netfilter: nf_conntrack: don't send destroy events from iterator
[deliverable/linux.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/types.h>
16 #include <linux/netfilter.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/skbuff.h>
20 #include <linux/proc_fs.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/random.h>
25 #include <linux/jhash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l3proto.h>
39 #include <net/netfilter/nf_conntrack_l4proto.h>
40 #include <net/netfilter/nf_conntrack_expect.h>
41 #include <net/netfilter/nf_conntrack_helper.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_core.h>
52 #include <net/netfilter/nf_nat_helper.h>
53
54 #define NF_CONNTRACK_VERSION "0.5.0"
55
56 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
57 enum nf_nat_manip_type manip,
58 const struct nlattr *attr) __read_mostly;
59 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
60
61 int (*nf_nat_seq_adjust_hook)(struct sk_buff *skb,
62 struct nf_conn *ct,
63 enum ip_conntrack_info ctinfo,
64 unsigned int protoff);
65 EXPORT_SYMBOL_GPL(nf_nat_seq_adjust_hook);
66
67 DEFINE_SPINLOCK(nf_conntrack_lock);
68 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
69
70 unsigned int nf_conntrack_htable_size __read_mostly;
71 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
72
73 unsigned int nf_conntrack_max __read_mostly;
74 EXPORT_SYMBOL_GPL(nf_conntrack_max);
75
76 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
77 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
78
79 unsigned int nf_conntrack_hash_rnd __read_mostly;
80 EXPORT_SYMBOL_GPL(nf_conntrack_hash_rnd);
81
82 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple, u16 zone)
83 {
84 unsigned int n;
85
86 /* The direction must be ignored, so we hash everything up to the
87 * destination ports (which is a multiple of 4) and treat the last
88 * three bytes manually.
89 */
90 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
91 return jhash2((u32 *)tuple, n, zone ^ nf_conntrack_hash_rnd ^
92 (((__force __u16)tuple->dst.u.all << 16) |
93 tuple->dst.protonum));
94 }
95
96 static u32 __hash_bucket(u32 hash, unsigned int size)
97 {
98 return ((u64)hash * size) >> 32;
99 }
100
101 static u32 hash_bucket(u32 hash, const struct net *net)
102 {
103 return __hash_bucket(hash, net->ct.htable_size);
104 }
105
106 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
107 u16 zone, unsigned int size)
108 {
109 return __hash_bucket(hash_conntrack_raw(tuple, zone), size);
110 }
111
112 static inline u_int32_t hash_conntrack(const struct net *net, u16 zone,
113 const struct nf_conntrack_tuple *tuple)
114 {
115 return __hash_conntrack(tuple, zone, net->ct.htable_size);
116 }
117
118 bool
119 nf_ct_get_tuple(const struct sk_buff *skb,
120 unsigned int nhoff,
121 unsigned int dataoff,
122 u_int16_t l3num,
123 u_int8_t protonum,
124 struct nf_conntrack_tuple *tuple,
125 const struct nf_conntrack_l3proto *l3proto,
126 const struct nf_conntrack_l4proto *l4proto)
127 {
128 memset(tuple, 0, sizeof(*tuple));
129
130 tuple->src.l3num = l3num;
131 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
132 return false;
133
134 tuple->dst.protonum = protonum;
135 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
136
137 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
138 }
139 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
140
141 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
142 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
143 {
144 struct nf_conntrack_l3proto *l3proto;
145 struct nf_conntrack_l4proto *l4proto;
146 unsigned int protoff;
147 u_int8_t protonum;
148 int ret;
149
150 rcu_read_lock();
151
152 l3proto = __nf_ct_l3proto_find(l3num);
153 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
154 if (ret != NF_ACCEPT) {
155 rcu_read_unlock();
156 return false;
157 }
158
159 l4proto = __nf_ct_l4proto_find(l3num, protonum);
160
161 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
162 l3proto, l4proto);
163
164 rcu_read_unlock();
165 return ret;
166 }
167 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
168
169 bool
170 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
171 const struct nf_conntrack_tuple *orig,
172 const struct nf_conntrack_l3proto *l3proto,
173 const struct nf_conntrack_l4proto *l4proto)
174 {
175 memset(inverse, 0, sizeof(*inverse));
176
177 inverse->src.l3num = orig->src.l3num;
178 if (l3proto->invert_tuple(inverse, orig) == 0)
179 return false;
180
181 inverse->dst.dir = !orig->dst.dir;
182
183 inverse->dst.protonum = orig->dst.protonum;
184 return l4proto->invert_tuple(inverse, orig);
185 }
186 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
187
188 static void
189 clean_from_lists(struct nf_conn *ct)
190 {
191 pr_debug("clean_from_lists(%p)\n", ct);
192 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
193 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
194
195 /* Destroy all pending expectations */
196 nf_ct_remove_expectations(ct);
197 }
198
199 static void
200 destroy_conntrack(struct nf_conntrack *nfct)
201 {
202 struct nf_conn *ct = (struct nf_conn *)nfct;
203 struct net *net = nf_ct_net(ct);
204 struct nf_conntrack_l4proto *l4proto;
205
206 pr_debug("destroy_conntrack(%p)\n", ct);
207 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
208 NF_CT_ASSERT(!timer_pending(&ct->timeout));
209
210 /* To make sure we don't get any weird locking issues here:
211 * destroy_conntrack() MUST NOT be called with a write lock
212 * to nf_conntrack_lock!!! -HW */
213 rcu_read_lock();
214 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
215 if (l4proto && l4proto->destroy)
216 l4proto->destroy(ct);
217
218 rcu_read_unlock();
219
220 spin_lock_bh(&nf_conntrack_lock);
221 /* Expectations will have been removed in clean_from_lists,
222 * except TFTP can create an expectation on the first packet,
223 * before connection is in the list, so we need to clean here,
224 * too. */
225 nf_ct_remove_expectations(ct);
226
227 /* We overload first tuple to link into unconfirmed or dying list.*/
228 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
229 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
230
231 NF_CT_STAT_INC(net, delete);
232 spin_unlock_bh(&nf_conntrack_lock);
233
234 if (ct->master)
235 nf_ct_put(ct->master);
236
237 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
238 nf_conntrack_free(ct);
239 }
240
241 static void nf_ct_delete_from_lists(struct nf_conn *ct)
242 {
243 struct net *net = nf_ct_net(ct);
244
245 nf_ct_helper_destroy(ct);
246 spin_lock_bh(&nf_conntrack_lock);
247 /* Inside lock so preempt is disabled on module removal path.
248 * Otherwise we can get spurious warnings. */
249 NF_CT_STAT_INC(net, delete_list);
250 clean_from_lists(ct);
251 /* add this conntrack to the dying list */
252 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
253 &net->ct.dying);
254 spin_unlock_bh(&nf_conntrack_lock);
255 }
256
257 static void death_by_event(unsigned long ul_conntrack)
258 {
259 struct nf_conn *ct = (void *)ul_conntrack;
260 struct net *net = nf_ct_net(ct);
261 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
262
263 BUG_ON(ecache == NULL);
264
265 if (nf_conntrack_event(IPCT_DESTROY, ct) < 0) {
266 /* bad luck, let's retry again */
267 ecache->timeout.expires = jiffies +
268 (prandom_u32() % net->ct.sysctl_events_retry_timeout);
269 add_timer(&ecache->timeout);
270 return;
271 }
272 /* we've got the event delivered, now it's dying */
273 set_bit(IPS_DYING_BIT, &ct->status);
274 nf_ct_put(ct);
275 }
276
277 static void nf_ct_dying_timeout(struct nf_conn *ct)
278 {
279 struct net *net = nf_ct_net(ct);
280 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
281
282 BUG_ON(ecache == NULL);
283
284 /* set a new timer to retry event delivery */
285 setup_timer(&ecache->timeout, death_by_event, (unsigned long)ct);
286 ecache->timeout.expires = jiffies +
287 (prandom_u32() % net->ct.sysctl_events_retry_timeout);
288 add_timer(&ecache->timeout);
289 }
290
291 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
292 {
293 struct nf_conn_tstamp *tstamp;
294
295 tstamp = nf_conn_tstamp_find(ct);
296 if (tstamp && tstamp->stop == 0)
297 tstamp->stop = ktime_to_ns(ktime_get_real());
298
299 if (!nf_ct_is_dying(ct) &&
300 unlikely(nf_conntrack_event_report(IPCT_DESTROY, ct,
301 portid, report) < 0)) {
302 /* destroy event was not delivered */
303 nf_ct_delete_from_lists(ct);
304 nf_ct_dying_timeout(ct);
305 return false;
306 }
307 set_bit(IPS_DYING_BIT, &ct->status);
308 nf_ct_delete_from_lists(ct);
309 nf_ct_put(ct);
310 return true;
311 }
312 EXPORT_SYMBOL_GPL(nf_ct_delete);
313
314 static void death_by_timeout(unsigned long ul_conntrack)
315 {
316 nf_ct_delete((struct nf_conn *)ul_conntrack, 0, 0);
317 }
318
319 /*
320 * Warning :
321 * - Caller must take a reference on returned object
322 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
323 * OR
324 * - Caller must lock nf_conntrack_lock before calling this function
325 */
326 static struct nf_conntrack_tuple_hash *
327 ____nf_conntrack_find(struct net *net, u16 zone,
328 const struct nf_conntrack_tuple *tuple, u32 hash)
329 {
330 struct nf_conntrack_tuple_hash *h;
331 struct hlist_nulls_node *n;
332 unsigned int bucket = hash_bucket(hash, net);
333
334 /* Disable BHs the entire time since we normally need to disable them
335 * at least once for the stats anyway.
336 */
337 local_bh_disable();
338 begin:
339 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
340 if (nf_ct_tuple_equal(tuple, &h->tuple) &&
341 nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)) == zone) {
342 NF_CT_STAT_INC(net, found);
343 local_bh_enable();
344 return h;
345 }
346 NF_CT_STAT_INC(net, searched);
347 }
348 /*
349 * if the nulls value we got at the end of this lookup is
350 * not the expected one, we must restart lookup.
351 * We probably met an item that was moved to another chain.
352 */
353 if (get_nulls_value(n) != bucket) {
354 NF_CT_STAT_INC(net, search_restart);
355 goto begin;
356 }
357 local_bh_enable();
358
359 return NULL;
360 }
361
362 struct nf_conntrack_tuple_hash *
363 __nf_conntrack_find(struct net *net, u16 zone,
364 const struct nf_conntrack_tuple *tuple)
365 {
366 return ____nf_conntrack_find(net, zone, tuple,
367 hash_conntrack_raw(tuple, zone));
368 }
369 EXPORT_SYMBOL_GPL(__nf_conntrack_find);
370
371 /* Find a connection corresponding to a tuple. */
372 static struct nf_conntrack_tuple_hash *
373 __nf_conntrack_find_get(struct net *net, u16 zone,
374 const struct nf_conntrack_tuple *tuple, u32 hash)
375 {
376 struct nf_conntrack_tuple_hash *h;
377 struct nf_conn *ct;
378
379 rcu_read_lock();
380 begin:
381 h = ____nf_conntrack_find(net, zone, tuple, hash);
382 if (h) {
383 ct = nf_ct_tuplehash_to_ctrack(h);
384 if (unlikely(nf_ct_is_dying(ct) ||
385 !atomic_inc_not_zero(&ct->ct_general.use)))
386 h = NULL;
387 else {
388 if (unlikely(!nf_ct_tuple_equal(tuple, &h->tuple) ||
389 nf_ct_zone(ct) != zone)) {
390 nf_ct_put(ct);
391 goto begin;
392 }
393 }
394 }
395 rcu_read_unlock();
396
397 return h;
398 }
399
400 struct nf_conntrack_tuple_hash *
401 nf_conntrack_find_get(struct net *net, u16 zone,
402 const struct nf_conntrack_tuple *tuple)
403 {
404 return __nf_conntrack_find_get(net, zone, tuple,
405 hash_conntrack_raw(tuple, zone));
406 }
407 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
408
409 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
410 unsigned int hash,
411 unsigned int repl_hash)
412 {
413 struct net *net = nf_ct_net(ct);
414
415 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
416 &net->ct.hash[hash]);
417 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
418 &net->ct.hash[repl_hash]);
419 }
420
421 int
422 nf_conntrack_hash_check_insert(struct nf_conn *ct)
423 {
424 struct net *net = nf_ct_net(ct);
425 unsigned int hash, repl_hash;
426 struct nf_conntrack_tuple_hash *h;
427 struct hlist_nulls_node *n;
428 u16 zone;
429
430 zone = nf_ct_zone(ct);
431 hash = hash_conntrack(net, zone,
432 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
433 repl_hash = hash_conntrack(net, zone,
434 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
435
436 spin_lock_bh(&nf_conntrack_lock);
437
438 /* See if there's one in the list already, including reverse */
439 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
440 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
441 &h->tuple) &&
442 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
443 goto out;
444 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
445 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
446 &h->tuple) &&
447 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
448 goto out;
449
450 add_timer(&ct->timeout);
451 nf_conntrack_get(&ct->ct_general);
452 __nf_conntrack_hash_insert(ct, hash, repl_hash);
453 NF_CT_STAT_INC(net, insert);
454 spin_unlock_bh(&nf_conntrack_lock);
455
456 return 0;
457
458 out:
459 NF_CT_STAT_INC(net, insert_failed);
460 spin_unlock_bh(&nf_conntrack_lock);
461 return -EEXIST;
462 }
463 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
464
465 /* Confirm a connection given skb; places it in hash table */
466 int
467 __nf_conntrack_confirm(struct sk_buff *skb)
468 {
469 unsigned int hash, repl_hash;
470 struct nf_conntrack_tuple_hash *h;
471 struct nf_conn *ct;
472 struct nf_conn_help *help;
473 struct nf_conn_tstamp *tstamp;
474 struct hlist_nulls_node *n;
475 enum ip_conntrack_info ctinfo;
476 struct net *net;
477 u16 zone;
478
479 ct = nf_ct_get(skb, &ctinfo);
480 net = nf_ct_net(ct);
481
482 /* ipt_REJECT uses nf_conntrack_attach to attach related
483 ICMP/TCP RST packets in other direction. Actual packet
484 which created connection will be IP_CT_NEW or for an
485 expected connection, IP_CT_RELATED. */
486 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
487 return NF_ACCEPT;
488
489 zone = nf_ct_zone(ct);
490 /* reuse the hash saved before */
491 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
492 hash = hash_bucket(hash, net);
493 repl_hash = hash_conntrack(net, zone,
494 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
495
496 /* We're not in hash table, and we refuse to set up related
497 connections for unconfirmed conns. But packet copies and
498 REJECT will give spurious warnings here. */
499 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
500
501 /* No external references means no one else could have
502 confirmed us. */
503 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
504 pr_debug("Confirming conntrack %p\n", ct);
505
506 spin_lock_bh(&nf_conntrack_lock);
507
508 /* We have to check the DYING flag inside the lock to prevent
509 a race against nf_ct_get_next_corpse() possibly called from
510 user context, else we insert an already 'dead' hash, blocking
511 further use of that particular connection -JM */
512
513 if (unlikely(nf_ct_is_dying(ct))) {
514 spin_unlock_bh(&nf_conntrack_lock);
515 return NF_ACCEPT;
516 }
517
518 /* See if there's one in the list already, including reverse:
519 NAT could have grabbed it without realizing, since we're
520 not in the hash. If there is, we lost race. */
521 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
522 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
523 &h->tuple) &&
524 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
525 goto out;
526 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
527 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
528 &h->tuple) &&
529 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
530 goto out;
531
532 /* Remove from unconfirmed list */
533 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
534
535 /* Timer relative to confirmation time, not original
536 setting time, otherwise we'd get timer wrap in
537 weird delay cases. */
538 ct->timeout.expires += jiffies;
539 add_timer(&ct->timeout);
540 atomic_inc(&ct->ct_general.use);
541 ct->status |= IPS_CONFIRMED;
542
543 /* set conntrack timestamp, if enabled. */
544 tstamp = nf_conn_tstamp_find(ct);
545 if (tstamp) {
546 if (skb->tstamp.tv64 == 0)
547 __net_timestamp(skb);
548
549 tstamp->start = ktime_to_ns(skb->tstamp);
550 }
551 /* Since the lookup is lockless, hash insertion must be done after
552 * starting the timer and setting the CONFIRMED bit. The RCU barriers
553 * guarantee that no other CPU can find the conntrack before the above
554 * stores are visible.
555 */
556 __nf_conntrack_hash_insert(ct, hash, repl_hash);
557 NF_CT_STAT_INC(net, insert);
558 spin_unlock_bh(&nf_conntrack_lock);
559
560 help = nfct_help(ct);
561 if (help && help->helper)
562 nf_conntrack_event_cache(IPCT_HELPER, ct);
563
564 nf_conntrack_event_cache(master_ct(ct) ?
565 IPCT_RELATED : IPCT_NEW, ct);
566 return NF_ACCEPT;
567
568 out:
569 NF_CT_STAT_INC(net, insert_failed);
570 spin_unlock_bh(&nf_conntrack_lock);
571 return NF_DROP;
572 }
573 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
574
575 /* Returns true if a connection correspondings to the tuple (required
576 for NAT). */
577 int
578 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
579 const struct nf_conn *ignored_conntrack)
580 {
581 struct net *net = nf_ct_net(ignored_conntrack);
582 struct nf_conntrack_tuple_hash *h;
583 struct hlist_nulls_node *n;
584 struct nf_conn *ct;
585 u16 zone = nf_ct_zone(ignored_conntrack);
586 unsigned int hash = hash_conntrack(net, zone, tuple);
587
588 /* Disable BHs the entire time since we need to disable them at
589 * least once for the stats anyway.
590 */
591 rcu_read_lock_bh();
592 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
593 ct = nf_ct_tuplehash_to_ctrack(h);
594 if (ct != ignored_conntrack &&
595 nf_ct_tuple_equal(tuple, &h->tuple) &&
596 nf_ct_zone(ct) == zone) {
597 NF_CT_STAT_INC(net, found);
598 rcu_read_unlock_bh();
599 return 1;
600 }
601 NF_CT_STAT_INC(net, searched);
602 }
603 rcu_read_unlock_bh();
604
605 return 0;
606 }
607 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
608
609 #define NF_CT_EVICTION_RANGE 8
610
611 /* There's a small race here where we may free a just-assured
612 connection. Too bad: we're in trouble anyway. */
613 static noinline int early_drop(struct net *net, unsigned int hash)
614 {
615 /* Use oldest entry, which is roughly LRU */
616 struct nf_conntrack_tuple_hash *h;
617 struct nf_conn *ct = NULL, *tmp;
618 struct hlist_nulls_node *n;
619 unsigned int i, cnt = 0;
620 int dropped = 0;
621
622 rcu_read_lock();
623 for (i = 0; i < net->ct.htable_size; i++) {
624 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
625 hnnode) {
626 tmp = nf_ct_tuplehash_to_ctrack(h);
627 if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
628 ct = tmp;
629 cnt++;
630 }
631
632 if (ct != NULL) {
633 if (likely(!nf_ct_is_dying(ct) &&
634 atomic_inc_not_zero(&ct->ct_general.use)))
635 break;
636 else
637 ct = NULL;
638 }
639
640 if (cnt >= NF_CT_EVICTION_RANGE)
641 break;
642
643 hash = (hash + 1) % net->ct.htable_size;
644 }
645 rcu_read_unlock();
646
647 if (!ct)
648 return dropped;
649
650 if (del_timer(&ct->timeout)) {
651 if (nf_ct_delete(ct, 0, 0)) {
652 dropped = 1;
653 NF_CT_STAT_INC_ATOMIC(net, early_drop);
654 }
655 }
656 nf_ct_put(ct);
657 return dropped;
658 }
659
660 void init_nf_conntrack_hash_rnd(void)
661 {
662 unsigned int rand;
663
664 /*
665 * Why not initialize nf_conntrack_rnd in a "init()" function ?
666 * Because there isn't enough entropy when system initializing,
667 * and we initialize it as late as possible.
668 */
669 do {
670 get_random_bytes(&rand, sizeof(rand));
671 } while (!rand);
672 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
673 }
674
675 static struct nf_conn *
676 __nf_conntrack_alloc(struct net *net, u16 zone,
677 const struct nf_conntrack_tuple *orig,
678 const struct nf_conntrack_tuple *repl,
679 gfp_t gfp, u32 hash)
680 {
681 struct nf_conn *ct;
682
683 if (unlikely(!nf_conntrack_hash_rnd)) {
684 init_nf_conntrack_hash_rnd();
685 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
686 hash = hash_conntrack_raw(orig, zone);
687 }
688
689 /* We don't want any race condition at early drop stage */
690 atomic_inc(&net->ct.count);
691
692 if (nf_conntrack_max &&
693 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
694 if (!early_drop(net, hash_bucket(hash, net))) {
695 atomic_dec(&net->ct.count);
696 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
697 return ERR_PTR(-ENOMEM);
698 }
699 }
700
701 /*
702 * Do not use kmem_cache_zalloc(), as this cache uses
703 * SLAB_DESTROY_BY_RCU.
704 */
705 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
706 if (ct == NULL) {
707 atomic_dec(&net->ct.count);
708 return ERR_PTR(-ENOMEM);
709 }
710 /*
711 * Let ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.next
712 * and ct->tuplehash[IP_CT_DIR_REPLY].hnnode.next unchanged.
713 */
714 memset(&ct->tuplehash[IP_CT_DIR_MAX], 0,
715 offsetof(struct nf_conn, proto) -
716 offsetof(struct nf_conn, tuplehash[IP_CT_DIR_MAX]));
717 spin_lock_init(&ct->lock);
718 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
719 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
720 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
721 /* save hash for reusing when confirming */
722 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
723 /* Don't set timer yet: wait for confirmation */
724 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
725 write_pnet(&ct->ct_net, net);
726 #ifdef CONFIG_NF_CONNTRACK_ZONES
727 if (zone) {
728 struct nf_conntrack_zone *nf_ct_zone;
729
730 nf_ct_zone = nf_ct_ext_add(ct, NF_CT_EXT_ZONE, GFP_ATOMIC);
731 if (!nf_ct_zone)
732 goto out_free;
733 nf_ct_zone->id = zone;
734 }
735 #endif
736 /*
737 * changes to lookup keys must be done before setting refcnt to 1
738 */
739 smp_wmb();
740 atomic_set(&ct->ct_general.use, 1);
741 return ct;
742
743 #ifdef CONFIG_NF_CONNTRACK_ZONES
744 out_free:
745 atomic_dec(&net->ct.count);
746 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
747 return ERR_PTR(-ENOMEM);
748 #endif
749 }
750
751 struct nf_conn *nf_conntrack_alloc(struct net *net, u16 zone,
752 const struct nf_conntrack_tuple *orig,
753 const struct nf_conntrack_tuple *repl,
754 gfp_t gfp)
755 {
756 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
757 }
758 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
759
760 void nf_conntrack_free(struct nf_conn *ct)
761 {
762 struct net *net = nf_ct_net(ct);
763
764 nf_ct_ext_destroy(ct);
765 atomic_dec(&net->ct.count);
766 nf_ct_ext_free(ct);
767 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
768 }
769 EXPORT_SYMBOL_GPL(nf_conntrack_free);
770
771
772 /* Allocate a new conntrack: we return -ENOMEM if classification
773 failed due to stress. Otherwise it really is unclassifiable. */
774 static struct nf_conntrack_tuple_hash *
775 init_conntrack(struct net *net, struct nf_conn *tmpl,
776 const struct nf_conntrack_tuple *tuple,
777 struct nf_conntrack_l3proto *l3proto,
778 struct nf_conntrack_l4proto *l4proto,
779 struct sk_buff *skb,
780 unsigned int dataoff, u32 hash)
781 {
782 struct nf_conn *ct;
783 struct nf_conn_help *help;
784 struct nf_conntrack_tuple repl_tuple;
785 struct nf_conntrack_ecache *ecache;
786 struct nf_conntrack_expect *exp;
787 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
788 struct nf_conn_timeout *timeout_ext;
789 unsigned int *timeouts;
790
791 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
792 pr_debug("Can't invert tuple.\n");
793 return NULL;
794 }
795
796 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
797 hash);
798 if (IS_ERR(ct))
799 return (struct nf_conntrack_tuple_hash *)ct;
800
801 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
802 if (timeout_ext)
803 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
804 else
805 timeouts = l4proto->get_timeouts(net);
806
807 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
808 nf_conntrack_free(ct);
809 pr_debug("init conntrack: can't track with proto module\n");
810 return NULL;
811 }
812
813 if (timeout_ext)
814 nf_ct_timeout_ext_add(ct, timeout_ext->timeout, GFP_ATOMIC);
815
816 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
817 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
818 nf_ct_labels_ext_add(ct);
819
820 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
821 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
822 ecache ? ecache->expmask : 0,
823 GFP_ATOMIC);
824
825 spin_lock_bh(&nf_conntrack_lock);
826 exp = nf_ct_find_expectation(net, zone, tuple);
827 if (exp) {
828 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
829 ct, exp);
830 /* Welcome, Mr. Bond. We've been expecting you... */
831 __set_bit(IPS_EXPECTED_BIT, &ct->status);
832 ct->master = exp->master;
833 if (exp->helper) {
834 help = nf_ct_helper_ext_add(ct, exp->helper,
835 GFP_ATOMIC);
836 if (help)
837 rcu_assign_pointer(help->helper, exp->helper);
838 }
839
840 #ifdef CONFIG_NF_CONNTRACK_MARK
841 ct->mark = exp->master->mark;
842 #endif
843 #ifdef CONFIG_NF_CONNTRACK_SECMARK
844 ct->secmark = exp->master->secmark;
845 #endif
846 nf_conntrack_get(&ct->master->ct_general);
847 NF_CT_STAT_INC(net, expect_new);
848 } else {
849 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
850 NF_CT_STAT_INC(net, new);
851 }
852
853 /* Overload tuple linked list to put us in unconfirmed list. */
854 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
855 &net->ct.unconfirmed);
856
857 spin_unlock_bh(&nf_conntrack_lock);
858
859 if (exp) {
860 if (exp->expectfn)
861 exp->expectfn(ct, exp);
862 nf_ct_expect_put(exp);
863 }
864
865 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
866 }
867
868 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
869 static inline struct nf_conn *
870 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
871 struct sk_buff *skb,
872 unsigned int dataoff,
873 u_int16_t l3num,
874 u_int8_t protonum,
875 struct nf_conntrack_l3proto *l3proto,
876 struct nf_conntrack_l4proto *l4proto,
877 int *set_reply,
878 enum ip_conntrack_info *ctinfo)
879 {
880 struct nf_conntrack_tuple tuple;
881 struct nf_conntrack_tuple_hash *h;
882 struct nf_conn *ct;
883 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
884 u32 hash;
885
886 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
887 dataoff, l3num, protonum, &tuple, l3proto,
888 l4proto)) {
889 pr_debug("resolve_normal_ct: Can't get tuple\n");
890 return NULL;
891 }
892
893 /* look for tuple match */
894 hash = hash_conntrack_raw(&tuple, zone);
895 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
896 if (!h) {
897 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
898 skb, dataoff, hash);
899 if (!h)
900 return NULL;
901 if (IS_ERR(h))
902 return (void *)h;
903 }
904 ct = nf_ct_tuplehash_to_ctrack(h);
905
906 /* It exists; we have (non-exclusive) reference. */
907 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
908 *ctinfo = IP_CT_ESTABLISHED_REPLY;
909 /* Please set reply bit if this packet OK */
910 *set_reply = 1;
911 } else {
912 /* Once we've had two way comms, always ESTABLISHED. */
913 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
914 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
915 *ctinfo = IP_CT_ESTABLISHED;
916 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
917 pr_debug("nf_conntrack_in: related packet for %p\n",
918 ct);
919 *ctinfo = IP_CT_RELATED;
920 } else {
921 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
922 *ctinfo = IP_CT_NEW;
923 }
924 *set_reply = 0;
925 }
926 skb->nfct = &ct->ct_general;
927 skb->nfctinfo = *ctinfo;
928 return ct;
929 }
930
931 unsigned int
932 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
933 struct sk_buff *skb)
934 {
935 struct nf_conn *ct, *tmpl = NULL;
936 enum ip_conntrack_info ctinfo;
937 struct nf_conntrack_l3proto *l3proto;
938 struct nf_conntrack_l4proto *l4proto;
939 unsigned int *timeouts;
940 unsigned int dataoff;
941 u_int8_t protonum;
942 int set_reply = 0;
943 int ret;
944
945 if (skb->nfct) {
946 /* Previously seen (loopback or untracked)? Ignore. */
947 tmpl = (struct nf_conn *)skb->nfct;
948 if (!nf_ct_is_template(tmpl)) {
949 NF_CT_STAT_INC_ATOMIC(net, ignore);
950 return NF_ACCEPT;
951 }
952 skb->nfct = NULL;
953 }
954
955 /* rcu_read_lock()ed by nf_hook_slow */
956 l3proto = __nf_ct_l3proto_find(pf);
957 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
958 &dataoff, &protonum);
959 if (ret <= 0) {
960 pr_debug("not prepared to track yet or error occurred\n");
961 NF_CT_STAT_INC_ATOMIC(net, error);
962 NF_CT_STAT_INC_ATOMIC(net, invalid);
963 ret = -ret;
964 goto out;
965 }
966
967 l4proto = __nf_ct_l4proto_find(pf, protonum);
968
969 /* It may be an special packet, error, unclean...
970 * inverse of the return code tells to the netfilter
971 * core what to do with the packet. */
972 if (l4proto->error != NULL) {
973 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
974 pf, hooknum);
975 if (ret <= 0) {
976 NF_CT_STAT_INC_ATOMIC(net, error);
977 NF_CT_STAT_INC_ATOMIC(net, invalid);
978 ret = -ret;
979 goto out;
980 }
981 /* ICMP[v6] protocol trackers may assign one conntrack. */
982 if (skb->nfct)
983 goto out;
984 }
985
986 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
987 l3proto, l4proto, &set_reply, &ctinfo);
988 if (!ct) {
989 /* Not valid part of a connection */
990 NF_CT_STAT_INC_ATOMIC(net, invalid);
991 ret = NF_ACCEPT;
992 goto out;
993 }
994
995 if (IS_ERR(ct)) {
996 /* Too stressed to deal. */
997 NF_CT_STAT_INC_ATOMIC(net, drop);
998 ret = NF_DROP;
999 goto out;
1000 }
1001
1002 NF_CT_ASSERT(skb->nfct);
1003
1004 /* Decide what timeout policy we want to apply to this flow. */
1005 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1006
1007 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1008 if (ret <= 0) {
1009 /* Invalid: inverse of the return code tells
1010 * the netfilter core what to do */
1011 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1012 nf_conntrack_put(skb->nfct);
1013 skb->nfct = NULL;
1014 NF_CT_STAT_INC_ATOMIC(net, invalid);
1015 if (ret == -NF_DROP)
1016 NF_CT_STAT_INC_ATOMIC(net, drop);
1017 ret = -ret;
1018 goto out;
1019 }
1020
1021 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1022 nf_conntrack_event_cache(IPCT_REPLY, ct);
1023 out:
1024 if (tmpl) {
1025 /* Special case: we have to repeat this hook, assign the
1026 * template again to this packet. We assume that this packet
1027 * has no conntrack assigned. This is used by nf_ct_tcp. */
1028 if (ret == NF_REPEAT)
1029 skb->nfct = (struct nf_conntrack *)tmpl;
1030 else
1031 nf_ct_put(tmpl);
1032 }
1033
1034 return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1037
1038 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1039 const struct nf_conntrack_tuple *orig)
1040 {
1041 bool ret;
1042
1043 rcu_read_lock();
1044 ret = nf_ct_invert_tuple(inverse, orig,
1045 __nf_ct_l3proto_find(orig->src.l3num),
1046 __nf_ct_l4proto_find(orig->src.l3num,
1047 orig->dst.protonum));
1048 rcu_read_unlock();
1049 return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1052
1053 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1054 implicitly racy: see __nf_conntrack_confirm */
1055 void nf_conntrack_alter_reply(struct nf_conn *ct,
1056 const struct nf_conntrack_tuple *newreply)
1057 {
1058 struct nf_conn_help *help = nfct_help(ct);
1059
1060 /* Should be unconfirmed, so not in hash table yet */
1061 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1062
1063 pr_debug("Altering reply tuple of %p to ", ct);
1064 nf_ct_dump_tuple(newreply);
1065
1066 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1067 if (ct->master || (help && !hlist_empty(&help->expectations)))
1068 return;
1069
1070 rcu_read_lock();
1071 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1072 rcu_read_unlock();
1073 }
1074 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1075
1076 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1077 void __nf_ct_refresh_acct(struct nf_conn *ct,
1078 enum ip_conntrack_info ctinfo,
1079 const struct sk_buff *skb,
1080 unsigned long extra_jiffies,
1081 int do_acct)
1082 {
1083 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1084 NF_CT_ASSERT(skb);
1085
1086 /* Only update if this is not a fixed timeout */
1087 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1088 goto acct;
1089
1090 /* If not in hash table, timer will not be active yet */
1091 if (!nf_ct_is_confirmed(ct)) {
1092 ct->timeout.expires = extra_jiffies;
1093 } else {
1094 unsigned long newtime = jiffies + extra_jiffies;
1095
1096 /* Only update the timeout if the new timeout is at least
1097 HZ jiffies from the old timeout. Need del_timer for race
1098 avoidance (may already be dying). */
1099 if (newtime - ct->timeout.expires >= HZ)
1100 mod_timer_pending(&ct->timeout, newtime);
1101 }
1102
1103 acct:
1104 if (do_acct) {
1105 struct nf_conn_counter *acct;
1106
1107 acct = nf_conn_acct_find(ct);
1108 if (acct) {
1109 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1110 atomic64_add(skb->len, &acct[CTINFO2DIR(ctinfo)].bytes);
1111 }
1112 }
1113 }
1114 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1115
1116 bool __nf_ct_kill_acct(struct nf_conn *ct,
1117 enum ip_conntrack_info ctinfo,
1118 const struct sk_buff *skb,
1119 int do_acct)
1120 {
1121 if (do_acct) {
1122 struct nf_conn_counter *acct;
1123
1124 acct = nf_conn_acct_find(ct);
1125 if (acct) {
1126 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1127 atomic64_add(skb->len - skb_network_offset(skb),
1128 &acct[CTINFO2DIR(ctinfo)].bytes);
1129 }
1130 }
1131
1132 if (del_timer(&ct->timeout)) {
1133 ct->timeout.function((unsigned long)ct);
1134 return true;
1135 }
1136 return false;
1137 }
1138 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1139
1140 #ifdef CONFIG_NF_CONNTRACK_ZONES
1141 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1142 .len = sizeof(struct nf_conntrack_zone),
1143 .align = __alignof__(struct nf_conntrack_zone),
1144 .id = NF_CT_EXT_ZONE,
1145 };
1146 #endif
1147
1148 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1149
1150 #include <linux/netfilter/nfnetlink.h>
1151 #include <linux/netfilter/nfnetlink_conntrack.h>
1152 #include <linux/mutex.h>
1153
1154 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1155 * in ip_conntrack_core, since we don't want the protocols to autoload
1156 * or depend on ctnetlink */
1157 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1158 const struct nf_conntrack_tuple *tuple)
1159 {
1160 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1161 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1162 goto nla_put_failure;
1163 return 0;
1164
1165 nla_put_failure:
1166 return -1;
1167 }
1168 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1169
1170 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1171 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1172 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1173 };
1174 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1175
1176 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1177 struct nf_conntrack_tuple *t)
1178 {
1179 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1180 return -EINVAL;
1181
1182 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1183 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1184
1185 return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1188
1189 int nf_ct_port_nlattr_tuple_size(void)
1190 {
1191 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1192 }
1193 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1194 #endif
1195
1196 /* Used by ipt_REJECT and ip6t_REJECT. */
1197 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1198 {
1199 struct nf_conn *ct;
1200 enum ip_conntrack_info ctinfo;
1201
1202 /* This ICMP is in reverse direction to the packet which caused it */
1203 ct = nf_ct_get(skb, &ctinfo);
1204 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1205 ctinfo = IP_CT_RELATED_REPLY;
1206 else
1207 ctinfo = IP_CT_RELATED;
1208
1209 /* Attach to new skbuff, and increment count */
1210 nskb->nfct = &ct->ct_general;
1211 nskb->nfctinfo = ctinfo;
1212 nf_conntrack_get(nskb->nfct);
1213 }
1214
1215 /* Bring out ya dead! */
1216 static struct nf_conn *
1217 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1218 void *data, unsigned int *bucket)
1219 {
1220 struct nf_conntrack_tuple_hash *h;
1221 struct nf_conn *ct;
1222 struct hlist_nulls_node *n;
1223
1224 spin_lock_bh(&nf_conntrack_lock);
1225 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1226 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1227 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1228 continue;
1229 ct = nf_ct_tuplehash_to_ctrack(h);
1230 if (iter(ct, data))
1231 goto found;
1232 }
1233 }
1234 hlist_nulls_for_each_entry(h, n, &net->ct.unconfirmed, hnnode) {
1235 ct = nf_ct_tuplehash_to_ctrack(h);
1236 if (iter(ct, data))
1237 set_bit(IPS_DYING_BIT, &ct->status);
1238 }
1239 spin_unlock_bh(&nf_conntrack_lock);
1240 return NULL;
1241 found:
1242 atomic_inc(&ct->ct_general.use);
1243 spin_unlock_bh(&nf_conntrack_lock);
1244 return ct;
1245 }
1246
1247 void nf_ct_iterate_cleanup(struct net *net,
1248 int (*iter)(struct nf_conn *i, void *data),
1249 void *data, u32 portid, int report)
1250 {
1251 struct nf_conn *ct;
1252 unsigned int bucket = 0;
1253
1254 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1255 /* Time to push up daises... */
1256 if (del_timer(&ct->timeout))
1257 nf_ct_delete(ct, portid, report);
1258
1259 /* ... else the timer will get him soon. */
1260
1261 nf_ct_put(ct);
1262 }
1263 }
1264 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1265
1266 static int kill_all(struct nf_conn *i, void *data)
1267 {
1268 return 1;
1269 }
1270
1271 void nf_ct_free_hashtable(void *hash, unsigned int size)
1272 {
1273 if (is_vmalloc_addr(hash))
1274 vfree(hash);
1275 else
1276 free_pages((unsigned long)hash,
1277 get_order(sizeof(struct hlist_head) * size));
1278 }
1279 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1280
1281 void nf_conntrack_flush_report(struct net *net, u32 portid, int report)
1282 {
1283 nf_ct_iterate_cleanup(net, kill_all, NULL, portid, report);
1284 }
1285 EXPORT_SYMBOL_GPL(nf_conntrack_flush_report);
1286
1287 static void nf_ct_release_dying_list(struct net *net)
1288 {
1289 struct nf_conntrack_tuple_hash *h;
1290 struct nf_conn *ct;
1291 struct hlist_nulls_node *n;
1292
1293 spin_lock_bh(&nf_conntrack_lock);
1294 hlist_nulls_for_each_entry(h, n, &net->ct.dying, hnnode) {
1295 ct = nf_ct_tuplehash_to_ctrack(h);
1296 /* never fails to remove them, no listeners at this point */
1297 nf_ct_kill(ct);
1298 }
1299 spin_unlock_bh(&nf_conntrack_lock);
1300 }
1301
1302 static int untrack_refs(void)
1303 {
1304 int cnt = 0, cpu;
1305
1306 for_each_possible_cpu(cpu) {
1307 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1308
1309 cnt += atomic_read(&ct->ct_general.use) - 1;
1310 }
1311 return cnt;
1312 }
1313
1314 void nf_conntrack_cleanup_start(void)
1315 {
1316 RCU_INIT_POINTER(ip_ct_attach, NULL);
1317 }
1318
1319 void nf_conntrack_cleanup_end(void)
1320 {
1321 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1322 while (untrack_refs() > 0)
1323 schedule();
1324
1325 #ifdef CONFIG_NF_CONNTRACK_ZONES
1326 nf_ct_extend_unregister(&nf_ct_zone_extend);
1327 #endif
1328 nf_conntrack_proto_fini();
1329 nf_conntrack_labels_fini();
1330 nf_conntrack_helper_fini();
1331 nf_conntrack_timeout_fini();
1332 nf_conntrack_ecache_fini();
1333 nf_conntrack_tstamp_fini();
1334 nf_conntrack_acct_fini();
1335 nf_conntrack_expect_fini();
1336 }
1337
1338 /*
1339 * Mishearing the voices in his head, our hero wonders how he's
1340 * supposed to kill the mall.
1341 */
1342 void nf_conntrack_cleanup_net(struct net *net)
1343 {
1344 LIST_HEAD(single);
1345
1346 list_add(&net->exit_list, &single);
1347 nf_conntrack_cleanup_net_list(&single);
1348 }
1349
1350 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1351 {
1352 int busy;
1353 struct net *net;
1354
1355 /*
1356 * This makes sure all current packets have passed through
1357 * netfilter framework. Roll on, two-stage module
1358 * delete...
1359 */
1360 synchronize_net();
1361 i_see_dead_people:
1362 busy = 0;
1363 list_for_each_entry(net, net_exit_list, exit_list) {
1364 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1365 nf_ct_release_dying_list(net);
1366 if (atomic_read(&net->ct.count) != 0)
1367 busy = 1;
1368 }
1369 if (busy) {
1370 schedule();
1371 goto i_see_dead_people;
1372 }
1373
1374 list_for_each_entry(net, net_exit_list, exit_list) {
1375 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1376 nf_conntrack_proto_pernet_fini(net);
1377 nf_conntrack_helper_pernet_fini(net);
1378 nf_conntrack_ecache_pernet_fini(net);
1379 nf_conntrack_tstamp_pernet_fini(net);
1380 nf_conntrack_acct_pernet_fini(net);
1381 nf_conntrack_expect_pernet_fini(net);
1382 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1383 kfree(net->ct.slabname);
1384 free_percpu(net->ct.stat);
1385 }
1386 }
1387
1388 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1389 {
1390 struct hlist_nulls_head *hash;
1391 unsigned int nr_slots, i;
1392 size_t sz;
1393
1394 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1395 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1396 sz = nr_slots * sizeof(struct hlist_nulls_head);
1397 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1398 get_order(sz));
1399 if (!hash) {
1400 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1401 hash = vzalloc(sz);
1402 }
1403
1404 if (hash && nulls)
1405 for (i = 0; i < nr_slots; i++)
1406 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1407
1408 return hash;
1409 }
1410 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1411
1412 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1413 {
1414 int i, bucket, rc;
1415 unsigned int hashsize, old_size;
1416 struct hlist_nulls_head *hash, *old_hash;
1417 struct nf_conntrack_tuple_hash *h;
1418 struct nf_conn *ct;
1419
1420 if (current->nsproxy->net_ns != &init_net)
1421 return -EOPNOTSUPP;
1422
1423 /* On boot, we can set this without any fancy locking. */
1424 if (!nf_conntrack_htable_size)
1425 return param_set_uint(val, kp);
1426
1427 rc = kstrtouint(val, 0, &hashsize);
1428 if (rc)
1429 return rc;
1430 if (!hashsize)
1431 return -EINVAL;
1432
1433 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1434 if (!hash)
1435 return -ENOMEM;
1436
1437 /* Lookups in the old hash might happen in parallel, which means we
1438 * might get false negatives during connection lookup. New connections
1439 * created because of a false negative won't make it into the hash
1440 * though since that required taking the lock.
1441 */
1442 spin_lock_bh(&nf_conntrack_lock);
1443 for (i = 0; i < init_net.ct.htable_size; i++) {
1444 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1445 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1446 struct nf_conntrack_tuple_hash, hnnode);
1447 ct = nf_ct_tuplehash_to_ctrack(h);
1448 hlist_nulls_del_rcu(&h->hnnode);
1449 bucket = __hash_conntrack(&h->tuple, nf_ct_zone(ct),
1450 hashsize);
1451 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1452 }
1453 }
1454 old_size = init_net.ct.htable_size;
1455 old_hash = init_net.ct.hash;
1456
1457 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1458 init_net.ct.hash = hash;
1459 spin_unlock_bh(&nf_conntrack_lock);
1460
1461 nf_ct_free_hashtable(old_hash, old_size);
1462 return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1465
1466 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1467 &nf_conntrack_htable_size, 0600);
1468
1469 void nf_ct_untracked_status_or(unsigned long bits)
1470 {
1471 int cpu;
1472
1473 for_each_possible_cpu(cpu)
1474 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1475 }
1476 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1477
1478 int nf_conntrack_init_start(void)
1479 {
1480 int max_factor = 8;
1481 int ret, cpu;
1482
1483 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1484 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1485 if (!nf_conntrack_htable_size) {
1486 nf_conntrack_htable_size
1487 = (((totalram_pages << PAGE_SHIFT) / 16384)
1488 / sizeof(struct hlist_head));
1489 if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1490 nf_conntrack_htable_size = 16384;
1491 if (nf_conntrack_htable_size < 32)
1492 nf_conntrack_htable_size = 32;
1493
1494 /* Use a max. factor of four by default to get the same max as
1495 * with the old struct list_heads. When a table size is given
1496 * we use the old value of 8 to avoid reducing the max.
1497 * entries. */
1498 max_factor = 4;
1499 }
1500 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1501
1502 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1503 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1504 nf_conntrack_max);
1505
1506 ret = nf_conntrack_expect_init();
1507 if (ret < 0)
1508 goto err_expect;
1509
1510 ret = nf_conntrack_acct_init();
1511 if (ret < 0)
1512 goto err_acct;
1513
1514 ret = nf_conntrack_tstamp_init();
1515 if (ret < 0)
1516 goto err_tstamp;
1517
1518 ret = nf_conntrack_ecache_init();
1519 if (ret < 0)
1520 goto err_ecache;
1521
1522 ret = nf_conntrack_timeout_init();
1523 if (ret < 0)
1524 goto err_timeout;
1525
1526 ret = nf_conntrack_helper_init();
1527 if (ret < 0)
1528 goto err_helper;
1529
1530 ret = nf_conntrack_labels_init();
1531 if (ret < 0)
1532 goto err_labels;
1533
1534 #ifdef CONFIG_NF_CONNTRACK_ZONES
1535 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1536 if (ret < 0)
1537 goto err_extend;
1538 #endif
1539 ret = nf_conntrack_proto_init();
1540 if (ret < 0)
1541 goto err_proto;
1542
1543 /* Set up fake conntrack: to never be deleted, not in any hashes */
1544 for_each_possible_cpu(cpu) {
1545 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1546 write_pnet(&ct->ct_net, &init_net);
1547 atomic_set(&ct->ct_general.use, 1);
1548 }
1549 /* - and look it like as a confirmed connection */
1550 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1551 return 0;
1552
1553 err_proto:
1554 #ifdef CONFIG_NF_CONNTRACK_ZONES
1555 nf_ct_extend_unregister(&nf_ct_zone_extend);
1556 err_extend:
1557 #endif
1558 nf_conntrack_labels_fini();
1559 err_labels:
1560 nf_conntrack_helper_fini();
1561 err_helper:
1562 nf_conntrack_timeout_fini();
1563 err_timeout:
1564 nf_conntrack_ecache_fini();
1565 err_ecache:
1566 nf_conntrack_tstamp_fini();
1567 err_tstamp:
1568 nf_conntrack_acct_fini();
1569 err_acct:
1570 nf_conntrack_expect_fini();
1571 err_expect:
1572 return ret;
1573 }
1574
1575 void nf_conntrack_init_end(void)
1576 {
1577 /* For use by REJECT target */
1578 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1579 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1580
1581 /* Howto get NAT offsets */
1582 RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
1583 }
1584
1585 /*
1586 * We need to use special "null" values, not used in hash table
1587 */
1588 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1589 #define DYING_NULLS_VAL ((1<<30)+1)
1590 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
1591
1592 int nf_conntrack_init_net(struct net *net)
1593 {
1594 int ret;
1595
1596 atomic_set(&net->ct.count, 0);
1597 INIT_HLIST_NULLS_HEAD(&net->ct.unconfirmed, UNCONFIRMED_NULLS_VAL);
1598 INIT_HLIST_NULLS_HEAD(&net->ct.dying, DYING_NULLS_VAL);
1599 INIT_HLIST_NULLS_HEAD(&net->ct.tmpl, TEMPLATE_NULLS_VAL);
1600 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1601 if (!net->ct.stat) {
1602 ret = -ENOMEM;
1603 goto err_stat;
1604 }
1605
1606 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1607 if (!net->ct.slabname) {
1608 ret = -ENOMEM;
1609 goto err_slabname;
1610 }
1611
1612 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1613 sizeof(struct nf_conn), 0,
1614 SLAB_DESTROY_BY_RCU, NULL);
1615 if (!net->ct.nf_conntrack_cachep) {
1616 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1617 ret = -ENOMEM;
1618 goto err_cache;
1619 }
1620
1621 net->ct.htable_size = nf_conntrack_htable_size;
1622 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1623 if (!net->ct.hash) {
1624 ret = -ENOMEM;
1625 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1626 goto err_hash;
1627 }
1628 ret = nf_conntrack_expect_pernet_init(net);
1629 if (ret < 0)
1630 goto err_expect;
1631 ret = nf_conntrack_acct_pernet_init(net);
1632 if (ret < 0)
1633 goto err_acct;
1634 ret = nf_conntrack_tstamp_pernet_init(net);
1635 if (ret < 0)
1636 goto err_tstamp;
1637 ret = nf_conntrack_ecache_pernet_init(net);
1638 if (ret < 0)
1639 goto err_ecache;
1640 ret = nf_conntrack_helper_pernet_init(net);
1641 if (ret < 0)
1642 goto err_helper;
1643 ret = nf_conntrack_proto_pernet_init(net);
1644 if (ret < 0)
1645 goto err_proto;
1646 return 0;
1647
1648 err_proto:
1649 nf_conntrack_helper_pernet_fini(net);
1650 err_helper:
1651 nf_conntrack_ecache_pernet_fini(net);
1652 err_ecache:
1653 nf_conntrack_tstamp_pernet_fini(net);
1654 err_tstamp:
1655 nf_conntrack_acct_pernet_fini(net);
1656 err_acct:
1657 nf_conntrack_expect_pernet_fini(net);
1658 err_expect:
1659 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1660 err_hash:
1661 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1662 err_cache:
1663 kfree(net->ct.slabname);
1664 err_slabname:
1665 free_percpu(net->ct.stat);
1666 err_stat:
1667 return ret;
1668 }
1669
1670 s32 (*nf_ct_nat_offset)(const struct nf_conn *ct,
1671 enum ip_conntrack_dir dir,
1672 u32 seq);
1673 EXPORT_SYMBOL_GPL(nf_ct_nat_offset);
This page took 0.066478 seconds and 5 git commands to generate.