Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_l3proto.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_nat.h>
49 #include <net/netfilter/nf_nat_core.h>
50
51 #define NF_CONNTRACK_VERSION "0.5.0"
52
53 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
54 enum nf_nat_manip_type manip,
55 const struct nlattr *attr) __read_mostly;
56 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
57
58 DEFINE_SPINLOCK(nf_conntrack_lock);
59 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
60
61 unsigned int nf_conntrack_htable_size __read_mostly;
62 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
63
64 unsigned int nf_conntrack_max __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_max);
66
67 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
68 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
69
70 unsigned int nf_conntrack_hash_rnd __read_mostly;
71 EXPORT_SYMBOL_GPL(nf_conntrack_hash_rnd);
72
73 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple, u16 zone)
74 {
75 unsigned int n;
76
77 /* The direction must be ignored, so we hash everything up to the
78 * destination ports (which is a multiple of 4) and treat the last
79 * three bytes manually.
80 */
81 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
82 return jhash2((u32 *)tuple, n, zone ^ nf_conntrack_hash_rnd ^
83 (((__force __u16)tuple->dst.u.all << 16) |
84 tuple->dst.protonum));
85 }
86
87 static u32 __hash_bucket(u32 hash, unsigned int size)
88 {
89 return ((u64)hash * size) >> 32;
90 }
91
92 static u32 hash_bucket(u32 hash, const struct net *net)
93 {
94 return __hash_bucket(hash, net->ct.htable_size);
95 }
96
97 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
98 u16 zone, unsigned int size)
99 {
100 return __hash_bucket(hash_conntrack_raw(tuple, zone), size);
101 }
102
103 static inline u_int32_t hash_conntrack(const struct net *net, u16 zone,
104 const struct nf_conntrack_tuple *tuple)
105 {
106 return __hash_conntrack(tuple, zone, net->ct.htable_size);
107 }
108
109 bool
110 nf_ct_get_tuple(const struct sk_buff *skb,
111 unsigned int nhoff,
112 unsigned int dataoff,
113 u_int16_t l3num,
114 u_int8_t protonum,
115 struct nf_conntrack_tuple *tuple,
116 const struct nf_conntrack_l3proto *l3proto,
117 const struct nf_conntrack_l4proto *l4proto)
118 {
119 memset(tuple, 0, sizeof(*tuple));
120
121 tuple->src.l3num = l3num;
122 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
123 return false;
124
125 tuple->dst.protonum = protonum;
126 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
127
128 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
129 }
130 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
131
132 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
133 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
134 {
135 struct nf_conntrack_l3proto *l3proto;
136 struct nf_conntrack_l4proto *l4proto;
137 unsigned int protoff;
138 u_int8_t protonum;
139 int ret;
140
141 rcu_read_lock();
142
143 l3proto = __nf_ct_l3proto_find(l3num);
144 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
145 if (ret != NF_ACCEPT) {
146 rcu_read_unlock();
147 return false;
148 }
149
150 l4proto = __nf_ct_l4proto_find(l3num, protonum);
151
152 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
153 l3proto, l4proto);
154
155 rcu_read_unlock();
156 return ret;
157 }
158 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
159
160 bool
161 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
162 const struct nf_conntrack_tuple *orig,
163 const struct nf_conntrack_l3proto *l3proto,
164 const struct nf_conntrack_l4proto *l4proto)
165 {
166 memset(inverse, 0, sizeof(*inverse));
167
168 inverse->src.l3num = orig->src.l3num;
169 if (l3proto->invert_tuple(inverse, orig) == 0)
170 return false;
171
172 inverse->dst.dir = !orig->dst.dir;
173
174 inverse->dst.protonum = orig->dst.protonum;
175 return l4proto->invert_tuple(inverse, orig);
176 }
177 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
178
179 static void
180 clean_from_lists(struct nf_conn *ct)
181 {
182 pr_debug("clean_from_lists(%p)\n", ct);
183 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
184 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
185
186 /* Destroy all pending expectations */
187 nf_ct_remove_expectations(ct);
188 }
189
190 static void
191 destroy_conntrack(struct nf_conntrack *nfct)
192 {
193 struct nf_conn *ct = (struct nf_conn *)nfct;
194 struct net *net = nf_ct_net(ct);
195 struct nf_conntrack_l4proto *l4proto;
196
197 pr_debug("destroy_conntrack(%p)\n", ct);
198 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
199 NF_CT_ASSERT(!timer_pending(&ct->timeout));
200
201 /* To make sure we don't get any weird locking issues here:
202 * destroy_conntrack() MUST NOT be called with a write lock
203 * to nf_conntrack_lock!!! -HW */
204 rcu_read_lock();
205 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
206 if (l4proto && l4proto->destroy)
207 l4proto->destroy(ct);
208
209 rcu_read_unlock();
210
211 spin_lock_bh(&nf_conntrack_lock);
212 /* Expectations will have been removed in clean_from_lists,
213 * except TFTP can create an expectation on the first packet,
214 * before connection is in the list, so we need to clean here,
215 * too. */
216 nf_ct_remove_expectations(ct);
217
218 /* We overload first tuple to link into unconfirmed list. */
219 if (!nf_ct_is_confirmed(ct)) {
220 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
221 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
222 }
223
224 NF_CT_STAT_INC(net, delete);
225 spin_unlock_bh(&nf_conntrack_lock);
226
227 if (ct->master)
228 nf_ct_put(ct->master);
229
230 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
231 nf_conntrack_free(ct);
232 }
233
234 void nf_ct_delete_from_lists(struct nf_conn *ct)
235 {
236 struct net *net = nf_ct_net(ct);
237
238 nf_ct_helper_destroy(ct);
239 spin_lock_bh(&nf_conntrack_lock);
240 /* Inside lock so preempt is disabled on module removal path.
241 * Otherwise we can get spurious warnings. */
242 NF_CT_STAT_INC(net, delete_list);
243 clean_from_lists(ct);
244 spin_unlock_bh(&nf_conntrack_lock);
245 }
246 EXPORT_SYMBOL_GPL(nf_ct_delete_from_lists);
247
248 static void death_by_event(unsigned long ul_conntrack)
249 {
250 struct nf_conn *ct = (void *)ul_conntrack;
251 struct net *net = nf_ct_net(ct);
252
253 if (nf_conntrack_event(IPCT_DESTROY, ct) < 0) {
254 /* bad luck, let's retry again */
255 ct->timeout.expires = jiffies +
256 (random32() % net->ct.sysctl_events_retry_timeout);
257 add_timer(&ct->timeout);
258 return;
259 }
260 /* we've got the event delivered, now it's dying */
261 set_bit(IPS_DYING_BIT, &ct->status);
262 spin_lock(&nf_conntrack_lock);
263 hlist_nulls_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
264 spin_unlock(&nf_conntrack_lock);
265 nf_ct_put(ct);
266 }
267
268 void nf_ct_insert_dying_list(struct nf_conn *ct)
269 {
270 struct net *net = nf_ct_net(ct);
271
272 /* add this conntrack to the dying list */
273 spin_lock_bh(&nf_conntrack_lock);
274 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
275 &net->ct.dying);
276 spin_unlock_bh(&nf_conntrack_lock);
277 /* set a new timer to retry event delivery */
278 setup_timer(&ct->timeout, death_by_event, (unsigned long)ct);
279 ct->timeout.expires = jiffies +
280 (random32() % net->ct.sysctl_events_retry_timeout);
281 add_timer(&ct->timeout);
282 }
283 EXPORT_SYMBOL_GPL(nf_ct_insert_dying_list);
284
285 static void death_by_timeout(unsigned long ul_conntrack)
286 {
287 struct nf_conn *ct = (void *)ul_conntrack;
288 struct nf_conn_tstamp *tstamp;
289
290 tstamp = nf_conn_tstamp_find(ct);
291 if (tstamp && tstamp->stop == 0)
292 tstamp->stop = ktime_to_ns(ktime_get_real());
293
294 if (!test_bit(IPS_DYING_BIT, &ct->status) &&
295 unlikely(nf_conntrack_event(IPCT_DESTROY, ct) < 0)) {
296 /* destroy event was not delivered */
297 nf_ct_delete_from_lists(ct);
298 nf_ct_insert_dying_list(ct);
299 return;
300 }
301 set_bit(IPS_DYING_BIT, &ct->status);
302 nf_ct_delete_from_lists(ct);
303 nf_ct_put(ct);
304 }
305
306 /*
307 * Warning :
308 * - Caller must take a reference on returned object
309 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
310 * OR
311 * - Caller must lock nf_conntrack_lock before calling this function
312 */
313 static struct nf_conntrack_tuple_hash *
314 ____nf_conntrack_find(struct net *net, u16 zone,
315 const struct nf_conntrack_tuple *tuple, u32 hash)
316 {
317 struct nf_conntrack_tuple_hash *h;
318 struct hlist_nulls_node *n;
319 unsigned int bucket = hash_bucket(hash, net);
320
321 /* Disable BHs the entire time since we normally need to disable them
322 * at least once for the stats anyway.
323 */
324 local_bh_disable();
325 begin:
326 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
327 if (nf_ct_tuple_equal(tuple, &h->tuple) &&
328 nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)) == zone) {
329 NF_CT_STAT_INC(net, found);
330 local_bh_enable();
331 return h;
332 }
333 NF_CT_STAT_INC(net, searched);
334 }
335 /*
336 * if the nulls value we got at the end of this lookup is
337 * not the expected one, we must restart lookup.
338 * We probably met an item that was moved to another chain.
339 */
340 if (get_nulls_value(n) != bucket) {
341 NF_CT_STAT_INC(net, search_restart);
342 goto begin;
343 }
344 local_bh_enable();
345
346 return NULL;
347 }
348
349 struct nf_conntrack_tuple_hash *
350 __nf_conntrack_find(struct net *net, u16 zone,
351 const struct nf_conntrack_tuple *tuple)
352 {
353 return ____nf_conntrack_find(net, zone, tuple,
354 hash_conntrack_raw(tuple, zone));
355 }
356 EXPORT_SYMBOL_GPL(__nf_conntrack_find);
357
358 /* Find a connection corresponding to a tuple. */
359 static struct nf_conntrack_tuple_hash *
360 __nf_conntrack_find_get(struct net *net, u16 zone,
361 const struct nf_conntrack_tuple *tuple, u32 hash)
362 {
363 struct nf_conntrack_tuple_hash *h;
364 struct nf_conn *ct;
365
366 rcu_read_lock();
367 begin:
368 h = ____nf_conntrack_find(net, zone, tuple, hash);
369 if (h) {
370 ct = nf_ct_tuplehash_to_ctrack(h);
371 if (unlikely(nf_ct_is_dying(ct) ||
372 !atomic_inc_not_zero(&ct->ct_general.use)))
373 h = NULL;
374 else {
375 if (unlikely(!nf_ct_tuple_equal(tuple, &h->tuple) ||
376 nf_ct_zone(ct) != zone)) {
377 nf_ct_put(ct);
378 goto begin;
379 }
380 }
381 }
382 rcu_read_unlock();
383
384 return h;
385 }
386
387 struct nf_conntrack_tuple_hash *
388 nf_conntrack_find_get(struct net *net, u16 zone,
389 const struct nf_conntrack_tuple *tuple)
390 {
391 return __nf_conntrack_find_get(net, zone, tuple,
392 hash_conntrack_raw(tuple, zone));
393 }
394 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
395
396 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
397 unsigned int hash,
398 unsigned int repl_hash)
399 {
400 struct net *net = nf_ct_net(ct);
401
402 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
403 &net->ct.hash[hash]);
404 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
405 &net->ct.hash[repl_hash]);
406 }
407
408 int
409 nf_conntrack_hash_check_insert(struct nf_conn *ct)
410 {
411 struct net *net = nf_ct_net(ct);
412 unsigned int hash, repl_hash;
413 struct nf_conntrack_tuple_hash *h;
414 struct hlist_nulls_node *n;
415 u16 zone;
416
417 zone = nf_ct_zone(ct);
418 hash = hash_conntrack(net, zone,
419 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
420 repl_hash = hash_conntrack(net, zone,
421 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
422
423 spin_lock_bh(&nf_conntrack_lock);
424
425 /* See if there's one in the list already, including reverse */
426 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
427 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
428 &h->tuple) &&
429 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
430 goto out;
431 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
432 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
433 &h->tuple) &&
434 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
435 goto out;
436
437 add_timer(&ct->timeout);
438 nf_conntrack_get(&ct->ct_general);
439 __nf_conntrack_hash_insert(ct, hash, repl_hash);
440 NF_CT_STAT_INC(net, insert);
441 spin_unlock_bh(&nf_conntrack_lock);
442
443 return 0;
444
445 out:
446 NF_CT_STAT_INC(net, insert_failed);
447 spin_unlock_bh(&nf_conntrack_lock);
448 return -EEXIST;
449 }
450 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
451
452 /* Confirm a connection given skb; places it in hash table */
453 int
454 __nf_conntrack_confirm(struct sk_buff *skb)
455 {
456 unsigned int hash, repl_hash;
457 struct nf_conntrack_tuple_hash *h;
458 struct nf_conn *ct;
459 struct nf_conn_help *help;
460 struct nf_conn_tstamp *tstamp;
461 struct hlist_nulls_node *n;
462 enum ip_conntrack_info ctinfo;
463 struct net *net;
464 u16 zone;
465
466 ct = nf_ct_get(skb, &ctinfo);
467 net = nf_ct_net(ct);
468
469 /* ipt_REJECT uses nf_conntrack_attach to attach related
470 ICMP/TCP RST packets in other direction. Actual packet
471 which created connection will be IP_CT_NEW or for an
472 expected connection, IP_CT_RELATED. */
473 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
474 return NF_ACCEPT;
475
476 zone = nf_ct_zone(ct);
477 /* reuse the hash saved before */
478 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
479 hash = hash_bucket(hash, net);
480 repl_hash = hash_conntrack(net, zone,
481 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
482
483 /* We're not in hash table, and we refuse to set up related
484 connections for unconfirmed conns. But packet copies and
485 REJECT will give spurious warnings here. */
486 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
487
488 /* No external references means no one else could have
489 confirmed us. */
490 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
491 pr_debug("Confirming conntrack %p\n", ct);
492
493 spin_lock_bh(&nf_conntrack_lock);
494
495 /* We have to check the DYING flag inside the lock to prevent
496 a race against nf_ct_get_next_corpse() possibly called from
497 user context, else we insert an already 'dead' hash, blocking
498 further use of that particular connection -JM */
499
500 if (unlikely(nf_ct_is_dying(ct))) {
501 spin_unlock_bh(&nf_conntrack_lock);
502 return NF_ACCEPT;
503 }
504
505 /* See if there's one in the list already, including reverse:
506 NAT could have grabbed it without realizing, since we're
507 not in the hash. If there is, we lost race. */
508 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
509 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
510 &h->tuple) &&
511 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
512 goto out;
513 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
514 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
515 &h->tuple) &&
516 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
517 goto out;
518
519 /* Remove from unconfirmed list */
520 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
521
522 /* Timer relative to confirmation time, not original
523 setting time, otherwise we'd get timer wrap in
524 weird delay cases. */
525 ct->timeout.expires += jiffies;
526 add_timer(&ct->timeout);
527 atomic_inc(&ct->ct_general.use);
528 ct->status |= IPS_CONFIRMED;
529
530 /* set conntrack timestamp, if enabled. */
531 tstamp = nf_conn_tstamp_find(ct);
532 if (tstamp) {
533 if (skb->tstamp.tv64 == 0)
534 __net_timestamp((struct sk_buff *)skb);
535
536 tstamp->start = ktime_to_ns(skb->tstamp);
537 }
538 /* Since the lookup is lockless, hash insertion must be done after
539 * starting the timer and setting the CONFIRMED bit. The RCU barriers
540 * guarantee that no other CPU can find the conntrack before the above
541 * stores are visible.
542 */
543 __nf_conntrack_hash_insert(ct, hash, repl_hash);
544 NF_CT_STAT_INC(net, insert);
545 spin_unlock_bh(&nf_conntrack_lock);
546
547 help = nfct_help(ct);
548 if (help && help->helper)
549 nf_conntrack_event_cache(IPCT_HELPER, ct);
550
551 nf_conntrack_event_cache(master_ct(ct) ?
552 IPCT_RELATED : IPCT_NEW, ct);
553 return NF_ACCEPT;
554
555 out:
556 NF_CT_STAT_INC(net, insert_failed);
557 spin_unlock_bh(&nf_conntrack_lock);
558 return NF_DROP;
559 }
560 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
561
562 /* Returns true if a connection correspondings to the tuple (required
563 for NAT). */
564 int
565 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
566 const struct nf_conn *ignored_conntrack)
567 {
568 struct net *net = nf_ct_net(ignored_conntrack);
569 struct nf_conntrack_tuple_hash *h;
570 struct hlist_nulls_node *n;
571 struct nf_conn *ct;
572 u16 zone = nf_ct_zone(ignored_conntrack);
573 unsigned int hash = hash_conntrack(net, zone, tuple);
574
575 /* Disable BHs the entire time since we need to disable them at
576 * least once for the stats anyway.
577 */
578 rcu_read_lock_bh();
579 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
580 ct = nf_ct_tuplehash_to_ctrack(h);
581 if (ct != ignored_conntrack &&
582 nf_ct_tuple_equal(tuple, &h->tuple) &&
583 nf_ct_zone(ct) == zone) {
584 NF_CT_STAT_INC(net, found);
585 rcu_read_unlock_bh();
586 return 1;
587 }
588 NF_CT_STAT_INC(net, searched);
589 }
590 rcu_read_unlock_bh();
591
592 return 0;
593 }
594 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
595
596 #define NF_CT_EVICTION_RANGE 8
597
598 /* There's a small race here where we may free a just-assured
599 connection. Too bad: we're in trouble anyway. */
600 static noinline int early_drop(struct net *net, unsigned int hash)
601 {
602 /* Use oldest entry, which is roughly LRU */
603 struct nf_conntrack_tuple_hash *h;
604 struct nf_conn *ct = NULL, *tmp;
605 struct hlist_nulls_node *n;
606 unsigned int i, cnt = 0;
607 int dropped = 0;
608
609 rcu_read_lock();
610 for (i = 0; i < net->ct.htable_size; i++) {
611 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
612 hnnode) {
613 tmp = nf_ct_tuplehash_to_ctrack(h);
614 if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
615 ct = tmp;
616 cnt++;
617 }
618
619 if (ct != NULL) {
620 if (likely(!nf_ct_is_dying(ct) &&
621 atomic_inc_not_zero(&ct->ct_general.use)))
622 break;
623 else
624 ct = NULL;
625 }
626
627 if (cnt >= NF_CT_EVICTION_RANGE)
628 break;
629
630 hash = (hash + 1) % net->ct.htable_size;
631 }
632 rcu_read_unlock();
633
634 if (!ct)
635 return dropped;
636
637 if (del_timer(&ct->timeout)) {
638 death_by_timeout((unsigned long)ct);
639 /* Check if we indeed killed this entry. Reliable event
640 delivery may have inserted it into the dying list. */
641 if (test_bit(IPS_DYING_BIT, &ct->status)) {
642 dropped = 1;
643 NF_CT_STAT_INC_ATOMIC(net, early_drop);
644 }
645 }
646 nf_ct_put(ct);
647 return dropped;
648 }
649
650 void init_nf_conntrack_hash_rnd(void)
651 {
652 unsigned int rand;
653
654 /*
655 * Why not initialize nf_conntrack_rnd in a "init()" function ?
656 * Because there isn't enough entropy when system initializing,
657 * and we initialize it as late as possible.
658 */
659 do {
660 get_random_bytes(&rand, sizeof(rand));
661 } while (!rand);
662 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
663 }
664
665 static struct nf_conn *
666 __nf_conntrack_alloc(struct net *net, u16 zone,
667 const struct nf_conntrack_tuple *orig,
668 const struct nf_conntrack_tuple *repl,
669 gfp_t gfp, u32 hash)
670 {
671 struct nf_conn *ct;
672
673 if (unlikely(!nf_conntrack_hash_rnd)) {
674 init_nf_conntrack_hash_rnd();
675 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
676 hash = hash_conntrack_raw(orig, zone);
677 }
678
679 /* We don't want any race condition at early drop stage */
680 atomic_inc(&net->ct.count);
681
682 if (nf_conntrack_max &&
683 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
684 if (!early_drop(net, hash_bucket(hash, net))) {
685 atomic_dec(&net->ct.count);
686 if (net_ratelimit())
687 printk(KERN_WARNING
688 "nf_conntrack: table full, dropping"
689 " packet.\n");
690 return ERR_PTR(-ENOMEM);
691 }
692 }
693
694 /*
695 * Do not use kmem_cache_zalloc(), as this cache uses
696 * SLAB_DESTROY_BY_RCU.
697 */
698 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
699 if (ct == NULL) {
700 atomic_dec(&net->ct.count);
701 return ERR_PTR(-ENOMEM);
702 }
703 /*
704 * Let ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.next
705 * and ct->tuplehash[IP_CT_DIR_REPLY].hnnode.next unchanged.
706 */
707 memset(&ct->tuplehash[IP_CT_DIR_MAX], 0,
708 offsetof(struct nf_conn, proto) -
709 offsetof(struct nf_conn, tuplehash[IP_CT_DIR_MAX]));
710 spin_lock_init(&ct->lock);
711 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
712 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
713 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
714 /* save hash for reusing when confirming */
715 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
716 /* Don't set timer yet: wait for confirmation */
717 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
718 write_pnet(&ct->ct_net, net);
719 #ifdef CONFIG_NF_CONNTRACK_ZONES
720 if (zone) {
721 struct nf_conntrack_zone *nf_ct_zone;
722
723 nf_ct_zone = nf_ct_ext_add(ct, NF_CT_EXT_ZONE, GFP_ATOMIC);
724 if (!nf_ct_zone)
725 goto out_free;
726 nf_ct_zone->id = zone;
727 }
728 #endif
729 /*
730 * changes to lookup keys must be done before setting refcnt to 1
731 */
732 smp_wmb();
733 atomic_set(&ct->ct_general.use, 1);
734 return ct;
735
736 #ifdef CONFIG_NF_CONNTRACK_ZONES
737 out_free:
738 atomic_dec(&net->ct.count);
739 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
740 return ERR_PTR(-ENOMEM);
741 #endif
742 }
743
744 struct nf_conn *nf_conntrack_alloc(struct net *net, u16 zone,
745 const struct nf_conntrack_tuple *orig,
746 const struct nf_conntrack_tuple *repl,
747 gfp_t gfp)
748 {
749 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
750 }
751 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
752
753 void nf_conntrack_free(struct nf_conn *ct)
754 {
755 struct net *net = nf_ct_net(ct);
756
757 nf_ct_ext_destroy(ct);
758 atomic_dec(&net->ct.count);
759 nf_ct_ext_free(ct);
760 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
761 }
762 EXPORT_SYMBOL_GPL(nf_conntrack_free);
763
764 /* Allocate a new conntrack: we return -ENOMEM if classification
765 failed due to stress. Otherwise it really is unclassifiable. */
766 static struct nf_conntrack_tuple_hash *
767 init_conntrack(struct net *net, struct nf_conn *tmpl,
768 const struct nf_conntrack_tuple *tuple,
769 struct nf_conntrack_l3proto *l3proto,
770 struct nf_conntrack_l4proto *l4proto,
771 struct sk_buff *skb,
772 unsigned int dataoff, u32 hash)
773 {
774 struct nf_conn *ct;
775 struct nf_conn_help *help;
776 struct nf_conntrack_tuple repl_tuple;
777 struct nf_conntrack_ecache *ecache;
778 struct nf_conntrack_expect *exp;
779 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
780 struct nf_conn_timeout *timeout_ext;
781 unsigned int *timeouts;
782
783 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
784 pr_debug("Can't invert tuple.\n");
785 return NULL;
786 }
787
788 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
789 hash);
790 if (IS_ERR(ct))
791 return (struct nf_conntrack_tuple_hash *)ct;
792
793 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
794 if (timeout_ext)
795 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
796 else
797 timeouts = l4proto->get_timeouts(net);
798
799 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
800 nf_conntrack_free(ct);
801 pr_debug("init conntrack: can't track with proto module\n");
802 return NULL;
803 }
804
805 if (timeout_ext)
806 nf_ct_timeout_ext_add(ct, timeout_ext->timeout, GFP_ATOMIC);
807
808 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
809 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
810
811 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
812 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
813 ecache ? ecache->expmask : 0,
814 GFP_ATOMIC);
815
816 spin_lock_bh(&nf_conntrack_lock);
817 exp = nf_ct_find_expectation(net, zone, tuple);
818 if (exp) {
819 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
820 ct, exp);
821 /* Welcome, Mr. Bond. We've been expecting you... */
822 __set_bit(IPS_EXPECTED_BIT, &ct->status);
823 ct->master = exp->master;
824 if (exp->helper) {
825 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
826 if (help)
827 rcu_assign_pointer(help->helper, exp->helper);
828 }
829
830 #ifdef CONFIG_NF_CONNTRACK_MARK
831 ct->mark = exp->master->mark;
832 #endif
833 #ifdef CONFIG_NF_CONNTRACK_SECMARK
834 ct->secmark = exp->master->secmark;
835 #endif
836 nf_conntrack_get(&ct->master->ct_general);
837 NF_CT_STAT_INC(net, expect_new);
838 } else {
839 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
840 NF_CT_STAT_INC(net, new);
841 }
842
843 /* Overload tuple linked list to put us in unconfirmed list. */
844 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
845 &net->ct.unconfirmed);
846
847 spin_unlock_bh(&nf_conntrack_lock);
848
849 if (exp) {
850 if (exp->expectfn)
851 exp->expectfn(ct, exp);
852 nf_ct_expect_put(exp);
853 }
854
855 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
856 }
857
858 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
859 static inline struct nf_conn *
860 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
861 struct sk_buff *skb,
862 unsigned int dataoff,
863 u_int16_t l3num,
864 u_int8_t protonum,
865 struct nf_conntrack_l3proto *l3proto,
866 struct nf_conntrack_l4proto *l4proto,
867 int *set_reply,
868 enum ip_conntrack_info *ctinfo)
869 {
870 struct nf_conntrack_tuple tuple;
871 struct nf_conntrack_tuple_hash *h;
872 struct nf_conn *ct;
873 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
874 u32 hash;
875
876 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
877 dataoff, l3num, protonum, &tuple, l3proto,
878 l4proto)) {
879 pr_debug("resolve_normal_ct: Can't get tuple\n");
880 return NULL;
881 }
882
883 /* look for tuple match */
884 hash = hash_conntrack_raw(&tuple, zone);
885 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
886 if (!h) {
887 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
888 skb, dataoff, hash);
889 if (!h)
890 return NULL;
891 if (IS_ERR(h))
892 return (void *)h;
893 }
894 ct = nf_ct_tuplehash_to_ctrack(h);
895
896 /* It exists; we have (non-exclusive) reference. */
897 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
898 *ctinfo = IP_CT_ESTABLISHED_REPLY;
899 /* Please set reply bit if this packet OK */
900 *set_reply = 1;
901 } else {
902 /* Once we've had two way comms, always ESTABLISHED. */
903 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
904 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
905 *ctinfo = IP_CT_ESTABLISHED;
906 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
907 pr_debug("nf_conntrack_in: related packet for %p\n",
908 ct);
909 *ctinfo = IP_CT_RELATED;
910 } else {
911 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
912 *ctinfo = IP_CT_NEW;
913 }
914 *set_reply = 0;
915 }
916 skb->nfct = &ct->ct_general;
917 skb->nfctinfo = *ctinfo;
918 return ct;
919 }
920
921 unsigned int
922 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
923 struct sk_buff *skb)
924 {
925 struct nf_conn *ct, *tmpl = NULL;
926 enum ip_conntrack_info ctinfo;
927 struct nf_conntrack_l3proto *l3proto;
928 struct nf_conntrack_l4proto *l4proto;
929 struct nf_conn_timeout *timeout_ext;
930 unsigned int *timeouts;
931 unsigned int dataoff;
932 u_int8_t protonum;
933 int set_reply = 0;
934 int ret;
935
936 if (skb->nfct) {
937 /* Previously seen (loopback or untracked)? Ignore. */
938 tmpl = (struct nf_conn *)skb->nfct;
939 if (!nf_ct_is_template(tmpl)) {
940 NF_CT_STAT_INC_ATOMIC(net, ignore);
941 return NF_ACCEPT;
942 }
943 skb->nfct = NULL;
944 }
945
946 /* rcu_read_lock()ed by nf_hook_slow */
947 l3proto = __nf_ct_l3proto_find(pf);
948 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
949 &dataoff, &protonum);
950 if (ret <= 0) {
951 pr_debug("not prepared to track yet or error occurred\n");
952 NF_CT_STAT_INC_ATOMIC(net, error);
953 NF_CT_STAT_INC_ATOMIC(net, invalid);
954 ret = -ret;
955 goto out;
956 }
957
958 l4proto = __nf_ct_l4proto_find(pf, protonum);
959
960 /* It may be an special packet, error, unclean...
961 * inverse of the return code tells to the netfilter
962 * core what to do with the packet. */
963 if (l4proto->error != NULL) {
964 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
965 pf, hooknum);
966 if (ret <= 0) {
967 NF_CT_STAT_INC_ATOMIC(net, error);
968 NF_CT_STAT_INC_ATOMIC(net, invalid);
969 ret = -ret;
970 goto out;
971 }
972 /* ICMP[v6] protocol trackers may assign one conntrack. */
973 if (skb->nfct)
974 goto out;
975 }
976
977 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
978 l3proto, l4proto, &set_reply, &ctinfo);
979 if (!ct) {
980 /* Not valid part of a connection */
981 NF_CT_STAT_INC_ATOMIC(net, invalid);
982 ret = NF_ACCEPT;
983 goto out;
984 }
985
986 if (IS_ERR(ct)) {
987 /* Too stressed to deal. */
988 NF_CT_STAT_INC_ATOMIC(net, drop);
989 ret = NF_DROP;
990 goto out;
991 }
992
993 NF_CT_ASSERT(skb->nfct);
994
995 /* Decide what timeout policy we want to apply to this flow. */
996 timeout_ext = nf_ct_timeout_find(ct);
997 if (timeout_ext)
998 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
999 else
1000 timeouts = l4proto->get_timeouts(net);
1001
1002 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1003 if (ret <= 0) {
1004 /* Invalid: inverse of the return code tells
1005 * the netfilter core what to do */
1006 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1007 nf_conntrack_put(skb->nfct);
1008 skb->nfct = NULL;
1009 NF_CT_STAT_INC_ATOMIC(net, invalid);
1010 if (ret == -NF_DROP)
1011 NF_CT_STAT_INC_ATOMIC(net, drop);
1012 ret = -ret;
1013 goto out;
1014 }
1015
1016 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1017 nf_conntrack_event_cache(IPCT_REPLY, ct);
1018 out:
1019 if (tmpl) {
1020 /* Special case: we have to repeat this hook, assign the
1021 * template again to this packet. We assume that this packet
1022 * has no conntrack assigned. This is used by nf_ct_tcp. */
1023 if (ret == NF_REPEAT)
1024 skb->nfct = (struct nf_conntrack *)tmpl;
1025 else
1026 nf_ct_put(tmpl);
1027 }
1028
1029 return ret;
1030 }
1031 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1032
1033 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1034 const struct nf_conntrack_tuple *orig)
1035 {
1036 bool ret;
1037
1038 rcu_read_lock();
1039 ret = nf_ct_invert_tuple(inverse, orig,
1040 __nf_ct_l3proto_find(orig->src.l3num),
1041 __nf_ct_l4proto_find(orig->src.l3num,
1042 orig->dst.protonum));
1043 rcu_read_unlock();
1044 return ret;
1045 }
1046 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1047
1048 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1049 implicitly racy: see __nf_conntrack_confirm */
1050 void nf_conntrack_alter_reply(struct nf_conn *ct,
1051 const struct nf_conntrack_tuple *newreply)
1052 {
1053 struct nf_conn_help *help = nfct_help(ct);
1054
1055 /* Should be unconfirmed, so not in hash table yet */
1056 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1057
1058 pr_debug("Altering reply tuple of %p to ", ct);
1059 nf_ct_dump_tuple(newreply);
1060
1061 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1062 if (ct->master || (help && !hlist_empty(&help->expectations)))
1063 return;
1064
1065 rcu_read_lock();
1066 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1067 rcu_read_unlock();
1068 }
1069 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1070
1071 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1072 void __nf_ct_refresh_acct(struct nf_conn *ct,
1073 enum ip_conntrack_info ctinfo,
1074 const struct sk_buff *skb,
1075 unsigned long extra_jiffies,
1076 int do_acct)
1077 {
1078 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1079 NF_CT_ASSERT(skb);
1080
1081 /* Only update if this is not a fixed timeout */
1082 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1083 goto acct;
1084
1085 /* If not in hash table, timer will not be active yet */
1086 if (!nf_ct_is_confirmed(ct)) {
1087 ct->timeout.expires = extra_jiffies;
1088 } else {
1089 unsigned long newtime = jiffies + extra_jiffies;
1090
1091 /* Only update the timeout if the new timeout is at least
1092 HZ jiffies from the old timeout. Need del_timer for race
1093 avoidance (may already be dying). */
1094 if (newtime - ct->timeout.expires >= HZ)
1095 mod_timer_pending(&ct->timeout, newtime);
1096 }
1097
1098 acct:
1099 if (do_acct) {
1100 struct nf_conn_counter *acct;
1101
1102 acct = nf_conn_acct_find(ct);
1103 if (acct) {
1104 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1105 atomic64_add(skb->len, &acct[CTINFO2DIR(ctinfo)].bytes);
1106 }
1107 }
1108 }
1109 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1110
1111 bool __nf_ct_kill_acct(struct nf_conn *ct,
1112 enum ip_conntrack_info ctinfo,
1113 const struct sk_buff *skb,
1114 int do_acct)
1115 {
1116 if (do_acct) {
1117 struct nf_conn_counter *acct;
1118
1119 acct = nf_conn_acct_find(ct);
1120 if (acct) {
1121 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1122 atomic64_add(skb->len - skb_network_offset(skb),
1123 &acct[CTINFO2DIR(ctinfo)].bytes);
1124 }
1125 }
1126
1127 if (del_timer(&ct->timeout)) {
1128 ct->timeout.function((unsigned long)ct);
1129 return true;
1130 }
1131 return false;
1132 }
1133 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1134
1135 #ifdef CONFIG_NF_CONNTRACK_ZONES
1136 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1137 .len = sizeof(struct nf_conntrack_zone),
1138 .align = __alignof__(struct nf_conntrack_zone),
1139 .id = NF_CT_EXT_ZONE,
1140 };
1141 #endif
1142
1143 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1144
1145 #include <linux/netfilter/nfnetlink.h>
1146 #include <linux/netfilter/nfnetlink_conntrack.h>
1147 #include <linux/mutex.h>
1148
1149 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1150 * in ip_conntrack_core, since we don't want the protocols to autoload
1151 * or depend on ctnetlink */
1152 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1153 const struct nf_conntrack_tuple *tuple)
1154 {
1155 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1156 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1157 goto nla_put_failure;
1158 return 0;
1159
1160 nla_put_failure:
1161 return -1;
1162 }
1163 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1164
1165 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1166 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1167 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1168 };
1169 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1170
1171 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1172 struct nf_conntrack_tuple *t)
1173 {
1174 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1175 return -EINVAL;
1176
1177 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1178 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1179
1180 return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1183
1184 int nf_ct_port_nlattr_tuple_size(void)
1185 {
1186 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1187 }
1188 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1189 #endif
1190
1191 /* Used by ipt_REJECT and ip6t_REJECT. */
1192 static void nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
1193 {
1194 struct nf_conn *ct;
1195 enum ip_conntrack_info ctinfo;
1196
1197 /* This ICMP is in reverse direction to the packet which caused it */
1198 ct = nf_ct_get(skb, &ctinfo);
1199 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1200 ctinfo = IP_CT_RELATED_REPLY;
1201 else
1202 ctinfo = IP_CT_RELATED;
1203
1204 /* Attach to new skbuff, and increment count */
1205 nskb->nfct = &ct->ct_general;
1206 nskb->nfctinfo = ctinfo;
1207 nf_conntrack_get(nskb->nfct);
1208 }
1209
1210 /* Bring out ya dead! */
1211 static struct nf_conn *
1212 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1213 void *data, unsigned int *bucket)
1214 {
1215 struct nf_conntrack_tuple_hash *h;
1216 struct nf_conn *ct;
1217 struct hlist_nulls_node *n;
1218
1219 spin_lock_bh(&nf_conntrack_lock);
1220 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1221 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1222 ct = nf_ct_tuplehash_to_ctrack(h);
1223 if (iter(ct, data))
1224 goto found;
1225 }
1226 }
1227 hlist_nulls_for_each_entry(h, n, &net->ct.unconfirmed, hnnode) {
1228 ct = nf_ct_tuplehash_to_ctrack(h);
1229 if (iter(ct, data))
1230 set_bit(IPS_DYING_BIT, &ct->status);
1231 }
1232 spin_unlock_bh(&nf_conntrack_lock);
1233 return NULL;
1234 found:
1235 atomic_inc(&ct->ct_general.use);
1236 spin_unlock_bh(&nf_conntrack_lock);
1237 return ct;
1238 }
1239
1240 void nf_ct_iterate_cleanup(struct net *net,
1241 int (*iter)(struct nf_conn *i, void *data),
1242 void *data)
1243 {
1244 struct nf_conn *ct;
1245 unsigned int bucket = 0;
1246
1247 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1248 /* Time to push up daises... */
1249 if (del_timer(&ct->timeout))
1250 death_by_timeout((unsigned long)ct);
1251 /* ... else the timer will get him soon. */
1252
1253 nf_ct_put(ct);
1254 }
1255 }
1256 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1257
1258 struct __nf_ct_flush_report {
1259 u32 pid;
1260 int report;
1261 };
1262
1263 static int kill_report(struct nf_conn *i, void *data)
1264 {
1265 struct __nf_ct_flush_report *fr = (struct __nf_ct_flush_report *)data;
1266 struct nf_conn_tstamp *tstamp;
1267
1268 tstamp = nf_conn_tstamp_find(i);
1269 if (tstamp && tstamp->stop == 0)
1270 tstamp->stop = ktime_to_ns(ktime_get_real());
1271
1272 /* If we fail to deliver the event, death_by_timeout() will retry */
1273 if (nf_conntrack_event_report(IPCT_DESTROY, i,
1274 fr->pid, fr->report) < 0)
1275 return 1;
1276
1277 /* Avoid the delivery of the destroy event in death_by_timeout(). */
1278 set_bit(IPS_DYING_BIT, &i->status);
1279 return 1;
1280 }
1281
1282 static int kill_all(struct nf_conn *i, void *data)
1283 {
1284 return 1;
1285 }
1286
1287 void nf_ct_free_hashtable(void *hash, unsigned int size)
1288 {
1289 if (is_vmalloc_addr(hash))
1290 vfree(hash);
1291 else
1292 free_pages((unsigned long)hash,
1293 get_order(sizeof(struct hlist_head) * size));
1294 }
1295 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1296
1297 void nf_conntrack_flush_report(struct net *net, u32 pid, int report)
1298 {
1299 struct __nf_ct_flush_report fr = {
1300 .pid = pid,
1301 .report = report,
1302 };
1303 nf_ct_iterate_cleanup(net, kill_report, &fr);
1304 }
1305 EXPORT_SYMBOL_GPL(nf_conntrack_flush_report);
1306
1307 static void nf_ct_release_dying_list(struct net *net)
1308 {
1309 struct nf_conntrack_tuple_hash *h;
1310 struct nf_conn *ct;
1311 struct hlist_nulls_node *n;
1312
1313 spin_lock_bh(&nf_conntrack_lock);
1314 hlist_nulls_for_each_entry(h, n, &net->ct.dying, hnnode) {
1315 ct = nf_ct_tuplehash_to_ctrack(h);
1316 /* never fails to remove them, no listeners at this point */
1317 nf_ct_kill(ct);
1318 }
1319 spin_unlock_bh(&nf_conntrack_lock);
1320 }
1321
1322 static int untrack_refs(void)
1323 {
1324 int cnt = 0, cpu;
1325
1326 for_each_possible_cpu(cpu) {
1327 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1328
1329 cnt += atomic_read(&ct->ct_general.use) - 1;
1330 }
1331 return cnt;
1332 }
1333
1334 static void nf_conntrack_cleanup_init_net(void)
1335 {
1336 while (untrack_refs() > 0)
1337 schedule();
1338
1339 nf_conntrack_helper_fini();
1340 nf_conntrack_proto_fini();
1341 #ifdef CONFIG_NF_CONNTRACK_ZONES
1342 nf_ct_extend_unregister(&nf_ct_zone_extend);
1343 #endif
1344 }
1345
1346 static void nf_conntrack_cleanup_net(struct net *net)
1347 {
1348 i_see_dead_people:
1349 nf_ct_iterate_cleanup(net, kill_all, NULL);
1350 nf_ct_release_dying_list(net);
1351 if (atomic_read(&net->ct.count) != 0) {
1352 schedule();
1353 goto i_see_dead_people;
1354 }
1355
1356 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1357 nf_conntrack_timeout_fini(net);
1358 nf_conntrack_ecache_fini(net);
1359 nf_conntrack_tstamp_fini(net);
1360 nf_conntrack_acct_fini(net);
1361 nf_conntrack_expect_fini(net);
1362 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1363 kfree(net->ct.slabname);
1364 free_percpu(net->ct.stat);
1365 }
1366
1367 /* Mishearing the voices in his head, our hero wonders how he's
1368 supposed to kill the mall. */
1369 void nf_conntrack_cleanup(struct net *net)
1370 {
1371 if (net_eq(net, &init_net))
1372 RCU_INIT_POINTER(ip_ct_attach, NULL);
1373
1374 /* This makes sure all current packets have passed through
1375 netfilter framework. Roll on, two-stage module
1376 delete... */
1377 synchronize_net();
1378
1379 nf_conntrack_cleanup_net(net);
1380
1381 if (net_eq(net, &init_net)) {
1382 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1383 nf_conntrack_cleanup_init_net();
1384 }
1385 }
1386
1387 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1388 {
1389 struct hlist_nulls_head *hash;
1390 unsigned int nr_slots, i;
1391 size_t sz;
1392
1393 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1394 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1395 sz = nr_slots * sizeof(struct hlist_nulls_head);
1396 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1397 get_order(sz));
1398 if (!hash) {
1399 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1400 hash = vzalloc(sz);
1401 }
1402
1403 if (hash && nulls)
1404 for (i = 0; i < nr_slots; i++)
1405 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1406
1407 return hash;
1408 }
1409 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1410
1411 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1412 {
1413 int i, bucket;
1414 unsigned int hashsize, old_size;
1415 struct hlist_nulls_head *hash, *old_hash;
1416 struct nf_conntrack_tuple_hash *h;
1417 struct nf_conn *ct;
1418
1419 if (current->nsproxy->net_ns != &init_net)
1420 return -EOPNOTSUPP;
1421
1422 /* On boot, we can set this without any fancy locking. */
1423 if (!nf_conntrack_htable_size)
1424 return param_set_uint(val, kp);
1425
1426 hashsize = simple_strtoul(val, NULL, 0);
1427 if (!hashsize)
1428 return -EINVAL;
1429
1430 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1431 if (!hash)
1432 return -ENOMEM;
1433
1434 /* Lookups in the old hash might happen in parallel, which means we
1435 * might get false negatives during connection lookup. New connections
1436 * created because of a false negative won't make it into the hash
1437 * though since that required taking the lock.
1438 */
1439 spin_lock_bh(&nf_conntrack_lock);
1440 for (i = 0; i < init_net.ct.htable_size; i++) {
1441 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1442 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1443 struct nf_conntrack_tuple_hash, hnnode);
1444 ct = nf_ct_tuplehash_to_ctrack(h);
1445 hlist_nulls_del_rcu(&h->hnnode);
1446 bucket = __hash_conntrack(&h->tuple, nf_ct_zone(ct),
1447 hashsize);
1448 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1449 }
1450 }
1451 old_size = init_net.ct.htable_size;
1452 old_hash = init_net.ct.hash;
1453
1454 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1455 init_net.ct.hash = hash;
1456 spin_unlock_bh(&nf_conntrack_lock);
1457
1458 nf_ct_free_hashtable(old_hash, old_size);
1459 return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1462
1463 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1464 &nf_conntrack_htable_size, 0600);
1465
1466 void nf_ct_untracked_status_or(unsigned long bits)
1467 {
1468 int cpu;
1469
1470 for_each_possible_cpu(cpu)
1471 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1472 }
1473 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1474
1475 static int nf_conntrack_init_init_net(void)
1476 {
1477 int max_factor = 8;
1478 int ret, cpu;
1479
1480 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1481 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1482 if (!nf_conntrack_htable_size) {
1483 nf_conntrack_htable_size
1484 = (((totalram_pages << PAGE_SHIFT) / 16384)
1485 / sizeof(struct hlist_head));
1486 if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1487 nf_conntrack_htable_size = 16384;
1488 if (nf_conntrack_htable_size < 32)
1489 nf_conntrack_htable_size = 32;
1490
1491 /* Use a max. factor of four by default to get the same max as
1492 * with the old struct list_heads. When a table size is given
1493 * we use the old value of 8 to avoid reducing the max.
1494 * entries. */
1495 max_factor = 4;
1496 }
1497 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1498
1499 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1500 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1501 nf_conntrack_max);
1502
1503 ret = nf_conntrack_proto_init();
1504 if (ret < 0)
1505 goto err_proto;
1506
1507 ret = nf_conntrack_helper_init();
1508 if (ret < 0)
1509 goto err_helper;
1510
1511 #ifdef CONFIG_NF_CONNTRACK_ZONES
1512 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1513 if (ret < 0)
1514 goto err_extend;
1515 #endif
1516 /* Set up fake conntrack: to never be deleted, not in any hashes */
1517 for_each_possible_cpu(cpu) {
1518 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1519 write_pnet(&ct->ct_net, &init_net);
1520 atomic_set(&ct->ct_general.use, 1);
1521 }
1522 /* - and look it like as a confirmed connection */
1523 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1524 return 0;
1525
1526 #ifdef CONFIG_NF_CONNTRACK_ZONES
1527 err_extend:
1528 nf_conntrack_helper_fini();
1529 #endif
1530 err_helper:
1531 nf_conntrack_proto_fini();
1532 err_proto:
1533 return ret;
1534 }
1535
1536 /*
1537 * We need to use special "null" values, not used in hash table
1538 */
1539 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1540 #define DYING_NULLS_VAL ((1<<30)+1)
1541
1542 static int nf_conntrack_init_net(struct net *net)
1543 {
1544 int ret;
1545
1546 atomic_set(&net->ct.count, 0);
1547 INIT_HLIST_NULLS_HEAD(&net->ct.unconfirmed, UNCONFIRMED_NULLS_VAL);
1548 INIT_HLIST_NULLS_HEAD(&net->ct.dying, DYING_NULLS_VAL);
1549 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1550 if (!net->ct.stat) {
1551 ret = -ENOMEM;
1552 goto err_stat;
1553 }
1554
1555 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1556 if (!net->ct.slabname) {
1557 ret = -ENOMEM;
1558 goto err_slabname;
1559 }
1560
1561 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1562 sizeof(struct nf_conn), 0,
1563 SLAB_DESTROY_BY_RCU, NULL);
1564 if (!net->ct.nf_conntrack_cachep) {
1565 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1566 ret = -ENOMEM;
1567 goto err_cache;
1568 }
1569
1570 net->ct.htable_size = nf_conntrack_htable_size;
1571 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1572 if (!net->ct.hash) {
1573 ret = -ENOMEM;
1574 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1575 goto err_hash;
1576 }
1577 ret = nf_conntrack_expect_init(net);
1578 if (ret < 0)
1579 goto err_expect;
1580 ret = nf_conntrack_acct_init(net);
1581 if (ret < 0)
1582 goto err_acct;
1583 ret = nf_conntrack_tstamp_init(net);
1584 if (ret < 0)
1585 goto err_tstamp;
1586 ret = nf_conntrack_ecache_init(net);
1587 if (ret < 0)
1588 goto err_ecache;
1589 ret = nf_conntrack_timeout_init(net);
1590 if (ret < 0)
1591 goto err_timeout;
1592
1593 return 0;
1594
1595 err_timeout:
1596 nf_conntrack_ecache_fini(net);
1597 err_ecache:
1598 nf_conntrack_tstamp_fini(net);
1599 err_tstamp:
1600 nf_conntrack_acct_fini(net);
1601 err_acct:
1602 nf_conntrack_expect_fini(net);
1603 err_expect:
1604 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1605 err_hash:
1606 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1607 err_cache:
1608 kfree(net->ct.slabname);
1609 err_slabname:
1610 free_percpu(net->ct.stat);
1611 err_stat:
1612 return ret;
1613 }
1614
1615 s16 (*nf_ct_nat_offset)(const struct nf_conn *ct,
1616 enum ip_conntrack_dir dir,
1617 u32 seq);
1618 EXPORT_SYMBOL_GPL(nf_ct_nat_offset);
1619
1620 int nf_conntrack_init(struct net *net)
1621 {
1622 int ret;
1623
1624 if (net_eq(net, &init_net)) {
1625 ret = nf_conntrack_init_init_net();
1626 if (ret < 0)
1627 goto out_init_net;
1628 }
1629 ret = nf_conntrack_init_net(net);
1630 if (ret < 0)
1631 goto out_net;
1632
1633 if (net_eq(net, &init_net)) {
1634 /* For use by REJECT target */
1635 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1636 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1637
1638 /* Howto get NAT offsets */
1639 RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
1640 }
1641 return 0;
1642
1643 out_net:
1644 if (net_eq(net, &init_net))
1645 nf_conntrack_cleanup_init_net();
1646 out_init_net:
1647 return ret;
1648 }
This page took 0.087498 seconds and 6 git commands to generate.