netfilter: nf_nat: fix oops when unloading protocol modules
[deliverable/linux.git] / net / netfilter / nf_nat_core.c
1 /*
2 * (C) 1999-2001 Paul `Rusty' Russell
3 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4 * (C) 2011 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_l3proto.h>
29 #include <net/netfilter/nf_conntrack_zones.h>
30 #include <linux/netfilter/nf_nat.h>
31
32 static DEFINE_SPINLOCK(nf_nat_lock);
33
34 static DEFINE_MUTEX(nf_nat_proto_mutex);
35 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
36 __read_mostly;
37 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
38 __read_mostly;
39
40
41 inline const struct nf_nat_l3proto *
42 __nf_nat_l3proto_find(u8 family)
43 {
44 return rcu_dereference(nf_nat_l3protos[family]);
45 }
46
47 inline const struct nf_nat_l4proto *
48 __nf_nat_l4proto_find(u8 family, u8 protonum)
49 {
50 return rcu_dereference(nf_nat_l4protos[family][protonum]);
51 }
52 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
53
54 #ifdef CONFIG_XFRM
55 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
56 {
57 const struct nf_nat_l3proto *l3proto;
58 const struct nf_conn *ct;
59 enum ip_conntrack_info ctinfo;
60 enum ip_conntrack_dir dir;
61 unsigned long statusbit;
62 u8 family;
63
64 ct = nf_ct_get(skb, &ctinfo);
65 if (ct == NULL)
66 return;
67
68 family = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num;
69 rcu_read_lock();
70 l3proto = __nf_nat_l3proto_find(family);
71 if (l3proto == NULL)
72 goto out;
73
74 dir = CTINFO2DIR(ctinfo);
75 if (dir == IP_CT_DIR_ORIGINAL)
76 statusbit = IPS_DST_NAT;
77 else
78 statusbit = IPS_SRC_NAT;
79
80 l3proto->decode_session(skb, ct, dir, statusbit, fl);
81 out:
82 rcu_read_unlock();
83 }
84
85 int nf_xfrm_me_harder(struct sk_buff *skb, unsigned int family)
86 {
87 struct flowi fl;
88 unsigned int hh_len;
89 struct dst_entry *dst;
90
91 if (xfrm_decode_session(skb, &fl, family) < 0)
92 return -1;
93
94 dst = skb_dst(skb);
95 if (dst->xfrm)
96 dst = ((struct xfrm_dst *)dst)->route;
97 dst_hold(dst);
98
99 dst = xfrm_lookup(dev_net(dst->dev), dst, &fl, skb->sk, 0);
100 if (IS_ERR(dst))
101 return -1;
102
103 skb_dst_drop(skb);
104 skb_dst_set(skb, dst);
105
106 /* Change in oif may mean change in hh_len. */
107 hh_len = skb_dst(skb)->dev->hard_header_len;
108 if (skb_headroom(skb) < hh_len &&
109 pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
110 return -1;
111 return 0;
112 }
113 EXPORT_SYMBOL(nf_xfrm_me_harder);
114 #endif /* CONFIG_XFRM */
115
116 /* We keep an extra hash for each conntrack, for fast searching. */
117 static inline unsigned int
118 hash_by_src(const struct net *net, u16 zone,
119 const struct nf_conntrack_tuple *tuple)
120 {
121 unsigned int hash;
122
123 /* Original src, to ensure we map it consistently if poss. */
124 hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
125 tuple->dst.protonum ^ zone ^ nf_conntrack_hash_rnd);
126 return ((u64)hash * net->ct.nat_htable_size) >> 32;
127 }
128
129 /* Is this tuple already taken? (not by us) */
130 int
131 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
132 const struct nf_conn *ignored_conntrack)
133 {
134 /* Conntrack tracking doesn't keep track of outgoing tuples; only
135 * incoming ones. NAT means they don't have a fixed mapping,
136 * so we invert the tuple and look for the incoming reply.
137 *
138 * We could keep a separate hash if this proves too slow.
139 */
140 struct nf_conntrack_tuple reply;
141
142 nf_ct_invert_tuplepr(&reply, tuple);
143 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
144 }
145 EXPORT_SYMBOL(nf_nat_used_tuple);
146
147 /* If we source map this tuple so reply looks like reply_tuple, will
148 * that meet the constraints of range.
149 */
150 static int in_range(const struct nf_nat_l3proto *l3proto,
151 const struct nf_nat_l4proto *l4proto,
152 const struct nf_conntrack_tuple *tuple,
153 const struct nf_nat_range *range)
154 {
155 /* If we are supposed to map IPs, then we must be in the
156 * range specified, otherwise let this drag us onto a new src IP.
157 */
158 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
159 !l3proto->in_range(tuple, range))
160 return 0;
161
162 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
163 l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
164 &range->min_proto, &range->max_proto))
165 return 1;
166
167 return 0;
168 }
169
170 static inline int
171 same_src(const struct nf_conn *ct,
172 const struct nf_conntrack_tuple *tuple)
173 {
174 const struct nf_conntrack_tuple *t;
175
176 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
177 return (t->dst.protonum == tuple->dst.protonum &&
178 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
179 t->src.u.all == tuple->src.u.all);
180 }
181
182 /* Only called for SRC manip */
183 static int
184 find_appropriate_src(struct net *net, u16 zone,
185 const struct nf_nat_l3proto *l3proto,
186 const struct nf_nat_l4proto *l4proto,
187 const struct nf_conntrack_tuple *tuple,
188 struct nf_conntrack_tuple *result,
189 const struct nf_nat_range *range)
190 {
191 unsigned int h = hash_by_src(net, zone, tuple);
192 const struct nf_conn_nat *nat;
193 const struct nf_conn *ct;
194 const struct hlist_node *n;
195
196 hlist_for_each_entry_rcu(nat, n, &net->ct.nat_bysource[h], bysource) {
197 ct = nat->ct;
198 if (same_src(ct, tuple) && nf_ct_zone(ct) == zone) {
199 /* Copy source part from reply tuple. */
200 nf_ct_invert_tuplepr(result,
201 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
202 result->dst = tuple->dst;
203
204 if (in_range(l3proto, l4proto, result, range)) {
205 rcu_read_unlock();
206 return 1;
207 }
208 }
209 }
210 return 0;
211 }
212
213 /* For [FUTURE] fragmentation handling, we want the least-used
214 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
215 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
216 * 1-65535, we don't do pro-rata allocation based on ports; we choose
217 * the ip with the lowest src-ip/dst-ip/proto usage.
218 */
219 static void
220 find_best_ips_proto(u16 zone, struct nf_conntrack_tuple *tuple,
221 const struct nf_nat_range *range,
222 const struct nf_conn *ct,
223 enum nf_nat_manip_type maniptype)
224 {
225 union nf_inet_addr *var_ipp;
226 unsigned int i, max;
227 /* Host order */
228 u32 minip, maxip, j, dist;
229 bool full_range;
230
231 /* No IP mapping? Do nothing. */
232 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
233 return;
234
235 if (maniptype == NF_NAT_MANIP_SRC)
236 var_ipp = &tuple->src.u3;
237 else
238 var_ipp = &tuple->dst.u3;
239
240 /* Fast path: only one choice. */
241 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
242 *var_ipp = range->min_addr;
243 return;
244 }
245
246 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
247 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
248 else
249 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
250
251 /* Hashing source and destination IPs gives a fairly even
252 * spread in practice (if there are a small number of IPs
253 * involved, there usually aren't that many connections
254 * anyway). The consistency means that servers see the same
255 * client coming from the same IP (some Internet Banking sites
256 * like this), even across reboots.
257 */
258 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
259 range->flags & NF_NAT_RANGE_PERSISTENT ?
260 0 : (__force u32)tuple->dst.u3.all[max] ^ zone);
261
262 full_range = false;
263 for (i = 0; i <= max; i++) {
264 /* If first bytes of the address are at the maximum, use the
265 * distance. Otherwise use the full range.
266 */
267 if (!full_range) {
268 minip = ntohl((__force __be32)range->min_addr.all[i]);
269 maxip = ntohl((__force __be32)range->max_addr.all[i]);
270 dist = maxip - minip + 1;
271 } else {
272 minip = 0;
273 dist = ~0;
274 }
275
276 var_ipp->all[i] = (__force __u32)
277 htonl(minip + (((u64)j * dist) >> 32));
278 if (var_ipp->all[i] != range->max_addr.all[i])
279 full_range = true;
280
281 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
282 j ^= (__force u32)tuple->dst.u3.all[i];
283 }
284 }
285
286 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
287 * we change the source to map into the range. For NF_INET_PRE_ROUTING
288 * and NF_INET_LOCAL_OUT, we change the destination to map into the
289 * range. It might not be possible to get a unique tuple, but we try.
290 * At worst (or if we race), we will end up with a final duplicate in
291 * __ip_conntrack_confirm and drop the packet. */
292 static void
293 get_unique_tuple(struct nf_conntrack_tuple *tuple,
294 const struct nf_conntrack_tuple *orig_tuple,
295 const struct nf_nat_range *range,
296 struct nf_conn *ct,
297 enum nf_nat_manip_type maniptype)
298 {
299 const struct nf_nat_l3proto *l3proto;
300 const struct nf_nat_l4proto *l4proto;
301 struct net *net = nf_ct_net(ct);
302 u16 zone = nf_ct_zone(ct);
303
304 rcu_read_lock();
305 l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
306 l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
307 orig_tuple->dst.protonum);
308
309 /* 1) If this srcip/proto/src-proto-part is currently mapped,
310 * and that same mapping gives a unique tuple within the given
311 * range, use that.
312 *
313 * This is only required for source (ie. NAT/masq) mappings.
314 * So far, we don't do local source mappings, so multiple
315 * manips not an issue.
316 */
317 if (maniptype == NF_NAT_MANIP_SRC &&
318 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
319 /* try the original tuple first */
320 if (in_range(l3proto, l4proto, orig_tuple, range)) {
321 if (!nf_nat_used_tuple(orig_tuple, ct)) {
322 *tuple = *orig_tuple;
323 goto out;
324 }
325 } else if (find_appropriate_src(net, zone, l3proto, l4proto,
326 orig_tuple, tuple, range)) {
327 pr_debug("get_unique_tuple: Found current src map\n");
328 if (!nf_nat_used_tuple(tuple, ct))
329 goto out;
330 }
331 }
332
333 /* 2) Select the least-used IP/proto combination in the given range */
334 *tuple = *orig_tuple;
335 find_best_ips_proto(zone, tuple, range, ct, maniptype);
336
337 /* 3) The per-protocol part of the manip is made to map into
338 * the range to make a unique tuple.
339 */
340
341 /* Only bother mapping if it's not already in range and unique */
342 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
343 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
344 if (l4proto->in_range(tuple, maniptype,
345 &range->min_proto,
346 &range->max_proto) &&
347 (range->min_proto.all == range->max_proto.all ||
348 !nf_nat_used_tuple(tuple, ct)))
349 goto out;
350 } else if (!nf_nat_used_tuple(tuple, ct)) {
351 goto out;
352 }
353 }
354
355 /* Last change: get protocol to try to obtain unique tuple. */
356 l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
357 out:
358 rcu_read_unlock();
359 }
360
361 unsigned int
362 nf_nat_setup_info(struct nf_conn *ct,
363 const struct nf_nat_range *range,
364 enum nf_nat_manip_type maniptype)
365 {
366 struct net *net = nf_ct_net(ct);
367 struct nf_conntrack_tuple curr_tuple, new_tuple;
368 struct nf_conn_nat *nat;
369
370 /* nat helper or nfctnetlink also setup binding */
371 nat = nfct_nat(ct);
372 if (!nat) {
373 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
374 if (nat == NULL) {
375 pr_debug("failed to add NAT extension\n");
376 return NF_ACCEPT;
377 }
378 }
379
380 NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
381 maniptype == NF_NAT_MANIP_DST);
382 BUG_ON(nf_nat_initialized(ct, maniptype));
383
384 /* What we've got will look like inverse of reply. Normally
385 * this is what is in the conntrack, except for prior
386 * manipulations (future optimization: if num_manips == 0,
387 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
388 */
389 nf_ct_invert_tuplepr(&curr_tuple,
390 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
391
392 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
393
394 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
395 struct nf_conntrack_tuple reply;
396
397 /* Alter conntrack table so will recognize replies. */
398 nf_ct_invert_tuplepr(&reply, &new_tuple);
399 nf_conntrack_alter_reply(ct, &reply);
400
401 /* Non-atomic: we own this at the moment. */
402 if (maniptype == NF_NAT_MANIP_SRC)
403 ct->status |= IPS_SRC_NAT;
404 else
405 ct->status |= IPS_DST_NAT;
406 }
407
408 if (maniptype == NF_NAT_MANIP_SRC) {
409 unsigned int srchash;
410
411 srchash = hash_by_src(net, nf_ct_zone(ct),
412 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
413 spin_lock_bh(&nf_nat_lock);
414 /* nf_conntrack_alter_reply might re-allocate extension aera */
415 nat = nfct_nat(ct);
416 nat->ct = ct;
417 hlist_add_head_rcu(&nat->bysource,
418 &net->ct.nat_bysource[srchash]);
419 spin_unlock_bh(&nf_nat_lock);
420 }
421
422 /* It's done. */
423 if (maniptype == NF_NAT_MANIP_DST)
424 ct->status |= IPS_DST_NAT_DONE;
425 else
426 ct->status |= IPS_SRC_NAT_DONE;
427
428 return NF_ACCEPT;
429 }
430 EXPORT_SYMBOL(nf_nat_setup_info);
431
432 /* Do packet manipulations according to nf_nat_setup_info. */
433 unsigned int nf_nat_packet(struct nf_conn *ct,
434 enum ip_conntrack_info ctinfo,
435 unsigned int hooknum,
436 struct sk_buff *skb)
437 {
438 const struct nf_nat_l3proto *l3proto;
439 const struct nf_nat_l4proto *l4proto;
440 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
441 unsigned long statusbit;
442 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
443
444 if (mtype == NF_NAT_MANIP_SRC)
445 statusbit = IPS_SRC_NAT;
446 else
447 statusbit = IPS_DST_NAT;
448
449 /* Invert if this is reply dir. */
450 if (dir == IP_CT_DIR_REPLY)
451 statusbit ^= IPS_NAT_MASK;
452
453 /* Non-atomic: these bits don't change. */
454 if (ct->status & statusbit) {
455 struct nf_conntrack_tuple target;
456
457 /* We are aiming to look like inverse of other direction. */
458 nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
459
460 l3proto = __nf_nat_l3proto_find(target.src.l3num);
461 l4proto = __nf_nat_l4proto_find(target.src.l3num,
462 target.dst.protonum);
463 if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
464 return NF_DROP;
465 }
466 return NF_ACCEPT;
467 }
468 EXPORT_SYMBOL_GPL(nf_nat_packet);
469
470 struct nf_nat_proto_clean {
471 u8 l3proto;
472 u8 l4proto;
473 bool hash;
474 };
475
476 /* Clear NAT section of all conntracks, in case we're loaded again. */
477 static int nf_nat_proto_clean(struct nf_conn *i, void *data)
478 {
479 const struct nf_nat_proto_clean *clean = data;
480 struct nf_conn_nat *nat = nfct_nat(i);
481
482 if (!nat)
483 return 0;
484 if (!(i->status & IPS_SRC_NAT_DONE))
485 return 0;
486 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
487 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
488 return 0;
489
490 if (clean->hash) {
491 spin_lock_bh(&nf_nat_lock);
492 hlist_del_rcu(&nat->bysource);
493 spin_unlock_bh(&nf_nat_lock);
494 } else {
495 memset(nat, 0, sizeof(*nat));
496 i->status &= ~(IPS_NAT_MASK | IPS_NAT_DONE_MASK |
497 IPS_SEQ_ADJUST);
498 }
499 return 0;
500 }
501
502 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
503 {
504 struct nf_nat_proto_clean clean = {
505 .l3proto = l3proto,
506 .l4proto = l4proto,
507 };
508 struct net *net;
509
510 rtnl_lock();
511 /* Step 1 - remove from bysource hash */
512 clean.hash = true;
513 for_each_net(net)
514 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
515 synchronize_rcu();
516
517 /* Step 2 - clean NAT section */
518 clean.hash = false;
519 for_each_net(net)
520 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
521 rtnl_unlock();
522 }
523
524 static void nf_nat_l3proto_clean(u8 l3proto)
525 {
526 struct nf_nat_proto_clean clean = {
527 .l3proto = l3proto,
528 };
529 struct net *net;
530
531 rtnl_lock();
532 /* Step 1 - remove from bysource hash */
533 clean.hash = true;
534 for_each_net(net)
535 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
536 synchronize_rcu();
537
538 /* Step 2 - clean NAT section */
539 clean.hash = false;
540 for_each_net(net)
541 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
542 rtnl_unlock();
543 }
544
545 /* Protocol registration. */
546 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
547 {
548 const struct nf_nat_l4proto **l4protos;
549 unsigned int i;
550 int ret = 0;
551
552 mutex_lock(&nf_nat_proto_mutex);
553 if (nf_nat_l4protos[l3proto] == NULL) {
554 l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
555 GFP_KERNEL);
556 if (l4protos == NULL) {
557 ret = -ENOMEM;
558 goto out;
559 }
560
561 for (i = 0; i < IPPROTO_MAX; i++)
562 RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
563
564 /* Before making proto_array visible to lockless readers,
565 * we must make sure its content is committed to memory.
566 */
567 smp_wmb();
568
569 nf_nat_l4protos[l3proto] = l4protos;
570 }
571
572 if (rcu_dereference_protected(
573 nf_nat_l4protos[l3proto][l4proto->l4proto],
574 lockdep_is_held(&nf_nat_proto_mutex)
575 ) != &nf_nat_l4proto_unknown) {
576 ret = -EBUSY;
577 goto out;
578 }
579 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
580 out:
581 mutex_unlock(&nf_nat_proto_mutex);
582 return ret;
583 }
584 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
585
586 /* No one stores the protocol anywhere; simply delete it. */
587 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
588 {
589 mutex_lock(&nf_nat_proto_mutex);
590 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
591 &nf_nat_l4proto_unknown);
592 mutex_unlock(&nf_nat_proto_mutex);
593 synchronize_rcu();
594
595 nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
596 }
597 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
598
599 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
600 {
601 int err;
602
603 err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
604 if (err < 0)
605 return err;
606
607 mutex_lock(&nf_nat_proto_mutex);
608 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
609 &nf_nat_l4proto_tcp);
610 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
611 &nf_nat_l4proto_udp);
612 mutex_unlock(&nf_nat_proto_mutex);
613
614 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
615 return 0;
616 }
617 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
618
619 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
620 {
621 mutex_lock(&nf_nat_proto_mutex);
622 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
623 mutex_unlock(&nf_nat_proto_mutex);
624 synchronize_rcu();
625
626 nf_nat_l3proto_clean(l3proto->l3proto);
627 nf_ct_l3proto_module_put(l3proto->l3proto);
628 }
629 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
630
631 /* No one using conntrack by the time this called. */
632 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
633 {
634 struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
635
636 if (nat == NULL || nat->ct == NULL)
637 return;
638
639 NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
640
641 spin_lock_bh(&nf_nat_lock);
642 hlist_del_rcu(&nat->bysource);
643 spin_unlock_bh(&nf_nat_lock);
644 }
645
646 static void nf_nat_move_storage(void *new, void *old)
647 {
648 struct nf_conn_nat *new_nat = new;
649 struct nf_conn_nat *old_nat = old;
650 struct nf_conn *ct = old_nat->ct;
651
652 if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
653 return;
654
655 spin_lock_bh(&nf_nat_lock);
656 hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
657 spin_unlock_bh(&nf_nat_lock);
658 }
659
660 static struct nf_ct_ext_type nat_extend __read_mostly = {
661 .len = sizeof(struct nf_conn_nat),
662 .align = __alignof__(struct nf_conn_nat),
663 .destroy = nf_nat_cleanup_conntrack,
664 .move = nf_nat_move_storage,
665 .id = NF_CT_EXT_NAT,
666 .flags = NF_CT_EXT_F_PREALLOC,
667 };
668
669 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
670
671 #include <linux/netfilter/nfnetlink.h>
672 #include <linux/netfilter/nfnetlink_conntrack.h>
673
674 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
675 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
676 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
677 };
678
679 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
680 const struct nf_conn *ct,
681 struct nf_nat_range *range)
682 {
683 struct nlattr *tb[CTA_PROTONAT_MAX+1];
684 const struct nf_nat_l4proto *l4proto;
685 int err;
686
687 err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
688 if (err < 0)
689 return err;
690
691 l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
692 if (l4proto->nlattr_to_range)
693 err = l4proto->nlattr_to_range(tb, range);
694
695 return err;
696 }
697
698 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
699 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
700 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
701 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
702 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
703 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
704 };
705
706 static int
707 nfnetlink_parse_nat(const struct nlattr *nat,
708 const struct nf_conn *ct, struct nf_nat_range *range)
709 {
710 const struct nf_nat_l3proto *l3proto;
711 struct nlattr *tb[CTA_NAT_MAX+1];
712 int err;
713
714 memset(range, 0, sizeof(*range));
715
716 err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
717 if (err < 0)
718 return err;
719
720 rcu_read_lock();
721 l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
722 if (l3proto == NULL) {
723 err = -EAGAIN;
724 goto out;
725 }
726 err = l3proto->nlattr_to_range(tb, range);
727 if (err < 0)
728 goto out;
729
730 if (!tb[CTA_NAT_PROTO])
731 goto out;
732
733 err = nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
734 out:
735 rcu_read_unlock();
736 return err;
737 }
738
739 static int
740 nfnetlink_parse_nat_setup(struct nf_conn *ct,
741 enum nf_nat_manip_type manip,
742 const struct nlattr *attr)
743 {
744 struct nf_nat_range range;
745 int err;
746
747 err = nfnetlink_parse_nat(attr, ct, &range);
748 if (err < 0)
749 return err;
750 if (nf_nat_initialized(ct, manip))
751 return -EEXIST;
752
753 return nf_nat_setup_info(ct, &range, manip);
754 }
755 #else
756 static int
757 nfnetlink_parse_nat_setup(struct nf_conn *ct,
758 enum nf_nat_manip_type manip,
759 const struct nlattr *attr)
760 {
761 return -EOPNOTSUPP;
762 }
763 #endif
764
765 static int __net_init nf_nat_net_init(struct net *net)
766 {
767 /* Leave them the same for the moment. */
768 net->ct.nat_htable_size = net->ct.htable_size;
769 net->ct.nat_bysource = nf_ct_alloc_hashtable(&net->ct.nat_htable_size, 0);
770 if (!net->ct.nat_bysource)
771 return -ENOMEM;
772 return 0;
773 }
774
775 static void __net_exit nf_nat_net_exit(struct net *net)
776 {
777 struct nf_nat_proto_clean clean = {};
778
779 nf_ct_iterate_cleanup(net, &nf_nat_proto_clean, &clean);
780 synchronize_rcu();
781 nf_ct_free_hashtable(net->ct.nat_bysource, net->ct.nat_htable_size);
782 }
783
784 static struct pernet_operations nf_nat_net_ops = {
785 .init = nf_nat_net_init,
786 .exit = nf_nat_net_exit,
787 };
788
789 static struct nf_ct_helper_expectfn follow_master_nat = {
790 .name = "nat-follow-master",
791 .expectfn = nf_nat_follow_master,
792 };
793
794 static struct nfq_ct_nat_hook nfq_ct_nat = {
795 .seq_adjust = nf_nat_tcp_seq_adjust,
796 };
797
798 static int __init nf_nat_init(void)
799 {
800 int ret;
801
802 ret = nf_ct_extend_register(&nat_extend);
803 if (ret < 0) {
804 printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
805 return ret;
806 }
807
808 ret = register_pernet_subsys(&nf_nat_net_ops);
809 if (ret < 0)
810 goto cleanup_extend;
811
812 nf_ct_helper_expectfn_register(&follow_master_nat);
813
814 /* Initialize fake conntrack so that NAT will skip it */
815 nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
816
817 BUG_ON(nf_nat_seq_adjust_hook != NULL);
818 RCU_INIT_POINTER(nf_nat_seq_adjust_hook, nf_nat_seq_adjust);
819 BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
820 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
821 nfnetlink_parse_nat_setup);
822 BUG_ON(nf_ct_nat_offset != NULL);
823 RCU_INIT_POINTER(nf_ct_nat_offset, nf_nat_get_offset);
824 RCU_INIT_POINTER(nfq_ct_nat_hook, &nfq_ct_nat);
825 #ifdef CONFIG_XFRM
826 BUG_ON(nf_nat_decode_session_hook != NULL);
827 RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
828 #endif
829 return 0;
830
831 cleanup_extend:
832 nf_ct_extend_unregister(&nat_extend);
833 return ret;
834 }
835
836 static void __exit nf_nat_cleanup(void)
837 {
838 unsigned int i;
839
840 unregister_pernet_subsys(&nf_nat_net_ops);
841 nf_ct_extend_unregister(&nat_extend);
842 nf_ct_helper_expectfn_unregister(&follow_master_nat);
843 RCU_INIT_POINTER(nf_nat_seq_adjust_hook, NULL);
844 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
845 RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
846 RCU_INIT_POINTER(nfq_ct_nat_hook, NULL);
847 #ifdef CONFIG_XFRM
848 RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
849 #endif
850 for (i = 0; i < NFPROTO_NUMPROTO; i++)
851 kfree(nf_nat_l4protos[i]);
852 synchronize_net();
853 }
854
855 MODULE_LICENSE("GPL");
856
857 module_init(nf_nat_init);
858 module_exit(nf_nat_cleanup);
This page took 0.072127 seconds and 5 git commands to generate.