hnode) {
929 ct = nf_ct_tuplehash_to_ctrack(h);
930 if (iter(ct, data))
931 set_bit(IPS_DYING_BIT, &ct->status);
932 }
933 spin_unlock_bh(&nf_conntrack_lock);
934 return NULL;
935 found:
936 atomic_inc(&ct->ct_general.use);
937 spin_unlock_bh(&nf_conntrack_lock);
938 return ct;
939 }
940
941 void
942 nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
943 {
944 struct nf_conn *ct;
945 unsigned int bucket = 0;
946
947 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
948 /* Time to push up daises... */
949 if (del_timer(&ct->timeout))
950 death_by_timeout((unsigned long)ct);
951 /* ... else the timer will get him soon. */
952
953 nf_ct_put(ct);
954 }
955 }
956 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
957
958 static int kill_all(struct nf_conn *i, void *data)
959 {
960 return 1;
961 }
962
963 void nf_ct_free_hashtable(struct hlist_head *hash, int vmalloced, unsigned int size)
964 {
965 if (vmalloced)
966 vfree(hash);
967 else
968 free_pages((unsigned long)hash,
969 get_order(sizeof(struct hlist_head) * size));
970 }
971 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
972
973 void nf_conntrack_flush(void)
974 {
975 nf_ct_iterate_cleanup(kill_all, NULL);
976 }
977 EXPORT_SYMBOL_GPL(nf_conntrack_flush);
978
979 /* Mishearing the voices in his head, our hero wonders how he's
980 supposed to kill the mall. */
981 void nf_conntrack_cleanup(void)
982 {
983 rcu_assign_pointer(ip_ct_attach, NULL);
984
985 /* This makes sure all current packets have passed through
986 netfilter framework. Roll on, two-stage module
987 delete... */
988 synchronize_net();
989
990 nf_ct_event_cache_flush();
991 i_see_dead_people:
992 nf_conntrack_flush();
993 if (atomic_read(&nf_conntrack_count) != 0) {
994 schedule();
995 goto i_see_dead_people;
996 }
997 /* wait until all references to nf_conntrack_untracked are dropped */
998 while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
999 schedule();
1000
1001 rcu_assign_pointer(nf_ct_destroy, NULL);
1002
1003 kmem_cache_destroy(nf_conntrack_cachep);
1004 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_vmalloc,
1005 nf_conntrack_htable_size);
1006
1007 nf_conntrack_proto_fini();
1008 nf_conntrack_helper_fini();
1009 nf_conntrack_expect_fini();
1010 }
1011
1012 struct hlist_head *nf_ct_alloc_hashtable(unsigned int *sizep, int *vmalloced)
1013 {
1014 struct hlist_head *hash;
1015 unsigned int size, i;
1016
1017 *vmalloced = 0;
1018
1019 size = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_head));
1020 hash = (void*)__get_free_pages(GFP_KERNEL|__GFP_NOWARN,
1021 get_order(sizeof(struct hlist_head)
1022 * size));
1023 if (!hash) {
1024 *vmalloced = 1;
1025 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1026 hash = vmalloc(sizeof(struct hlist_head) * size);
1027 }
1028
1029 if (hash)
1030 for (i = 0; i < size; i++)
1031 INIT_HLIST_HEAD(&hash[i]);
1032
1033 return hash;
1034 }
1035 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1036
1037 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1038 {
1039 int i, bucket, vmalloced, old_vmalloced;
1040 unsigned int hashsize, old_size;
1041 int rnd;
1042 struct hlist_head *hash, *old_hash;
1043 struct nf_conntrack_tuple_hash *h;
1044
1045 /* On boot, we can set this without any fancy locking. */
1046 if (!nf_conntrack_htable_size)
1047 return param_set_uint(val, kp);
1048
1049 hashsize = simple_strtoul(val, NULL, 0);
1050 if (!hashsize)
1051 return -EINVAL;
1052
1053 hash = nf_ct_alloc_hashtable(&hashsize, &vmalloced);
1054 if (!hash)
1055 return -ENOMEM;
1056
1057 /* We have to rehahs for the new table anyway, so we also can
1058 * use a newrandom seed */
1059 get_random_bytes(&rnd, 4);
1060
1061 /* Lookups in the old hash might happen in parallel, which means we
1062 * might get false negatives during connection lookup. New connections
1063 * created because of a false negative won't make it into the hash
1064 * though since that required taking the lock.
1065 */
1066 spin_lock_bh(&nf_conntrack_lock);
1067 for (i = 0; i < nf_conntrack_htable_size; i++) {
1068 while (!hlist_empty(&nf_conntrack_hash[i])) {
1069 h = hlist_entry(nf_conntrack_hash[i].first,
1070 struct nf_conntrack_tuple_hash, hnode);
1071 hlist_del_rcu(&h->hnode);
1072 bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
1073 hlist_add_head(&h->hnode, &hash[bucket]);
1074 }
1075 }
1076 old_size = nf_conntrack_htable_size;
1077 old_vmalloced = nf_conntrack_vmalloc;
1078 old_hash = nf_conntrack_hash;
1079
1080 nf_conntrack_htable_size = hashsize;
1081 nf_conntrack_vmalloc = vmalloced;
1082 nf_conntrack_hash = hash;
1083 nf_conntrack_hash_rnd = rnd;
1084 spin_unlock_bh(&nf_conntrack_lock);
1085
1086 nf_ct_free_hashtable(old_hash, old_vmalloced, old_size);
1087 return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1090
1091 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1092 &nf_conntrack_htable_size, 0600);
1093
1094 int __init nf_conntrack_init(void)
1095 {
1096 int max_factor = 8;
1097 int ret;
1098
1099 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1100 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1101 if (!nf_conntrack_htable_size) {
1102 nf_conntrack_htable_size
1103 = (((num_physpages << PAGE_SHIFT) / 16384)
1104 / sizeof(struct hlist_head));
1105 if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
1106 nf_conntrack_htable_size = 16384;
1107 if (nf_conntrack_htable_size < 32)
1108 nf_conntrack_htable_size = 32;
1109
1110 /* Use a max. factor of four by default to get the same max as
1111 * with the old struct list_heads. When a table size is given
1112 * we use the old value of 8 to avoid reducing the max.
1113 * entries. */
1114 max_factor = 4;
1115 }
1116 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size,
1117 &nf_conntrack_vmalloc);
1118 if (!nf_conntrack_hash) {
1119 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1120 goto err_out;
1121 }
1122
1123 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1124
1125 printk("nf_conntrack version %s (%u buckets, %d max)\n",
1126 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1127 nf_conntrack_max);
1128
1129 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
1130 sizeof(struct nf_conn),
1131 0, 0, NULL);
1132 if (!nf_conntrack_cachep) {
1133 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1134 goto err_free_hash;
1135 }
1136
1137 ret = nf_conntrack_proto_init();
1138 if (ret < 0)
1139 goto err_free_conntrack_slab;
1140
1141 ret = nf_conntrack_expect_init();
1142 if (ret < 0)
1143 goto out_fini_proto;
1144
1145 ret = nf_conntrack_helper_init();
1146 if (ret < 0)
1147 goto out_fini_expect;
1148
1149 /* For use by REJECT target */
1150 rcu_assign_pointer(ip_ct_attach, nf_conntrack_attach);
1151 rcu_assign_pointer(nf_ct_destroy, destroy_conntrack);
1152
1153 /* Set up fake conntrack:
1154 - to never be deleted, not in any hashes */
1155 atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
1156 /* - and look it like as a confirmed connection */
1157 set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
1158
1159 return ret;
1160
1161 out_fini_expect:
1162 nf_conntrack_expect_fini();
1163 out_fini_proto:
1164 nf_conntrack_proto_fini();
1165 err_free_conntrack_slab:
1166 kmem_cache_destroy(nf_conntrack_cachep);
1167 err_free_hash:
1168 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_vmalloc,
1169 nf_conntrack_htable_size);
1170 err_out:
1171 return -ENOMEM;
1172 }
This page took 0.058781 seconds and 5 git commands to generate.