Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / net / netfilter / nf_nat_core.c
1 /*
2 * (C) 1999-2001 Paul `Rusty' Russell
3 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4 * (C) 2011 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_seqadj.h>
29 #include <net/netfilter/nf_conntrack_l3proto.h>
30 #include <net/netfilter/nf_conntrack_zones.h>
31 #include <linux/netfilter/nf_nat.h>
32
33 static DEFINE_SPINLOCK(nf_nat_lock);
34
35 static DEFINE_MUTEX(nf_nat_proto_mutex);
36 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
37 __read_mostly;
38 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
39 __read_mostly;
40
41
42 inline const struct nf_nat_l3proto *
43 __nf_nat_l3proto_find(u8 family)
44 {
45 return rcu_dereference(nf_nat_l3protos[family]);
46 }
47
48 inline const struct nf_nat_l4proto *
49 __nf_nat_l4proto_find(u8 family, u8 protonum)
50 {
51 return rcu_dereference(nf_nat_l4protos[family][protonum]);
52 }
53 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
54
55 #ifdef CONFIG_XFRM
56 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
57 {
58 const struct nf_nat_l3proto *l3proto;
59 const struct nf_conn *ct;
60 enum ip_conntrack_info ctinfo;
61 enum ip_conntrack_dir dir;
62 unsigned long statusbit;
63 u8 family;
64
65 ct = nf_ct_get(skb, &ctinfo);
66 if (ct == NULL)
67 return;
68
69 family = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num;
70 rcu_read_lock();
71 l3proto = __nf_nat_l3proto_find(family);
72 if (l3proto == NULL)
73 goto out;
74
75 dir = CTINFO2DIR(ctinfo);
76 if (dir == IP_CT_DIR_ORIGINAL)
77 statusbit = IPS_DST_NAT;
78 else
79 statusbit = IPS_SRC_NAT;
80
81 l3proto->decode_session(skb, ct, dir, statusbit, fl);
82 out:
83 rcu_read_unlock();
84 }
85
86 int nf_xfrm_me_harder(struct sk_buff *skb, unsigned int family)
87 {
88 struct flowi fl;
89 unsigned int hh_len;
90 struct dst_entry *dst;
91 int err;
92
93 err = xfrm_decode_session(skb, &fl, family);
94 if (err < 0)
95 return err;
96
97 dst = skb_dst(skb);
98 if (dst->xfrm)
99 dst = ((struct xfrm_dst *)dst)->route;
100 dst_hold(dst);
101
102 dst = xfrm_lookup(dev_net(dst->dev), dst, &fl, skb->sk, 0);
103 if (IS_ERR(dst))
104 return PTR_ERR(dst);
105
106 skb_dst_drop(skb);
107 skb_dst_set(skb, dst);
108
109 /* Change in oif may mean change in hh_len. */
110 hh_len = skb_dst(skb)->dev->hard_header_len;
111 if (skb_headroom(skb) < hh_len &&
112 pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
113 return -ENOMEM;
114 return 0;
115 }
116 EXPORT_SYMBOL(nf_xfrm_me_harder);
117 #endif /* CONFIG_XFRM */
118
119 /* We keep an extra hash for each conntrack, for fast searching. */
120 static inline unsigned int
121 hash_by_src(const struct net *net, u16 zone,
122 const struct nf_conntrack_tuple *tuple)
123 {
124 unsigned int hash;
125
126 /* Original src, to ensure we map it consistently if poss. */
127 hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
128 tuple->dst.protonum ^ zone ^ nf_conntrack_hash_rnd);
129 return ((u64)hash * net->ct.nat_htable_size) >> 32;
130 }
131
132 /* Is this tuple already taken? (not by us) */
133 int
134 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
135 const struct nf_conn *ignored_conntrack)
136 {
137 /* Conntrack tracking doesn't keep track of outgoing tuples; only
138 * incoming ones. NAT means they don't have a fixed mapping,
139 * so we invert the tuple and look for the incoming reply.
140 *
141 * We could keep a separate hash if this proves too slow.
142 */
143 struct nf_conntrack_tuple reply;
144
145 nf_ct_invert_tuplepr(&reply, tuple);
146 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
147 }
148 EXPORT_SYMBOL(nf_nat_used_tuple);
149
150 /* If we source map this tuple so reply looks like reply_tuple, will
151 * that meet the constraints of range.
152 */
153 static int in_range(const struct nf_nat_l3proto *l3proto,
154 const struct nf_nat_l4proto *l4proto,
155 const struct nf_conntrack_tuple *tuple,
156 const struct nf_nat_range *range)
157 {
158 /* If we are supposed to map IPs, then we must be in the
159 * range specified, otherwise let this drag us onto a new src IP.
160 */
161 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
162 !l3proto->in_range(tuple, range))
163 return 0;
164
165 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
166 l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
167 &range->min_proto, &range->max_proto))
168 return 1;
169
170 return 0;
171 }
172
173 static inline int
174 same_src(const struct nf_conn *ct,
175 const struct nf_conntrack_tuple *tuple)
176 {
177 const struct nf_conntrack_tuple *t;
178
179 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
180 return (t->dst.protonum == tuple->dst.protonum &&
181 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
182 t->src.u.all == tuple->src.u.all);
183 }
184
185 /* Only called for SRC manip */
186 static int
187 find_appropriate_src(struct net *net, u16 zone,
188 const struct nf_nat_l3proto *l3proto,
189 const struct nf_nat_l4proto *l4proto,
190 const struct nf_conntrack_tuple *tuple,
191 struct nf_conntrack_tuple *result,
192 const struct nf_nat_range *range)
193 {
194 unsigned int h = hash_by_src(net, zone, tuple);
195 const struct nf_conn_nat *nat;
196 const struct nf_conn *ct;
197
198 hlist_for_each_entry_rcu(nat, &net->ct.nat_bysource[h], bysource) {
199 ct = nat->ct;
200 if (same_src(ct, tuple) && nf_ct_zone(ct) == zone) {
201 /* Copy source part from reply tuple. */
202 nf_ct_invert_tuplepr(result,
203 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
204 result->dst = tuple->dst;
205
206 if (in_range(l3proto, l4proto, result, range))
207 return 1;
208 }
209 }
210 return 0;
211 }
212
213 /* For [FUTURE] fragmentation handling, we want the least-used
214 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
215 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
216 * 1-65535, we don't do pro-rata allocation based on ports; we choose
217 * the ip with the lowest src-ip/dst-ip/proto usage.
218 */
219 static void
220 find_best_ips_proto(u16 zone, struct nf_conntrack_tuple *tuple,
221 const struct nf_nat_range *range,
222 const struct nf_conn *ct,
223 enum nf_nat_manip_type maniptype)
224 {
225 union nf_inet_addr *var_ipp;
226 unsigned int i, max;
227 /* Host order */
228 u32 minip, maxip, j, dist;
229 bool full_range;
230
231 /* No IP mapping? Do nothing. */
232 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
233 return;
234
235 if (maniptype == NF_NAT_MANIP_SRC)
236 var_ipp = &tuple->src.u3;
237 else
238 var_ipp = &tuple->dst.u3;
239
240 /* Fast path: only one choice. */
241 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
242 *var_ipp = range->min_addr;
243 return;
244 }
245
246 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
247 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
248 else
249 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
250
251 /* Hashing source and destination IPs gives a fairly even
252 * spread in practice (if there are a small number of IPs
253 * involved, there usually aren't that many connections
254 * anyway). The consistency means that servers see the same
255 * client coming from the same IP (some Internet Banking sites
256 * like this), even across reboots.
257 */
258 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
259 range->flags & NF_NAT_RANGE_PERSISTENT ?
260 0 : (__force u32)tuple->dst.u3.all[max] ^ zone);
261
262 full_range = false;
263 for (i = 0; i <= max; i++) {
264 /* If first bytes of the address are at the maximum, use the
265 * distance. Otherwise use the full range.
266 */
267 if (!full_range) {
268 minip = ntohl((__force __be32)range->min_addr.all[i]);
269 maxip = ntohl((__force __be32)range->max_addr.all[i]);
270 dist = maxip - minip + 1;
271 } else {
272 minip = 0;
273 dist = ~0;
274 }
275
276 var_ipp->all[i] = (__force __u32)
277 htonl(minip + (((u64)j * dist) >> 32));
278 if (var_ipp->all[i] != range->max_addr.all[i])
279 full_range = true;
280
281 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
282 j ^= (__force u32)tuple->dst.u3.all[i];
283 }
284 }
285
286 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
287 * we change the source to map into the range. For NF_INET_PRE_ROUTING
288 * and NF_INET_LOCAL_OUT, we change the destination to map into the
289 * range. It might not be possible to get a unique tuple, but we try.
290 * At worst (or if we race), we will end up with a final duplicate in
291 * __ip_conntrack_confirm and drop the packet. */
292 static void
293 get_unique_tuple(struct nf_conntrack_tuple *tuple,
294 const struct nf_conntrack_tuple *orig_tuple,
295 const struct nf_nat_range *range,
296 struct nf_conn *ct,
297 enum nf_nat_manip_type maniptype)
298 {
299 const struct nf_nat_l3proto *l3proto;
300 const struct nf_nat_l4proto *l4proto;
301 struct net *net = nf_ct_net(ct);
302 u16 zone = nf_ct_zone(ct);
303
304 rcu_read_lock();
305 l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
306 l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
307 orig_tuple->dst.protonum);
308
309 /* 1) If this srcip/proto/src-proto-part is currently mapped,
310 * and that same mapping gives a unique tuple within the given
311 * range, use that.
312 *
313 * This is only required for source (ie. NAT/masq) mappings.
314 * So far, we don't do local source mappings, so multiple
315 * manips not an issue.
316 */
317 if (maniptype == NF_NAT_MANIP_SRC &&
318 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
319 /* try the original tuple first */
320 if (in_range(l3proto, l4proto, orig_tuple, range)) {
321 if (!nf_nat_used_tuple(orig_tuple, ct)) {
322 *tuple = *orig_tuple;
323 goto out;
324 }
325 } else if (find_appropriate_src(net, zone, l3proto, l4proto,
326 orig_tuple, tuple, range)) {
327 pr_debug("get_unique_tuple: Found current src map\n");
328 if (!nf_nat_used_tuple(tuple, ct))
329 goto out;
330 }
331 }
332
333 /* 2) Select the least-used IP/proto combination in the given range */
334 *tuple = *orig_tuple;
335 find_best_ips_proto(zone, tuple, range, ct, maniptype);
336
337 /* 3) The per-protocol part of the manip is made to map into
338 * the range to make a unique tuple.
339 */
340
341 /* Only bother mapping if it's not already in range and unique */
342 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
343 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
344 if (l4proto->in_range(tuple, maniptype,
345 &range->min_proto,
346 &range->max_proto) &&
347 (range->min_proto.all == range->max_proto.all ||
348 !nf_nat_used_tuple(tuple, ct)))
349 goto out;
350 } else if (!nf_nat_used_tuple(tuple, ct)) {
351 goto out;
352 }
353 }
354
355 /* Last change: get protocol to try to obtain unique tuple. */
356 l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
357 out:
358 rcu_read_unlock();
359 }
360
361 struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct)
362 {
363 struct nf_conn_nat *nat = nfct_nat(ct);
364 if (nat)
365 return nat;
366
367 if (!nf_ct_is_confirmed(ct))
368 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
369
370 return nat;
371 }
372 EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add);
373
374 unsigned int
375 nf_nat_setup_info(struct nf_conn *ct,
376 const struct nf_nat_range *range,
377 enum nf_nat_manip_type maniptype)
378 {
379 struct net *net = nf_ct_net(ct);
380 struct nf_conntrack_tuple curr_tuple, new_tuple;
381 struct nf_conn_nat *nat;
382
383 /* nat helper or nfctnetlink also setup binding */
384 nat = nf_ct_nat_ext_add(ct);
385 if (nat == NULL)
386 return NF_ACCEPT;
387
388 NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
389 maniptype == NF_NAT_MANIP_DST);
390 BUG_ON(nf_nat_initialized(ct, maniptype));
391
392 /* What we've got will look like inverse of reply. Normally
393 * this is what is in the conntrack, except for prior
394 * manipulations (future optimization: if num_manips == 0,
395 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
396 */
397 nf_ct_invert_tuplepr(&curr_tuple,
398 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
399
400 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
401
402 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
403 struct nf_conntrack_tuple reply;
404
405 /* Alter conntrack table so will recognize replies. */
406 nf_ct_invert_tuplepr(&reply, &new_tuple);
407 nf_conntrack_alter_reply(ct, &reply);
408
409 /* Non-atomic: we own this at the moment. */
410 if (maniptype == NF_NAT_MANIP_SRC)
411 ct->status |= IPS_SRC_NAT;
412 else
413 ct->status |= IPS_DST_NAT;
414
415 if (nfct_help(ct))
416 nfct_seqadj_ext_add(ct);
417 }
418
419 if (maniptype == NF_NAT_MANIP_SRC) {
420 unsigned int srchash;
421
422 srchash = hash_by_src(net, nf_ct_zone(ct),
423 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
424 spin_lock_bh(&nf_nat_lock);
425 /* nf_conntrack_alter_reply might re-allocate extension aera */
426 nat = nfct_nat(ct);
427 nat->ct = ct;
428 hlist_add_head_rcu(&nat->bysource,
429 &net->ct.nat_bysource[srchash]);
430 spin_unlock_bh(&nf_nat_lock);
431 }
432
433 /* It's done. */
434 if (maniptype == NF_NAT_MANIP_DST)
435 ct->status |= IPS_DST_NAT_DONE;
436 else
437 ct->status |= IPS_SRC_NAT_DONE;
438
439 return NF_ACCEPT;
440 }
441 EXPORT_SYMBOL(nf_nat_setup_info);
442
443 static unsigned int
444 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
445 {
446 /* Force range to this IP; let proto decide mapping for
447 * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
448 * Use reply in case it's already been mangled (eg local packet).
449 */
450 union nf_inet_addr ip =
451 (manip == NF_NAT_MANIP_SRC ?
452 ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
453 ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
454 struct nf_nat_range range = {
455 .flags = NF_NAT_RANGE_MAP_IPS,
456 .min_addr = ip,
457 .max_addr = ip,
458 };
459 return nf_nat_setup_info(ct, &range, manip);
460 }
461
462 unsigned int
463 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
464 {
465 return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
466 }
467 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
468
469 /* Do packet manipulations according to nf_nat_setup_info. */
470 unsigned int nf_nat_packet(struct nf_conn *ct,
471 enum ip_conntrack_info ctinfo,
472 unsigned int hooknum,
473 struct sk_buff *skb)
474 {
475 const struct nf_nat_l3proto *l3proto;
476 const struct nf_nat_l4proto *l4proto;
477 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
478 unsigned long statusbit;
479 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
480
481 if (mtype == NF_NAT_MANIP_SRC)
482 statusbit = IPS_SRC_NAT;
483 else
484 statusbit = IPS_DST_NAT;
485
486 /* Invert if this is reply dir. */
487 if (dir == IP_CT_DIR_REPLY)
488 statusbit ^= IPS_NAT_MASK;
489
490 /* Non-atomic: these bits don't change. */
491 if (ct->status & statusbit) {
492 struct nf_conntrack_tuple target;
493
494 /* We are aiming to look like inverse of other direction. */
495 nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
496
497 l3proto = __nf_nat_l3proto_find(target.src.l3num);
498 l4proto = __nf_nat_l4proto_find(target.src.l3num,
499 target.dst.protonum);
500 if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
501 return NF_DROP;
502 }
503 return NF_ACCEPT;
504 }
505 EXPORT_SYMBOL_GPL(nf_nat_packet);
506
507 struct nf_nat_proto_clean {
508 u8 l3proto;
509 u8 l4proto;
510 };
511
512 /* kill conntracks with affected NAT section */
513 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
514 {
515 const struct nf_nat_proto_clean *clean = data;
516 struct nf_conn_nat *nat = nfct_nat(i);
517
518 if (!nat)
519 return 0;
520
521 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
522 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
523 return 0;
524
525 return i->status & IPS_NAT_MASK ? 1 : 0;
526 }
527
528 static int nf_nat_proto_clean(struct nf_conn *ct, void *data)
529 {
530 struct nf_conn_nat *nat = nfct_nat(ct);
531
532 if (nf_nat_proto_remove(ct, data))
533 return 1;
534
535 if (!nat || !nat->ct)
536 return 0;
537
538 /* This netns is being destroyed, and conntrack has nat null binding.
539 * Remove it from bysource hash, as the table will be freed soon.
540 *
541 * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack()
542 * will delete entry from already-freed table.
543 */
544 if (!del_timer(&ct->timeout))
545 return 1;
546
547 spin_lock_bh(&nf_nat_lock);
548 hlist_del_rcu(&nat->bysource);
549 ct->status &= ~IPS_NAT_DONE_MASK;
550 nat->ct = NULL;
551 spin_unlock_bh(&nf_nat_lock);
552
553 add_timer(&ct->timeout);
554
555 /* don't delete conntrack. Although that would make things a lot
556 * simpler, we'd end up flushing all conntracks on nat rmmod.
557 */
558 return 0;
559 }
560
561 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
562 {
563 struct nf_nat_proto_clean clean = {
564 .l3proto = l3proto,
565 .l4proto = l4proto,
566 };
567 struct net *net;
568
569 rtnl_lock();
570 for_each_net(net)
571 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean, 0, 0);
572 rtnl_unlock();
573 }
574
575 static void nf_nat_l3proto_clean(u8 l3proto)
576 {
577 struct nf_nat_proto_clean clean = {
578 .l3proto = l3proto,
579 };
580 struct net *net;
581
582 rtnl_lock();
583
584 for_each_net(net)
585 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean, 0, 0);
586 rtnl_unlock();
587 }
588
589 /* Protocol registration. */
590 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
591 {
592 const struct nf_nat_l4proto **l4protos;
593 unsigned int i;
594 int ret = 0;
595
596 mutex_lock(&nf_nat_proto_mutex);
597 if (nf_nat_l4protos[l3proto] == NULL) {
598 l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
599 GFP_KERNEL);
600 if (l4protos == NULL) {
601 ret = -ENOMEM;
602 goto out;
603 }
604
605 for (i = 0; i < IPPROTO_MAX; i++)
606 RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
607
608 /* Before making proto_array visible to lockless readers,
609 * we must make sure its content is committed to memory.
610 */
611 smp_wmb();
612
613 nf_nat_l4protos[l3proto] = l4protos;
614 }
615
616 if (rcu_dereference_protected(
617 nf_nat_l4protos[l3proto][l4proto->l4proto],
618 lockdep_is_held(&nf_nat_proto_mutex)
619 ) != &nf_nat_l4proto_unknown) {
620 ret = -EBUSY;
621 goto out;
622 }
623 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
624 out:
625 mutex_unlock(&nf_nat_proto_mutex);
626 return ret;
627 }
628 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
629
630 /* No one stores the protocol anywhere; simply delete it. */
631 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
632 {
633 mutex_lock(&nf_nat_proto_mutex);
634 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
635 &nf_nat_l4proto_unknown);
636 mutex_unlock(&nf_nat_proto_mutex);
637 synchronize_rcu();
638
639 nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
640 }
641 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
642
643 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
644 {
645 int err;
646
647 err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
648 if (err < 0)
649 return err;
650
651 mutex_lock(&nf_nat_proto_mutex);
652 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
653 &nf_nat_l4proto_tcp);
654 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
655 &nf_nat_l4proto_udp);
656 mutex_unlock(&nf_nat_proto_mutex);
657
658 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
659 return 0;
660 }
661 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
662
663 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
664 {
665 mutex_lock(&nf_nat_proto_mutex);
666 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
667 mutex_unlock(&nf_nat_proto_mutex);
668 synchronize_rcu();
669
670 nf_nat_l3proto_clean(l3proto->l3proto);
671 nf_ct_l3proto_module_put(l3proto->l3proto);
672 }
673 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
674
675 /* No one using conntrack by the time this called. */
676 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
677 {
678 struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
679
680 if (nat == NULL || nat->ct == NULL)
681 return;
682
683 NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
684
685 spin_lock_bh(&nf_nat_lock);
686 hlist_del_rcu(&nat->bysource);
687 spin_unlock_bh(&nf_nat_lock);
688 }
689
690 static void nf_nat_move_storage(void *new, void *old)
691 {
692 struct nf_conn_nat *new_nat = new;
693 struct nf_conn_nat *old_nat = old;
694 struct nf_conn *ct = old_nat->ct;
695
696 if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
697 return;
698
699 spin_lock_bh(&nf_nat_lock);
700 hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
701 spin_unlock_bh(&nf_nat_lock);
702 }
703
704 static struct nf_ct_ext_type nat_extend __read_mostly = {
705 .len = sizeof(struct nf_conn_nat),
706 .align = __alignof__(struct nf_conn_nat),
707 .destroy = nf_nat_cleanup_conntrack,
708 .move = nf_nat_move_storage,
709 .id = NF_CT_EXT_NAT,
710 .flags = NF_CT_EXT_F_PREALLOC,
711 };
712
713 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
714
715 #include <linux/netfilter/nfnetlink.h>
716 #include <linux/netfilter/nfnetlink_conntrack.h>
717
718 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
719 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
720 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
721 };
722
723 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
724 const struct nf_conn *ct,
725 struct nf_nat_range *range)
726 {
727 struct nlattr *tb[CTA_PROTONAT_MAX+1];
728 const struct nf_nat_l4proto *l4proto;
729 int err;
730
731 err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
732 if (err < 0)
733 return err;
734
735 l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
736 if (l4proto->nlattr_to_range)
737 err = l4proto->nlattr_to_range(tb, range);
738
739 return err;
740 }
741
742 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
743 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
744 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
745 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
746 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
747 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
748 };
749
750 static int
751 nfnetlink_parse_nat(const struct nlattr *nat,
752 const struct nf_conn *ct, struct nf_nat_range *range,
753 const struct nf_nat_l3proto *l3proto)
754 {
755 struct nlattr *tb[CTA_NAT_MAX+1];
756 int err;
757
758 memset(range, 0, sizeof(*range));
759
760 err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
761 if (err < 0)
762 return err;
763
764 err = l3proto->nlattr_to_range(tb, range);
765 if (err < 0)
766 return err;
767
768 if (!tb[CTA_NAT_PROTO])
769 return 0;
770
771 return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
772 }
773
774 /* This function is called under rcu_read_lock() */
775 static int
776 nfnetlink_parse_nat_setup(struct nf_conn *ct,
777 enum nf_nat_manip_type manip,
778 const struct nlattr *attr)
779 {
780 struct nf_nat_range range;
781 const struct nf_nat_l3proto *l3proto;
782 int err;
783
784 /* Should not happen, restricted to creating new conntracks
785 * via ctnetlink.
786 */
787 if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
788 return -EEXIST;
789
790 /* Make sure that L3 NAT is there by when we call nf_nat_setup_info to
791 * attach the null binding, otherwise this may oops.
792 */
793 l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
794 if (l3proto == NULL)
795 return -EAGAIN;
796
797 /* No NAT information has been passed, allocate the null-binding */
798 if (attr == NULL)
799 return __nf_nat_alloc_null_binding(ct, manip);
800
801 err = nfnetlink_parse_nat(attr, ct, &range, l3proto);
802 if (err < 0)
803 return err;
804
805 return nf_nat_setup_info(ct, &range, manip);
806 }
807 #else
808 static int
809 nfnetlink_parse_nat_setup(struct nf_conn *ct,
810 enum nf_nat_manip_type manip,
811 const struct nlattr *attr)
812 {
813 return -EOPNOTSUPP;
814 }
815 #endif
816
817 static int __net_init nf_nat_net_init(struct net *net)
818 {
819 /* Leave them the same for the moment. */
820 net->ct.nat_htable_size = net->ct.htable_size;
821 net->ct.nat_bysource = nf_ct_alloc_hashtable(&net->ct.nat_htable_size, 0);
822 if (!net->ct.nat_bysource)
823 return -ENOMEM;
824 return 0;
825 }
826
827 static void __net_exit nf_nat_net_exit(struct net *net)
828 {
829 struct nf_nat_proto_clean clean = {};
830
831 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean, 0, 0);
832 synchronize_rcu();
833 nf_ct_free_hashtable(net->ct.nat_bysource, net->ct.nat_htable_size);
834 }
835
836 static struct pernet_operations nf_nat_net_ops = {
837 .init = nf_nat_net_init,
838 .exit = nf_nat_net_exit,
839 };
840
841 static struct nf_ct_helper_expectfn follow_master_nat = {
842 .name = "nat-follow-master",
843 .expectfn = nf_nat_follow_master,
844 };
845
846 static int __init nf_nat_init(void)
847 {
848 int ret;
849
850 ret = nf_ct_extend_register(&nat_extend);
851 if (ret < 0) {
852 printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
853 return ret;
854 }
855
856 ret = register_pernet_subsys(&nf_nat_net_ops);
857 if (ret < 0)
858 goto cleanup_extend;
859
860 nf_ct_helper_expectfn_register(&follow_master_nat);
861
862 /* Initialize fake conntrack so that NAT will skip it */
863 nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
864
865 BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
866 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
867 nfnetlink_parse_nat_setup);
868 #ifdef CONFIG_XFRM
869 BUG_ON(nf_nat_decode_session_hook != NULL);
870 RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
871 #endif
872 return 0;
873
874 cleanup_extend:
875 nf_ct_extend_unregister(&nat_extend);
876 return ret;
877 }
878
879 static void __exit nf_nat_cleanup(void)
880 {
881 unsigned int i;
882
883 unregister_pernet_subsys(&nf_nat_net_ops);
884 nf_ct_extend_unregister(&nat_extend);
885 nf_ct_helper_expectfn_unregister(&follow_master_nat);
886 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
887 #ifdef CONFIG_XFRM
888 RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
889 #endif
890 for (i = 0; i < NFPROTO_NUMPROTO; i++)
891 kfree(nf_nat_l4protos[i]);
892 synchronize_net();
893 }
894
895 MODULE_LICENSE("GPL");
896
897 module_init(nf_nat_init);
898 module_exit(nf_nat_cleanup);
This page took 0.071619 seconds and 5 git commands to generate.