Merge tag 'usb-4.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[deliverable/linux.git] / net / netfilter / nf_nat_core.c
1 /*
2 * (C) 1999-2001 Paul `Rusty' Russell
3 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4 * (C) 2011 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_seqadj.h>
29 #include <net/netfilter/nf_conntrack_l3proto.h>
30 #include <net/netfilter/nf_conntrack_zones.h>
31 #include <linux/netfilter/nf_nat.h>
32
33 static DEFINE_SPINLOCK(nf_nat_lock);
34
35 static DEFINE_MUTEX(nf_nat_proto_mutex);
36 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
37 __read_mostly;
38 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
39 __read_mostly;
40
41 static struct hlist_head *nf_nat_bysource __read_mostly;
42 static unsigned int nf_nat_htable_size __read_mostly;
43 static unsigned int nf_nat_hash_rnd __read_mostly;
44
45 inline const struct nf_nat_l3proto *
46 __nf_nat_l3proto_find(u8 family)
47 {
48 return rcu_dereference(nf_nat_l3protos[family]);
49 }
50
51 inline const struct nf_nat_l4proto *
52 __nf_nat_l4proto_find(u8 family, u8 protonum)
53 {
54 return rcu_dereference(nf_nat_l4protos[family][protonum]);
55 }
56 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
57
58 #ifdef CONFIG_XFRM
59 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
60 {
61 const struct nf_nat_l3proto *l3proto;
62 const struct nf_conn *ct;
63 enum ip_conntrack_info ctinfo;
64 enum ip_conntrack_dir dir;
65 unsigned long statusbit;
66 u8 family;
67
68 ct = nf_ct_get(skb, &ctinfo);
69 if (ct == NULL)
70 return;
71
72 family = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num;
73 rcu_read_lock();
74 l3proto = __nf_nat_l3proto_find(family);
75 if (l3proto == NULL)
76 goto out;
77
78 dir = CTINFO2DIR(ctinfo);
79 if (dir == IP_CT_DIR_ORIGINAL)
80 statusbit = IPS_DST_NAT;
81 else
82 statusbit = IPS_SRC_NAT;
83
84 l3proto->decode_session(skb, ct, dir, statusbit, fl);
85 out:
86 rcu_read_unlock();
87 }
88
89 int nf_xfrm_me_harder(struct net *net, struct sk_buff *skb, unsigned int family)
90 {
91 struct flowi fl;
92 unsigned int hh_len;
93 struct dst_entry *dst;
94 int err;
95
96 err = xfrm_decode_session(skb, &fl, family);
97 if (err < 0)
98 return err;
99
100 dst = skb_dst(skb);
101 if (dst->xfrm)
102 dst = ((struct xfrm_dst *)dst)->route;
103 dst_hold(dst);
104
105 dst = xfrm_lookup(net, dst, &fl, skb->sk, 0);
106 if (IS_ERR(dst))
107 return PTR_ERR(dst);
108
109 skb_dst_drop(skb);
110 skb_dst_set(skb, dst);
111
112 /* Change in oif may mean change in hh_len. */
113 hh_len = skb_dst(skb)->dev->hard_header_len;
114 if (skb_headroom(skb) < hh_len &&
115 pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
116 return -ENOMEM;
117 return 0;
118 }
119 EXPORT_SYMBOL(nf_xfrm_me_harder);
120 #endif /* CONFIG_XFRM */
121
122 /* We keep an extra hash for each conntrack, for fast searching. */
123 static inline unsigned int
124 hash_by_src(const struct net *n, const struct nf_conntrack_tuple *tuple)
125 {
126 unsigned int hash;
127
128 get_random_once(&nf_nat_hash_rnd, sizeof(nf_nat_hash_rnd));
129
130 /* Original src, to ensure we map it consistently if poss. */
131 hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
132 tuple->dst.protonum ^ nf_nat_hash_rnd ^ net_hash_mix(n));
133
134 return reciprocal_scale(hash, nf_nat_htable_size);
135 }
136
137 /* Is this tuple already taken? (not by us) */
138 int
139 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
140 const struct nf_conn *ignored_conntrack)
141 {
142 /* Conntrack tracking doesn't keep track of outgoing tuples; only
143 * incoming ones. NAT means they don't have a fixed mapping,
144 * so we invert the tuple and look for the incoming reply.
145 *
146 * We could keep a separate hash if this proves too slow.
147 */
148 struct nf_conntrack_tuple reply;
149
150 nf_ct_invert_tuplepr(&reply, tuple);
151 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
152 }
153 EXPORT_SYMBOL(nf_nat_used_tuple);
154
155 /* If we source map this tuple so reply looks like reply_tuple, will
156 * that meet the constraints of range.
157 */
158 static int in_range(const struct nf_nat_l3proto *l3proto,
159 const struct nf_nat_l4proto *l4proto,
160 const struct nf_conntrack_tuple *tuple,
161 const struct nf_nat_range *range)
162 {
163 /* If we are supposed to map IPs, then we must be in the
164 * range specified, otherwise let this drag us onto a new src IP.
165 */
166 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
167 !l3proto->in_range(tuple, range))
168 return 0;
169
170 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
171 l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
172 &range->min_proto, &range->max_proto))
173 return 1;
174
175 return 0;
176 }
177
178 static inline int
179 same_src(const struct nf_conn *ct,
180 const struct nf_conntrack_tuple *tuple)
181 {
182 const struct nf_conntrack_tuple *t;
183
184 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
185 return (t->dst.protonum == tuple->dst.protonum &&
186 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
187 t->src.u.all == tuple->src.u.all);
188 }
189
190 /* Only called for SRC manip */
191 static int
192 find_appropriate_src(struct net *net,
193 const struct nf_conntrack_zone *zone,
194 const struct nf_nat_l3proto *l3proto,
195 const struct nf_nat_l4proto *l4proto,
196 const struct nf_conntrack_tuple *tuple,
197 struct nf_conntrack_tuple *result,
198 const struct nf_nat_range *range)
199 {
200 unsigned int h = hash_by_src(net, tuple);
201 const struct nf_conn_nat *nat;
202 const struct nf_conn *ct;
203
204 hlist_for_each_entry_rcu(nat, &nf_nat_bysource[h], bysource) {
205 ct = nat->ct;
206 if (same_src(ct, tuple) &&
207 net_eq(net, nf_ct_net(ct)) &&
208 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL)) {
209 /* Copy source part from reply tuple. */
210 nf_ct_invert_tuplepr(result,
211 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
212 result->dst = tuple->dst;
213
214 if (in_range(l3proto, l4proto, result, range))
215 return 1;
216 }
217 }
218 return 0;
219 }
220
221 /* For [FUTURE] fragmentation handling, we want the least-used
222 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
223 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
224 * 1-65535, we don't do pro-rata allocation based on ports; we choose
225 * the ip with the lowest src-ip/dst-ip/proto usage.
226 */
227 static void
228 find_best_ips_proto(const struct nf_conntrack_zone *zone,
229 struct nf_conntrack_tuple *tuple,
230 const struct nf_nat_range *range,
231 const struct nf_conn *ct,
232 enum nf_nat_manip_type maniptype)
233 {
234 union nf_inet_addr *var_ipp;
235 unsigned int i, max;
236 /* Host order */
237 u32 minip, maxip, j, dist;
238 bool full_range;
239
240 /* No IP mapping? Do nothing. */
241 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
242 return;
243
244 if (maniptype == NF_NAT_MANIP_SRC)
245 var_ipp = &tuple->src.u3;
246 else
247 var_ipp = &tuple->dst.u3;
248
249 /* Fast path: only one choice. */
250 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
251 *var_ipp = range->min_addr;
252 return;
253 }
254
255 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
256 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
257 else
258 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
259
260 /* Hashing source and destination IPs gives a fairly even
261 * spread in practice (if there are a small number of IPs
262 * involved, there usually aren't that many connections
263 * anyway). The consistency means that servers see the same
264 * client coming from the same IP (some Internet Banking sites
265 * like this), even across reboots.
266 */
267 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
268 range->flags & NF_NAT_RANGE_PERSISTENT ?
269 0 : (__force u32)tuple->dst.u3.all[max] ^ zone->id);
270
271 full_range = false;
272 for (i = 0; i <= max; i++) {
273 /* If first bytes of the address are at the maximum, use the
274 * distance. Otherwise use the full range.
275 */
276 if (!full_range) {
277 minip = ntohl((__force __be32)range->min_addr.all[i]);
278 maxip = ntohl((__force __be32)range->max_addr.all[i]);
279 dist = maxip - minip + 1;
280 } else {
281 minip = 0;
282 dist = ~0;
283 }
284
285 var_ipp->all[i] = (__force __u32)
286 htonl(minip + reciprocal_scale(j, dist));
287 if (var_ipp->all[i] != range->max_addr.all[i])
288 full_range = true;
289
290 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
291 j ^= (__force u32)tuple->dst.u3.all[i];
292 }
293 }
294
295 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
296 * we change the source to map into the range. For NF_INET_PRE_ROUTING
297 * and NF_INET_LOCAL_OUT, we change the destination to map into the
298 * range. It might not be possible to get a unique tuple, but we try.
299 * At worst (or if we race), we will end up with a final duplicate in
300 * __ip_conntrack_confirm and drop the packet. */
301 static void
302 get_unique_tuple(struct nf_conntrack_tuple *tuple,
303 const struct nf_conntrack_tuple *orig_tuple,
304 const struct nf_nat_range *range,
305 struct nf_conn *ct,
306 enum nf_nat_manip_type maniptype)
307 {
308 const struct nf_conntrack_zone *zone;
309 const struct nf_nat_l3proto *l3proto;
310 const struct nf_nat_l4proto *l4proto;
311 struct net *net = nf_ct_net(ct);
312
313 zone = nf_ct_zone(ct);
314
315 rcu_read_lock();
316 l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
317 l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
318 orig_tuple->dst.protonum);
319
320 /* 1) If this srcip/proto/src-proto-part is currently mapped,
321 * and that same mapping gives a unique tuple within the given
322 * range, use that.
323 *
324 * This is only required for source (ie. NAT/masq) mappings.
325 * So far, we don't do local source mappings, so multiple
326 * manips not an issue.
327 */
328 if (maniptype == NF_NAT_MANIP_SRC &&
329 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
330 /* try the original tuple first */
331 if (in_range(l3proto, l4proto, orig_tuple, range)) {
332 if (!nf_nat_used_tuple(orig_tuple, ct)) {
333 *tuple = *orig_tuple;
334 goto out;
335 }
336 } else if (find_appropriate_src(net, zone, l3proto, l4proto,
337 orig_tuple, tuple, range)) {
338 pr_debug("get_unique_tuple: Found current src map\n");
339 if (!nf_nat_used_tuple(tuple, ct))
340 goto out;
341 }
342 }
343
344 /* 2) Select the least-used IP/proto combination in the given range */
345 *tuple = *orig_tuple;
346 find_best_ips_proto(zone, tuple, range, ct, maniptype);
347
348 /* 3) The per-protocol part of the manip is made to map into
349 * the range to make a unique tuple.
350 */
351
352 /* Only bother mapping if it's not already in range and unique */
353 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
354 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
355 if (l4proto->in_range(tuple, maniptype,
356 &range->min_proto,
357 &range->max_proto) &&
358 (range->min_proto.all == range->max_proto.all ||
359 !nf_nat_used_tuple(tuple, ct)))
360 goto out;
361 } else if (!nf_nat_used_tuple(tuple, ct)) {
362 goto out;
363 }
364 }
365
366 /* Last change: get protocol to try to obtain unique tuple. */
367 l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
368 out:
369 rcu_read_unlock();
370 }
371
372 struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct)
373 {
374 struct nf_conn_nat *nat = nfct_nat(ct);
375 if (nat)
376 return nat;
377
378 if (!nf_ct_is_confirmed(ct))
379 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
380
381 return nat;
382 }
383 EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add);
384
385 unsigned int
386 nf_nat_setup_info(struct nf_conn *ct,
387 const struct nf_nat_range *range,
388 enum nf_nat_manip_type maniptype)
389 {
390 struct net *net = nf_ct_net(ct);
391 struct nf_conntrack_tuple curr_tuple, new_tuple;
392 struct nf_conn_nat *nat;
393
394 /* nat helper or nfctnetlink also setup binding */
395 nat = nf_ct_nat_ext_add(ct);
396 if (nat == NULL)
397 return NF_ACCEPT;
398
399 NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
400 maniptype == NF_NAT_MANIP_DST);
401 BUG_ON(nf_nat_initialized(ct, maniptype));
402
403 /* What we've got will look like inverse of reply. Normally
404 * this is what is in the conntrack, except for prior
405 * manipulations (future optimization: if num_manips == 0,
406 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
407 */
408 nf_ct_invert_tuplepr(&curr_tuple,
409 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
410
411 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
412
413 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
414 struct nf_conntrack_tuple reply;
415
416 /* Alter conntrack table so will recognize replies. */
417 nf_ct_invert_tuplepr(&reply, &new_tuple);
418 nf_conntrack_alter_reply(ct, &reply);
419
420 /* Non-atomic: we own this at the moment. */
421 if (maniptype == NF_NAT_MANIP_SRC)
422 ct->status |= IPS_SRC_NAT;
423 else
424 ct->status |= IPS_DST_NAT;
425
426 if (nfct_help(ct))
427 nfct_seqadj_ext_add(ct);
428 }
429
430 if (maniptype == NF_NAT_MANIP_SRC) {
431 unsigned int srchash;
432
433 srchash = hash_by_src(net,
434 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
435 spin_lock_bh(&nf_nat_lock);
436 /* nf_conntrack_alter_reply might re-allocate extension aera */
437 nat = nfct_nat(ct);
438 nat->ct = ct;
439 hlist_add_head_rcu(&nat->bysource,
440 &nf_nat_bysource[srchash]);
441 spin_unlock_bh(&nf_nat_lock);
442 }
443
444 /* It's done. */
445 if (maniptype == NF_NAT_MANIP_DST)
446 ct->status |= IPS_DST_NAT_DONE;
447 else
448 ct->status |= IPS_SRC_NAT_DONE;
449
450 return NF_ACCEPT;
451 }
452 EXPORT_SYMBOL(nf_nat_setup_info);
453
454 static unsigned int
455 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
456 {
457 /* Force range to this IP; let proto decide mapping for
458 * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
459 * Use reply in case it's already been mangled (eg local packet).
460 */
461 union nf_inet_addr ip =
462 (manip == NF_NAT_MANIP_SRC ?
463 ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
464 ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
465 struct nf_nat_range range = {
466 .flags = NF_NAT_RANGE_MAP_IPS,
467 .min_addr = ip,
468 .max_addr = ip,
469 };
470 return nf_nat_setup_info(ct, &range, manip);
471 }
472
473 unsigned int
474 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
475 {
476 return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
477 }
478 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
479
480 /* Do packet manipulations according to nf_nat_setup_info. */
481 unsigned int nf_nat_packet(struct nf_conn *ct,
482 enum ip_conntrack_info ctinfo,
483 unsigned int hooknum,
484 struct sk_buff *skb)
485 {
486 const struct nf_nat_l3proto *l3proto;
487 const struct nf_nat_l4proto *l4proto;
488 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
489 unsigned long statusbit;
490 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
491
492 if (mtype == NF_NAT_MANIP_SRC)
493 statusbit = IPS_SRC_NAT;
494 else
495 statusbit = IPS_DST_NAT;
496
497 /* Invert if this is reply dir. */
498 if (dir == IP_CT_DIR_REPLY)
499 statusbit ^= IPS_NAT_MASK;
500
501 /* Non-atomic: these bits don't change. */
502 if (ct->status & statusbit) {
503 struct nf_conntrack_tuple target;
504
505 /* We are aiming to look like inverse of other direction. */
506 nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
507
508 l3proto = __nf_nat_l3proto_find(target.src.l3num);
509 l4proto = __nf_nat_l4proto_find(target.src.l3num,
510 target.dst.protonum);
511 if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
512 return NF_DROP;
513 }
514 return NF_ACCEPT;
515 }
516 EXPORT_SYMBOL_GPL(nf_nat_packet);
517
518 struct nf_nat_proto_clean {
519 u8 l3proto;
520 u8 l4proto;
521 };
522
523 /* kill conntracks with affected NAT section */
524 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
525 {
526 const struct nf_nat_proto_clean *clean = data;
527 struct nf_conn_nat *nat = nfct_nat(i);
528
529 if (!nat)
530 return 0;
531
532 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
533 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
534 return 0;
535
536 return i->status & IPS_NAT_MASK ? 1 : 0;
537 }
538
539 static int nf_nat_proto_clean(struct nf_conn *ct, void *data)
540 {
541 struct nf_conn_nat *nat = nfct_nat(ct);
542
543 if (nf_nat_proto_remove(ct, data))
544 return 1;
545
546 if (!nat || !nat->ct)
547 return 0;
548
549 /* This netns is being destroyed, and conntrack has nat null binding.
550 * Remove it from bysource hash, as the table will be freed soon.
551 *
552 * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack()
553 * will delete entry from already-freed table.
554 */
555 if (!del_timer(&ct->timeout))
556 return 1;
557
558 spin_lock_bh(&nf_nat_lock);
559 hlist_del_rcu(&nat->bysource);
560 ct->status &= ~IPS_NAT_DONE_MASK;
561 nat->ct = NULL;
562 spin_unlock_bh(&nf_nat_lock);
563
564 add_timer(&ct->timeout);
565
566 /* don't delete conntrack. Although that would make things a lot
567 * simpler, we'd end up flushing all conntracks on nat rmmod.
568 */
569 return 0;
570 }
571
572 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
573 {
574 struct nf_nat_proto_clean clean = {
575 .l3proto = l3proto,
576 .l4proto = l4proto,
577 };
578 struct net *net;
579
580 rtnl_lock();
581 for_each_net(net)
582 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean, 0, 0);
583 rtnl_unlock();
584 }
585
586 static void nf_nat_l3proto_clean(u8 l3proto)
587 {
588 struct nf_nat_proto_clean clean = {
589 .l3proto = l3proto,
590 };
591 struct net *net;
592
593 rtnl_lock();
594
595 for_each_net(net)
596 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean, 0, 0);
597 rtnl_unlock();
598 }
599
600 /* Protocol registration. */
601 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
602 {
603 const struct nf_nat_l4proto **l4protos;
604 unsigned int i;
605 int ret = 0;
606
607 mutex_lock(&nf_nat_proto_mutex);
608 if (nf_nat_l4protos[l3proto] == NULL) {
609 l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
610 GFP_KERNEL);
611 if (l4protos == NULL) {
612 ret = -ENOMEM;
613 goto out;
614 }
615
616 for (i = 0; i < IPPROTO_MAX; i++)
617 RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
618
619 /* Before making proto_array visible to lockless readers,
620 * we must make sure its content is committed to memory.
621 */
622 smp_wmb();
623
624 nf_nat_l4protos[l3proto] = l4protos;
625 }
626
627 if (rcu_dereference_protected(
628 nf_nat_l4protos[l3proto][l4proto->l4proto],
629 lockdep_is_held(&nf_nat_proto_mutex)
630 ) != &nf_nat_l4proto_unknown) {
631 ret = -EBUSY;
632 goto out;
633 }
634 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
635 out:
636 mutex_unlock(&nf_nat_proto_mutex);
637 return ret;
638 }
639 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
640
641 /* No one stores the protocol anywhere; simply delete it. */
642 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
643 {
644 mutex_lock(&nf_nat_proto_mutex);
645 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
646 &nf_nat_l4proto_unknown);
647 mutex_unlock(&nf_nat_proto_mutex);
648 synchronize_rcu();
649
650 nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
651 }
652 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
653
654 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
655 {
656 int err;
657
658 err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
659 if (err < 0)
660 return err;
661
662 mutex_lock(&nf_nat_proto_mutex);
663 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
664 &nf_nat_l4proto_tcp);
665 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
666 &nf_nat_l4proto_udp);
667 mutex_unlock(&nf_nat_proto_mutex);
668
669 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
670 return 0;
671 }
672 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
673
674 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
675 {
676 mutex_lock(&nf_nat_proto_mutex);
677 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
678 mutex_unlock(&nf_nat_proto_mutex);
679 synchronize_rcu();
680
681 nf_nat_l3proto_clean(l3proto->l3proto);
682 nf_ct_l3proto_module_put(l3proto->l3proto);
683 }
684 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
685
686 /* No one using conntrack by the time this called. */
687 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
688 {
689 struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
690
691 if (nat == NULL || nat->ct == NULL)
692 return;
693
694 NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
695
696 spin_lock_bh(&nf_nat_lock);
697 hlist_del_rcu(&nat->bysource);
698 spin_unlock_bh(&nf_nat_lock);
699 }
700
701 static void nf_nat_move_storage(void *new, void *old)
702 {
703 struct nf_conn_nat *new_nat = new;
704 struct nf_conn_nat *old_nat = old;
705 struct nf_conn *ct = old_nat->ct;
706
707 if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
708 return;
709
710 spin_lock_bh(&nf_nat_lock);
711 hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
712 spin_unlock_bh(&nf_nat_lock);
713 }
714
715 static struct nf_ct_ext_type nat_extend __read_mostly = {
716 .len = sizeof(struct nf_conn_nat),
717 .align = __alignof__(struct nf_conn_nat),
718 .destroy = nf_nat_cleanup_conntrack,
719 .move = nf_nat_move_storage,
720 .id = NF_CT_EXT_NAT,
721 .flags = NF_CT_EXT_F_PREALLOC,
722 };
723
724 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
725
726 #include <linux/netfilter/nfnetlink.h>
727 #include <linux/netfilter/nfnetlink_conntrack.h>
728
729 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
730 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
731 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
732 };
733
734 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
735 const struct nf_conn *ct,
736 struct nf_nat_range *range)
737 {
738 struct nlattr *tb[CTA_PROTONAT_MAX+1];
739 const struct nf_nat_l4proto *l4proto;
740 int err;
741
742 err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
743 if (err < 0)
744 return err;
745
746 l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
747 if (l4proto->nlattr_to_range)
748 err = l4proto->nlattr_to_range(tb, range);
749
750 return err;
751 }
752
753 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
754 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
755 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
756 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
757 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
758 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
759 };
760
761 static int
762 nfnetlink_parse_nat(const struct nlattr *nat,
763 const struct nf_conn *ct, struct nf_nat_range *range,
764 const struct nf_nat_l3proto *l3proto)
765 {
766 struct nlattr *tb[CTA_NAT_MAX+1];
767 int err;
768
769 memset(range, 0, sizeof(*range));
770
771 err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
772 if (err < 0)
773 return err;
774
775 err = l3proto->nlattr_to_range(tb, range);
776 if (err < 0)
777 return err;
778
779 if (!tb[CTA_NAT_PROTO])
780 return 0;
781
782 return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
783 }
784
785 /* This function is called under rcu_read_lock() */
786 static int
787 nfnetlink_parse_nat_setup(struct nf_conn *ct,
788 enum nf_nat_manip_type manip,
789 const struct nlattr *attr)
790 {
791 struct nf_nat_range range;
792 const struct nf_nat_l3proto *l3proto;
793 int err;
794
795 /* Should not happen, restricted to creating new conntracks
796 * via ctnetlink.
797 */
798 if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
799 return -EEXIST;
800
801 /* Make sure that L3 NAT is there by when we call nf_nat_setup_info to
802 * attach the null binding, otherwise this may oops.
803 */
804 l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
805 if (l3proto == NULL)
806 return -EAGAIN;
807
808 /* No NAT information has been passed, allocate the null-binding */
809 if (attr == NULL)
810 return __nf_nat_alloc_null_binding(ct, manip);
811
812 err = nfnetlink_parse_nat(attr, ct, &range, l3proto);
813 if (err < 0)
814 return err;
815
816 return nf_nat_setup_info(ct, &range, manip);
817 }
818 #else
819 static int
820 nfnetlink_parse_nat_setup(struct nf_conn *ct,
821 enum nf_nat_manip_type manip,
822 const struct nlattr *attr)
823 {
824 return -EOPNOTSUPP;
825 }
826 #endif
827
828 static void __net_exit nf_nat_net_exit(struct net *net)
829 {
830 struct nf_nat_proto_clean clean = {};
831
832 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean, 0, 0);
833 }
834
835 static struct pernet_operations nf_nat_net_ops = {
836 .exit = nf_nat_net_exit,
837 };
838
839 static struct nf_ct_helper_expectfn follow_master_nat = {
840 .name = "nat-follow-master",
841 .expectfn = nf_nat_follow_master,
842 };
843
844 static int __init nf_nat_init(void)
845 {
846 int ret;
847
848 /* Leave them the same for the moment. */
849 nf_nat_htable_size = nf_conntrack_htable_size;
850
851 nf_nat_bysource = nf_ct_alloc_hashtable(&nf_nat_htable_size, 0);
852 if (!nf_nat_bysource)
853 return -ENOMEM;
854
855 ret = nf_ct_extend_register(&nat_extend);
856 if (ret < 0) {
857 nf_ct_free_hashtable(nf_nat_bysource, nf_nat_htable_size);
858 printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
859 return ret;
860 }
861
862 ret = register_pernet_subsys(&nf_nat_net_ops);
863 if (ret < 0)
864 goto cleanup_extend;
865
866 nf_ct_helper_expectfn_register(&follow_master_nat);
867
868 /* Initialize fake conntrack so that NAT will skip it */
869 nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
870
871 BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
872 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
873 nfnetlink_parse_nat_setup);
874 #ifdef CONFIG_XFRM
875 BUG_ON(nf_nat_decode_session_hook != NULL);
876 RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
877 #endif
878 return 0;
879
880 cleanup_extend:
881 nf_ct_free_hashtable(nf_nat_bysource, nf_nat_htable_size);
882 nf_ct_extend_unregister(&nat_extend);
883 return ret;
884 }
885
886 static void __exit nf_nat_cleanup(void)
887 {
888 unsigned int i;
889
890 unregister_pernet_subsys(&nf_nat_net_ops);
891 nf_ct_extend_unregister(&nat_extend);
892 nf_ct_helper_expectfn_unregister(&follow_master_nat);
893 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
894 #ifdef CONFIG_XFRM
895 RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
896 #endif
897 for (i = 0; i < NFPROTO_NUMPROTO; i++)
898 kfree(nf_nat_l4protos[i]);
899 synchronize_net();
900 nf_ct_free_hashtable(nf_nat_bysource, nf_nat_htable_size);
901 }
902
903 MODULE_LICENSE("GPL");
904
905 module_init(nf_nat_init);
906 module_exit(nf_nat_cleanup);
This page took 0.049698 seconds and 5 git commands to generate.