Merge tag 'please-pull-pstore' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl...
[deliverable/linux.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <asm/cacheflush.h>
62
63 #include <net/net_namespace.h>
64 #include <net/sock.h>
65 #include <net/scm.h>
66 #include <net/netlink.h>
67
68 #include "af_netlink.h"
69
70 struct listeners {
71 struct rcu_head rcu;
72 unsigned long masks[0];
73 };
74
75 /* state bits */
76 #define NETLINK_CONGESTED 0x0
77
78 /* flags */
79 #define NETLINK_KERNEL_SOCKET 0x1
80 #define NETLINK_RECV_PKTINFO 0x2
81 #define NETLINK_BROADCAST_SEND_ERROR 0x4
82 #define NETLINK_RECV_NO_ENOBUFS 0x8
83
84 static inline int netlink_is_kernel(struct sock *sk)
85 {
86 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
87 }
88
89 struct netlink_table *nl_table;
90 EXPORT_SYMBOL_GPL(nl_table);
91
92 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
93
94 static int netlink_dump(struct sock *sk);
95 static void netlink_skb_destructor(struct sk_buff *skb);
96
97 DEFINE_RWLOCK(nl_table_lock);
98 EXPORT_SYMBOL_GPL(nl_table_lock);
99 static atomic_t nl_table_users = ATOMIC_INIT(0);
100
101 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
102
103 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
104
105 static DEFINE_SPINLOCK(netlink_tap_lock);
106 static struct list_head netlink_tap_all __read_mostly;
107
108 static inline u32 netlink_group_mask(u32 group)
109 {
110 return group ? 1 << (group - 1) : 0;
111 }
112
113 static inline struct hlist_head *nl_portid_hashfn(struct nl_portid_hash *hash, u32 portid)
114 {
115 return &hash->table[jhash_1word(portid, hash->rnd) & hash->mask];
116 }
117
118 int netlink_add_tap(struct netlink_tap *nt)
119 {
120 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
121 return -EINVAL;
122
123 spin_lock(&netlink_tap_lock);
124 list_add_rcu(&nt->list, &netlink_tap_all);
125 spin_unlock(&netlink_tap_lock);
126
127 if (nt->module)
128 __module_get(nt->module);
129
130 return 0;
131 }
132 EXPORT_SYMBOL_GPL(netlink_add_tap);
133
134 int __netlink_remove_tap(struct netlink_tap *nt)
135 {
136 bool found = false;
137 struct netlink_tap *tmp;
138
139 spin_lock(&netlink_tap_lock);
140
141 list_for_each_entry(tmp, &netlink_tap_all, list) {
142 if (nt == tmp) {
143 list_del_rcu(&nt->list);
144 found = true;
145 goto out;
146 }
147 }
148
149 pr_warn("__netlink_remove_tap: %p not found\n", nt);
150 out:
151 spin_unlock(&netlink_tap_lock);
152
153 if (found && nt->module)
154 module_put(nt->module);
155
156 return found ? 0 : -ENODEV;
157 }
158 EXPORT_SYMBOL_GPL(__netlink_remove_tap);
159
160 int netlink_remove_tap(struct netlink_tap *nt)
161 {
162 int ret;
163
164 ret = __netlink_remove_tap(nt);
165 synchronize_net();
166
167 return ret;
168 }
169 EXPORT_SYMBOL_GPL(netlink_remove_tap);
170
171 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
172 struct net_device *dev)
173 {
174 struct sk_buff *nskb;
175 int ret = -ENOMEM;
176
177 dev_hold(dev);
178 nskb = skb_clone(skb, GFP_ATOMIC);
179 if (nskb) {
180 nskb->dev = dev;
181 ret = dev_queue_xmit(nskb);
182 if (unlikely(ret > 0))
183 ret = net_xmit_errno(ret);
184 }
185
186 dev_put(dev);
187 return ret;
188 }
189
190 static void __netlink_deliver_tap(struct sk_buff *skb)
191 {
192 int ret;
193 struct netlink_tap *tmp;
194
195 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
196 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
197 if (unlikely(ret))
198 break;
199 }
200 }
201
202 static void netlink_deliver_tap(struct sk_buff *skb)
203 {
204 rcu_read_lock();
205
206 if (unlikely(!list_empty(&netlink_tap_all)))
207 __netlink_deliver_tap(skb);
208
209 rcu_read_unlock();
210 }
211
212 static void netlink_overrun(struct sock *sk)
213 {
214 struct netlink_sock *nlk = nlk_sk(sk);
215
216 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
217 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
218 sk->sk_err = ENOBUFS;
219 sk->sk_error_report(sk);
220 }
221 }
222 atomic_inc(&sk->sk_drops);
223 }
224
225 static void netlink_rcv_wake(struct sock *sk)
226 {
227 struct netlink_sock *nlk = nlk_sk(sk);
228
229 if (skb_queue_empty(&sk->sk_receive_queue))
230 clear_bit(NETLINK_CONGESTED, &nlk->state);
231 if (!test_bit(NETLINK_CONGESTED, &nlk->state))
232 wake_up_interruptible(&nlk->wait);
233 }
234
235 #ifdef CONFIG_NETLINK_MMAP
236 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
237 {
238 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
239 }
240
241 static bool netlink_rx_is_mmaped(struct sock *sk)
242 {
243 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
244 }
245
246 static bool netlink_tx_is_mmaped(struct sock *sk)
247 {
248 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
249 }
250
251 static __pure struct page *pgvec_to_page(const void *addr)
252 {
253 if (is_vmalloc_addr(addr))
254 return vmalloc_to_page(addr);
255 else
256 return virt_to_page(addr);
257 }
258
259 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
260 {
261 unsigned int i;
262
263 for (i = 0; i < len; i++) {
264 if (pg_vec[i] != NULL) {
265 if (is_vmalloc_addr(pg_vec[i]))
266 vfree(pg_vec[i]);
267 else
268 free_pages((unsigned long)pg_vec[i], order);
269 }
270 }
271 kfree(pg_vec);
272 }
273
274 static void *alloc_one_pg_vec_page(unsigned long order)
275 {
276 void *buffer;
277 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
278 __GFP_NOWARN | __GFP_NORETRY;
279
280 buffer = (void *)__get_free_pages(gfp_flags, order);
281 if (buffer != NULL)
282 return buffer;
283
284 buffer = vzalloc((1 << order) * PAGE_SIZE);
285 if (buffer != NULL)
286 return buffer;
287
288 gfp_flags &= ~__GFP_NORETRY;
289 return (void *)__get_free_pages(gfp_flags, order);
290 }
291
292 static void **alloc_pg_vec(struct netlink_sock *nlk,
293 struct nl_mmap_req *req, unsigned int order)
294 {
295 unsigned int block_nr = req->nm_block_nr;
296 unsigned int i;
297 void **pg_vec, *ptr;
298
299 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
300 if (pg_vec == NULL)
301 return NULL;
302
303 for (i = 0; i < block_nr; i++) {
304 pg_vec[i] = ptr = alloc_one_pg_vec_page(order);
305 if (pg_vec[i] == NULL)
306 goto err1;
307 }
308
309 return pg_vec;
310 err1:
311 free_pg_vec(pg_vec, order, block_nr);
312 return NULL;
313 }
314
315 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
316 bool closing, bool tx_ring)
317 {
318 struct netlink_sock *nlk = nlk_sk(sk);
319 struct netlink_ring *ring;
320 struct sk_buff_head *queue;
321 void **pg_vec = NULL;
322 unsigned int order = 0;
323 int err;
324
325 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
326 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
327
328 if (!closing) {
329 if (atomic_read(&nlk->mapped))
330 return -EBUSY;
331 if (atomic_read(&ring->pending))
332 return -EBUSY;
333 }
334
335 if (req->nm_block_nr) {
336 if (ring->pg_vec != NULL)
337 return -EBUSY;
338
339 if ((int)req->nm_block_size <= 0)
340 return -EINVAL;
341 if (!IS_ALIGNED(req->nm_block_size, PAGE_SIZE))
342 return -EINVAL;
343 if (req->nm_frame_size < NL_MMAP_HDRLEN)
344 return -EINVAL;
345 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
346 return -EINVAL;
347
348 ring->frames_per_block = req->nm_block_size /
349 req->nm_frame_size;
350 if (ring->frames_per_block == 0)
351 return -EINVAL;
352 if (ring->frames_per_block * req->nm_block_nr !=
353 req->nm_frame_nr)
354 return -EINVAL;
355
356 order = get_order(req->nm_block_size);
357 pg_vec = alloc_pg_vec(nlk, req, order);
358 if (pg_vec == NULL)
359 return -ENOMEM;
360 } else {
361 if (req->nm_frame_nr)
362 return -EINVAL;
363 }
364
365 err = -EBUSY;
366 mutex_lock(&nlk->pg_vec_lock);
367 if (closing || atomic_read(&nlk->mapped) == 0) {
368 err = 0;
369 spin_lock_bh(&queue->lock);
370
371 ring->frame_max = req->nm_frame_nr - 1;
372 ring->head = 0;
373 ring->frame_size = req->nm_frame_size;
374 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
375
376 swap(ring->pg_vec_len, req->nm_block_nr);
377 swap(ring->pg_vec_order, order);
378 swap(ring->pg_vec, pg_vec);
379
380 __skb_queue_purge(queue);
381 spin_unlock_bh(&queue->lock);
382
383 WARN_ON(atomic_read(&nlk->mapped));
384 }
385 mutex_unlock(&nlk->pg_vec_lock);
386
387 if (pg_vec)
388 free_pg_vec(pg_vec, order, req->nm_block_nr);
389 return err;
390 }
391
392 static void netlink_mm_open(struct vm_area_struct *vma)
393 {
394 struct file *file = vma->vm_file;
395 struct socket *sock = file->private_data;
396 struct sock *sk = sock->sk;
397
398 if (sk)
399 atomic_inc(&nlk_sk(sk)->mapped);
400 }
401
402 static void netlink_mm_close(struct vm_area_struct *vma)
403 {
404 struct file *file = vma->vm_file;
405 struct socket *sock = file->private_data;
406 struct sock *sk = sock->sk;
407
408 if (sk)
409 atomic_dec(&nlk_sk(sk)->mapped);
410 }
411
412 static const struct vm_operations_struct netlink_mmap_ops = {
413 .open = netlink_mm_open,
414 .close = netlink_mm_close,
415 };
416
417 static int netlink_mmap(struct file *file, struct socket *sock,
418 struct vm_area_struct *vma)
419 {
420 struct sock *sk = sock->sk;
421 struct netlink_sock *nlk = nlk_sk(sk);
422 struct netlink_ring *ring;
423 unsigned long start, size, expected;
424 unsigned int i;
425 int err = -EINVAL;
426
427 if (vma->vm_pgoff)
428 return -EINVAL;
429
430 mutex_lock(&nlk->pg_vec_lock);
431
432 expected = 0;
433 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
434 if (ring->pg_vec == NULL)
435 continue;
436 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
437 }
438
439 if (expected == 0)
440 goto out;
441
442 size = vma->vm_end - vma->vm_start;
443 if (size != expected)
444 goto out;
445
446 start = vma->vm_start;
447 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
448 if (ring->pg_vec == NULL)
449 continue;
450
451 for (i = 0; i < ring->pg_vec_len; i++) {
452 struct page *page;
453 void *kaddr = ring->pg_vec[i];
454 unsigned int pg_num;
455
456 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
457 page = pgvec_to_page(kaddr);
458 err = vm_insert_page(vma, start, page);
459 if (err < 0)
460 goto out;
461 start += PAGE_SIZE;
462 kaddr += PAGE_SIZE;
463 }
464 }
465 }
466
467 atomic_inc(&nlk->mapped);
468 vma->vm_ops = &netlink_mmap_ops;
469 err = 0;
470 out:
471 mutex_unlock(&nlk->pg_vec_lock);
472 return err;
473 }
474
475 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr)
476 {
477 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
478 struct page *p_start, *p_end;
479
480 /* First page is flushed through netlink_{get,set}_status */
481 p_start = pgvec_to_page(hdr + PAGE_SIZE);
482 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1);
483 while (p_start <= p_end) {
484 flush_dcache_page(p_start);
485 p_start++;
486 }
487 #endif
488 }
489
490 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
491 {
492 smp_rmb();
493 flush_dcache_page(pgvec_to_page(hdr));
494 return hdr->nm_status;
495 }
496
497 static void netlink_set_status(struct nl_mmap_hdr *hdr,
498 enum nl_mmap_status status)
499 {
500 hdr->nm_status = status;
501 flush_dcache_page(pgvec_to_page(hdr));
502 smp_wmb();
503 }
504
505 static struct nl_mmap_hdr *
506 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
507 {
508 unsigned int pg_vec_pos, frame_off;
509
510 pg_vec_pos = pos / ring->frames_per_block;
511 frame_off = pos % ring->frames_per_block;
512
513 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
514 }
515
516 static struct nl_mmap_hdr *
517 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
518 enum nl_mmap_status status)
519 {
520 struct nl_mmap_hdr *hdr;
521
522 hdr = __netlink_lookup_frame(ring, pos);
523 if (netlink_get_status(hdr) != status)
524 return NULL;
525
526 return hdr;
527 }
528
529 static struct nl_mmap_hdr *
530 netlink_current_frame(const struct netlink_ring *ring,
531 enum nl_mmap_status status)
532 {
533 return netlink_lookup_frame(ring, ring->head, status);
534 }
535
536 static struct nl_mmap_hdr *
537 netlink_previous_frame(const struct netlink_ring *ring,
538 enum nl_mmap_status status)
539 {
540 unsigned int prev;
541
542 prev = ring->head ? ring->head - 1 : ring->frame_max;
543 return netlink_lookup_frame(ring, prev, status);
544 }
545
546 static void netlink_increment_head(struct netlink_ring *ring)
547 {
548 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
549 }
550
551 static void netlink_forward_ring(struct netlink_ring *ring)
552 {
553 unsigned int head = ring->head, pos = head;
554 const struct nl_mmap_hdr *hdr;
555
556 do {
557 hdr = __netlink_lookup_frame(ring, pos);
558 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
559 break;
560 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
561 break;
562 netlink_increment_head(ring);
563 } while (ring->head != head);
564 }
565
566 static bool netlink_dump_space(struct netlink_sock *nlk)
567 {
568 struct netlink_ring *ring = &nlk->rx_ring;
569 struct nl_mmap_hdr *hdr;
570 unsigned int n;
571
572 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
573 if (hdr == NULL)
574 return false;
575
576 n = ring->head + ring->frame_max / 2;
577 if (n > ring->frame_max)
578 n -= ring->frame_max;
579
580 hdr = __netlink_lookup_frame(ring, n);
581
582 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
583 }
584
585 static unsigned int netlink_poll(struct file *file, struct socket *sock,
586 poll_table *wait)
587 {
588 struct sock *sk = sock->sk;
589 struct netlink_sock *nlk = nlk_sk(sk);
590 unsigned int mask;
591 int err;
592
593 if (nlk->rx_ring.pg_vec != NULL) {
594 /* Memory mapped sockets don't call recvmsg(), so flow control
595 * for dumps is performed here. A dump is allowed to continue
596 * if at least half the ring is unused.
597 */
598 while (nlk->cb != NULL && netlink_dump_space(nlk)) {
599 err = netlink_dump(sk);
600 if (err < 0) {
601 sk->sk_err = err;
602 sk->sk_error_report(sk);
603 break;
604 }
605 }
606 netlink_rcv_wake(sk);
607 }
608
609 mask = datagram_poll(file, sock, wait);
610
611 spin_lock_bh(&sk->sk_receive_queue.lock);
612 if (nlk->rx_ring.pg_vec) {
613 netlink_forward_ring(&nlk->rx_ring);
614 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
615 mask |= POLLIN | POLLRDNORM;
616 }
617 spin_unlock_bh(&sk->sk_receive_queue.lock);
618
619 spin_lock_bh(&sk->sk_write_queue.lock);
620 if (nlk->tx_ring.pg_vec) {
621 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
622 mask |= POLLOUT | POLLWRNORM;
623 }
624 spin_unlock_bh(&sk->sk_write_queue.lock);
625
626 return mask;
627 }
628
629 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
630 {
631 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
632 }
633
634 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
635 struct netlink_ring *ring,
636 struct nl_mmap_hdr *hdr)
637 {
638 unsigned int size;
639 void *data;
640
641 size = ring->frame_size - NL_MMAP_HDRLEN;
642 data = (void *)hdr + NL_MMAP_HDRLEN;
643
644 skb->head = data;
645 skb->data = data;
646 skb_reset_tail_pointer(skb);
647 skb->end = skb->tail + size;
648 skb->len = 0;
649
650 skb->destructor = netlink_skb_destructor;
651 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
652 NETLINK_CB(skb).sk = sk;
653 }
654
655 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
656 u32 dst_portid, u32 dst_group,
657 struct sock_iocb *siocb)
658 {
659 struct netlink_sock *nlk = nlk_sk(sk);
660 struct netlink_ring *ring;
661 struct nl_mmap_hdr *hdr;
662 struct sk_buff *skb;
663 unsigned int maxlen;
664 bool excl = true;
665 int err = 0, len = 0;
666
667 /* Netlink messages are validated by the receiver before processing.
668 * In order to avoid userspace changing the contents of the message
669 * after validation, the socket and the ring may only be used by a
670 * single process, otherwise we fall back to copying.
671 */
672 if (atomic_long_read(&sk->sk_socket->file->f_count) > 2 ||
673 atomic_read(&nlk->mapped) > 1)
674 excl = false;
675
676 mutex_lock(&nlk->pg_vec_lock);
677
678 ring = &nlk->tx_ring;
679 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
680
681 do {
682 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
683 if (hdr == NULL) {
684 if (!(msg->msg_flags & MSG_DONTWAIT) &&
685 atomic_read(&nlk->tx_ring.pending))
686 schedule();
687 continue;
688 }
689 if (hdr->nm_len > maxlen) {
690 err = -EINVAL;
691 goto out;
692 }
693
694 netlink_frame_flush_dcache(hdr);
695
696 if (likely(dst_portid == 0 && dst_group == 0 && excl)) {
697 skb = alloc_skb_head(GFP_KERNEL);
698 if (skb == NULL) {
699 err = -ENOBUFS;
700 goto out;
701 }
702 sock_hold(sk);
703 netlink_ring_setup_skb(skb, sk, ring, hdr);
704 NETLINK_CB(skb).flags |= NETLINK_SKB_TX;
705 __skb_put(skb, hdr->nm_len);
706 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
707 atomic_inc(&ring->pending);
708 } else {
709 skb = alloc_skb(hdr->nm_len, GFP_KERNEL);
710 if (skb == NULL) {
711 err = -ENOBUFS;
712 goto out;
713 }
714 __skb_put(skb, hdr->nm_len);
715 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len);
716 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
717 }
718
719 netlink_increment_head(ring);
720
721 NETLINK_CB(skb).portid = nlk->portid;
722 NETLINK_CB(skb).dst_group = dst_group;
723 NETLINK_CB(skb).creds = siocb->scm->creds;
724
725 err = security_netlink_send(sk, skb);
726 if (err) {
727 kfree_skb(skb);
728 goto out;
729 }
730
731 if (unlikely(dst_group)) {
732 atomic_inc(&skb->users);
733 netlink_broadcast(sk, skb, dst_portid, dst_group,
734 GFP_KERNEL);
735 }
736 err = netlink_unicast(sk, skb, dst_portid,
737 msg->msg_flags & MSG_DONTWAIT);
738 if (err < 0)
739 goto out;
740 len += err;
741
742 } while (hdr != NULL ||
743 (!(msg->msg_flags & MSG_DONTWAIT) &&
744 atomic_read(&nlk->tx_ring.pending)));
745
746 if (len > 0)
747 err = len;
748 out:
749 mutex_unlock(&nlk->pg_vec_lock);
750 return err;
751 }
752
753 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
754 {
755 struct nl_mmap_hdr *hdr;
756
757 hdr = netlink_mmap_hdr(skb);
758 hdr->nm_len = skb->len;
759 hdr->nm_group = NETLINK_CB(skb).dst_group;
760 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
761 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
762 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
763 netlink_frame_flush_dcache(hdr);
764 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
765
766 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
767 kfree_skb(skb);
768 }
769
770 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
771 {
772 struct netlink_sock *nlk = nlk_sk(sk);
773 struct netlink_ring *ring = &nlk->rx_ring;
774 struct nl_mmap_hdr *hdr;
775
776 spin_lock_bh(&sk->sk_receive_queue.lock);
777 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
778 if (hdr == NULL) {
779 spin_unlock_bh(&sk->sk_receive_queue.lock);
780 kfree_skb(skb);
781 netlink_overrun(sk);
782 return;
783 }
784 netlink_increment_head(ring);
785 __skb_queue_tail(&sk->sk_receive_queue, skb);
786 spin_unlock_bh(&sk->sk_receive_queue.lock);
787
788 hdr->nm_len = skb->len;
789 hdr->nm_group = NETLINK_CB(skb).dst_group;
790 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
791 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
792 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
793 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
794 }
795
796 #else /* CONFIG_NETLINK_MMAP */
797 #define netlink_skb_is_mmaped(skb) false
798 #define netlink_rx_is_mmaped(sk) false
799 #define netlink_tx_is_mmaped(sk) false
800 #define netlink_mmap sock_no_mmap
801 #define netlink_poll datagram_poll
802 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0
803 #endif /* CONFIG_NETLINK_MMAP */
804
805 static void netlink_destroy_callback(struct netlink_callback *cb)
806 {
807 kfree_skb(cb->skb);
808 kfree(cb);
809 }
810
811 static void netlink_consume_callback(struct netlink_callback *cb)
812 {
813 consume_skb(cb->skb);
814 kfree(cb);
815 }
816
817 static void netlink_skb_destructor(struct sk_buff *skb)
818 {
819 #ifdef CONFIG_NETLINK_MMAP
820 struct nl_mmap_hdr *hdr;
821 struct netlink_ring *ring;
822 struct sock *sk;
823
824 /* If a packet from the kernel to userspace was freed because of an
825 * error without being delivered to userspace, the kernel must reset
826 * the status. In the direction userspace to kernel, the status is
827 * always reset here after the packet was processed and freed.
828 */
829 if (netlink_skb_is_mmaped(skb)) {
830 hdr = netlink_mmap_hdr(skb);
831 sk = NETLINK_CB(skb).sk;
832
833 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
834 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
835 ring = &nlk_sk(sk)->tx_ring;
836 } else {
837 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
838 hdr->nm_len = 0;
839 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
840 }
841 ring = &nlk_sk(sk)->rx_ring;
842 }
843
844 WARN_ON(atomic_read(&ring->pending) == 0);
845 atomic_dec(&ring->pending);
846 sock_put(sk);
847
848 skb->head = NULL;
849 }
850 #endif
851 if (is_vmalloc_addr(skb->head)) {
852 if (!skb->cloned ||
853 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
854 vfree(skb->head);
855
856 skb->head = NULL;
857 }
858 if (skb->sk != NULL)
859 sock_rfree(skb);
860 }
861
862 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
863 {
864 WARN_ON(skb->sk != NULL);
865 skb->sk = sk;
866 skb->destructor = netlink_skb_destructor;
867 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
868 sk_mem_charge(sk, skb->truesize);
869 }
870
871 static void netlink_sock_destruct(struct sock *sk)
872 {
873 struct netlink_sock *nlk = nlk_sk(sk);
874
875 if (nlk->cb) {
876 if (nlk->cb->done)
877 nlk->cb->done(nlk->cb);
878
879 module_put(nlk->cb->module);
880 netlink_destroy_callback(nlk->cb);
881 }
882
883 skb_queue_purge(&sk->sk_receive_queue);
884 #ifdef CONFIG_NETLINK_MMAP
885 if (1) {
886 struct nl_mmap_req req;
887
888 memset(&req, 0, sizeof(req));
889 if (nlk->rx_ring.pg_vec)
890 netlink_set_ring(sk, &req, true, false);
891 memset(&req, 0, sizeof(req));
892 if (nlk->tx_ring.pg_vec)
893 netlink_set_ring(sk, &req, true, true);
894 }
895 #endif /* CONFIG_NETLINK_MMAP */
896
897 if (!sock_flag(sk, SOCK_DEAD)) {
898 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
899 return;
900 }
901
902 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
903 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
904 WARN_ON(nlk_sk(sk)->groups);
905 }
906
907 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
908 * SMP. Look, when several writers sleep and reader wakes them up, all but one
909 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
910 * this, _but_ remember, it adds useless work on UP machines.
911 */
912
913 void netlink_table_grab(void)
914 __acquires(nl_table_lock)
915 {
916 might_sleep();
917
918 write_lock_irq(&nl_table_lock);
919
920 if (atomic_read(&nl_table_users)) {
921 DECLARE_WAITQUEUE(wait, current);
922
923 add_wait_queue_exclusive(&nl_table_wait, &wait);
924 for (;;) {
925 set_current_state(TASK_UNINTERRUPTIBLE);
926 if (atomic_read(&nl_table_users) == 0)
927 break;
928 write_unlock_irq(&nl_table_lock);
929 schedule();
930 write_lock_irq(&nl_table_lock);
931 }
932
933 __set_current_state(TASK_RUNNING);
934 remove_wait_queue(&nl_table_wait, &wait);
935 }
936 }
937
938 void netlink_table_ungrab(void)
939 __releases(nl_table_lock)
940 {
941 write_unlock_irq(&nl_table_lock);
942 wake_up(&nl_table_wait);
943 }
944
945 static inline void
946 netlink_lock_table(void)
947 {
948 /* read_lock() synchronizes us to netlink_table_grab */
949
950 read_lock(&nl_table_lock);
951 atomic_inc(&nl_table_users);
952 read_unlock(&nl_table_lock);
953 }
954
955 static inline void
956 netlink_unlock_table(void)
957 {
958 if (atomic_dec_and_test(&nl_table_users))
959 wake_up(&nl_table_wait);
960 }
961
962 static bool netlink_compare(struct net *net, struct sock *sk)
963 {
964 return net_eq(sock_net(sk), net);
965 }
966
967 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
968 {
969 struct netlink_table *table = &nl_table[protocol];
970 struct nl_portid_hash *hash = &table->hash;
971 struct hlist_head *head;
972 struct sock *sk;
973
974 read_lock(&nl_table_lock);
975 head = nl_portid_hashfn(hash, portid);
976 sk_for_each(sk, head) {
977 if (table->compare(net, sk) &&
978 (nlk_sk(sk)->portid == portid)) {
979 sock_hold(sk);
980 goto found;
981 }
982 }
983 sk = NULL;
984 found:
985 read_unlock(&nl_table_lock);
986 return sk;
987 }
988
989 static struct hlist_head *nl_portid_hash_zalloc(size_t size)
990 {
991 if (size <= PAGE_SIZE)
992 return kzalloc(size, GFP_ATOMIC);
993 else
994 return (struct hlist_head *)
995 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
996 get_order(size));
997 }
998
999 static void nl_portid_hash_free(struct hlist_head *table, size_t size)
1000 {
1001 if (size <= PAGE_SIZE)
1002 kfree(table);
1003 else
1004 free_pages((unsigned long)table, get_order(size));
1005 }
1006
1007 static int nl_portid_hash_rehash(struct nl_portid_hash *hash, int grow)
1008 {
1009 unsigned int omask, mask, shift;
1010 size_t osize, size;
1011 struct hlist_head *otable, *table;
1012 int i;
1013
1014 omask = mask = hash->mask;
1015 osize = size = (mask + 1) * sizeof(*table);
1016 shift = hash->shift;
1017
1018 if (grow) {
1019 if (++shift > hash->max_shift)
1020 return 0;
1021 mask = mask * 2 + 1;
1022 size *= 2;
1023 }
1024
1025 table = nl_portid_hash_zalloc(size);
1026 if (!table)
1027 return 0;
1028
1029 otable = hash->table;
1030 hash->table = table;
1031 hash->mask = mask;
1032 hash->shift = shift;
1033 get_random_bytes(&hash->rnd, sizeof(hash->rnd));
1034
1035 for (i = 0; i <= omask; i++) {
1036 struct sock *sk;
1037 struct hlist_node *tmp;
1038
1039 sk_for_each_safe(sk, tmp, &otable[i])
1040 __sk_add_node(sk, nl_portid_hashfn(hash, nlk_sk(sk)->portid));
1041 }
1042
1043 nl_portid_hash_free(otable, osize);
1044 hash->rehash_time = jiffies + 10 * 60 * HZ;
1045 return 1;
1046 }
1047
1048 static inline int nl_portid_hash_dilute(struct nl_portid_hash *hash, int len)
1049 {
1050 int avg = hash->entries >> hash->shift;
1051
1052 if (unlikely(avg > 1) && nl_portid_hash_rehash(hash, 1))
1053 return 1;
1054
1055 if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
1056 nl_portid_hash_rehash(hash, 0);
1057 return 1;
1058 }
1059
1060 return 0;
1061 }
1062
1063 static const struct proto_ops netlink_ops;
1064
1065 static void
1066 netlink_update_listeners(struct sock *sk)
1067 {
1068 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1069 unsigned long mask;
1070 unsigned int i;
1071 struct listeners *listeners;
1072
1073 listeners = nl_deref_protected(tbl->listeners);
1074 if (!listeners)
1075 return;
1076
1077 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1078 mask = 0;
1079 sk_for_each_bound(sk, &tbl->mc_list) {
1080 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1081 mask |= nlk_sk(sk)->groups[i];
1082 }
1083 listeners->masks[i] = mask;
1084 }
1085 /* this function is only called with the netlink table "grabbed", which
1086 * makes sure updates are visible before bind or setsockopt return. */
1087 }
1088
1089 static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
1090 {
1091 struct netlink_table *table = &nl_table[sk->sk_protocol];
1092 struct nl_portid_hash *hash = &table->hash;
1093 struct hlist_head *head;
1094 int err = -EADDRINUSE;
1095 struct sock *osk;
1096 int len;
1097
1098 netlink_table_grab();
1099 head = nl_portid_hashfn(hash, portid);
1100 len = 0;
1101 sk_for_each(osk, head) {
1102 if (table->compare(net, osk) &&
1103 (nlk_sk(osk)->portid == portid))
1104 break;
1105 len++;
1106 }
1107 if (osk)
1108 goto err;
1109
1110 err = -EBUSY;
1111 if (nlk_sk(sk)->portid)
1112 goto err;
1113
1114 err = -ENOMEM;
1115 if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
1116 goto err;
1117
1118 if (len && nl_portid_hash_dilute(hash, len))
1119 head = nl_portid_hashfn(hash, portid);
1120 hash->entries++;
1121 nlk_sk(sk)->portid = portid;
1122 sk_add_node(sk, head);
1123 err = 0;
1124
1125 err:
1126 netlink_table_ungrab();
1127 return err;
1128 }
1129
1130 static void netlink_remove(struct sock *sk)
1131 {
1132 netlink_table_grab();
1133 if (sk_del_node_init(sk))
1134 nl_table[sk->sk_protocol].hash.entries--;
1135 if (nlk_sk(sk)->subscriptions)
1136 __sk_del_bind_node(sk);
1137 netlink_table_ungrab();
1138 }
1139
1140 static struct proto netlink_proto = {
1141 .name = "NETLINK",
1142 .owner = THIS_MODULE,
1143 .obj_size = sizeof(struct netlink_sock),
1144 };
1145
1146 static int __netlink_create(struct net *net, struct socket *sock,
1147 struct mutex *cb_mutex, int protocol)
1148 {
1149 struct sock *sk;
1150 struct netlink_sock *nlk;
1151
1152 sock->ops = &netlink_ops;
1153
1154 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1155 if (!sk)
1156 return -ENOMEM;
1157
1158 sock_init_data(sock, sk);
1159
1160 nlk = nlk_sk(sk);
1161 if (cb_mutex) {
1162 nlk->cb_mutex = cb_mutex;
1163 } else {
1164 nlk->cb_mutex = &nlk->cb_def_mutex;
1165 mutex_init(nlk->cb_mutex);
1166 }
1167 init_waitqueue_head(&nlk->wait);
1168 #ifdef CONFIG_NETLINK_MMAP
1169 mutex_init(&nlk->pg_vec_lock);
1170 #endif
1171
1172 sk->sk_destruct = netlink_sock_destruct;
1173 sk->sk_protocol = protocol;
1174 return 0;
1175 }
1176
1177 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1178 int kern)
1179 {
1180 struct module *module = NULL;
1181 struct mutex *cb_mutex;
1182 struct netlink_sock *nlk;
1183 void (*bind)(int group);
1184 int err = 0;
1185
1186 sock->state = SS_UNCONNECTED;
1187
1188 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1189 return -ESOCKTNOSUPPORT;
1190
1191 if (protocol < 0 || protocol >= MAX_LINKS)
1192 return -EPROTONOSUPPORT;
1193
1194 netlink_lock_table();
1195 #ifdef CONFIG_MODULES
1196 if (!nl_table[protocol].registered) {
1197 netlink_unlock_table();
1198 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1199 netlink_lock_table();
1200 }
1201 #endif
1202 if (nl_table[protocol].registered &&
1203 try_module_get(nl_table[protocol].module))
1204 module = nl_table[protocol].module;
1205 else
1206 err = -EPROTONOSUPPORT;
1207 cb_mutex = nl_table[protocol].cb_mutex;
1208 bind = nl_table[protocol].bind;
1209 netlink_unlock_table();
1210
1211 if (err < 0)
1212 goto out;
1213
1214 err = __netlink_create(net, sock, cb_mutex, protocol);
1215 if (err < 0)
1216 goto out_module;
1217
1218 local_bh_disable();
1219 sock_prot_inuse_add(net, &netlink_proto, 1);
1220 local_bh_enable();
1221
1222 nlk = nlk_sk(sock->sk);
1223 nlk->module = module;
1224 nlk->netlink_bind = bind;
1225 out:
1226 return err;
1227
1228 out_module:
1229 module_put(module);
1230 goto out;
1231 }
1232
1233 static int netlink_release(struct socket *sock)
1234 {
1235 struct sock *sk = sock->sk;
1236 struct netlink_sock *nlk;
1237
1238 if (!sk)
1239 return 0;
1240
1241 netlink_remove(sk);
1242 sock_orphan(sk);
1243 nlk = nlk_sk(sk);
1244
1245 /*
1246 * OK. Socket is unlinked, any packets that arrive now
1247 * will be purged.
1248 */
1249
1250 sock->sk = NULL;
1251 wake_up_interruptible_all(&nlk->wait);
1252
1253 skb_queue_purge(&sk->sk_write_queue);
1254
1255 if (nlk->portid) {
1256 struct netlink_notify n = {
1257 .net = sock_net(sk),
1258 .protocol = sk->sk_protocol,
1259 .portid = nlk->portid,
1260 };
1261 atomic_notifier_call_chain(&netlink_chain,
1262 NETLINK_URELEASE, &n);
1263 }
1264
1265 module_put(nlk->module);
1266
1267 netlink_table_grab();
1268 if (netlink_is_kernel(sk)) {
1269 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1270 if (--nl_table[sk->sk_protocol].registered == 0) {
1271 struct listeners *old;
1272
1273 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1274 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1275 kfree_rcu(old, rcu);
1276 nl_table[sk->sk_protocol].module = NULL;
1277 nl_table[sk->sk_protocol].bind = NULL;
1278 nl_table[sk->sk_protocol].flags = 0;
1279 nl_table[sk->sk_protocol].registered = 0;
1280 }
1281 } else if (nlk->subscriptions) {
1282 netlink_update_listeners(sk);
1283 }
1284 netlink_table_ungrab();
1285
1286 kfree(nlk->groups);
1287 nlk->groups = NULL;
1288
1289 local_bh_disable();
1290 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1291 local_bh_enable();
1292 sock_put(sk);
1293 return 0;
1294 }
1295
1296 static int netlink_autobind(struct socket *sock)
1297 {
1298 struct sock *sk = sock->sk;
1299 struct net *net = sock_net(sk);
1300 struct netlink_table *table = &nl_table[sk->sk_protocol];
1301 struct nl_portid_hash *hash = &table->hash;
1302 struct hlist_head *head;
1303 struct sock *osk;
1304 s32 portid = task_tgid_vnr(current);
1305 int err;
1306 static s32 rover = -4097;
1307
1308 retry:
1309 cond_resched();
1310 netlink_table_grab();
1311 head = nl_portid_hashfn(hash, portid);
1312 sk_for_each(osk, head) {
1313 if (!table->compare(net, osk))
1314 continue;
1315 if (nlk_sk(osk)->portid == portid) {
1316 /* Bind collision, search negative portid values. */
1317 portid = rover--;
1318 if (rover > -4097)
1319 rover = -4097;
1320 netlink_table_ungrab();
1321 goto retry;
1322 }
1323 }
1324 netlink_table_ungrab();
1325
1326 err = netlink_insert(sk, net, portid);
1327 if (err == -EADDRINUSE)
1328 goto retry;
1329
1330 /* If 2 threads race to autobind, that is fine. */
1331 if (err == -EBUSY)
1332 err = 0;
1333
1334 return err;
1335 }
1336
1337 static inline int netlink_capable(const struct socket *sock, unsigned int flag)
1338 {
1339 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1340 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1341 }
1342
1343 static void
1344 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1345 {
1346 struct netlink_sock *nlk = nlk_sk(sk);
1347
1348 if (nlk->subscriptions && !subscriptions)
1349 __sk_del_bind_node(sk);
1350 else if (!nlk->subscriptions && subscriptions)
1351 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1352 nlk->subscriptions = subscriptions;
1353 }
1354
1355 static int netlink_realloc_groups(struct sock *sk)
1356 {
1357 struct netlink_sock *nlk = nlk_sk(sk);
1358 unsigned int groups;
1359 unsigned long *new_groups;
1360 int err = 0;
1361
1362 netlink_table_grab();
1363
1364 groups = nl_table[sk->sk_protocol].groups;
1365 if (!nl_table[sk->sk_protocol].registered) {
1366 err = -ENOENT;
1367 goto out_unlock;
1368 }
1369
1370 if (nlk->ngroups >= groups)
1371 goto out_unlock;
1372
1373 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1374 if (new_groups == NULL) {
1375 err = -ENOMEM;
1376 goto out_unlock;
1377 }
1378 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1379 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1380
1381 nlk->groups = new_groups;
1382 nlk->ngroups = groups;
1383 out_unlock:
1384 netlink_table_ungrab();
1385 return err;
1386 }
1387
1388 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1389 int addr_len)
1390 {
1391 struct sock *sk = sock->sk;
1392 struct net *net = sock_net(sk);
1393 struct netlink_sock *nlk = nlk_sk(sk);
1394 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1395 int err;
1396
1397 if (addr_len < sizeof(struct sockaddr_nl))
1398 return -EINVAL;
1399
1400 if (nladdr->nl_family != AF_NETLINK)
1401 return -EINVAL;
1402
1403 /* Only superuser is allowed to listen multicasts */
1404 if (nladdr->nl_groups) {
1405 if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
1406 return -EPERM;
1407 err = netlink_realloc_groups(sk);
1408 if (err)
1409 return err;
1410 }
1411
1412 if (nlk->portid) {
1413 if (nladdr->nl_pid != nlk->portid)
1414 return -EINVAL;
1415 } else {
1416 err = nladdr->nl_pid ?
1417 netlink_insert(sk, net, nladdr->nl_pid) :
1418 netlink_autobind(sock);
1419 if (err)
1420 return err;
1421 }
1422
1423 if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1424 return 0;
1425
1426 netlink_table_grab();
1427 netlink_update_subscriptions(sk, nlk->subscriptions +
1428 hweight32(nladdr->nl_groups) -
1429 hweight32(nlk->groups[0]));
1430 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
1431 netlink_update_listeners(sk);
1432 netlink_table_ungrab();
1433
1434 if (nlk->netlink_bind && nlk->groups[0]) {
1435 int i;
1436
1437 for (i=0; i<nlk->ngroups; i++) {
1438 if (test_bit(i, nlk->groups))
1439 nlk->netlink_bind(i);
1440 }
1441 }
1442
1443 return 0;
1444 }
1445
1446 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1447 int alen, int flags)
1448 {
1449 int err = 0;
1450 struct sock *sk = sock->sk;
1451 struct netlink_sock *nlk = nlk_sk(sk);
1452 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1453
1454 if (alen < sizeof(addr->sa_family))
1455 return -EINVAL;
1456
1457 if (addr->sa_family == AF_UNSPEC) {
1458 sk->sk_state = NETLINK_UNCONNECTED;
1459 nlk->dst_portid = 0;
1460 nlk->dst_group = 0;
1461 return 0;
1462 }
1463 if (addr->sa_family != AF_NETLINK)
1464 return -EINVAL;
1465
1466 /* Only superuser is allowed to send multicasts */
1467 if (nladdr->nl_groups && !netlink_capable(sock, NL_CFG_F_NONROOT_SEND))
1468 return -EPERM;
1469
1470 if (!nlk->portid)
1471 err = netlink_autobind(sock);
1472
1473 if (err == 0) {
1474 sk->sk_state = NETLINK_CONNECTED;
1475 nlk->dst_portid = nladdr->nl_pid;
1476 nlk->dst_group = ffs(nladdr->nl_groups);
1477 }
1478
1479 return err;
1480 }
1481
1482 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1483 int *addr_len, int peer)
1484 {
1485 struct sock *sk = sock->sk;
1486 struct netlink_sock *nlk = nlk_sk(sk);
1487 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1488
1489 nladdr->nl_family = AF_NETLINK;
1490 nladdr->nl_pad = 0;
1491 *addr_len = sizeof(*nladdr);
1492
1493 if (peer) {
1494 nladdr->nl_pid = nlk->dst_portid;
1495 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1496 } else {
1497 nladdr->nl_pid = nlk->portid;
1498 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1499 }
1500 return 0;
1501 }
1502
1503 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1504 {
1505 struct sock *sock;
1506 struct netlink_sock *nlk;
1507
1508 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1509 if (!sock)
1510 return ERR_PTR(-ECONNREFUSED);
1511
1512 /* Don't bother queuing skb if kernel socket has no input function */
1513 nlk = nlk_sk(sock);
1514 if (sock->sk_state == NETLINK_CONNECTED &&
1515 nlk->dst_portid != nlk_sk(ssk)->portid) {
1516 sock_put(sock);
1517 return ERR_PTR(-ECONNREFUSED);
1518 }
1519 return sock;
1520 }
1521
1522 struct sock *netlink_getsockbyfilp(struct file *filp)
1523 {
1524 struct inode *inode = file_inode(filp);
1525 struct sock *sock;
1526
1527 if (!S_ISSOCK(inode->i_mode))
1528 return ERR_PTR(-ENOTSOCK);
1529
1530 sock = SOCKET_I(inode)->sk;
1531 if (sock->sk_family != AF_NETLINK)
1532 return ERR_PTR(-EINVAL);
1533
1534 sock_hold(sock);
1535 return sock;
1536 }
1537
1538 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1539 int broadcast)
1540 {
1541 struct sk_buff *skb;
1542 void *data;
1543
1544 if (size <= NLMSG_GOODSIZE || broadcast)
1545 return alloc_skb(size, GFP_KERNEL);
1546
1547 size = SKB_DATA_ALIGN(size) +
1548 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1549
1550 data = vmalloc(size);
1551 if (data == NULL)
1552 return NULL;
1553
1554 skb = build_skb(data, size);
1555 if (skb == NULL)
1556 vfree(data);
1557 else {
1558 skb->head_frag = 0;
1559 skb->destructor = netlink_skb_destructor;
1560 }
1561
1562 return skb;
1563 }
1564
1565 /*
1566 * Attach a skb to a netlink socket.
1567 * The caller must hold a reference to the destination socket. On error, the
1568 * reference is dropped. The skb is not send to the destination, just all
1569 * all error checks are performed and memory in the queue is reserved.
1570 * Return values:
1571 * < 0: error. skb freed, reference to sock dropped.
1572 * 0: continue
1573 * 1: repeat lookup - reference dropped while waiting for socket memory.
1574 */
1575 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1576 long *timeo, struct sock *ssk)
1577 {
1578 struct netlink_sock *nlk;
1579
1580 nlk = nlk_sk(sk);
1581
1582 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1583 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1584 !netlink_skb_is_mmaped(skb)) {
1585 DECLARE_WAITQUEUE(wait, current);
1586 if (!*timeo) {
1587 if (!ssk || netlink_is_kernel(ssk))
1588 netlink_overrun(sk);
1589 sock_put(sk);
1590 kfree_skb(skb);
1591 return -EAGAIN;
1592 }
1593
1594 __set_current_state(TASK_INTERRUPTIBLE);
1595 add_wait_queue(&nlk->wait, &wait);
1596
1597 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1598 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1599 !sock_flag(sk, SOCK_DEAD))
1600 *timeo = schedule_timeout(*timeo);
1601
1602 __set_current_state(TASK_RUNNING);
1603 remove_wait_queue(&nlk->wait, &wait);
1604 sock_put(sk);
1605
1606 if (signal_pending(current)) {
1607 kfree_skb(skb);
1608 return sock_intr_errno(*timeo);
1609 }
1610 return 1;
1611 }
1612 netlink_skb_set_owner_r(skb, sk);
1613 return 0;
1614 }
1615
1616 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1617 {
1618 int len = skb->len;
1619
1620 netlink_deliver_tap(skb);
1621
1622 #ifdef CONFIG_NETLINK_MMAP
1623 if (netlink_skb_is_mmaped(skb))
1624 netlink_queue_mmaped_skb(sk, skb);
1625 else if (netlink_rx_is_mmaped(sk))
1626 netlink_ring_set_copied(sk, skb);
1627 else
1628 #endif /* CONFIG_NETLINK_MMAP */
1629 skb_queue_tail(&sk->sk_receive_queue, skb);
1630 sk->sk_data_ready(sk, len);
1631 return len;
1632 }
1633
1634 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1635 {
1636 int len = __netlink_sendskb(sk, skb);
1637
1638 sock_put(sk);
1639 return len;
1640 }
1641
1642 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1643 {
1644 kfree_skb(skb);
1645 sock_put(sk);
1646 }
1647
1648 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1649 {
1650 int delta;
1651
1652 WARN_ON(skb->sk != NULL);
1653 if (netlink_skb_is_mmaped(skb))
1654 return skb;
1655
1656 delta = skb->end - skb->tail;
1657 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1658 return skb;
1659
1660 if (skb_shared(skb)) {
1661 struct sk_buff *nskb = skb_clone(skb, allocation);
1662 if (!nskb)
1663 return skb;
1664 consume_skb(skb);
1665 skb = nskb;
1666 }
1667
1668 if (!pskb_expand_head(skb, 0, -delta, allocation))
1669 skb->truesize -= delta;
1670
1671 return skb;
1672 }
1673
1674 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1675 struct sock *ssk)
1676 {
1677 int ret;
1678 struct netlink_sock *nlk = nlk_sk(sk);
1679
1680 ret = -ECONNREFUSED;
1681 if (nlk->netlink_rcv != NULL) {
1682 /* We could do a netlink_deliver_tap(skb) here as well
1683 * but since this is intended for the kernel only, we
1684 * should rather let it stay under the hood.
1685 */
1686
1687 ret = skb->len;
1688 netlink_skb_set_owner_r(skb, sk);
1689 NETLINK_CB(skb).sk = ssk;
1690 nlk->netlink_rcv(skb);
1691 consume_skb(skb);
1692 } else {
1693 kfree_skb(skb);
1694 }
1695 sock_put(sk);
1696 return ret;
1697 }
1698
1699 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1700 u32 portid, int nonblock)
1701 {
1702 struct sock *sk;
1703 int err;
1704 long timeo;
1705
1706 skb = netlink_trim(skb, gfp_any());
1707
1708 timeo = sock_sndtimeo(ssk, nonblock);
1709 retry:
1710 sk = netlink_getsockbyportid(ssk, portid);
1711 if (IS_ERR(sk)) {
1712 kfree_skb(skb);
1713 return PTR_ERR(sk);
1714 }
1715 if (netlink_is_kernel(sk))
1716 return netlink_unicast_kernel(sk, skb, ssk);
1717
1718 if (sk_filter(sk, skb)) {
1719 err = skb->len;
1720 kfree_skb(skb);
1721 sock_put(sk);
1722 return err;
1723 }
1724
1725 err = netlink_attachskb(sk, skb, &timeo, ssk);
1726 if (err == 1)
1727 goto retry;
1728 if (err)
1729 return err;
1730
1731 return netlink_sendskb(sk, skb);
1732 }
1733 EXPORT_SYMBOL(netlink_unicast);
1734
1735 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1736 u32 dst_portid, gfp_t gfp_mask)
1737 {
1738 #ifdef CONFIG_NETLINK_MMAP
1739 struct sock *sk = NULL;
1740 struct sk_buff *skb;
1741 struct netlink_ring *ring;
1742 struct nl_mmap_hdr *hdr;
1743 unsigned int maxlen;
1744
1745 sk = netlink_getsockbyportid(ssk, dst_portid);
1746 if (IS_ERR(sk))
1747 goto out;
1748
1749 ring = &nlk_sk(sk)->rx_ring;
1750 /* fast-path without atomic ops for common case: non-mmaped receiver */
1751 if (ring->pg_vec == NULL)
1752 goto out_put;
1753
1754 skb = alloc_skb_head(gfp_mask);
1755 if (skb == NULL)
1756 goto err1;
1757
1758 spin_lock_bh(&sk->sk_receive_queue.lock);
1759 /* check again under lock */
1760 if (ring->pg_vec == NULL)
1761 goto out_free;
1762
1763 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1764 if (maxlen < size)
1765 goto out_free;
1766
1767 netlink_forward_ring(ring);
1768 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1769 if (hdr == NULL)
1770 goto err2;
1771 netlink_ring_setup_skb(skb, sk, ring, hdr);
1772 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1773 atomic_inc(&ring->pending);
1774 netlink_increment_head(ring);
1775
1776 spin_unlock_bh(&sk->sk_receive_queue.lock);
1777 return skb;
1778
1779 err2:
1780 kfree_skb(skb);
1781 spin_unlock_bh(&sk->sk_receive_queue.lock);
1782 netlink_overrun(sk);
1783 err1:
1784 sock_put(sk);
1785 return NULL;
1786
1787 out_free:
1788 kfree_skb(skb);
1789 spin_unlock_bh(&sk->sk_receive_queue.lock);
1790 out_put:
1791 sock_put(sk);
1792 out:
1793 #endif
1794 return alloc_skb(size, gfp_mask);
1795 }
1796 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1797
1798 int netlink_has_listeners(struct sock *sk, unsigned int group)
1799 {
1800 int res = 0;
1801 struct listeners *listeners;
1802
1803 BUG_ON(!netlink_is_kernel(sk));
1804
1805 rcu_read_lock();
1806 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1807
1808 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1809 res = test_bit(group - 1, listeners->masks);
1810
1811 rcu_read_unlock();
1812
1813 return res;
1814 }
1815 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1816
1817 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1818 {
1819 struct netlink_sock *nlk = nlk_sk(sk);
1820
1821 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1822 !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1823 netlink_skb_set_owner_r(skb, sk);
1824 __netlink_sendskb(sk, skb);
1825 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1826 }
1827 return -1;
1828 }
1829
1830 struct netlink_broadcast_data {
1831 struct sock *exclude_sk;
1832 struct net *net;
1833 u32 portid;
1834 u32 group;
1835 int failure;
1836 int delivery_failure;
1837 int congested;
1838 int delivered;
1839 gfp_t allocation;
1840 struct sk_buff *skb, *skb2;
1841 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1842 void *tx_data;
1843 };
1844
1845 static int do_one_broadcast(struct sock *sk,
1846 struct netlink_broadcast_data *p)
1847 {
1848 struct netlink_sock *nlk = nlk_sk(sk);
1849 int val;
1850
1851 if (p->exclude_sk == sk)
1852 goto out;
1853
1854 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1855 !test_bit(p->group - 1, nlk->groups))
1856 goto out;
1857
1858 if (!net_eq(sock_net(sk), p->net))
1859 goto out;
1860
1861 if (p->failure) {
1862 netlink_overrun(sk);
1863 goto out;
1864 }
1865
1866 sock_hold(sk);
1867 if (p->skb2 == NULL) {
1868 if (skb_shared(p->skb)) {
1869 p->skb2 = skb_clone(p->skb, p->allocation);
1870 } else {
1871 p->skb2 = skb_get(p->skb);
1872 /*
1873 * skb ownership may have been set when
1874 * delivered to a previous socket.
1875 */
1876 skb_orphan(p->skb2);
1877 }
1878 }
1879 if (p->skb2 == NULL) {
1880 netlink_overrun(sk);
1881 /* Clone failed. Notify ALL listeners. */
1882 p->failure = 1;
1883 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1884 p->delivery_failure = 1;
1885 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1886 kfree_skb(p->skb2);
1887 p->skb2 = NULL;
1888 } else if (sk_filter(sk, p->skb2)) {
1889 kfree_skb(p->skb2);
1890 p->skb2 = NULL;
1891 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1892 netlink_overrun(sk);
1893 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1894 p->delivery_failure = 1;
1895 } else {
1896 p->congested |= val;
1897 p->delivered = 1;
1898 p->skb2 = NULL;
1899 }
1900 sock_put(sk);
1901
1902 out:
1903 return 0;
1904 }
1905
1906 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1907 u32 group, gfp_t allocation,
1908 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1909 void *filter_data)
1910 {
1911 struct net *net = sock_net(ssk);
1912 struct netlink_broadcast_data info;
1913 struct sock *sk;
1914
1915 skb = netlink_trim(skb, allocation);
1916
1917 info.exclude_sk = ssk;
1918 info.net = net;
1919 info.portid = portid;
1920 info.group = group;
1921 info.failure = 0;
1922 info.delivery_failure = 0;
1923 info.congested = 0;
1924 info.delivered = 0;
1925 info.allocation = allocation;
1926 info.skb = skb;
1927 info.skb2 = NULL;
1928 info.tx_filter = filter;
1929 info.tx_data = filter_data;
1930
1931 /* While we sleep in clone, do not allow to change socket list */
1932
1933 netlink_lock_table();
1934
1935 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1936 do_one_broadcast(sk, &info);
1937
1938 consume_skb(skb);
1939
1940 netlink_unlock_table();
1941
1942 if (info.delivery_failure) {
1943 kfree_skb(info.skb2);
1944 return -ENOBUFS;
1945 }
1946 consume_skb(info.skb2);
1947
1948 if (info.delivered) {
1949 if (info.congested && (allocation & __GFP_WAIT))
1950 yield();
1951 return 0;
1952 }
1953 return -ESRCH;
1954 }
1955 EXPORT_SYMBOL(netlink_broadcast_filtered);
1956
1957 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
1958 u32 group, gfp_t allocation)
1959 {
1960 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
1961 NULL, NULL);
1962 }
1963 EXPORT_SYMBOL(netlink_broadcast);
1964
1965 struct netlink_set_err_data {
1966 struct sock *exclude_sk;
1967 u32 portid;
1968 u32 group;
1969 int code;
1970 };
1971
1972 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
1973 {
1974 struct netlink_sock *nlk = nlk_sk(sk);
1975 int ret = 0;
1976
1977 if (sk == p->exclude_sk)
1978 goto out;
1979
1980 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
1981 goto out;
1982
1983 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1984 !test_bit(p->group - 1, nlk->groups))
1985 goto out;
1986
1987 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
1988 ret = 1;
1989 goto out;
1990 }
1991
1992 sk->sk_err = p->code;
1993 sk->sk_error_report(sk);
1994 out:
1995 return ret;
1996 }
1997
1998 /**
1999 * netlink_set_err - report error to broadcast listeners
2000 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2001 * @portid: the PORTID of a process that we want to skip (if any)
2002 * @groups: the broadcast group that will notice the error
2003 * @code: error code, must be negative (as usual in kernelspace)
2004 *
2005 * This function returns the number of broadcast listeners that have set the
2006 * NETLINK_RECV_NO_ENOBUFS socket option.
2007 */
2008 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2009 {
2010 struct netlink_set_err_data info;
2011 struct sock *sk;
2012 int ret = 0;
2013
2014 info.exclude_sk = ssk;
2015 info.portid = portid;
2016 info.group = group;
2017 /* sk->sk_err wants a positive error value */
2018 info.code = -code;
2019
2020 read_lock(&nl_table_lock);
2021
2022 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2023 ret += do_one_set_err(sk, &info);
2024
2025 read_unlock(&nl_table_lock);
2026 return ret;
2027 }
2028 EXPORT_SYMBOL(netlink_set_err);
2029
2030 /* must be called with netlink table grabbed */
2031 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2032 unsigned int group,
2033 int is_new)
2034 {
2035 int old, new = !!is_new, subscriptions;
2036
2037 old = test_bit(group - 1, nlk->groups);
2038 subscriptions = nlk->subscriptions - old + new;
2039 if (new)
2040 __set_bit(group - 1, nlk->groups);
2041 else
2042 __clear_bit(group - 1, nlk->groups);
2043 netlink_update_subscriptions(&nlk->sk, subscriptions);
2044 netlink_update_listeners(&nlk->sk);
2045 }
2046
2047 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2048 char __user *optval, unsigned int optlen)
2049 {
2050 struct sock *sk = sock->sk;
2051 struct netlink_sock *nlk = nlk_sk(sk);
2052 unsigned int val = 0;
2053 int err;
2054
2055 if (level != SOL_NETLINK)
2056 return -ENOPROTOOPT;
2057
2058 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2059 optlen >= sizeof(int) &&
2060 get_user(val, (unsigned int __user *)optval))
2061 return -EFAULT;
2062
2063 switch (optname) {
2064 case NETLINK_PKTINFO:
2065 if (val)
2066 nlk->flags |= NETLINK_RECV_PKTINFO;
2067 else
2068 nlk->flags &= ~NETLINK_RECV_PKTINFO;
2069 err = 0;
2070 break;
2071 case NETLINK_ADD_MEMBERSHIP:
2072 case NETLINK_DROP_MEMBERSHIP: {
2073 if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
2074 return -EPERM;
2075 err = netlink_realloc_groups(sk);
2076 if (err)
2077 return err;
2078 if (!val || val - 1 >= nlk->ngroups)
2079 return -EINVAL;
2080 netlink_table_grab();
2081 netlink_update_socket_mc(nlk, val,
2082 optname == NETLINK_ADD_MEMBERSHIP);
2083 netlink_table_ungrab();
2084
2085 if (nlk->netlink_bind)
2086 nlk->netlink_bind(val);
2087
2088 err = 0;
2089 break;
2090 }
2091 case NETLINK_BROADCAST_ERROR:
2092 if (val)
2093 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2094 else
2095 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2096 err = 0;
2097 break;
2098 case NETLINK_NO_ENOBUFS:
2099 if (val) {
2100 nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2101 clear_bit(NETLINK_CONGESTED, &nlk->state);
2102 wake_up_interruptible(&nlk->wait);
2103 } else {
2104 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2105 }
2106 err = 0;
2107 break;
2108 #ifdef CONFIG_NETLINK_MMAP
2109 case NETLINK_RX_RING:
2110 case NETLINK_TX_RING: {
2111 struct nl_mmap_req req;
2112
2113 /* Rings might consume more memory than queue limits, require
2114 * CAP_NET_ADMIN.
2115 */
2116 if (!capable(CAP_NET_ADMIN))
2117 return -EPERM;
2118 if (optlen < sizeof(req))
2119 return -EINVAL;
2120 if (copy_from_user(&req, optval, sizeof(req)))
2121 return -EFAULT;
2122 err = netlink_set_ring(sk, &req, false,
2123 optname == NETLINK_TX_RING);
2124 break;
2125 }
2126 #endif /* CONFIG_NETLINK_MMAP */
2127 default:
2128 err = -ENOPROTOOPT;
2129 }
2130 return err;
2131 }
2132
2133 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2134 char __user *optval, int __user *optlen)
2135 {
2136 struct sock *sk = sock->sk;
2137 struct netlink_sock *nlk = nlk_sk(sk);
2138 int len, val, err;
2139
2140 if (level != SOL_NETLINK)
2141 return -ENOPROTOOPT;
2142
2143 if (get_user(len, optlen))
2144 return -EFAULT;
2145 if (len < 0)
2146 return -EINVAL;
2147
2148 switch (optname) {
2149 case NETLINK_PKTINFO:
2150 if (len < sizeof(int))
2151 return -EINVAL;
2152 len = sizeof(int);
2153 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2154 if (put_user(len, optlen) ||
2155 put_user(val, optval))
2156 return -EFAULT;
2157 err = 0;
2158 break;
2159 case NETLINK_BROADCAST_ERROR:
2160 if (len < sizeof(int))
2161 return -EINVAL;
2162 len = sizeof(int);
2163 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2164 if (put_user(len, optlen) ||
2165 put_user(val, optval))
2166 return -EFAULT;
2167 err = 0;
2168 break;
2169 case NETLINK_NO_ENOBUFS:
2170 if (len < sizeof(int))
2171 return -EINVAL;
2172 len = sizeof(int);
2173 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2174 if (put_user(len, optlen) ||
2175 put_user(val, optval))
2176 return -EFAULT;
2177 err = 0;
2178 break;
2179 default:
2180 err = -ENOPROTOOPT;
2181 }
2182 return err;
2183 }
2184
2185 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2186 {
2187 struct nl_pktinfo info;
2188
2189 info.group = NETLINK_CB(skb).dst_group;
2190 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2191 }
2192
2193 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2194 struct msghdr *msg, size_t len)
2195 {
2196 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2197 struct sock *sk = sock->sk;
2198 struct netlink_sock *nlk = nlk_sk(sk);
2199 struct sockaddr_nl *addr = msg->msg_name;
2200 u32 dst_portid;
2201 u32 dst_group;
2202 struct sk_buff *skb;
2203 int err;
2204 struct scm_cookie scm;
2205
2206 if (msg->msg_flags&MSG_OOB)
2207 return -EOPNOTSUPP;
2208
2209 if (NULL == siocb->scm)
2210 siocb->scm = &scm;
2211
2212 err = scm_send(sock, msg, siocb->scm, true);
2213 if (err < 0)
2214 return err;
2215
2216 if (msg->msg_namelen) {
2217 err = -EINVAL;
2218 if (addr->nl_family != AF_NETLINK)
2219 goto out;
2220 dst_portid = addr->nl_pid;
2221 dst_group = ffs(addr->nl_groups);
2222 err = -EPERM;
2223 if ((dst_group || dst_portid) &&
2224 !netlink_capable(sock, NL_CFG_F_NONROOT_SEND))
2225 goto out;
2226 } else {
2227 dst_portid = nlk->dst_portid;
2228 dst_group = nlk->dst_group;
2229 }
2230
2231 if (!nlk->portid) {
2232 err = netlink_autobind(sock);
2233 if (err)
2234 goto out;
2235 }
2236
2237 if (netlink_tx_is_mmaped(sk) &&
2238 msg->msg_iov->iov_base == NULL) {
2239 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2240 siocb);
2241 goto out;
2242 }
2243
2244 err = -EMSGSIZE;
2245 if (len > sk->sk_sndbuf - 32)
2246 goto out;
2247 err = -ENOBUFS;
2248 skb = netlink_alloc_large_skb(len, dst_group);
2249 if (skb == NULL)
2250 goto out;
2251
2252 NETLINK_CB(skb).portid = nlk->portid;
2253 NETLINK_CB(skb).dst_group = dst_group;
2254 NETLINK_CB(skb).creds = siocb->scm->creds;
2255
2256 err = -EFAULT;
2257 if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
2258 kfree_skb(skb);
2259 goto out;
2260 }
2261
2262 err = security_netlink_send(sk, skb);
2263 if (err) {
2264 kfree_skb(skb);
2265 goto out;
2266 }
2267
2268 if (dst_group) {
2269 atomic_inc(&skb->users);
2270 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2271 }
2272 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2273
2274 out:
2275 scm_destroy(siocb->scm);
2276 return err;
2277 }
2278
2279 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2280 struct msghdr *msg, size_t len,
2281 int flags)
2282 {
2283 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2284 struct scm_cookie scm;
2285 struct sock *sk = sock->sk;
2286 struct netlink_sock *nlk = nlk_sk(sk);
2287 int noblock = flags&MSG_DONTWAIT;
2288 size_t copied;
2289 struct sk_buff *skb, *data_skb;
2290 int err, ret;
2291
2292 if (flags&MSG_OOB)
2293 return -EOPNOTSUPP;
2294
2295 copied = 0;
2296
2297 skb = skb_recv_datagram(sk, flags, noblock, &err);
2298 if (skb == NULL)
2299 goto out;
2300
2301 data_skb = skb;
2302
2303 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2304 if (unlikely(skb_shinfo(skb)->frag_list)) {
2305 /*
2306 * If this skb has a frag_list, then here that means that we
2307 * will have to use the frag_list skb's data for compat tasks
2308 * and the regular skb's data for normal (non-compat) tasks.
2309 *
2310 * If we need to send the compat skb, assign it to the
2311 * 'data_skb' variable so that it will be used below for data
2312 * copying. We keep 'skb' for everything else, including
2313 * freeing both later.
2314 */
2315 if (flags & MSG_CMSG_COMPAT)
2316 data_skb = skb_shinfo(skb)->frag_list;
2317 }
2318 #endif
2319
2320 msg->msg_namelen = 0;
2321
2322 copied = data_skb->len;
2323 if (len < copied) {
2324 msg->msg_flags |= MSG_TRUNC;
2325 copied = len;
2326 }
2327
2328 skb_reset_transport_header(data_skb);
2329 err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied);
2330
2331 if (msg->msg_name) {
2332 struct sockaddr_nl *addr = (struct sockaddr_nl *)msg->msg_name;
2333 addr->nl_family = AF_NETLINK;
2334 addr->nl_pad = 0;
2335 addr->nl_pid = NETLINK_CB(skb).portid;
2336 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2337 msg->msg_namelen = sizeof(*addr);
2338 }
2339
2340 if (nlk->flags & NETLINK_RECV_PKTINFO)
2341 netlink_cmsg_recv_pktinfo(msg, skb);
2342
2343 if (NULL == siocb->scm) {
2344 memset(&scm, 0, sizeof(scm));
2345 siocb->scm = &scm;
2346 }
2347 siocb->scm->creds = *NETLINK_CREDS(skb);
2348 if (flags & MSG_TRUNC)
2349 copied = data_skb->len;
2350
2351 skb_free_datagram(sk, skb);
2352
2353 if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2354 ret = netlink_dump(sk);
2355 if (ret) {
2356 sk->sk_err = ret;
2357 sk->sk_error_report(sk);
2358 }
2359 }
2360
2361 scm_recv(sock, msg, siocb->scm, flags);
2362 out:
2363 netlink_rcv_wake(sk);
2364 return err ? : copied;
2365 }
2366
2367 static void netlink_data_ready(struct sock *sk, int len)
2368 {
2369 BUG();
2370 }
2371
2372 /*
2373 * We export these functions to other modules. They provide a
2374 * complete set of kernel non-blocking support for message
2375 * queueing.
2376 */
2377
2378 struct sock *
2379 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2380 struct netlink_kernel_cfg *cfg)
2381 {
2382 struct socket *sock;
2383 struct sock *sk;
2384 struct netlink_sock *nlk;
2385 struct listeners *listeners = NULL;
2386 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2387 unsigned int groups;
2388
2389 BUG_ON(!nl_table);
2390
2391 if (unit < 0 || unit >= MAX_LINKS)
2392 return NULL;
2393
2394 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2395 return NULL;
2396
2397 /*
2398 * We have to just have a reference on the net from sk, but don't
2399 * get_net it. Besides, we cannot get and then put the net here.
2400 * So we create one inside init_net and the move it to net.
2401 */
2402
2403 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2404 goto out_sock_release_nosk;
2405
2406 sk = sock->sk;
2407 sk_change_net(sk, net);
2408
2409 if (!cfg || cfg->groups < 32)
2410 groups = 32;
2411 else
2412 groups = cfg->groups;
2413
2414 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2415 if (!listeners)
2416 goto out_sock_release;
2417
2418 sk->sk_data_ready = netlink_data_ready;
2419 if (cfg && cfg->input)
2420 nlk_sk(sk)->netlink_rcv = cfg->input;
2421
2422 if (netlink_insert(sk, net, 0))
2423 goto out_sock_release;
2424
2425 nlk = nlk_sk(sk);
2426 nlk->flags |= NETLINK_KERNEL_SOCKET;
2427
2428 netlink_table_grab();
2429 if (!nl_table[unit].registered) {
2430 nl_table[unit].groups = groups;
2431 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2432 nl_table[unit].cb_mutex = cb_mutex;
2433 nl_table[unit].module = module;
2434 if (cfg) {
2435 nl_table[unit].bind = cfg->bind;
2436 nl_table[unit].flags = cfg->flags;
2437 if (cfg->compare)
2438 nl_table[unit].compare = cfg->compare;
2439 }
2440 nl_table[unit].registered = 1;
2441 } else {
2442 kfree(listeners);
2443 nl_table[unit].registered++;
2444 }
2445 netlink_table_ungrab();
2446 return sk;
2447
2448 out_sock_release:
2449 kfree(listeners);
2450 netlink_kernel_release(sk);
2451 return NULL;
2452
2453 out_sock_release_nosk:
2454 sock_release(sock);
2455 return NULL;
2456 }
2457 EXPORT_SYMBOL(__netlink_kernel_create);
2458
2459 void
2460 netlink_kernel_release(struct sock *sk)
2461 {
2462 sk_release_kernel(sk);
2463 }
2464 EXPORT_SYMBOL(netlink_kernel_release);
2465
2466 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2467 {
2468 struct listeners *new, *old;
2469 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2470
2471 if (groups < 32)
2472 groups = 32;
2473
2474 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2475 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2476 if (!new)
2477 return -ENOMEM;
2478 old = nl_deref_protected(tbl->listeners);
2479 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2480 rcu_assign_pointer(tbl->listeners, new);
2481
2482 kfree_rcu(old, rcu);
2483 }
2484 tbl->groups = groups;
2485
2486 return 0;
2487 }
2488
2489 /**
2490 * netlink_change_ngroups - change number of multicast groups
2491 *
2492 * This changes the number of multicast groups that are available
2493 * on a certain netlink family. Note that it is not possible to
2494 * change the number of groups to below 32. Also note that it does
2495 * not implicitly call netlink_clear_multicast_users() when the
2496 * number of groups is reduced.
2497 *
2498 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2499 * @groups: The new number of groups.
2500 */
2501 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2502 {
2503 int err;
2504
2505 netlink_table_grab();
2506 err = __netlink_change_ngroups(sk, groups);
2507 netlink_table_ungrab();
2508
2509 return err;
2510 }
2511
2512 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2513 {
2514 struct sock *sk;
2515 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2516
2517 sk_for_each_bound(sk, &tbl->mc_list)
2518 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2519 }
2520
2521 /**
2522 * netlink_clear_multicast_users - kick off multicast listeners
2523 *
2524 * This function removes all listeners from the given group.
2525 * @ksk: The kernel netlink socket, as returned by
2526 * netlink_kernel_create().
2527 * @group: The multicast group to clear.
2528 */
2529 void netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2530 {
2531 netlink_table_grab();
2532 __netlink_clear_multicast_users(ksk, group);
2533 netlink_table_ungrab();
2534 }
2535
2536 struct nlmsghdr *
2537 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2538 {
2539 struct nlmsghdr *nlh;
2540 int size = nlmsg_msg_size(len);
2541
2542 nlh = (struct nlmsghdr*)skb_put(skb, NLMSG_ALIGN(size));
2543 nlh->nlmsg_type = type;
2544 nlh->nlmsg_len = size;
2545 nlh->nlmsg_flags = flags;
2546 nlh->nlmsg_pid = portid;
2547 nlh->nlmsg_seq = seq;
2548 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2549 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2550 return nlh;
2551 }
2552 EXPORT_SYMBOL(__nlmsg_put);
2553
2554 /*
2555 * It looks a bit ugly.
2556 * It would be better to create kernel thread.
2557 */
2558
2559 static int netlink_dump(struct sock *sk)
2560 {
2561 struct netlink_sock *nlk = nlk_sk(sk);
2562 struct netlink_callback *cb;
2563 struct sk_buff *skb = NULL;
2564 struct nlmsghdr *nlh;
2565 int len, err = -ENOBUFS;
2566 int alloc_size;
2567
2568 mutex_lock(nlk->cb_mutex);
2569
2570 cb = nlk->cb;
2571 if (cb == NULL) {
2572 err = -EINVAL;
2573 goto errout_skb;
2574 }
2575
2576 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2577
2578 if (!netlink_rx_is_mmaped(sk) &&
2579 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2580 goto errout_skb;
2581 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, GFP_KERNEL);
2582 if (!skb)
2583 goto errout_skb;
2584 netlink_skb_set_owner_r(skb, sk);
2585
2586 len = cb->dump(skb, cb);
2587
2588 if (len > 0) {
2589 mutex_unlock(nlk->cb_mutex);
2590
2591 if (sk_filter(sk, skb))
2592 kfree_skb(skb);
2593 else
2594 __netlink_sendskb(sk, skb);
2595 return 0;
2596 }
2597
2598 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2599 if (!nlh)
2600 goto errout_skb;
2601
2602 nl_dump_check_consistent(cb, nlh);
2603
2604 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2605
2606 if (sk_filter(sk, skb))
2607 kfree_skb(skb);
2608 else
2609 __netlink_sendskb(sk, skb);
2610
2611 if (cb->done)
2612 cb->done(cb);
2613 nlk->cb = NULL;
2614 mutex_unlock(nlk->cb_mutex);
2615
2616 module_put(cb->module);
2617 netlink_consume_callback(cb);
2618 return 0;
2619
2620 errout_skb:
2621 mutex_unlock(nlk->cb_mutex);
2622 kfree_skb(skb);
2623 return err;
2624 }
2625
2626 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2627 const struct nlmsghdr *nlh,
2628 struct netlink_dump_control *control)
2629 {
2630 struct netlink_callback *cb;
2631 struct sock *sk;
2632 struct netlink_sock *nlk;
2633 int ret;
2634
2635 cb = kzalloc(sizeof(*cb), GFP_KERNEL);
2636 if (cb == NULL)
2637 return -ENOBUFS;
2638
2639 /* Memory mapped dump requests need to be copied to avoid looping
2640 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2641 * a reference to the skb.
2642 */
2643 if (netlink_skb_is_mmaped(skb)) {
2644 skb = skb_copy(skb, GFP_KERNEL);
2645 if (skb == NULL) {
2646 kfree(cb);
2647 return -ENOBUFS;
2648 }
2649 } else
2650 atomic_inc(&skb->users);
2651
2652 cb->dump = control->dump;
2653 cb->done = control->done;
2654 cb->nlh = nlh;
2655 cb->data = control->data;
2656 cb->module = control->module;
2657 cb->min_dump_alloc = control->min_dump_alloc;
2658 cb->skb = skb;
2659
2660 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2661 if (sk == NULL) {
2662 netlink_destroy_callback(cb);
2663 return -ECONNREFUSED;
2664 }
2665 nlk = nlk_sk(sk);
2666
2667 mutex_lock(nlk->cb_mutex);
2668 /* A dump is in progress... */
2669 if (nlk->cb) {
2670 mutex_unlock(nlk->cb_mutex);
2671 netlink_destroy_callback(cb);
2672 ret = -EBUSY;
2673 goto out;
2674 }
2675 /* add reference of module which cb->dump belongs to */
2676 if (!try_module_get(cb->module)) {
2677 mutex_unlock(nlk->cb_mutex);
2678 netlink_destroy_callback(cb);
2679 ret = -EPROTONOSUPPORT;
2680 goto out;
2681 }
2682
2683 nlk->cb = cb;
2684 mutex_unlock(nlk->cb_mutex);
2685
2686 ret = netlink_dump(sk);
2687 out:
2688 sock_put(sk);
2689
2690 if (ret)
2691 return ret;
2692
2693 /* We successfully started a dump, by returning -EINTR we
2694 * signal not to send ACK even if it was requested.
2695 */
2696 return -EINTR;
2697 }
2698 EXPORT_SYMBOL(__netlink_dump_start);
2699
2700 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2701 {
2702 struct sk_buff *skb;
2703 struct nlmsghdr *rep;
2704 struct nlmsgerr *errmsg;
2705 size_t payload = sizeof(*errmsg);
2706
2707 /* error messages get the original request appened */
2708 if (err)
2709 payload += nlmsg_len(nlh);
2710
2711 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2712 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2713 if (!skb) {
2714 struct sock *sk;
2715
2716 sk = netlink_lookup(sock_net(in_skb->sk),
2717 in_skb->sk->sk_protocol,
2718 NETLINK_CB(in_skb).portid);
2719 if (sk) {
2720 sk->sk_err = ENOBUFS;
2721 sk->sk_error_report(sk);
2722 sock_put(sk);
2723 }
2724 return;
2725 }
2726
2727 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2728 NLMSG_ERROR, payload, 0);
2729 errmsg = nlmsg_data(rep);
2730 errmsg->error = err;
2731 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2732 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2733 }
2734 EXPORT_SYMBOL(netlink_ack);
2735
2736 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2737 struct nlmsghdr *))
2738 {
2739 struct nlmsghdr *nlh;
2740 int err;
2741
2742 while (skb->len >= nlmsg_total_size(0)) {
2743 int msglen;
2744
2745 nlh = nlmsg_hdr(skb);
2746 err = 0;
2747
2748 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2749 return 0;
2750
2751 /* Only requests are handled by the kernel */
2752 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2753 goto ack;
2754
2755 /* Skip control messages */
2756 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2757 goto ack;
2758
2759 err = cb(skb, nlh);
2760 if (err == -EINTR)
2761 goto skip;
2762
2763 ack:
2764 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2765 netlink_ack(skb, nlh, err);
2766
2767 skip:
2768 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2769 if (msglen > skb->len)
2770 msglen = skb->len;
2771 skb_pull(skb, msglen);
2772 }
2773
2774 return 0;
2775 }
2776 EXPORT_SYMBOL(netlink_rcv_skb);
2777
2778 /**
2779 * nlmsg_notify - send a notification netlink message
2780 * @sk: netlink socket to use
2781 * @skb: notification message
2782 * @portid: destination netlink portid for reports or 0
2783 * @group: destination multicast group or 0
2784 * @report: 1 to report back, 0 to disable
2785 * @flags: allocation flags
2786 */
2787 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2788 unsigned int group, int report, gfp_t flags)
2789 {
2790 int err = 0;
2791
2792 if (group) {
2793 int exclude_portid = 0;
2794
2795 if (report) {
2796 atomic_inc(&skb->users);
2797 exclude_portid = portid;
2798 }
2799
2800 /* errors reported via destination sk->sk_err, but propagate
2801 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2802 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2803 }
2804
2805 if (report) {
2806 int err2;
2807
2808 err2 = nlmsg_unicast(sk, skb, portid);
2809 if (!err || err == -ESRCH)
2810 err = err2;
2811 }
2812
2813 return err;
2814 }
2815 EXPORT_SYMBOL(nlmsg_notify);
2816
2817 #ifdef CONFIG_PROC_FS
2818 struct nl_seq_iter {
2819 struct seq_net_private p;
2820 int link;
2821 int hash_idx;
2822 };
2823
2824 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
2825 {
2826 struct nl_seq_iter *iter = seq->private;
2827 int i, j;
2828 struct sock *s;
2829 loff_t off = 0;
2830
2831 for (i = 0; i < MAX_LINKS; i++) {
2832 struct nl_portid_hash *hash = &nl_table[i].hash;
2833
2834 for (j = 0; j <= hash->mask; j++) {
2835 sk_for_each(s, &hash->table[j]) {
2836 if (sock_net(s) != seq_file_net(seq))
2837 continue;
2838 if (off == pos) {
2839 iter->link = i;
2840 iter->hash_idx = j;
2841 return s;
2842 }
2843 ++off;
2844 }
2845 }
2846 }
2847 return NULL;
2848 }
2849
2850 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
2851 __acquires(nl_table_lock)
2852 {
2853 read_lock(&nl_table_lock);
2854 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2855 }
2856
2857 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2858 {
2859 struct sock *s;
2860 struct nl_seq_iter *iter;
2861 struct net *net;
2862 int i, j;
2863
2864 ++*pos;
2865
2866 if (v == SEQ_START_TOKEN)
2867 return netlink_seq_socket_idx(seq, 0);
2868
2869 net = seq_file_net(seq);
2870 iter = seq->private;
2871 s = v;
2872 do {
2873 s = sk_next(s);
2874 } while (s && !nl_table[s->sk_protocol].compare(net, s));
2875 if (s)
2876 return s;
2877
2878 i = iter->link;
2879 j = iter->hash_idx + 1;
2880
2881 do {
2882 struct nl_portid_hash *hash = &nl_table[i].hash;
2883
2884 for (; j <= hash->mask; j++) {
2885 s = sk_head(&hash->table[j]);
2886
2887 while (s && !nl_table[s->sk_protocol].compare(net, s))
2888 s = sk_next(s);
2889 if (s) {
2890 iter->link = i;
2891 iter->hash_idx = j;
2892 return s;
2893 }
2894 }
2895
2896 j = 0;
2897 } while (++i < MAX_LINKS);
2898
2899 return NULL;
2900 }
2901
2902 static void netlink_seq_stop(struct seq_file *seq, void *v)
2903 __releases(nl_table_lock)
2904 {
2905 read_unlock(&nl_table_lock);
2906 }
2907
2908
2909 static int netlink_seq_show(struct seq_file *seq, void *v)
2910 {
2911 if (v == SEQ_START_TOKEN) {
2912 seq_puts(seq,
2913 "sk Eth Pid Groups "
2914 "Rmem Wmem Dump Locks Drops Inode\n");
2915 } else {
2916 struct sock *s = v;
2917 struct netlink_sock *nlk = nlk_sk(s);
2918
2919 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %pK %-8d %-8d %-8lu\n",
2920 s,
2921 s->sk_protocol,
2922 nlk->portid,
2923 nlk->groups ? (u32)nlk->groups[0] : 0,
2924 sk_rmem_alloc_get(s),
2925 sk_wmem_alloc_get(s),
2926 nlk->cb,
2927 atomic_read(&s->sk_refcnt),
2928 atomic_read(&s->sk_drops),
2929 sock_i_ino(s)
2930 );
2931
2932 }
2933 return 0;
2934 }
2935
2936 static const struct seq_operations netlink_seq_ops = {
2937 .start = netlink_seq_start,
2938 .next = netlink_seq_next,
2939 .stop = netlink_seq_stop,
2940 .show = netlink_seq_show,
2941 };
2942
2943
2944 static int netlink_seq_open(struct inode *inode, struct file *file)
2945 {
2946 return seq_open_net(inode, file, &netlink_seq_ops,
2947 sizeof(struct nl_seq_iter));
2948 }
2949
2950 static const struct file_operations netlink_seq_fops = {
2951 .owner = THIS_MODULE,
2952 .open = netlink_seq_open,
2953 .read = seq_read,
2954 .llseek = seq_lseek,
2955 .release = seq_release_net,
2956 };
2957
2958 #endif
2959
2960 int netlink_register_notifier(struct notifier_block *nb)
2961 {
2962 return atomic_notifier_chain_register(&netlink_chain, nb);
2963 }
2964 EXPORT_SYMBOL(netlink_register_notifier);
2965
2966 int netlink_unregister_notifier(struct notifier_block *nb)
2967 {
2968 return atomic_notifier_chain_unregister(&netlink_chain, nb);
2969 }
2970 EXPORT_SYMBOL(netlink_unregister_notifier);
2971
2972 static const struct proto_ops netlink_ops = {
2973 .family = PF_NETLINK,
2974 .owner = THIS_MODULE,
2975 .release = netlink_release,
2976 .bind = netlink_bind,
2977 .connect = netlink_connect,
2978 .socketpair = sock_no_socketpair,
2979 .accept = sock_no_accept,
2980 .getname = netlink_getname,
2981 .poll = netlink_poll,
2982 .ioctl = sock_no_ioctl,
2983 .listen = sock_no_listen,
2984 .shutdown = sock_no_shutdown,
2985 .setsockopt = netlink_setsockopt,
2986 .getsockopt = netlink_getsockopt,
2987 .sendmsg = netlink_sendmsg,
2988 .recvmsg = netlink_recvmsg,
2989 .mmap = netlink_mmap,
2990 .sendpage = sock_no_sendpage,
2991 };
2992
2993 static const struct net_proto_family netlink_family_ops = {
2994 .family = PF_NETLINK,
2995 .create = netlink_create,
2996 .owner = THIS_MODULE, /* for consistency 8) */
2997 };
2998
2999 static int __net_init netlink_net_init(struct net *net)
3000 {
3001 #ifdef CONFIG_PROC_FS
3002 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3003 return -ENOMEM;
3004 #endif
3005 return 0;
3006 }
3007
3008 static void __net_exit netlink_net_exit(struct net *net)
3009 {
3010 #ifdef CONFIG_PROC_FS
3011 remove_proc_entry("netlink", net->proc_net);
3012 #endif
3013 }
3014
3015 static void __init netlink_add_usersock_entry(void)
3016 {
3017 struct listeners *listeners;
3018 int groups = 32;
3019
3020 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3021 if (!listeners)
3022 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3023
3024 netlink_table_grab();
3025
3026 nl_table[NETLINK_USERSOCK].groups = groups;
3027 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3028 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3029 nl_table[NETLINK_USERSOCK].registered = 1;
3030 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3031
3032 netlink_table_ungrab();
3033 }
3034
3035 static struct pernet_operations __net_initdata netlink_net_ops = {
3036 .init = netlink_net_init,
3037 .exit = netlink_net_exit,
3038 };
3039
3040 static int __init netlink_proto_init(void)
3041 {
3042 int i;
3043 unsigned long limit;
3044 unsigned int order;
3045 int err = proto_register(&netlink_proto, 0);
3046
3047 if (err != 0)
3048 goto out;
3049
3050 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3051
3052 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3053 if (!nl_table)
3054 goto panic;
3055
3056 if (totalram_pages >= (128 * 1024))
3057 limit = totalram_pages >> (21 - PAGE_SHIFT);
3058 else
3059 limit = totalram_pages >> (23 - PAGE_SHIFT);
3060
3061 order = get_bitmask_order(limit) - 1 + PAGE_SHIFT;
3062 limit = (1UL << order) / sizeof(struct hlist_head);
3063 order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1;
3064
3065 for (i = 0; i < MAX_LINKS; i++) {
3066 struct nl_portid_hash *hash = &nl_table[i].hash;
3067
3068 hash->table = nl_portid_hash_zalloc(1 * sizeof(*hash->table));
3069 if (!hash->table) {
3070 while (i-- > 0)
3071 nl_portid_hash_free(nl_table[i].hash.table,
3072 1 * sizeof(*hash->table));
3073 kfree(nl_table);
3074 goto panic;
3075 }
3076 hash->max_shift = order;
3077 hash->shift = 0;
3078 hash->mask = 0;
3079 hash->rehash_time = jiffies;
3080
3081 nl_table[i].compare = netlink_compare;
3082 }
3083
3084 INIT_LIST_HEAD(&netlink_tap_all);
3085
3086 netlink_add_usersock_entry();
3087
3088 sock_register(&netlink_family_ops);
3089 register_pernet_subsys(&netlink_net_ops);
3090 /* The netlink device handler may be needed early. */
3091 rtnetlink_init();
3092 out:
3093 return err;
3094 panic:
3095 panic("netlink_init: Cannot allocate nl_table\n");
3096 }
3097
3098 core_initcall(netlink_proto_init);
This page took 0.238406 seconds and 5 git commands to generate.