Merge remote-tracking branches 'regulator/topic/discharge', 'regulator/topic/fan53555...
[deliverable/linux.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/types.h>
16 #include <linux/netfilter.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/skbuff.h>
20 #include <linux/proc_fs.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/random.h>
25 #include <linux/jhash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l3proto.h>
39 #include <net/netfilter/nf_conntrack_l4proto.h>
40 #include <net/netfilter/nf_conntrack_expect.h>
41 #include <net/netfilter/nf_conntrack_helper.h>
42 #include <net/netfilter/nf_conntrack_seqadj.h>
43 #include <net/netfilter/nf_conntrack_core.h>
44 #include <net/netfilter/nf_conntrack_extend.h>
45 #include <net/netfilter/nf_conntrack_acct.h>
46 #include <net/netfilter/nf_conntrack_ecache.h>
47 #include <net/netfilter/nf_conntrack_zones.h>
48 #include <net/netfilter/nf_conntrack_timestamp.h>
49 #include <net/netfilter/nf_conntrack_timeout.h>
50 #include <net/netfilter/nf_conntrack_labels.h>
51 #include <net/netfilter/nf_conntrack_synproxy.h>
52 #include <net/netfilter/nf_nat.h>
53 #include <net/netfilter/nf_nat_core.h>
54 #include <net/netfilter/nf_nat_helper.h>
55
56 #define NF_CONNTRACK_VERSION "0.5.0"
57
58 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
59 enum nf_nat_manip_type manip,
60 const struct nlattr *attr) __read_mostly;
61 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
62
63 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
64 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
65
66 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
67 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
68
69 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
70 static __read_mostly bool nf_conntrack_locks_all;
71
72 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
73 {
74 spin_lock(lock);
75 while (unlikely(nf_conntrack_locks_all)) {
76 spin_unlock(lock);
77 spin_lock(&nf_conntrack_locks_all_lock);
78 spin_unlock(&nf_conntrack_locks_all_lock);
79 spin_lock(lock);
80 }
81 }
82 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
83
84 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
85 {
86 h1 %= CONNTRACK_LOCKS;
87 h2 %= CONNTRACK_LOCKS;
88 spin_unlock(&nf_conntrack_locks[h1]);
89 if (h1 != h2)
90 spin_unlock(&nf_conntrack_locks[h2]);
91 }
92
93 /* return true if we need to recompute hashes (in case hash table was resized) */
94 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
95 unsigned int h2, unsigned int sequence)
96 {
97 h1 %= CONNTRACK_LOCKS;
98 h2 %= CONNTRACK_LOCKS;
99 if (h1 <= h2) {
100 nf_conntrack_lock(&nf_conntrack_locks[h1]);
101 if (h1 != h2)
102 spin_lock_nested(&nf_conntrack_locks[h2],
103 SINGLE_DEPTH_NESTING);
104 } else {
105 nf_conntrack_lock(&nf_conntrack_locks[h2]);
106 spin_lock_nested(&nf_conntrack_locks[h1],
107 SINGLE_DEPTH_NESTING);
108 }
109 if (read_seqcount_retry(&net->ct.generation, sequence)) {
110 nf_conntrack_double_unlock(h1, h2);
111 return true;
112 }
113 return false;
114 }
115
116 static void nf_conntrack_all_lock(void)
117 {
118 int i;
119
120 spin_lock(&nf_conntrack_locks_all_lock);
121 nf_conntrack_locks_all = true;
122
123 for (i = 0; i < CONNTRACK_LOCKS; i++) {
124 spin_lock(&nf_conntrack_locks[i]);
125 spin_unlock(&nf_conntrack_locks[i]);
126 }
127 }
128
129 static void nf_conntrack_all_unlock(void)
130 {
131 nf_conntrack_locks_all = false;
132 spin_unlock(&nf_conntrack_locks_all_lock);
133 }
134
135 unsigned int nf_conntrack_htable_size __read_mostly;
136 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
137
138 unsigned int nf_conntrack_max __read_mostly;
139 EXPORT_SYMBOL_GPL(nf_conntrack_max);
140
141 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
142 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
143
144 unsigned int nf_conntrack_hash_rnd __read_mostly;
145 EXPORT_SYMBOL_GPL(nf_conntrack_hash_rnd);
146
147 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple)
148 {
149 unsigned int n;
150
151 /* The direction must be ignored, so we hash everything up to the
152 * destination ports (which is a multiple of 4) and treat the last
153 * three bytes manually.
154 */
155 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
156 return jhash2((u32 *)tuple, n, nf_conntrack_hash_rnd ^
157 (((__force __u16)tuple->dst.u.all << 16) |
158 tuple->dst.protonum));
159 }
160
161 static u32 __hash_bucket(u32 hash, unsigned int size)
162 {
163 return reciprocal_scale(hash, size);
164 }
165
166 static u32 hash_bucket(u32 hash, const struct net *net)
167 {
168 return __hash_bucket(hash, net->ct.htable_size);
169 }
170
171 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
172 unsigned int size)
173 {
174 return __hash_bucket(hash_conntrack_raw(tuple), size);
175 }
176
177 static inline u_int32_t hash_conntrack(const struct net *net,
178 const struct nf_conntrack_tuple *tuple)
179 {
180 return __hash_conntrack(tuple, net->ct.htable_size);
181 }
182
183 bool
184 nf_ct_get_tuple(const struct sk_buff *skb,
185 unsigned int nhoff,
186 unsigned int dataoff,
187 u_int16_t l3num,
188 u_int8_t protonum,
189 struct net *net,
190 struct nf_conntrack_tuple *tuple,
191 const struct nf_conntrack_l3proto *l3proto,
192 const struct nf_conntrack_l4proto *l4proto)
193 {
194 memset(tuple, 0, sizeof(*tuple));
195
196 tuple->src.l3num = l3num;
197 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
198 return false;
199
200 tuple->dst.protonum = protonum;
201 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
202
203 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
204 }
205 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
206
207 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
208 u_int16_t l3num,
209 struct net *net, struct nf_conntrack_tuple *tuple)
210 {
211 struct nf_conntrack_l3proto *l3proto;
212 struct nf_conntrack_l4proto *l4proto;
213 unsigned int protoff;
214 u_int8_t protonum;
215 int ret;
216
217 rcu_read_lock();
218
219 l3proto = __nf_ct_l3proto_find(l3num);
220 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
221 if (ret != NF_ACCEPT) {
222 rcu_read_unlock();
223 return false;
224 }
225
226 l4proto = __nf_ct_l4proto_find(l3num, protonum);
227
228 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
229 l3proto, l4proto);
230
231 rcu_read_unlock();
232 return ret;
233 }
234 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
235
236 bool
237 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
238 const struct nf_conntrack_tuple *orig,
239 const struct nf_conntrack_l3proto *l3proto,
240 const struct nf_conntrack_l4proto *l4proto)
241 {
242 memset(inverse, 0, sizeof(*inverse));
243
244 inverse->src.l3num = orig->src.l3num;
245 if (l3proto->invert_tuple(inverse, orig) == 0)
246 return false;
247
248 inverse->dst.dir = !orig->dst.dir;
249
250 inverse->dst.protonum = orig->dst.protonum;
251 return l4proto->invert_tuple(inverse, orig);
252 }
253 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
254
255 static void
256 clean_from_lists(struct nf_conn *ct)
257 {
258 pr_debug("clean_from_lists(%p)\n", ct);
259 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
260 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
261
262 /* Destroy all pending expectations */
263 nf_ct_remove_expectations(ct);
264 }
265
266 /* must be called with local_bh_disable */
267 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
268 {
269 struct ct_pcpu *pcpu;
270
271 /* add this conntrack to the (per cpu) dying list */
272 ct->cpu = smp_processor_id();
273 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
274
275 spin_lock(&pcpu->lock);
276 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
277 &pcpu->dying);
278 spin_unlock(&pcpu->lock);
279 }
280
281 /* must be called with local_bh_disable */
282 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
283 {
284 struct ct_pcpu *pcpu;
285
286 /* add this conntrack to the (per cpu) unconfirmed list */
287 ct->cpu = smp_processor_id();
288 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
289
290 spin_lock(&pcpu->lock);
291 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
292 &pcpu->unconfirmed);
293 spin_unlock(&pcpu->lock);
294 }
295
296 /* must be called with local_bh_disable */
297 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
298 {
299 struct ct_pcpu *pcpu;
300
301 /* We overload first tuple to link into unconfirmed or dying list.*/
302 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
303
304 spin_lock(&pcpu->lock);
305 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
306 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
307 spin_unlock(&pcpu->lock);
308 }
309
310 /* Released via destroy_conntrack() */
311 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
312 const struct nf_conntrack_zone *zone,
313 gfp_t flags)
314 {
315 struct nf_conn *tmpl;
316
317 tmpl = kzalloc(sizeof(*tmpl), flags);
318 if (tmpl == NULL)
319 return NULL;
320
321 tmpl->status = IPS_TEMPLATE;
322 write_pnet(&tmpl->ct_net, net);
323
324 if (nf_ct_zone_add(tmpl, flags, zone) < 0)
325 goto out_free;
326
327 atomic_set(&tmpl->ct_general.use, 0);
328
329 return tmpl;
330 out_free:
331 kfree(tmpl);
332 return NULL;
333 }
334 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
335
336 void nf_ct_tmpl_free(struct nf_conn *tmpl)
337 {
338 nf_ct_ext_destroy(tmpl);
339 nf_ct_ext_free(tmpl);
340 kfree(tmpl);
341 }
342 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
343
344 static void
345 destroy_conntrack(struct nf_conntrack *nfct)
346 {
347 struct nf_conn *ct = (struct nf_conn *)nfct;
348 struct net *net = nf_ct_net(ct);
349 struct nf_conntrack_l4proto *l4proto;
350
351 pr_debug("destroy_conntrack(%p)\n", ct);
352 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
353 NF_CT_ASSERT(!timer_pending(&ct->timeout));
354
355 if (unlikely(nf_ct_is_template(ct))) {
356 nf_ct_tmpl_free(ct);
357 return;
358 }
359 rcu_read_lock();
360 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
361 if (l4proto && l4proto->destroy)
362 l4proto->destroy(ct);
363
364 rcu_read_unlock();
365
366 local_bh_disable();
367 /* Expectations will have been removed in clean_from_lists,
368 * except TFTP can create an expectation on the first packet,
369 * before connection is in the list, so we need to clean here,
370 * too.
371 */
372 nf_ct_remove_expectations(ct);
373
374 nf_ct_del_from_dying_or_unconfirmed_list(ct);
375
376 NF_CT_STAT_INC(net, delete);
377 local_bh_enable();
378
379 if (ct->master)
380 nf_ct_put(ct->master);
381
382 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
383 nf_conntrack_free(ct);
384 }
385
386 static void nf_ct_delete_from_lists(struct nf_conn *ct)
387 {
388 struct net *net = nf_ct_net(ct);
389 unsigned int hash, reply_hash;
390 unsigned int sequence;
391
392 nf_ct_helper_destroy(ct);
393
394 local_bh_disable();
395 do {
396 sequence = read_seqcount_begin(&net->ct.generation);
397 hash = hash_conntrack(net,
398 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
399 reply_hash = hash_conntrack(net,
400 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
401 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
402
403 clean_from_lists(ct);
404 nf_conntrack_double_unlock(hash, reply_hash);
405
406 nf_ct_add_to_dying_list(ct);
407
408 NF_CT_STAT_INC(net, delete_list);
409 local_bh_enable();
410 }
411
412 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
413 {
414 struct nf_conn_tstamp *tstamp;
415
416 tstamp = nf_conn_tstamp_find(ct);
417 if (tstamp && tstamp->stop == 0)
418 tstamp->stop = ktime_get_real_ns();
419
420 if (nf_ct_is_dying(ct))
421 goto delete;
422
423 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
424 portid, report) < 0) {
425 /* destroy event was not delivered */
426 nf_ct_delete_from_lists(ct);
427 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
428 return false;
429 }
430
431 nf_conntrack_ecache_work(nf_ct_net(ct));
432 set_bit(IPS_DYING_BIT, &ct->status);
433 delete:
434 nf_ct_delete_from_lists(ct);
435 nf_ct_put(ct);
436 return true;
437 }
438 EXPORT_SYMBOL_GPL(nf_ct_delete);
439
440 static void death_by_timeout(unsigned long ul_conntrack)
441 {
442 nf_ct_delete((struct nf_conn *)ul_conntrack, 0, 0);
443 }
444
445 static inline bool
446 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
447 const struct nf_conntrack_tuple *tuple,
448 const struct nf_conntrack_zone *zone)
449 {
450 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
451
452 /* A conntrack can be recreated with the equal tuple,
453 * so we need to check that the conntrack is confirmed
454 */
455 return nf_ct_tuple_equal(tuple, &h->tuple) &&
456 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
457 nf_ct_is_confirmed(ct);
458 }
459
460 /*
461 * Warning :
462 * - Caller must take a reference on returned object
463 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
464 */
465 static struct nf_conntrack_tuple_hash *
466 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
467 const struct nf_conntrack_tuple *tuple, u32 hash)
468 {
469 struct nf_conntrack_tuple_hash *h;
470 struct hlist_nulls_node *n;
471 unsigned int bucket = hash_bucket(hash, net);
472
473 /* Disable BHs the entire time since we normally need to disable them
474 * at least once for the stats anyway.
475 */
476 local_bh_disable();
477 begin:
478 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
479 if (nf_ct_key_equal(h, tuple, zone)) {
480 NF_CT_STAT_INC(net, found);
481 local_bh_enable();
482 return h;
483 }
484 NF_CT_STAT_INC(net, searched);
485 }
486 /*
487 * if the nulls value we got at the end of this lookup is
488 * not the expected one, we must restart lookup.
489 * We probably met an item that was moved to another chain.
490 */
491 if (get_nulls_value(n) != bucket) {
492 NF_CT_STAT_INC(net, search_restart);
493 goto begin;
494 }
495 local_bh_enable();
496
497 return NULL;
498 }
499
500 /* Find a connection corresponding to a tuple. */
501 static struct nf_conntrack_tuple_hash *
502 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
503 const struct nf_conntrack_tuple *tuple, u32 hash)
504 {
505 struct nf_conntrack_tuple_hash *h;
506 struct nf_conn *ct;
507
508 rcu_read_lock();
509 begin:
510 h = ____nf_conntrack_find(net, zone, tuple, hash);
511 if (h) {
512 ct = nf_ct_tuplehash_to_ctrack(h);
513 if (unlikely(nf_ct_is_dying(ct) ||
514 !atomic_inc_not_zero(&ct->ct_general.use)))
515 h = NULL;
516 else {
517 if (unlikely(!nf_ct_key_equal(h, tuple, zone))) {
518 nf_ct_put(ct);
519 goto begin;
520 }
521 }
522 }
523 rcu_read_unlock();
524
525 return h;
526 }
527
528 struct nf_conntrack_tuple_hash *
529 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
530 const struct nf_conntrack_tuple *tuple)
531 {
532 return __nf_conntrack_find_get(net, zone, tuple,
533 hash_conntrack_raw(tuple));
534 }
535 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
536
537 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
538 unsigned int hash,
539 unsigned int reply_hash)
540 {
541 struct net *net = nf_ct_net(ct);
542
543 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
544 &net->ct.hash[hash]);
545 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
546 &net->ct.hash[reply_hash]);
547 }
548
549 int
550 nf_conntrack_hash_check_insert(struct nf_conn *ct)
551 {
552 const struct nf_conntrack_zone *zone;
553 struct net *net = nf_ct_net(ct);
554 unsigned int hash, reply_hash;
555 struct nf_conntrack_tuple_hash *h;
556 struct hlist_nulls_node *n;
557 unsigned int sequence;
558
559 zone = nf_ct_zone(ct);
560
561 local_bh_disable();
562 do {
563 sequence = read_seqcount_begin(&net->ct.generation);
564 hash = hash_conntrack(net,
565 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
566 reply_hash = hash_conntrack(net,
567 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
568 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
569
570 /* See if there's one in the list already, including reverse */
571 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
572 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
573 &h->tuple) &&
574 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
575 NF_CT_DIRECTION(h)))
576 goto out;
577 hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
578 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
579 &h->tuple) &&
580 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
581 NF_CT_DIRECTION(h)))
582 goto out;
583
584 add_timer(&ct->timeout);
585 smp_wmb();
586 /* The caller holds a reference to this object */
587 atomic_set(&ct->ct_general.use, 2);
588 __nf_conntrack_hash_insert(ct, hash, reply_hash);
589 nf_conntrack_double_unlock(hash, reply_hash);
590 NF_CT_STAT_INC(net, insert);
591 local_bh_enable();
592 return 0;
593
594 out:
595 nf_conntrack_double_unlock(hash, reply_hash);
596 NF_CT_STAT_INC(net, insert_failed);
597 local_bh_enable();
598 return -EEXIST;
599 }
600 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
601
602 /* Confirm a connection given skb; places it in hash table */
603 int
604 __nf_conntrack_confirm(struct sk_buff *skb)
605 {
606 const struct nf_conntrack_zone *zone;
607 unsigned int hash, reply_hash;
608 struct nf_conntrack_tuple_hash *h;
609 struct nf_conn *ct;
610 struct nf_conn_help *help;
611 struct nf_conn_tstamp *tstamp;
612 struct hlist_nulls_node *n;
613 enum ip_conntrack_info ctinfo;
614 struct net *net;
615 unsigned int sequence;
616
617 ct = nf_ct_get(skb, &ctinfo);
618 net = nf_ct_net(ct);
619
620 /* ipt_REJECT uses nf_conntrack_attach to attach related
621 ICMP/TCP RST packets in other direction. Actual packet
622 which created connection will be IP_CT_NEW or for an
623 expected connection, IP_CT_RELATED. */
624 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
625 return NF_ACCEPT;
626
627 zone = nf_ct_zone(ct);
628 local_bh_disable();
629
630 do {
631 sequence = read_seqcount_begin(&net->ct.generation);
632 /* reuse the hash saved before */
633 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
634 hash = hash_bucket(hash, net);
635 reply_hash = hash_conntrack(net,
636 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
637
638 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
639
640 /* We're not in hash table, and we refuse to set up related
641 * connections for unconfirmed conns. But packet copies and
642 * REJECT will give spurious warnings here.
643 */
644 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
645
646 /* No external references means no one else could have
647 * confirmed us.
648 */
649 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
650 pr_debug("Confirming conntrack %p\n", ct);
651 /* We have to check the DYING flag after unlink to prevent
652 * a race against nf_ct_get_next_corpse() possibly called from
653 * user context, else we insert an already 'dead' hash, blocking
654 * further use of that particular connection -JM.
655 */
656 nf_ct_del_from_dying_or_unconfirmed_list(ct);
657
658 if (unlikely(nf_ct_is_dying(ct)))
659 goto out;
660
661 /* See if there's one in the list already, including reverse:
662 NAT could have grabbed it without realizing, since we're
663 not in the hash. If there is, we lost race. */
664 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
665 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
666 &h->tuple) &&
667 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
668 NF_CT_DIRECTION(h)))
669 goto out;
670 hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
671 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
672 &h->tuple) &&
673 nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
674 NF_CT_DIRECTION(h)))
675 goto out;
676
677 /* Timer relative to confirmation time, not original
678 setting time, otherwise we'd get timer wrap in
679 weird delay cases. */
680 ct->timeout.expires += jiffies;
681 add_timer(&ct->timeout);
682 atomic_inc(&ct->ct_general.use);
683 ct->status |= IPS_CONFIRMED;
684
685 /* set conntrack timestamp, if enabled. */
686 tstamp = nf_conn_tstamp_find(ct);
687 if (tstamp) {
688 if (skb->tstamp.tv64 == 0)
689 __net_timestamp(skb);
690
691 tstamp->start = ktime_to_ns(skb->tstamp);
692 }
693 /* Since the lookup is lockless, hash insertion must be done after
694 * starting the timer and setting the CONFIRMED bit. The RCU barriers
695 * guarantee that no other CPU can find the conntrack before the above
696 * stores are visible.
697 */
698 __nf_conntrack_hash_insert(ct, hash, reply_hash);
699 nf_conntrack_double_unlock(hash, reply_hash);
700 NF_CT_STAT_INC(net, insert);
701 local_bh_enable();
702
703 help = nfct_help(ct);
704 if (help && help->helper)
705 nf_conntrack_event_cache(IPCT_HELPER, ct);
706
707 nf_conntrack_event_cache(master_ct(ct) ?
708 IPCT_RELATED : IPCT_NEW, ct);
709 return NF_ACCEPT;
710
711 out:
712 nf_ct_add_to_dying_list(ct);
713 nf_conntrack_double_unlock(hash, reply_hash);
714 NF_CT_STAT_INC(net, insert_failed);
715 local_bh_enable();
716 return NF_DROP;
717 }
718 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
719
720 /* Returns true if a connection correspondings to the tuple (required
721 for NAT). */
722 int
723 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
724 const struct nf_conn *ignored_conntrack)
725 {
726 struct net *net = nf_ct_net(ignored_conntrack);
727 const struct nf_conntrack_zone *zone;
728 struct nf_conntrack_tuple_hash *h;
729 struct hlist_nulls_node *n;
730 struct nf_conn *ct;
731 unsigned int hash;
732
733 zone = nf_ct_zone(ignored_conntrack);
734 hash = hash_conntrack(net, tuple);
735
736 /* Disable BHs the entire time since we need to disable them at
737 * least once for the stats anyway.
738 */
739 rcu_read_lock_bh();
740 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
741 ct = nf_ct_tuplehash_to_ctrack(h);
742 if (ct != ignored_conntrack &&
743 nf_ct_tuple_equal(tuple, &h->tuple) &&
744 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h))) {
745 NF_CT_STAT_INC(net, found);
746 rcu_read_unlock_bh();
747 return 1;
748 }
749 NF_CT_STAT_INC(net, searched);
750 }
751 rcu_read_unlock_bh();
752
753 return 0;
754 }
755 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
756
757 #define NF_CT_EVICTION_RANGE 8
758
759 /* There's a small race here where we may free a just-assured
760 connection. Too bad: we're in trouble anyway. */
761 static noinline int early_drop(struct net *net, unsigned int _hash)
762 {
763 /* Use oldest entry, which is roughly LRU */
764 struct nf_conntrack_tuple_hash *h;
765 struct nf_conn *ct = NULL, *tmp;
766 struct hlist_nulls_node *n;
767 unsigned int i = 0, cnt = 0;
768 int dropped = 0;
769 unsigned int hash, sequence;
770 spinlock_t *lockp;
771
772 local_bh_disable();
773 restart:
774 sequence = read_seqcount_begin(&net->ct.generation);
775 hash = hash_bucket(_hash, net);
776 for (; i < net->ct.htable_size; i++) {
777 lockp = &nf_conntrack_locks[hash % CONNTRACK_LOCKS];
778 nf_conntrack_lock(lockp);
779 if (read_seqcount_retry(&net->ct.generation, sequence)) {
780 spin_unlock(lockp);
781 goto restart;
782 }
783 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
784 hnnode) {
785 tmp = nf_ct_tuplehash_to_ctrack(h);
786 if (!test_bit(IPS_ASSURED_BIT, &tmp->status) &&
787 !nf_ct_is_dying(tmp) &&
788 atomic_inc_not_zero(&tmp->ct_general.use)) {
789 ct = tmp;
790 break;
791 }
792 cnt++;
793 }
794
795 hash = (hash + 1) % net->ct.htable_size;
796 spin_unlock(lockp);
797
798 if (ct || cnt >= NF_CT_EVICTION_RANGE)
799 break;
800
801 }
802 local_bh_enable();
803
804 if (!ct)
805 return dropped;
806
807 if (del_timer(&ct->timeout)) {
808 if (nf_ct_delete(ct, 0, 0)) {
809 dropped = 1;
810 NF_CT_STAT_INC_ATOMIC(net, early_drop);
811 }
812 }
813 nf_ct_put(ct);
814 return dropped;
815 }
816
817 void init_nf_conntrack_hash_rnd(void)
818 {
819 unsigned int rand;
820
821 /*
822 * Why not initialize nf_conntrack_rnd in a "init()" function ?
823 * Because there isn't enough entropy when system initializing,
824 * and we initialize it as late as possible.
825 */
826 do {
827 get_random_bytes(&rand, sizeof(rand));
828 } while (!rand);
829 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
830 }
831
832 static struct nf_conn *
833 __nf_conntrack_alloc(struct net *net,
834 const struct nf_conntrack_zone *zone,
835 const struct nf_conntrack_tuple *orig,
836 const struct nf_conntrack_tuple *repl,
837 gfp_t gfp, u32 hash)
838 {
839 struct nf_conn *ct;
840
841 if (unlikely(!nf_conntrack_hash_rnd)) {
842 init_nf_conntrack_hash_rnd();
843 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
844 hash = hash_conntrack_raw(orig);
845 }
846
847 /* We don't want any race condition at early drop stage */
848 atomic_inc(&net->ct.count);
849
850 if (nf_conntrack_max &&
851 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
852 if (!early_drop(net, hash)) {
853 atomic_dec(&net->ct.count);
854 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
855 return ERR_PTR(-ENOMEM);
856 }
857 }
858
859 /*
860 * Do not use kmem_cache_zalloc(), as this cache uses
861 * SLAB_DESTROY_BY_RCU.
862 */
863 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
864 if (ct == NULL)
865 goto out;
866
867 spin_lock_init(&ct->lock);
868 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
869 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
870 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
871 /* save hash for reusing when confirming */
872 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
873 ct->status = 0;
874 /* Don't set timer yet: wait for confirmation */
875 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
876 write_pnet(&ct->ct_net, net);
877 memset(&ct->__nfct_init_offset[0], 0,
878 offsetof(struct nf_conn, proto) -
879 offsetof(struct nf_conn, __nfct_init_offset[0]));
880
881 if (zone && nf_ct_zone_add(ct, GFP_ATOMIC, zone) < 0)
882 goto out_free;
883
884 /* Because we use RCU lookups, we set ct_general.use to zero before
885 * this is inserted in any list.
886 */
887 atomic_set(&ct->ct_general.use, 0);
888 return ct;
889 out_free:
890 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
891 out:
892 atomic_dec(&net->ct.count);
893 return ERR_PTR(-ENOMEM);
894 }
895
896 struct nf_conn *nf_conntrack_alloc(struct net *net,
897 const struct nf_conntrack_zone *zone,
898 const struct nf_conntrack_tuple *orig,
899 const struct nf_conntrack_tuple *repl,
900 gfp_t gfp)
901 {
902 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
903 }
904 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
905
906 void nf_conntrack_free(struct nf_conn *ct)
907 {
908 struct net *net = nf_ct_net(ct);
909
910 /* A freed object has refcnt == 0, that's
911 * the golden rule for SLAB_DESTROY_BY_RCU
912 */
913 NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
914
915 nf_ct_ext_destroy(ct);
916 nf_ct_ext_free(ct);
917 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
918 smp_mb__before_atomic();
919 atomic_dec(&net->ct.count);
920 }
921 EXPORT_SYMBOL_GPL(nf_conntrack_free);
922
923
924 /* Allocate a new conntrack: we return -ENOMEM if classification
925 failed due to stress. Otherwise it really is unclassifiable. */
926 static struct nf_conntrack_tuple_hash *
927 init_conntrack(struct net *net, struct nf_conn *tmpl,
928 const struct nf_conntrack_tuple *tuple,
929 struct nf_conntrack_l3proto *l3proto,
930 struct nf_conntrack_l4proto *l4proto,
931 struct sk_buff *skb,
932 unsigned int dataoff, u32 hash)
933 {
934 struct nf_conn *ct;
935 struct nf_conn_help *help;
936 struct nf_conntrack_tuple repl_tuple;
937 struct nf_conntrack_ecache *ecache;
938 struct nf_conntrack_expect *exp = NULL;
939 const struct nf_conntrack_zone *zone;
940 struct nf_conn_timeout *timeout_ext;
941 struct nf_conntrack_zone tmp;
942 unsigned int *timeouts;
943
944 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
945 pr_debug("Can't invert tuple.\n");
946 return NULL;
947 }
948
949 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
950 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
951 hash);
952 if (IS_ERR(ct))
953 return (struct nf_conntrack_tuple_hash *)ct;
954
955 if (tmpl && nfct_synproxy(tmpl)) {
956 nfct_seqadj_ext_add(ct);
957 nfct_synproxy_ext_add(ct);
958 }
959
960 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
961 if (timeout_ext) {
962 timeouts = nf_ct_timeout_data(timeout_ext);
963 if (unlikely(!timeouts))
964 timeouts = l4proto->get_timeouts(net);
965 } else {
966 timeouts = l4proto->get_timeouts(net);
967 }
968
969 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
970 nf_conntrack_free(ct);
971 pr_debug("init conntrack: can't track with proto module\n");
972 return NULL;
973 }
974
975 if (timeout_ext)
976 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
977 GFP_ATOMIC);
978
979 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
980 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
981 nf_ct_labels_ext_add(ct);
982
983 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
984 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
985 ecache ? ecache->expmask : 0,
986 GFP_ATOMIC);
987
988 local_bh_disable();
989 if (net->ct.expect_count) {
990 spin_lock(&nf_conntrack_expect_lock);
991 exp = nf_ct_find_expectation(net, zone, tuple);
992 if (exp) {
993 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
994 ct, exp);
995 /* Welcome, Mr. Bond. We've been expecting you... */
996 __set_bit(IPS_EXPECTED_BIT, &ct->status);
997 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
998 ct->master = exp->master;
999 if (exp->helper) {
1000 help = nf_ct_helper_ext_add(ct, exp->helper,
1001 GFP_ATOMIC);
1002 if (help)
1003 rcu_assign_pointer(help->helper, exp->helper);
1004 }
1005
1006 #ifdef CONFIG_NF_CONNTRACK_MARK
1007 ct->mark = exp->master->mark;
1008 #endif
1009 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1010 ct->secmark = exp->master->secmark;
1011 #endif
1012 NF_CT_STAT_INC(net, expect_new);
1013 }
1014 spin_unlock(&nf_conntrack_expect_lock);
1015 }
1016 if (!exp) {
1017 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1018 NF_CT_STAT_INC(net, new);
1019 }
1020
1021 /* Now it is inserted into the unconfirmed list, bump refcount */
1022 nf_conntrack_get(&ct->ct_general);
1023 nf_ct_add_to_unconfirmed_list(ct);
1024
1025 local_bh_enable();
1026
1027 if (exp) {
1028 if (exp->expectfn)
1029 exp->expectfn(ct, exp);
1030 nf_ct_expect_put(exp);
1031 }
1032
1033 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1034 }
1035
1036 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1037 static inline struct nf_conn *
1038 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1039 struct sk_buff *skb,
1040 unsigned int dataoff,
1041 u_int16_t l3num,
1042 u_int8_t protonum,
1043 struct nf_conntrack_l3proto *l3proto,
1044 struct nf_conntrack_l4proto *l4proto,
1045 int *set_reply,
1046 enum ip_conntrack_info *ctinfo)
1047 {
1048 const struct nf_conntrack_zone *zone;
1049 struct nf_conntrack_tuple tuple;
1050 struct nf_conntrack_tuple_hash *h;
1051 struct nf_conntrack_zone tmp;
1052 struct nf_conn *ct;
1053 u32 hash;
1054
1055 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1056 dataoff, l3num, protonum, net, &tuple, l3proto,
1057 l4proto)) {
1058 pr_debug("resolve_normal_ct: Can't get tuple\n");
1059 return NULL;
1060 }
1061
1062 /* look for tuple match */
1063 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1064 hash = hash_conntrack_raw(&tuple);
1065 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1066 if (!h) {
1067 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1068 skb, dataoff, hash);
1069 if (!h)
1070 return NULL;
1071 if (IS_ERR(h))
1072 return (void *)h;
1073 }
1074 ct = nf_ct_tuplehash_to_ctrack(h);
1075
1076 /* It exists; we have (non-exclusive) reference. */
1077 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1078 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1079 /* Please set reply bit if this packet OK */
1080 *set_reply = 1;
1081 } else {
1082 /* Once we've had two way comms, always ESTABLISHED. */
1083 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1084 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
1085 *ctinfo = IP_CT_ESTABLISHED;
1086 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1087 pr_debug("nf_conntrack_in: related packet for %p\n",
1088 ct);
1089 *ctinfo = IP_CT_RELATED;
1090 } else {
1091 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
1092 *ctinfo = IP_CT_NEW;
1093 }
1094 *set_reply = 0;
1095 }
1096 skb->nfct = &ct->ct_general;
1097 skb->nfctinfo = *ctinfo;
1098 return ct;
1099 }
1100
1101 unsigned int
1102 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1103 struct sk_buff *skb)
1104 {
1105 struct nf_conn *ct, *tmpl = NULL;
1106 enum ip_conntrack_info ctinfo;
1107 struct nf_conntrack_l3proto *l3proto;
1108 struct nf_conntrack_l4proto *l4proto;
1109 unsigned int *timeouts;
1110 unsigned int dataoff;
1111 u_int8_t protonum;
1112 int set_reply = 0;
1113 int ret;
1114
1115 if (skb->nfct) {
1116 /* Previously seen (loopback or untracked)? Ignore. */
1117 tmpl = (struct nf_conn *)skb->nfct;
1118 if (!nf_ct_is_template(tmpl)) {
1119 NF_CT_STAT_INC_ATOMIC(net, ignore);
1120 return NF_ACCEPT;
1121 }
1122 skb->nfct = NULL;
1123 }
1124
1125 /* rcu_read_lock()ed by nf_hook_slow */
1126 l3proto = __nf_ct_l3proto_find(pf);
1127 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1128 &dataoff, &protonum);
1129 if (ret <= 0) {
1130 pr_debug("not prepared to track yet or error occurred\n");
1131 NF_CT_STAT_INC_ATOMIC(net, error);
1132 NF_CT_STAT_INC_ATOMIC(net, invalid);
1133 ret = -ret;
1134 goto out;
1135 }
1136
1137 l4proto = __nf_ct_l4proto_find(pf, protonum);
1138
1139 /* It may be an special packet, error, unclean...
1140 * inverse of the return code tells to the netfilter
1141 * core what to do with the packet. */
1142 if (l4proto->error != NULL) {
1143 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1144 pf, hooknum);
1145 if (ret <= 0) {
1146 NF_CT_STAT_INC_ATOMIC(net, error);
1147 NF_CT_STAT_INC_ATOMIC(net, invalid);
1148 ret = -ret;
1149 goto out;
1150 }
1151 /* ICMP[v6] protocol trackers may assign one conntrack. */
1152 if (skb->nfct)
1153 goto out;
1154 }
1155
1156 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1157 l3proto, l4proto, &set_reply, &ctinfo);
1158 if (!ct) {
1159 /* Not valid part of a connection */
1160 NF_CT_STAT_INC_ATOMIC(net, invalid);
1161 ret = NF_ACCEPT;
1162 goto out;
1163 }
1164
1165 if (IS_ERR(ct)) {
1166 /* Too stressed to deal. */
1167 NF_CT_STAT_INC_ATOMIC(net, drop);
1168 ret = NF_DROP;
1169 goto out;
1170 }
1171
1172 NF_CT_ASSERT(skb->nfct);
1173
1174 /* Decide what timeout policy we want to apply to this flow. */
1175 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1176
1177 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1178 if (ret <= 0) {
1179 /* Invalid: inverse of the return code tells
1180 * the netfilter core what to do */
1181 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1182 nf_conntrack_put(skb->nfct);
1183 skb->nfct = NULL;
1184 NF_CT_STAT_INC_ATOMIC(net, invalid);
1185 if (ret == -NF_DROP)
1186 NF_CT_STAT_INC_ATOMIC(net, drop);
1187 ret = -ret;
1188 goto out;
1189 }
1190
1191 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1192 nf_conntrack_event_cache(IPCT_REPLY, ct);
1193 out:
1194 if (tmpl) {
1195 /* Special case: we have to repeat this hook, assign the
1196 * template again to this packet. We assume that this packet
1197 * has no conntrack assigned. This is used by nf_ct_tcp. */
1198 if (ret == NF_REPEAT)
1199 skb->nfct = (struct nf_conntrack *)tmpl;
1200 else
1201 nf_ct_put(tmpl);
1202 }
1203
1204 return ret;
1205 }
1206 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1207
1208 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1209 const struct nf_conntrack_tuple *orig)
1210 {
1211 bool ret;
1212
1213 rcu_read_lock();
1214 ret = nf_ct_invert_tuple(inverse, orig,
1215 __nf_ct_l3proto_find(orig->src.l3num),
1216 __nf_ct_l4proto_find(orig->src.l3num,
1217 orig->dst.protonum));
1218 rcu_read_unlock();
1219 return ret;
1220 }
1221 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1222
1223 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1224 implicitly racy: see __nf_conntrack_confirm */
1225 void nf_conntrack_alter_reply(struct nf_conn *ct,
1226 const struct nf_conntrack_tuple *newreply)
1227 {
1228 struct nf_conn_help *help = nfct_help(ct);
1229
1230 /* Should be unconfirmed, so not in hash table yet */
1231 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1232
1233 pr_debug("Altering reply tuple of %p to ", ct);
1234 nf_ct_dump_tuple(newreply);
1235
1236 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1237 if (ct->master || (help && !hlist_empty(&help->expectations)))
1238 return;
1239
1240 rcu_read_lock();
1241 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1242 rcu_read_unlock();
1243 }
1244 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1245
1246 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1247 void __nf_ct_refresh_acct(struct nf_conn *ct,
1248 enum ip_conntrack_info ctinfo,
1249 const struct sk_buff *skb,
1250 unsigned long extra_jiffies,
1251 int do_acct)
1252 {
1253 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1254 NF_CT_ASSERT(skb);
1255
1256 /* Only update if this is not a fixed timeout */
1257 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1258 goto acct;
1259
1260 /* If not in hash table, timer will not be active yet */
1261 if (!nf_ct_is_confirmed(ct)) {
1262 ct->timeout.expires = extra_jiffies;
1263 } else {
1264 unsigned long newtime = jiffies + extra_jiffies;
1265
1266 /* Only update the timeout if the new timeout is at least
1267 HZ jiffies from the old timeout. Need del_timer for race
1268 avoidance (may already be dying). */
1269 if (newtime - ct->timeout.expires >= HZ)
1270 mod_timer_pending(&ct->timeout, newtime);
1271 }
1272
1273 acct:
1274 if (do_acct) {
1275 struct nf_conn_acct *acct;
1276
1277 acct = nf_conn_acct_find(ct);
1278 if (acct) {
1279 struct nf_conn_counter *counter = acct->counter;
1280
1281 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
1282 atomic64_add(skb->len, &counter[CTINFO2DIR(ctinfo)].bytes);
1283 }
1284 }
1285 }
1286 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1287
1288 bool __nf_ct_kill_acct(struct nf_conn *ct,
1289 enum ip_conntrack_info ctinfo,
1290 const struct sk_buff *skb,
1291 int do_acct)
1292 {
1293 if (do_acct) {
1294 struct nf_conn_acct *acct;
1295
1296 acct = nf_conn_acct_find(ct);
1297 if (acct) {
1298 struct nf_conn_counter *counter = acct->counter;
1299
1300 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
1301 atomic64_add(skb->len - skb_network_offset(skb),
1302 &counter[CTINFO2DIR(ctinfo)].bytes);
1303 }
1304 }
1305
1306 if (del_timer(&ct->timeout)) {
1307 ct->timeout.function((unsigned long)ct);
1308 return true;
1309 }
1310 return false;
1311 }
1312 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1313
1314 #ifdef CONFIG_NF_CONNTRACK_ZONES
1315 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1316 .len = sizeof(struct nf_conntrack_zone),
1317 .align = __alignof__(struct nf_conntrack_zone),
1318 .id = NF_CT_EXT_ZONE,
1319 };
1320 #endif
1321
1322 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1323
1324 #include <linux/netfilter/nfnetlink.h>
1325 #include <linux/netfilter/nfnetlink_conntrack.h>
1326 #include <linux/mutex.h>
1327
1328 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1329 * in ip_conntrack_core, since we don't want the protocols to autoload
1330 * or depend on ctnetlink */
1331 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1332 const struct nf_conntrack_tuple *tuple)
1333 {
1334 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1335 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1336 goto nla_put_failure;
1337 return 0;
1338
1339 nla_put_failure:
1340 return -1;
1341 }
1342 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1343
1344 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1345 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1346 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1347 };
1348 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1349
1350 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1351 struct nf_conntrack_tuple *t)
1352 {
1353 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1354 return -EINVAL;
1355
1356 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1357 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1358
1359 return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1362
1363 int nf_ct_port_nlattr_tuple_size(void)
1364 {
1365 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1366 }
1367 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1368 #endif
1369
1370 /* Used by ipt_REJECT and ip6t_REJECT. */
1371 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1372 {
1373 struct nf_conn *ct;
1374 enum ip_conntrack_info ctinfo;
1375
1376 /* This ICMP is in reverse direction to the packet which caused it */
1377 ct = nf_ct_get(skb, &ctinfo);
1378 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1379 ctinfo = IP_CT_RELATED_REPLY;
1380 else
1381 ctinfo = IP_CT_RELATED;
1382
1383 /* Attach to new skbuff, and increment count */
1384 nskb->nfct = &ct->ct_general;
1385 nskb->nfctinfo = ctinfo;
1386 nf_conntrack_get(nskb->nfct);
1387 }
1388
1389 /* Bring out ya dead! */
1390 static struct nf_conn *
1391 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1392 void *data, unsigned int *bucket)
1393 {
1394 struct nf_conntrack_tuple_hash *h;
1395 struct nf_conn *ct;
1396 struct hlist_nulls_node *n;
1397 int cpu;
1398 spinlock_t *lockp;
1399
1400 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1401 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1402 local_bh_disable();
1403 nf_conntrack_lock(lockp);
1404 if (*bucket < net->ct.htable_size) {
1405 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1406 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1407 continue;
1408 ct = nf_ct_tuplehash_to_ctrack(h);
1409 if (iter(ct, data))
1410 goto found;
1411 }
1412 }
1413 spin_unlock(lockp);
1414 local_bh_enable();
1415 cond_resched();
1416 }
1417
1418 for_each_possible_cpu(cpu) {
1419 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1420
1421 spin_lock_bh(&pcpu->lock);
1422 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1423 ct = nf_ct_tuplehash_to_ctrack(h);
1424 if (iter(ct, data))
1425 set_bit(IPS_DYING_BIT, &ct->status);
1426 }
1427 spin_unlock_bh(&pcpu->lock);
1428 cond_resched();
1429 }
1430 return NULL;
1431 found:
1432 atomic_inc(&ct->ct_general.use);
1433 spin_unlock(lockp);
1434 local_bh_enable();
1435 return ct;
1436 }
1437
1438 void nf_ct_iterate_cleanup(struct net *net,
1439 int (*iter)(struct nf_conn *i, void *data),
1440 void *data, u32 portid, int report)
1441 {
1442 struct nf_conn *ct;
1443 unsigned int bucket = 0;
1444
1445 might_sleep();
1446
1447 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1448 /* Time to push up daises... */
1449 if (del_timer(&ct->timeout))
1450 nf_ct_delete(ct, portid, report);
1451
1452 /* ... else the timer will get him soon. */
1453
1454 nf_ct_put(ct);
1455 cond_resched();
1456 }
1457 }
1458 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1459
1460 static int kill_all(struct nf_conn *i, void *data)
1461 {
1462 return 1;
1463 }
1464
1465 void nf_ct_free_hashtable(void *hash, unsigned int size)
1466 {
1467 if (is_vmalloc_addr(hash))
1468 vfree(hash);
1469 else
1470 free_pages((unsigned long)hash,
1471 get_order(sizeof(struct hlist_head) * size));
1472 }
1473 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1474
1475 static int untrack_refs(void)
1476 {
1477 int cnt = 0, cpu;
1478
1479 for_each_possible_cpu(cpu) {
1480 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1481
1482 cnt += atomic_read(&ct->ct_general.use) - 1;
1483 }
1484 return cnt;
1485 }
1486
1487 void nf_conntrack_cleanup_start(void)
1488 {
1489 RCU_INIT_POINTER(ip_ct_attach, NULL);
1490 }
1491
1492 void nf_conntrack_cleanup_end(void)
1493 {
1494 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1495 while (untrack_refs() > 0)
1496 schedule();
1497
1498 #ifdef CONFIG_NF_CONNTRACK_ZONES
1499 nf_ct_extend_unregister(&nf_ct_zone_extend);
1500 #endif
1501 nf_conntrack_proto_fini();
1502 nf_conntrack_seqadj_fini();
1503 nf_conntrack_labels_fini();
1504 nf_conntrack_helper_fini();
1505 nf_conntrack_timeout_fini();
1506 nf_conntrack_ecache_fini();
1507 nf_conntrack_tstamp_fini();
1508 nf_conntrack_acct_fini();
1509 nf_conntrack_expect_fini();
1510 }
1511
1512 /*
1513 * Mishearing the voices in his head, our hero wonders how he's
1514 * supposed to kill the mall.
1515 */
1516 void nf_conntrack_cleanup_net(struct net *net)
1517 {
1518 LIST_HEAD(single);
1519
1520 list_add(&net->exit_list, &single);
1521 nf_conntrack_cleanup_net_list(&single);
1522 }
1523
1524 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1525 {
1526 int busy;
1527 struct net *net;
1528
1529 /*
1530 * This makes sure all current packets have passed through
1531 * netfilter framework. Roll on, two-stage module
1532 * delete...
1533 */
1534 synchronize_net();
1535 i_see_dead_people:
1536 busy = 0;
1537 list_for_each_entry(net, net_exit_list, exit_list) {
1538 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1539 if (atomic_read(&net->ct.count) != 0)
1540 busy = 1;
1541 }
1542 if (busy) {
1543 schedule();
1544 goto i_see_dead_people;
1545 }
1546
1547 list_for_each_entry(net, net_exit_list, exit_list) {
1548 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1549 nf_conntrack_proto_pernet_fini(net);
1550 nf_conntrack_helper_pernet_fini(net);
1551 nf_conntrack_ecache_pernet_fini(net);
1552 nf_conntrack_tstamp_pernet_fini(net);
1553 nf_conntrack_acct_pernet_fini(net);
1554 nf_conntrack_expect_pernet_fini(net);
1555 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1556 kfree(net->ct.slabname);
1557 free_percpu(net->ct.stat);
1558 free_percpu(net->ct.pcpu_lists);
1559 }
1560 }
1561
1562 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1563 {
1564 struct hlist_nulls_head *hash;
1565 unsigned int nr_slots, i;
1566 size_t sz;
1567
1568 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1569 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1570 sz = nr_slots * sizeof(struct hlist_nulls_head);
1571 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1572 get_order(sz));
1573 if (!hash)
1574 hash = vzalloc(sz);
1575
1576 if (hash && nulls)
1577 for (i = 0; i < nr_slots; i++)
1578 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1579
1580 return hash;
1581 }
1582 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1583
1584 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1585 {
1586 int i, bucket, rc;
1587 unsigned int hashsize, old_size;
1588 struct hlist_nulls_head *hash, *old_hash;
1589 struct nf_conntrack_tuple_hash *h;
1590 struct nf_conn *ct;
1591
1592 if (current->nsproxy->net_ns != &init_net)
1593 return -EOPNOTSUPP;
1594
1595 /* On boot, we can set this without any fancy locking. */
1596 if (!nf_conntrack_htable_size)
1597 return param_set_uint(val, kp);
1598
1599 rc = kstrtouint(val, 0, &hashsize);
1600 if (rc)
1601 return rc;
1602 if (!hashsize)
1603 return -EINVAL;
1604
1605 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1606 if (!hash)
1607 return -ENOMEM;
1608
1609 local_bh_disable();
1610 nf_conntrack_all_lock();
1611 write_seqcount_begin(&init_net.ct.generation);
1612
1613 /* Lookups in the old hash might happen in parallel, which means we
1614 * might get false negatives during connection lookup. New connections
1615 * created because of a false negative won't make it into the hash
1616 * though since that required taking the locks.
1617 */
1618
1619 for (i = 0; i < init_net.ct.htable_size; i++) {
1620 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1621 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1622 struct nf_conntrack_tuple_hash, hnnode);
1623 ct = nf_ct_tuplehash_to_ctrack(h);
1624 hlist_nulls_del_rcu(&h->hnnode);
1625 bucket = __hash_conntrack(&h->tuple, hashsize);
1626 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1627 }
1628 }
1629 old_size = init_net.ct.htable_size;
1630 old_hash = init_net.ct.hash;
1631
1632 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1633 init_net.ct.hash = hash;
1634
1635 write_seqcount_end(&init_net.ct.generation);
1636 nf_conntrack_all_unlock();
1637 local_bh_enable();
1638
1639 nf_ct_free_hashtable(old_hash, old_size);
1640 return 0;
1641 }
1642 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1643
1644 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1645 &nf_conntrack_htable_size, 0600);
1646
1647 void nf_ct_untracked_status_or(unsigned long bits)
1648 {
1649 int cpu;
1650
1651 for_each_possible_cpu(cpu)
1652 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1653 }
1654 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1655
1656 int nf_conntrack_init_start(void)
1657 {
1658 int max_factor = 8;
1659 int i, ret, cpu;
1660
1661 for (i = 0; i < CONNTRACK_LOCKS; i++)
1662 spin_lock_init(&nf_conntrack_locks[i]);
1663
1664 if (!nf_conntrack_htable_size) {
1665 /* Idea from tcp.c: use 1/16384 of memory.
1666 * On i386: 32MB machine has 512 buckets.
1667 * >= 1GB machines have 16384 buckets.
1668 * >= 4GB machines have 65536 buckets.
1669 */
1670 nf_conntrack_htable_size
1671 = (((totalram_pages << PAGE_SHIFT) / 16384)
1672 / sizeof(struct hlist_head));
1673 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1674 nf_conntrack_htable_size = 65536;
1675 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1676 nf_conntrack_htable_size = 16384;
1677 if (nf_conntrack_htable_size < 32)
1678 nf_conntrack_htable_size = 32;
1679
1680 /* Use a max. factor of four by default to get the same max as
1681 * with the old struct list_heads. When a table size is given
1682 * we use the old value of 8 to avoid reducing the max.
1683 * entries. */
1684 max_factor = 4;
1685 }
1686 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1687
1688 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1689 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1690 nf_conntrack_max);
1691
1692 ret = nf_conntrack_expect_init();
1693 if (ret < 0)
1694 goto err_expect;
1695
1696 ret = nf_conntrack_acct_init();
1697 if (ret < 0)
1698 goto err_acct;
1699
1700 ret = nf_conntrack_tstamp_init();
1701 if (ret < 0)
1702 goto err_tstamp;
1703
1704 ret = nf_conntrack_ecache_init();
1705 if (ret < 0)
1706 goto err_ecache;
1707
1708 ret = nf_conntrack_timeout_init();
1709 if (ret < 0)
1710 goto err_timeout;
1711
1712 ret = nf_conntrack_helper_init();
1713 if (ret < 0)
1714 goto err_helper;
1715
1716 ret = nf_conntrack_labels_init();
1717 if (ret < 0)
1718 goto err_labels;
1719
1720 ret = nf_conntrack_seqadj_init();
1721 if (ret < 0)
1722 goto err_seqadj;
1723
1724 #ifdef CONFIG_NF_CONNTRACK_ZONES
1725 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1726 if (ret < 0)
1727 goto err_extend;
1728 #endif
1729 ret = nf_conntrack_proto_init();
1730 if (ret < 0)
1731 goto err_proto;
1732
1733 /* Set up fake conntrack: to never be deleted, not in any hashes */
1734 for_each_possible_cpu(cpu) {
1735 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1736 write_pnet(&ct->ct_net, &init_net);
1737 atomic_set(&ct->ct_general.use, 1);
1738 }
1739 /* - and look it like as a confirmed connection */
1740 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1741 return 0;
1742
1743 err_proto:
1744 #ifdef CONFIG_NF_CONNTRACK_ZONES
1745 nf_ct_extend_unregister(&nf_ct_zone_extend);
1746 err_extend:
1747 #endif
1748 nf_conntrack_seqadj_fini();
1749 err_seqadj:
1750 nf_conntrack_labels_fini();
1751 err_labels:
1752 nf_conntrack_helper_fini();
1753 err_helper:
1754 nf_conntrack_timeout_fini();
1755 err_timeout:
1756 nf_conntrack_ecache_fini();
1757 err_ecache:
1758 nf_conntrack_tstamp_fini();
1759 err_tstamp:
1760 nf_conntrack_acct_fini();
1761 err_acct:
1762 nf_conntrack_expect_fini();
1763 err_expect:
1764 return ret;
1765 }
1766
1767 void nf_conntrack_init_end(void)
1768 {
1769 /* For use by REJECT target */
1770 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1771 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1772 }
1773
1774 /*
1775 * We need to use special "null" values, not used in hash table
1776 */
1777 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1778 #define DYING_NULLS_VAL ((1<<30)+1)
1779 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
1780
1781 int nf_conntrack_init_net(struct net *net)
1782 {
1783 int ret = -ENOMEM;
1784 int cpu;
1785
1786 atomic_set(&net->ct.count, 0);
1787 seqcount_init(&net->ct.generation);
1788
1789 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1790 if (!net->ct.pcpu_lists)
1791 goto err_stat;
1792
1793 for_each_possible_cpu(cpu) {
1794 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1795
1796 spin_lock_init(&pcpu->lock);
1797 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1798 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1799 }
1800
1801 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1802 if (!net->ct.stat)
1803 goto err_pcpu_lists;
1804
1805 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1806 if (!net->ct.slabname)
1807 goto err_slabname;
1808
1809 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1810 sizeof(struct nf_conn), 0,
1811 SLAB_DESTROY_BY_RCU, NULL);
1812 if (!net->ct.nf_conntrack_cachep) {
1813 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1814 goto err_cache;
1815 }
1816
1817 net->ct.htable_size = nf_conntrack_htable_size;
1818 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1819 if (!net->ct.hash) {
1820 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1821 goto err_hash;
1822 }
1823 ret = nf_conntrack_expect_pernet_init(net);
1824 if (ret < 0)
1825 goto err_expect;
1826 ret = nf_conntrack_acct_pernet_init(net);
1827 if (ret < 0)
1828 goto err_acct;
1829 ret = nf_conntrack_tstamp_pernet_init(net);
1830 if (ret < 0)
1831 goto err_tstamp;
1832 ret = nf_conntrack_ecache_pernet_init(net);
1833 if (ret < 0)
1834 goto err_ecache;
1835 ret = nf_conntrack_helper_pernet_init(net);
1836 if (ret < 0)
1837 goto err_helper;
1838 ret = nf_conntrack_proto_pernet_init(net);
1839 if (ret < 0)
1840 goto err_proto;
1841 return 0;
1842
1843 err_proto:
1844 nf_conntrack_helper_pernet_fini(net);
1845 err_helper:
1846 nf_conntrack_ecache_pernet_fini(net);
1847 err_ecache:
1848 nf_conntrack_tstamp_pernet_fini(net);
1849 err_tstamp:
1850 nf_conntrack_acct_pernet_fini(net);
1851 err_acct:
1852 nf_conntrack_expect_pernet_fini(net);
1853 err_expect:
1854 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1855 err_hash:
1856 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1857 err_cache:
1858 kfree(net->ct.slabname);
1859 err_slabname:
1860 free_percpu(net->ct.stat);
1861 err_pcpu_lists:
1862 free_percpu(net->ct.pcpu_lists);
1863 err_stat:
1864 return ret;
1865 }
This page took 0.094384 seconds and 6 git commands to generate.