rhashtable: Convert bucket iterators to take table and index
[deliverable/linux.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64
65 #include <net/net_namespace.h>
66 #include <net/sock.h>
67 #include <net/scm.h>
68 #include <net/netlink.h>
69
70 #include "af_netlink.h"
71
72 struct listeners {
73 struct rcu_head rcu;
74 unsigned long masks[0];
75 };
76
77 /* state bits */
78 #define NETLINK_CONGESTED 0x0
79
80 /* flags */
81 #define NETLINK_KERNEL_SOCKET 0x1
82 #define NETLINK_RECV_PKTINFO 0x2
83 #define NETLINK_BROADCAST_SEND_ERROR 0x4
84 #define NETLINK_RECV_NO_ENOBUFS 0x8
85
86 static inline int netlink_is_kernel(struct sock *sk)
87 {
88 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
89 }
90
91 struct netlink_table *nl_table;
92 EXPORT_SYMBOL_GPL(nl_table);
93
94 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
95
96 static int netlink_dump(struct sock *sk);
97 static void netlink_skb_destructor(struct sk_buff *skb);
98
99 /* nl_table locking explained:
100 * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock
101 * combined with an RCU read-side lock. Insertion and removal are protected
102 * with nl_sk_hash_lock while using RCU list modification primitives and may
103 * run in parallel to nl_table_lock protected lookups. Destruction of the
104 * Netlink socket may only occur *after* nl_table_lock has been acquired
105 * either during or after the socket has been removed from the list.
106 */
107 DEFINE_RWLOCK(nl_table_lock);
108 EXPORT_SYMBOL_GPL(nl_table_lock);
109 static atomic_t nl_table_users = ATOMIC_INIT(0);
110
111 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
112
113 /* Protects netlink socket hash table mutations */
114 DEFINE_MUTEX(nl_sk_hash_lock);
115 EXPORT_SYMBOL_GPL(nl_sk_hash_lock);
116
117 #ifdef CONFIG_PROVE_LOCKING
118 static int lockdep_nl_sk_hash_is_held(void *parent)
119 {
120 if (debug_locks)
121 return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock);
122 return 1;
123 }
124 #endif
125
126 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
127
128 static DEFINE_SPINLOCK(netlink_tap_lock);
129 static struct list_head netlink_tap_all __read_mostly;
130
131 static inline u32 netlink_group_mask(u32 group)
132 {
133 return group ? 1 << (group - 1) : 0;
134 }
135
136 int netlink_add_tap(struct netlink_tap *nt)
137 {
138 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
139 return -EINVAL;
140
141 spin_lock(&netlink_tap_lock);
142 list_add_rcu(&nt->list, &netlink_tap_all);
143 spin_unlock(&netlink_tap_lock);
144
145 __module_get(nt->module);
146
147 return 0;
148 }
149 EXPORT_SYMBOL_GPL(netlink_add_tap);
150
151 static int __netlink_remove_tap(struct netlink_tap *nt)
152 {
153 bool found = false;
154 struct netlink_tap *tmp;
155
156 spin_lock(&netlink_tap_lock);
157
158 list_for_each_entry(tmp, &netlink_tap_all, list) {
159 if (nt == tmp) {
160 list_del_rcu(&nt->list);
161 found = true;
162 goto out;
163 }
164 }
165
166 pr_warn("__netlink_remove_tap: %p not found\n", nt);
167 out:
168 spin_unlock(&netlink_tap_lock);
169
170 if (found && nt->module)
171 module_put(nt->module);
172
173 return found ? 0 : -ENODEV;
174 }
175
176 int netlink_remove_tap(struct netlink_tap *nt)
177 {
178 int ret;
179
180 ret = __netlink_remove_tap(nt);
181 synchronize_net();
182
183 return ret;
184 }
185 EXPORT_SYMBOL_GPL(netlink_remove_tap);
186
187 static bool netlink_filter_tap(const struct sk_buff *skb)
188 {
189 struct sock *sk = skb->sk;
190
191 /* We take the more conservative approach and
192 * whitelist socket protocols that may pass.
193 */
194 switch (sk->sk_protocol) {
195 case NETLINK_ROUTE:
196 case NETLINK_USERSOCK:
197 case NETLINK_SOCK_DIAG:
198 case NETLINK_NFLOG:
199 case NETLINK_XFRM:
200 case NETLINK_FIB_LOOKUP:
201 case NETLINK_NETFILTER:
202 case NETLINK_GENERIC:
203 return true;
204 }
205
206 return false;
207 }
208
209 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
210 struct net_device *dev)
211 {
212 struct sk_buff *nskb;
213 struct sock *sk = skb->sk;
214 int ret = -ENOMEM;
215
216 dev_hold(dev);
217 nskb = skb_clone(skb, GFP_ATOMIC);
218 if (nskb) {
219 nskb->dev = dev;
220 nskb->protocol = htons((u16) sk->sk_protocol);
221 nskb->pkt_type = netlink_is_kernel(sk) ?
222 PACKET_KERNEL : PACKET_USER;
223 skb_reset_network_header(nskb);
224 ret = dev_queue_xmit(nskb);
225 if (unlikely(ret > 0))
226 ret = net_xmit_errno(ret);
227 }
228
229 dev_put(dev);
230 return ret;
231 }
232
233 static void __netlink_deliver_tap(struct sk_buff *skb)
234 {
235 int ret;
236 struct netlink_tap *tmp;
237
238 if (!netlink_filter_tap(skb))
239 return;
240
241 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
242 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
243 if (unlikely(ret))
244 break;
245 }
246 }
247
248 static void netlink_deliver_tap(struct sk_buff *skb)
249 {
250 rcu_read_lock();
251
252 if (unlikely(!list_empty(&netlink_tap_all)))
253 __netlink_deliver_tap(skb);
254
255 rcu_read_unlock();
256 }
257
258 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
259 struct sk_buff *skb)
260 {
261 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
262 netlink_deliver_tap(skb);
263 }
264
265 static void netlink_overrun(struct sock *sk)
266 {
267 struct netlink_sock *nlk = nlk_sk(sk);
268
269 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
270 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
271 sk->sk_err = ENOBUFS;
272 sk->sk_error_report(sk);
273 }
274 }
275 atomic_inc(&sk->sk_drops);
276 }
277
278 static void netlink_rcv_wake(struct sock *sk)
279 {
280 struct netlink_sock *nlk = nlk_sk(sk);
281
282 if (skb_queue_empty(&sk->sk_receive_queue))
283 clear_bit(NETLINK_CONGESTED, &nlk->state);
284 if (!test_bit(NETLINK_CONGESTED, &nlk->state))
285 wake_up_interruptible(&nlk->wait);
286 }
287
288 #ifdef CONFIG_NETLINK_MMAP
289 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
290 {
291 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
292 }
293
294 static bool netlink_rx_is_mmaped(struct sock *sk)
295 {
296 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
297 }
298
299 static bool netlink_tx_is_mmaped(struct sock *sk)
300 {
301 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
302 }
303
304 static __pure struct page *pgvec_to_page(const void *addr)
305 {
306 if (is_vmalloc_addr(addr))
307 return vmalloc_to_page(addr);
308 else
309 return virt_to_page(addr);
310 }
311
312 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
313 {
314 unsigned int i;
315
316 for (i = 0; i < len; i++) {
317 if (pg_vec[i] != NULL) {
318 if (is_vmalloc_addr(pg_vec[i]))
319 vfree(pg_vec[i]);
320 else
321 free_pages((unsigned long)pg_vec[i], order);
322 }
323 }
324 kfree(pg_vec);
325 }
326
327 static void *alloc_one_pg_vec_page(unsigned long order)
328 {
329 void *buffer;
330 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
331 __GFP_NOWARN | __GFP_NORETRY;
332
333 buffer = (void *)__get_free_pages(gfp_flags, order);
334 if (buffer != NULL)
335 return buffer;
336
337 buffer = vzalloc((1 << order) * PAGE_SIZE);
338 if (buffer != NULL)
339 return buffer;
340
341 gfp_flags &= ~__GFP_NORETRY;
342 return (void *)__get_free_pages(gfp_flags, order);
343 }
344
345 static void **alloc_pg_vec(struct netlink_sock *nlk,
346 struct nl_mmap_req *req, unsigned int order)
347 {
348 unsigned int block_nr = req->nm_block_nr;
349 unsigned int i;
350 void **pg_vec;
351
352 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
353 if (pg_vec == NULL)
354 return NULL;
355
356 for (i = 0; i < block_nr; i++) {
357 pg_vec[i] = alloc_one_pg_vec_page(order);
358 if (pg_vec[i] == NULL)
359 goto err1;
360 }
361
362 return pg_vec;
363 err1:
364 free_pg_vec(pg_vec, order, block_nr);
365 return NULL;
366 }
367
368 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
369 bool closing, bool tx_ring)
370 {
371 struct netlink_sock *nlk = nlk_sk(sk);
372 struct netlink_ring *ring;
373 struct sk_buff_head *queue;
374 void **pg_vec = NULL;
375 unsigned int order = 0;
376 int err;
377
378 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
379 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
380
381 if (!closing) {
382 if (atomic_read(&nlk->mapped))
383 return -EBUSY;
384 if (atomic_read(&ring->pending))
385 return -EBUSY;
386 }
387
388 if (req->nm_block_nr) {
389 if (ring->pg_vec != NULL)
390 return -EBUSY;
391
392 if ((int)req->nm_block_size <= 0)
393 return -EINVAL;
394 if (!PAGE_ALIGNED(req->nm_block_size))
395 return -EINVAL;
396 if (req->nm_frame_size < NL_MMAP_HDRLEN)
397 return -EINVAL;
398 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
399 return -EINVAL;
400
401 ring->frames_per_block = req->nm_block_size /
402 req->nm_frame_size;
403 if (ring->frames_per_block == 0)
404 return -EINVAL;
405 if (ring->frames_per_block * req->nm_block_nr !=
406 req->nm_frame_nr)
407 return -EINVAL;
408
409 order = get_order(req->nm_block_size);
410 pg_vec = alloc_pg_vec(nlk, req, order);
411 if (pg_vec == NULL)
412 return -ENOMEM;
413 } else {
414 if (req->nm_frame_nr)
415 return -EINVAL;
416 }
417
418 err = -EBUSY;
419 mutex_lock(&nlk->pg_vec_lock);
420 if (closing || atomic_read(&nlk->mapped) == 0) {
421 err = 0;
422 spin_lock_bh(&queue->lock);
423
424 ring->frame_max = req->nm_frame_nr - 1;
425 ring->head = 0;
426 ring->frame_size = req->nm_frame_size;
427 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
428
429 swap(ring->pg_vec_len, req->nm_block_nr);
430 swap(ring->pg_vec_order, order);
431 swap(ring->pg_vec, pg_vec);
432
433 __skb_queue_purge(queue);
434 spin_unlock_bh(&queue->lock);
435
436 WARN_ON(atomic_read(&nlk->mapped));
437 }
438 mutex_unlock(&nlk->pg_vec_lock);
439
440 if (pg_vec)
441 free_pg_vec(pg_vec, order, req->nm_block_nr);
442 return err;
443 }
444
445 static void netlink_mm_open(struct vm_area_struct *vma)
446 {
447 struct file *file = vma->vm_file;
448 struct socket *sock = file->private_data;
449 struct sock *sk = sock->sk;
450
451 if (sk)
452 atomic_inc(&nlk_sk(sk)->mapped);
453 }
454
455 static void netlink_mm_close(struct vm_area_struct *vma)
456 {
457 struct file *file = vma->vm_file;
458 struct socket *sock = file->private_data;
459 struct sock *sk = sock->sk;
460
461 if (sk)
462 atomic_dec(&nlk_sk(sk)->mapped);
463 }
464
465 static const struct vm_operations_struct netlink_mmap_ops = {
466 .open = netlink_mm_open,
467 .close = netlink_mm_close,
468 };
469
470 static int netlink_mmap(struct file *file, struct socket *sock,
471 struct vm_area_struct *vma)
472 {
473 struct sock *sk = sock->sk;
474 struct netlink_sock *nlk = nlk_sk(sk);
475 struct netlink_ring *ring;
476 unsigned long start, size, expected;
477 unsigned int i;
478 int err = -EINVAL;
479
480 if (vma->vm_pgoff)
481 return -EINVAL;
482
483 mutex_lock(&nlk->pg_vec_lock);
484
485 expected = 0;
486 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
487 if (ring->pg_vec == NULL)
488 continue;
489 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
490 }
491
492 if (expected == 0)
493 goto out;
494
495 size = vma->vm_end - vma->vm_start;
496 if (size != expected)
497 goto out;
498
499 start = vma->vm_start;
500 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
501 if (ring->pg_vec == NULL)
502 continue;
503
504 for (i = 0; i < ring->pg_vec_len; i++) {
505 struct page *page;
506 void *kaddr = ring->pg_vec[i];
507 unsigned int pg_num;
508
509 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
510 page = pgvec_to_page(kaddr);
511 err = vm_insert_page(vma, start, page);
512 if (err < 0)
513 goto out;
514 start += PAGE_SIZE;
515 kaddr += PAGE_SIZE;
516 }
517 }
518 }
519
520 atomic_inc(&nlk->mapped);
521 vma->vm_ops = &netlink_mmap_ops;
522 err = 0;
523 out:
524 mutex_unlock(&nlk->pg_vec_lock);
525 return err;
526 }
527
528 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
529 {
530 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
531 struct page *p_start, *p_end;
532
533 /* First page is flushed through netlink_{get,set}_status */
534 p_start = pgvec_to_page(hdr + PAGE_SIZE);
535 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
536 while (p_start <= p_end) {
537 flush_dcache_page(p_start);
538 p_start++;
539 }
540 #endif
541 }
542
543 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
544 {
545 smp_rmb();
546 flush_dcache_page(pgvec_to_page(hdr));
547 return hdr->nm_status;
548 }
549
550 static void netlink_set_status(struct nl_mmap_hdr *hdr,
551 enum nl_mmap_status status)
552 {
553 smp_mb();
554 hdr->nm_status = status;
555 flush_dcache_page(pgvec_to_page(hdr));
556 }
557
558 static struct nl_mmap_hdr *
559 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
560 {
561 unsigned int pg_vec_pos, frame_off;
562
563 pg_vec_pos = pos / ring->frames_per_block;
564 frame_off = pos % ring->frames_per_block;
565
566 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
567 }
568
569 static struct nl_mmap_hdr *
570 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
571 enum nl_mmap_status status)
572 {
573 struct nl_mmap_hdr *hdr;
574
575 hdr = __netlink_lookup_frame(ring, pos);
576 if (netlink_get_status(hdr) != status)
577 return NULL;
578
579 return hdr;
580 }
581
582 static struct nl_mmap_hdr *
583 netlink_current_frame(const struct netlink_ring *ring,
584 enum nl_mmap_status status)
585 {
586 return netlink_lookup_frame(ring, ring->head, status);
587 }
588
589 static struct nl_mmap_hdr *
590 netlink_previous_frame(const struct netlink_ring *ring,
591 enum nl_mmap_status status)
592 {
593 unsigned int prev;
594
595 prev = ring->head ? ring->head - 1 : ring->frame_max;
596 return netlink_lookup_frame(ring, prev, status);
597 }
598
599 static void netlink_increment_head(struct netlink_ring *ring)
600 {
601 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
602 }
603
604 static void netlink_forward_ring(struct netlink_ring *ring)
605 {
606 unsigned int head = ring->head, pos = head;
607 const struct nl_mmap_hdr *hdr;
608
609 do {
610 hdr = __netlink_lookup_frame(ring, pos);
611 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
612 break;
613 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
614 break;
615 netlink_increment_head(ring);
616 } while (ring->head != head);
617 }
618
619 static bool netlink_dump_space(struct netlink_sock *nlk)
620 {
621 struct netlink_ring *ring = &nlk->rx_ring;
622 struct nl_mmap_hdr *hdr;
623 unsigned int n;
624
625 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
626 if (hdr == NULL)
627 return false;
628
629 n = ring->head + ring->frame_max / 2;
630 if (n > ring->frame_max)
631 n -= ring->frame_max;
632
633 hdr = __netlink_lookup_frame(ring, n);
634
635 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
636 }
637
638 static unsigned int netlink_poll(struct file *file, struct socket *sock,
639 poll_table *wait)
640 {
641 struct sock *sk = sock->sk;
642 struct netlink_sock *nlk = nlk_sk(sk);
643 unsigned int mask;
644 int err;
645
646 if (nlk->rx_ring.pg_vec != NULL) {
647 /* Memory mapped sockets don't call recvmsg(), so flow control
648 * for dumps is performed here. A dump is allowed to continue
649 * if at least half the ring is unused.
650 */
651 while (nlk->cb_running && netlink_dump_space(nlk)) {
652 err = netlink_dump(sk);
653 if (err < 0) {
654 sk->sk_err = -err;
655 sk->sk_error_report(sk);
656 break;
657 }
658 }
659 netlink_rcv_wake(sk);
660 }
661
662 mask = datagram_poll(file, sock, wait);
663
664 spin_lock_bh(&sk->sk_receive_queue.lock);
665 if (nlk->rx_ring.pg_vec) {
666 netlink_forward_ring(&nlk->rx_ring);
667 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
668 mask |= POLLIN | POLLRDNORM;
669 }
670 spin_unlock_bh(&sk->sk_receive_queue.lock);
671
672 spin_lock_bh(&sk->sk_write_queue.lock);
673 if (nlk->tx_ring.pg_vec) {
674 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
675 mask |= POLLOUT | POLLWRNORM;
676 }
677 spin_unlock_bh(&sk->sk_write_queue.lock);
678
679 return mask;
680 }
681
682 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
683 {
684 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
685 }
686
687 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
688 struct netlink_ring *ring,
689 struct nl_mmap_hdr *hdr)
690 {
691 unsigned int size;
692 void *data;
693
694 size = ring->frame_size - NL_MMAP_HDRLEN;
695 data = (void *)hdr + NL_MMAP_HDRLEN;
696
697 skb->head = data;
698 skb->data = data;
699 skb_reset_tail_pointer(skb);
700 skb->end = skb->tail + size;
701 skb->len = 0;
702
703 skb->destructor = netlink_skb_destructor;
704 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
705 NETLINK_CB(skb).sk = sk;
706 }
707
708 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
709 u32 dst_portid, u32 dst_group,
710 struct sock_iocb *siocb)
711 {
712 struct netlink_sock *nlk = nlk_sk(sk);
713 struct netlink_ring *ring;
714 struct nl_mmap_hdr *hdr;
715 struct sk_buff *skb;
716 unsigned int maxlen;
717 int err = 0, len = 0;
718
719 mutex_lock(&nlk->pg_vec_lock);
720
721 ring = &nlk->tx_ring;
722 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
723
724 do {
725 unsigned int nm_len;
726
727 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
728 if (hdr == NULL) {
729 if (!(msg->msg_flags & MSG_DONTWAIT) &&
730 atomic_read(&nlk->tx_ring.pending))
731 schedule();
732 continue;
733 }
734
735 nm_len = ACCESS_ONCE(hdr->nm_len);
736 if (nm_len > maxlen) {
737 err = -EINVAL;
738 goto out;
739 }
740
741 netlink_frame_flush_dcache(hdr, nm_len);
742
743 skb = alloc_skb(nm_len, GFP_KERNEL);
744 if (skb == NULL) {
745 err = -ENOBUFS;
746 goto out;
747 }
748 __skb_put(skb, nm_len);
749 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
750 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
751
752 netlink_increment_head(ring);
753
754 NETLINK_CB(skb).portid = nlk->portid;
755 NETLINK_CB(skb).dst_group = dst_group;
756 NETLINK_CB(skb).creds = siocb->scm->creds;
757
758 err = security_netlink_send(sk, skb);
759 if (err) {
760 kfree_skb(skb);
761 goto out;
762 }
763
764 if (unlikely(dst_group)) {
765 atomic_inc(&skb->users);
766 netlink_broadcast(sk, skb, dst_portid, dst_group,
767 GFP_KERNEL);
768 }
769 err = netlink_unicast(sk, skb, dst_portid,
770 msg->msg_flags & MSG_DONTWAIT);
771 if (err < 0)
772 goto out;
773 len += err;
774
775 } while (hdr != NULL ||
776 (!(msg->msg_flags & MSG_DONTWAIT) &&
777 atomic_read(&nlk->tx_ring.pending)));
778
779 if (len > 0)
780 err = len;
781 out:
782 mutex_unlock(&nlk->pg_vec_lock);
783 return err;
784 }
785
786 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
787 {
788 struct nl_mmap_hdr *hdr;
789
790 hdr = netlink_mmap_hdr(skb);
791 hdr->nm_len = skb->len;
792 hdr->nm_group = NETLINK_CB(skb).dst_group;
793 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
794 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
795 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
796 netlink_frame_flush_dcache(hdr, hdr->nm_len);
797 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
798
799 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
800 kfree_skb(skb);
801 }
802
803 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
804 {
805 struct netlink_sock *nlk = nlk_sk(sk);
806 struct netlink_ring *ring = &nlk->rx_ring;
807 struct nl_mmap_hdr *hdr;
808
809 spin_lock_bh(&sk->sk_receive_queue.lock);
810 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
811 if (hdr == NULL) {
812 spin_unlock_bh(&sk->sk_receive_queue.lock);
813 kfree_skb(skb);
814 netlink_overrun(sk);
815 return;
816 }
817 netlink_increment_head(ring);
818 __skb_queue_tail(&sk->sk_receive_queue, skb);
819 spin_unlock_bh(&sk->sk_receive_queue.lock);
820
821 hdr->nm_len = skb->len;
822 hdr->nm_group = NETLINK_CB(skb).dst_group;
823 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
824 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
825 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
826 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
827 }
828
829 #else /* CONFIG_NETLINK_MMAP */
830 #define netlink_skb_is_mmaped(skb) false
831 #define netlink_rx_is_mmaped(sk) false
832 #define netlink_tx_is_mmaped(sk) false
833 #define netlink_mmap sock_no_mmap
834 #define netlink_poll datagram_poll
835 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0
836 #endif /* CONFIG_NETLINK_MMAP */
837
838 static void netlink_skb_destructor(struct sk_buff *skb)
839 {
840 #ifdef CONFIG_NETLINK_MMAP
841 struct nl_mmap_hdr *hdr;
842 struct netlink_ring *ring;
843 struct sock *sk;
844
845 /* If a packet from the kernel to userspace was freed because of an
846 * error without being delivered to userspace, the kernel must reset
847 * the status. In the direction userspace to kernel, the status is
848 * always reset here after the packet was processed and freed.
849 */
850 if (netlink_skb_is_mmaped(skb)) {
851 hdr = netlink_mmap_hdr(skb);
852 sk = NETLINK_CB(skb).sk;
853
854 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
855 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
856 ring = &nlk_sk(sk)->tx_ring;
857 } else {
858 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
859 hdr->nm_len = 0;
860 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
861 }
862 ring = &nlk_sk(sk)->rx_ring;
863 }
864
865 WARN_ON(atomic_read(&ring->pending) == 0);
866 atomic_dec(&ring->pending);
867 sock_put(sk);
868
869 skb->head = NULL;
870 }
871 #endif
872 if (is_vmalloc_addr(skb->head)) {
873 if (!skb->cloned ||
874 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
875 vfree(skb->head);
876
877 skb->head = NULL;
878 }
879 if (skb->sk != NULL)
880 sock_rfree(skb);
881 }
882
883 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
884 {
885 WARN_ON(skb->sk != NULL);
886 skb->sk = sk;
887 skb->destructor = netlink_skb_destructor;
888 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
889 sk_mem_charge(sk, skb->truesize);
890 }
891
892 static void netlink_sock_destruct(struct sock *sk)
893 {
894 struct netlink_sock *nlk = nlk_sk(sk);
895
896 if (nlk->cb_running) {
897 if (nlk->cb.done)
898 nlk->cb.done(&nlk->cb);
899
900 module_put(nlk->cb.module);
901 kfree_skb(nlk->cb.skb);
902 }
903
904 skb_queue_purge(&sk->sk_receive_queue);
905 #ifdef CONFIG_NETLINK_MMAP
906 if (1) {
907 struct nl_mmap_req req;
908
909 memset(&req, 0, sizeof(req));
910 if (nlk->rx_ring.pg_vec)
911 netlink_set_ring(sk, &req, true, false);
912 memset(&req, 0, sizeof(req));
913 if (nlk->tx_ring.pg_vec)
914 netlink_set_ring(sk, &req, true, true);
915 }
916 #endif /* CONFIG_NETLINK_MMAP */
917
918 if (!sock_flag(sk, SOCK_DEAD)) {
919 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
920 return;
921 }
922
923 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
924 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
925 WARN_ON(nlk_sk(sk)->groups);
926 }
927
928 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
929 * SMP. Look, when several writers sleep and reader wakes them up, all but one
930 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
931 * this, _but_ remember, it adds useless work on UP machines.
932 */
933
934 void netlink_table_grab(void)
935 __acquires(nl_table_lock)
936 {
937 might_sleep();
938
939 write_lock_irq(&nl_table_lock);
940
941 if (atomic_read(&nl_table_users)) {
942 DECLARE_WAITQUEUE(wait, current);
943
944 add_wait_queue_exclusive(&nl_table_wait, &wait);
945 for (;;) {
946 set_current_state(TASK_UNINTERRUPTIBLE);
947 if (atomic_read(&nl_table_users) == 0)
948 break;
949 write_unlock_irq(&nl_table_lock);
950 schedule();
951 write_lock_irq(&nl_table_lock);
952 }
953
954 __set_current_state(TASK_RUNNING);
955 remove_wait_queue(&nl_table_wait, &wait);
956 }
957 }
958
959 void netlink_table_ungrab(void)
960 __releases(nl_table_lock)
961 {
962 write_unlock_irq(&nl_table_lock);
963 wake_up(&nl_table_wait);
964 }
965
966 static inline void
967 netlink_lock_table(void)
968 {
969 /* read_lock() synchronizes us to netlink_table_grab */
970
971 read_lock(&nl_table_lock);
972 atomic_inc(&nl_table_users);
973 read_unlock(&nl_table_lock);
974 }
975
976 static inline void
977 netlink_unlock_table(void)
978 {
979 if (atomic_dec_and_test(&nl_table_users))
980 wake_up(&nl_table_wait);
981 }
982
983 struct netlink_compare_arg
984 {
985 struct net *net;
986 u32 portid;
987 };
988
989 static bool netlink_compare(void *ptr, void *arg)
990 {
991 struct netlink_compare_arg *x = arg;
992 struct sock *sk = ptr;
993
994 return nlk_sk(sk)->portid == x->portid &&
995 net_eq(sock_net(sk), x->net);
996 }
997
998 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
999 struct net *net)
1000 {
1001 struct netlink_compare_arg arg = {
1002 .net = net,
1003 .portid = portid,
1004 };
1005
1006 return rhashtable_lookup_compare(&table->hash, &portid,
1007 &netlink_compare, &arg);
1008 }
1009
1010 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1011 {
1012 struct netlink_table *table = &nl_table[protocol];
1013 struct sock *sk;
1014
1015 read_lock(&nl_table_lock);
1016 rcu_read_lock();
1017 sk = __netlink_lookup(table, portid, net);
1018 if (sk)
1019 sock_hold(sk);
1020 rcu_read_unlock();
1021 read_unlock(&nl_table_lock);
1022
1023 return sk;
1024 }
1025
1026 static const struct proto_ops netlink_ops;
1027
1028 static void
1029 netlink_update_listeners(struct sock *sk)
1030 {
1031 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1032 unsigned long mask;
1033 unsigned int i;
1034 struct listeners *listeners;
1035
1036 listeners = nl_deref_protected(tbl->listeners);
1037 if (!listeners)
1038 return;
1039
1040 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1041 mask = 0;
1042 sk_for_each_bound(sk, &tbl->mc_list) {
1043 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1044 mask |= nlk_sk(sk)->groups[i];
1045 }
1046 listeners->masks[i] = mask;
1047 }
1048 /* this function is only called with the netlink table "grabbed", which
1049 * makes sure updates are visible before bind or setsockopt return. */
1050 }
1051
1052 static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
1053 {
1054 struct netlink_table *table = &nl_table[sk->sk_protocol];
1055 int err = -EADDRINUSE;
1056
1057 mutex_lock(&nl_sk_hash_lock);
1058 if (__netlink_lookup(table, portid, net))
1059 goto err;
1060
1061 err = -EBUSY;
1062 if (nlk_sk(sk)->portid)
1063 goto err;
1064
1065 err = -ENOMEM;
1066 if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX))
1067 goto err;
1068
1069 nlk_sk(sk)->portid = portid;
1070 sock_hold(sk);
1071 rhashtable_insert(&table->hash, &nlk_sk(sk)->node);
1072 err = 0;
1073 err:
1074 mutex_unlock(&nl_sk_hash_lock);
1075 return err;
1076 }
1077
1078 static void netlink_remove(struct sock *sk)
1079 {
1080 struct netlink_table *table;
1081
1082 mutex_lock(&nl_sk_hash_lock);
1083 table = &nl_table[sk->sk_protocol];
1084 if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) {
1085 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1086 __sock_put(sk);
1087 }
1088 mutex_unlock(&nl_sk_hash_lock);
1089
1090 netlink_table_grab();
1091 if (nlk_sk(sk)->subscriptions) {
1092 __sk_del_bind_node(sk);
1093 netlink_update_listeners(sk);
1094 }
1095 netlink_table_ungrab();
1096 }
1097
1098 static struct proto netlink_proto = {
1099 .name = "NETLINK",
1100 .owner = THIS_MODULE,
1101 .obj_size = sizeof(struct netlink_sock),
1102 };
1103
1104 static int __netlink_create(struct net *net, struct socket *sock,
1105 struct mutex *cb_mutex, int protocol)
1106 {
1107 struct sock *sk;
1108 struct netlink_sock *nlk;
1109
1110 sock->ops = &netlink_ops;
1111
1112 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1113 if (!sk)
1114 return -ENOMEM;
1115
1116 sock_init_data(sock, sk);
1117
1118 nlk = nlk_sk(sk);
1119 if (cb_mutex) {
1120 nlk->cb_mutex = cb_mutex;
1121 } else {
1122 nlk->cb_mutex = &nlk->cb_def_mutex;
1123 mutex_init(nlk->cb_mutex);
1124 }
1125 init_waitqueue_head(&nlk->wait);
1126 #ifdef CONFIG_NETLINK_MMAP
1127 mutex_init(&nlk->pg_vec_lock);
1128 #endif
1129
1130 sk->sk_destruct = netlink_sock_destruct;
1131 sk->sk_protocol = protocol;
1132 return 0;
1133 }
1134
1135 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1136 int kern)
1137 {
1138 struct module *module = NULL;
1139 struct mutex *cb_mutex;
1140 struct netlink_sock *nlk;
1141 int (*bind)(struct net *net, int group);
1142 void (*unbind)(struct net *net, int group);
1143 int err = 0;
1144
1145 sock->state = SS_UNCONNECTED;
1146
1147 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1148 return -ESOCKTNOSUPPORT;
1149
1150 if (protocol < 0 || protocol >= MAX_LINKS)
1151 return -EPROTONOSUPPORT;
1152
1153 netlink_lock_table();
1154 #ifdef CONFIG_MODULES
1155 if (!nl_table[protocol].registered) {
1156 netlink_unlock_table();
1157 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1158 netlink_lock_table();
1159 }
1160 #endif
1161 if (nl_table[protocol].registered &&
1162 try_module_get(nl_table[protocol].module))
1163 module = nl_table[protocol].module;
1164 else
1165 err = -EPROTONOSUPPORT;
1166 cb_mutex = nl_table[protocol].cb_mutex;
1167 bind = nl_table[protocol].bind;
1168 unbind = nl_table[protocol].unbind;
1169 netlink_unlock_table();
1170
1171 if (err < 0)
1172 goto out;
1173
1174 err = __netlink_create(net, sock, cb_mutex, protocol);
1175 if (err < 0)
1176 goto out_module;
1177
1178 local_bh_disable();
1179 sock_prot_inuse_add(net, &netlink_proto, 1);
1180 local_bh_enable();
1181
1182 nlk = nlk_sk(sock->sk);
1183 nlk->module = module;
1184 nlk->netlink_bind = bind;
1185 nlk->netlink_unbind = unbind;
1186 out:
1187 return err;
1188
1189 out_module:
1190 module_put(module);
1191 goto out;
1192 }
1193
1194 static int netlink_release(struct socket *sock)
1195 {
1196 struct sock *sk = sock->sk;
1197 struct netlink_sock *nlk;
1198
1199 if (!sk)
1200 return 0;
1201
1202 netlink_remove(sk);
1203 sock_orphan(sk);
1204 nlk = nlk_sk(sk);
1205
1206 /*
1207 * OK. Socket is unlinked, any packets that arrive now
1208 * will be purged.
1209 */
1210
1211 sock->sk = NULL;
1212 wake_up_interruptible_all(&nlk->wait);
1213
1214 skb_queue_purge(&sk->sk_write_queue);
1215
1216 if (nlk->portid) {
1217 struct netlink_notify n = {
1218 .net = sock_net(sk),
1219 .protocol = sk->sk_protocol,
1220 .portid = nlk->portid,
1221 };
1222 atomic_notifier_call_chain(&netlink_chain,
1223 NETLINK_URELEASE, &n);
1224 }
1225
1226 module_put(nlk->module);
1227
1228 if (netlink_is_kernel(sk)) {
1229 netlink_table_grab();
1230 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1231 if (--nl_table[sk->sk_protocol].registered == 0) {
1232 struct listeners *old;
1233
1234 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1235 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1236 kfree_rcu(old, rcu);
1237 nl_table[sk->sk_protocol].module = NULL;
1238 nl_table[sk->sk_protocol].bind = NULL;
1239 nl_table[sk->sk_protocol].unbind = NULL;
1240 nl_table[sk->sk_protocol].flags = 0;
1241 nl_table[sk->sk_protocol].registered = 0;
1242 }
1243 netlink_table_ungrab();
1244 }
1245
1246 if (nlk->netlink_unbind) {
1247 int i;
1248
1249 for (i = 0; i < nlk->ngroups; i++)
1250 if (test_bit(i, nlk->groups))
1251 nlk->netlink_unbind(sock_net(sk), i + 1);
1252 }
1253 kfree(nlk->groups);
1254 nlk->groups = NULL;
1255
1256 local_bh_disable();
1257 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1258 local_bh_enable();
1259 sock_put(sk);
1260 return 0;
1261 }
1262
1263 static int netlink_autobind(struct socket *sock)
1264 {
1265 struct sock *sk = sock->sk;
1266 struct net *net = sock_net(sk);
1267 struct netlink_table *table = &nl_table[sk->sk_protocol];
1268 s32 portid = task_tgid_vnr(current);
1269 int err;
1270 static s32 rover = -4097;
1271
1272 retry:
1273 cond_resched();
1274 netlink_table_grab();
1275 rcu_read_lock();
1276 if (__netlink_lookup(table, portid, net)) {
1277 /* Bind collision, search negative portid values. */
1278 portid = rover--;
1279 if (rover > -4097)
1280 rover = -4097;
1281 rcu_read_unlock();
1282 netlink_table_ungrab();
1283 goto retry;
1284 }
1285 rcu_read_unlock();
1286 netlink_table_ungrab();
1287
1288 err = netlink_insert(sk, net, portid);
1289 if (err == -EADDRINUSE)
1290 goto retry;
1291
1292 /* If 2 threads race to autobind, that is fine. */
1293 if (err == -EBUSY)
1294 err = 0;
1295
1296 return err;
1297 }
1298
1299 /**
1300 * __netlink_ns_capable - General netlink message capability test
1301 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1302 * @user_ns: The user namespace of the capability to use
1303 * @cap: The capability to use
1304 *
1305 * Test to see if the opener of the socket we received the message
1306 * from had when the netlink socket was created and the sender of the
1307 * message has has the capability @cap in the user namespace @user_ns.
1308 */
1309 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1310 struct user_namespace *user_ns, int cap)
1311 {
1312 return ((nsp->flags & NETLINK_SKB_DST) ||
1313 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1314 ns_capable(user_ns, cap);
1315 }
1316 EXPORT_SYMBOL(__netlink_ns_capable);
1317
1318 /**
1319 * netlink_ns_capable - General netlink message capability test
1320 * @skb: socket buffer holding a netlink command from userspace
1321 * @user_ns: The user namespace of the capability to use
1322 * @cap: The capability to use
1323 *
1324 * Test to see if the opener of the socket we received the message
1325 * from had when the netlink socket was created and the sender of the
1326 * message has has the capability @cap in the user namespace @user_ns.
1327 */
1328 bool netlink_ns_capable(const struct sk_buff *skb,
1329 struct user_namespace *user_ns, int cap)
1330 {
1331 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1332 }
1333 EXPORT_SYMBOL(netlink_ns_capable);
1334
1335 /**
1336 * netlink_capable - Netlink global message capability test
1337 * @skb: socket buffer holding a netlink command from userspace
1338 * @cap: The capability to use
1339 *
1340 * Test to see if the opener of the socket we received the message
1341 * from had when the netlink socket was created and the sender of the
1342 * message has has the capability @cap in all user namespaces.
1343 */
1344 bool netlink_capable(const struct sk_buff *skb, int cap)
1345 {
1346 return netlink_ns_capable(skb, &init_user_ns, cap);
1347 }
1348 EXPORT_SYMBOL(netlink_capable);
1349
1350 /**
1351 * netlink_net_capable - Netlink network namespace message capability test
1352 * @skb: socket buffer holding a netlink command from userspace
1353 * @cap: The capability to use
1354 *
1355 * Test to see if the opener of the socket we received the message
1356 * from had when the netlink socket was created and the sender of the
1357 * message has has the capability @cap over the network namespace of
1358 * the socket we received the message from.
1359 */
1360 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1361 {
1362 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1363 }
1364 EXPORT_SYMBOL(netlink_net_capable);
1365
1366 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1367 {
1368 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1369 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1370 }
1371
1372 static void
1373 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1374 {
1375 struct netlink_sock *nlk = nlk_sk(sk);
1376
1377 if (nlk->subscriptions && !subscriptions)
1378 __sk_del_bind_node(sk);
1379 else if (!nlk->subscriptions && subscriptions)
1380 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1381 nlk->subscriptions = subscriptions;
1382 }
1383
1384 static int netlink_realloc_groups(struct sock *sk)
1385 {
1386 struct netlink_sock *nlk = nlk_sk(sk);
1387 unsigned int groups;
1388 unsigned long *new_groups;
1389 int err = 0;
1390
1391 netlink_table_grab();
1392
1393 groups = nl_table[sk->sk_protocol].groups;
1394 if (!nl_table[sk->sk_protocol].registered) {
1395 err = -ENOENT;
1396 goto out_unlock;
1397 }
1398
1399 if (nlk->ngroups >= groups)
1400 goto out_unlock;
1401
1402 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1403 if (new_groups == NULL) {
1404 err = -ENOMEM;
1405 goto out_unlock;
1406 }
1407 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1408 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1409
1410 nlk->groups = new_groups;
1411 nlk->ngroups = groups;
1412 out_unlock:
1413 netlink_table_ungrab();
1414 return err;
1415 }
1416
1417 static void netlink_undo_bind(int group, long unsigned int groups,
1418 struct sock *sk)
1419 {
1420 struct netlink_sock *nlk = nlk_sk(sk);
1421 int undo;
1422
1423 if (!nlk->netlink_unbind)
1424 return;
1425
1426 for (undo = 0; undo < group; undo++)
1427 if (test_bit(undo, &groups))
1428 nlk->netlink_unbind(sock_net(sk), undo);
1429 }
1430
1431 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1432 int addr_len)
1433 {
1434 struct sock *sk = sock->sk;
1435 struct net *net = sock_net(sk);
1436 struct netlink_sock *nlk = nlk_sk(sk);
1437 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1438 int err;
1439 long unsigned int groups = nladdr->nl_groups;
1440
1441 if (addr_len < sizeof(struct sockaddr_nl))
1442 return -EINVAL;
1443
1444 if (nladdr->nl_family != AF_NETLINK)
1445 return -EINVAL;
1446
1447 /* Only superuser is allowed to listen multicasts */
1448 if (groups) {
1449 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1450 return -EPERM;
1451 err = netlink_realloc_groups(sk);
1452 if (err)
1453 return err;
1454 }
1455
1456 if (nlk->portid)
1457 if (nladdr->nl_pid != nlk->portid)
1458 return -EINVAL;
1459
1460 if (nlk->netlink_bind && groups) {
1461 int group;
1462
1463 for (group = 0; group < nlk->ngroups; group++) {
1464 if (!test_bit(group, &groups))
1465 continue;
1466 err = nlk->netlink_bind(net, group);
1467 if (!err)
1468 continue;
1469 netlink_undo_bind(group, groups, sk);
1470 return err;
1471 }
1472 }
1473
1474 if (!nlk->portid) {
1475 err = nladdr->nl_pid ?
1476 netlink_insert(sk, net, nladdr->nl_pid) :
1477 netlink_autobind(sock);
1478 if (err) {
1479 netlink_undo_bind(nlk->ngroups, groups, sk);
1480 return err;
1481 }
1482 }
1483
1484 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1485 return 0;
1486
1487 netlink_table_grab();
1488 netlink_update_subscriptions(sk, nlk->subscriptions +
1489 hweight32(groups) -
1490 hweight32(nlk->groups[0]));
1491 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1492 netlink_update_listeners(sk);
1493 netlink_table_ungrab();
1494
1495 return 0;
1496 }
1497
1498 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1499 int alen, int flags)
1500 {
1501 int err = 0;
1502 struct sock *sk = sock->sk;
1503 struct netlink_sock *nlk = nlk_sk(sk);
1504 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1505
1506 if (alen < sizeof(addr->sa_family))
1507 return -EINVAL;
1508
1509 if (addr->sa_family == AF_UNSPEC) {
1510 sk->sk_state = NETLINK_UNCONNECTED;
1511 nlk->dst_portid = 0;
1512 nlk->dst_group = 0;
1513 return 0;
1514 }
1515 if (addr->sa_family != AF_NETLINK)
1516 return -EINVAL;
1517
1518 if ((nladdr->nl_groups || nladdr->nl_pid) &&
1519 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1520 return -EPERM;
1521
1522 if (!nlk->portid)
1523 err = netlink_autobind(sock);
1524
1525 if (err == 0) {
1526 sk->sk_state = NETLINK_CONNECTED;
1527 nlk->dst_portid = nladdr->nl_pid;
1528 nlk->dst_group = ffs(nladdr->nl_groups);
1529 }
1530
1531 return err;
1532 }
1533
1534 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1535 int *addr_len, int peer)
1536 {
1537 struct sock *sk = sock->sk;
1538 struct netlink_sock *nlk = nlk_sk(sk);
1539 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1540
1541 nladdr->nl_family = AF_NETLINK;
1542 nladdr->nl_pad = 0;
1543 *addr_len = sizeof(*nladdr);
1544
1545 if (peer) {
1546 nladdr->nl_pid = nlk->dst_portid;
1547 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1548 } else {
1549 nladdr->nl_pid = nlk->portid;
1550 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1551 }
1552 return 0;
1553 }
1554
1555 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1556 {
1557 struct sock *sock;
1558 struct netlink_sock *nlk;
1559
1560 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1561 if (!sock)
1562 return ERR_PTR(-ECONNREFUSED);
1563
1564 /* Don't bother queuing skb if kernel socket has no input function */
1565 nlk = nlk_sk(sock);
1566 if (sock->sk_state == NETLINK_CONNECTED &&
1567 nlk->dst_portid != nlk_sk(ssk)->portid) {
1568 sock_put(sock);
1569 return ERR_PTR(-ECONNREFUSED);
1570 }
1571 return sock;
1572 }
1573
1574 struct sock *netlink_getsockbyfilp(struct file *filp)
1575 {
1576 struct inode *inode = file_inode(filp);
1577 struct sock *sock;
1578
1579 if (!S_ISSOCK(inode->i_mode))
1580 return ERR_PTR(-ENOTSOCK);
1581
1582 sock = SOCKET_I(inode)->sk;
1583 if (sock->sk_family != AF_NETLINK)
1584 return ERR_PTR(-EINVAL);
1585
1586 sock_hold(sock);
1587 return sock;
1588 }
1589
1590 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1591 int broadcast)
1592 {
1593 struct sk_buff *skb;
1594 void *data;
1595
1596 if (size <= NLMSG_GOODSIZE || broadcast)
1597 return alloc_skb(size, GFP_KERNEL);
1598
1599 size = SKB_DATA_ALIGN(size) +
1600 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1601
1602 data = vmalloc(size);
1603 if (data == NULL)
1604 return NULL;
1605
1606 skb = build_skb(data, size);
1607 if (skb == NULL)
1608 vfree(data);
1609 else {
1610 skb->head_frag = 0;
1611 skb->destructor = netlink_skb_destructor;
1612 }
1613
1614 return skb;
1615 }
1616
1617 /*
1618 * Attach a skb to a netlink socket.
1619 * The caller must hold a reference to the destination socket. On error, the
1620 * reference is dropped. The skb is not send to the destination, just all
1621 * all error checks are performed and memory in the queue is reserved.
1622 * Return values:
1623 * < 0: error. skb freed, reference to sock dropped.
1624 * 0: continue
1625 * 1: repeat lookup - reference dropped while waiting for socket memory.
1626 */
1627 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1628 long *timeo, struct sock *ssk)
1629 {
1630 struct netlink_sock *nlk;
1631
1632 nlk = nlk_sk(sk);
1633
1634 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1635 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1636 !netlink_skb_is_mmaped(skb)) {
1637 DECLARE_WAITQUEUE(wait, current);
1638 if (!*timeo) {
1639 if (!ssk || netlink_is_kernel(ssk))
1640 netlink_overrun(sk);
1641 sock_put(sk);
1642 kfree_skb(skb);
1643 return -EAGAIN;
1644 }
1645
1646 __set_current_state(TASK_INTERRUPTIBLE);
1647 add_wait_queue(&nlk->wait, &wait);
1648
1649 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1650 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1651 !sock_flag(sk, SOCK_DEAD))
1652 *timeo = schedule_timeout(*timeo);
1653
1654 __set_current_state(TASK_RUNNING);
1655 remove_wait_queue(&nlk->wait, &wait);
1656 sock_put(sk);
1657
1658 if (signal_pending(current)) {
1659 kfree_skb(skb);
1660 return sock_intr_errno(*timeo);
1661 }
1662 return 1;
1663 }
1664 netlink_skb_set_owner_r(skb, sk);
1665 return 0;
1666 }
1667
1668 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1669 {
1670 int len = skb->len;
1671
1672 netlink_deliver_tap(skb);
1673
1674 #ifdef CONFIG_NETLINK_MMAP
1675 if (netlink_skb_is_mmaped(skb))
1676 netlink_queue_mmaped_skb(sk, skb);
1677 else if (netlink_rx_is_mmaped(sk))
1678 netlink_ring_set_copied(sk, skb);
1679 else
1680 #endif /* CONFIG_NETLINK_MMAP */
1681 skb_queue_tail(&sk->sk_receive_queue, skb);
1682 sk->sk_data_ready(sk);
1683 return len;
1684 }
1685
1686 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1687 {
1688 int len = __netlink_sendskb(sk, skb);
1689
1690 sock_put(sk);
1691 return len;
1692 }
1693
1694 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1695 {
1696 kfree_skb(skb);
1697 sock_put(sk);
1698 }
1699
1700 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1701 {
1702 int delta;
1703
1704 WARN_ON(skb->sk != NULL);
1705 if (netlink_skb_is_mmaped(skb))
1706 return skb;
1707
1708 delta = skb->end - skb->tail;
1709 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1710 return skb;
1711
1712 if (skb_shared(skb)) {
1713 struct sk_buff *nskb = skb_clone(skb, allocation);
1714 if (!nskb)
1715 return skb;
1716 consume_skb(skb);
1717 skb = nskb;
1718 }
1719
1720 if (!pskb_expand_head(skb, 0, -delta, allocation))
1721 skb->truesize -= delta;
1722
1723 return skb;
1724 }
1725
1726 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1727 struct sock *ssk)
1728 {
1729 int ret;
1730 struct netlink_sock *nlk = nlk_sk(sk);
1731
1732 ret = -ECONNREFUSED;
1733 if (nlk->netlink_rcv != NULL) {
1734 ret = skb->len;
1735 netlink_skb_set_owner_r(skb, sk);
1736 NETLINK_CB(skb).sk = ssk;
1737 netlink_deliver_tap_kernel(sk, ssk, skb);
1738 nlk->netlink_rcv(skb);
1739 consume_skb(skb);
1740 } else {
1741 kfree_skb(skb);
1742 }
1743 sock_put(sk);
1744 return ret;
1745 }
1746
1747 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1748 u32 portid, int nonblock)
1749 {
1750 struct sock *sk;
1751 int err;
1752 long timeo;
1753
1754 skb = netlink_trim(skb, gfp_any());
1755
1756 timeo = sock_sndtimeo(ssk, nonblock);
1757 retry:
1758 sk = netlink_getsockbyportid(ssk, portid);
1759 if (IS_ERR(sk)) {
1760 kfree_skb(skb);
1761 return PTR_ERR(sk);
1762 }
1763 if (netlink_is_kernel(sk))
1764 return netlink_unicast_kernel(sk, skb, ssk);
1765
1766 if (sk_filter(sk, skb)) {
1767 err = skb->len;
1768 kfree_skb(skb);
1769 sock_put(sk);
1770 return err;
1771 }
1772
1773 err = netlink_attachskb(sk, skb, &timeo, ssk);
1774 if (err == 1)
1775 goto retry;
1776 if (err)
1777 return err;
1778
1779 return netlink_sendskb(sk, skb);
1780 }
1781 EXPORT_SYMBOL(netlink_unicast);
1782
1783 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1784 u32 dst_portid, gfp_t gfp_mask)
1785 {
1786 #ifdef CONFIG_NETLINK_MMAP
1787 struct sock *sk = NULL;
1788 struct sk_buff *skb;
1789 struct netlink_ring *ring;
1790 struct nl_mmap_hdr *hdr;
1791 unsigned int maxlen;
1792
1793 sk = netlink_getsockbyportid(ssk, dst_portid);
1794 if (IS_ERR(sk))
1795 goto out;
1796
1797 ring = &nlk_sk(sk)->rx_ring;
1798 /* fast-path without atomic ops for common case: non-mmaped receiver */
1799 if (ring->pg_vec == NULL)
1800 goto out_put;
1801
1802 if (ring->frame_size - NL_MMAP_HDRLEN < size)
1803 goto out_put;
1804
1805 skb = alloc_skb_head(gfp_mask);
1806 if (skb == NULL)
1807 goto err1;
1808
1809 spin_lock_bh(&sk->sk_receive_queue.lock);
1810 /* check again under lock */
1811 if (ring->pg_vec == NULL)
1812 goto out_free;
1813
1814 /* check again under lock */
1815 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1816 if (maxlen < size)
1817 goto out_free;
1818
1819 netlink_forward_ring(ring);
1820 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1821 if (hdr == NULL)
1822 goto err2;
1823 netlink_ring_setup_skb(skb, sk, ring, hdr);
1824 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1825 atomic_inc(&ring->pending);
1826 netlink_increment_head(ring);
1827
1828 spin_unlock_bh(&sk->sk_receive_queue.lock);
1829 return skb;
1830
1831 err2:
1832 kfree_skb(skb);
1833 spin_unlock_bh(&sk->sk_receive_queue.lock);
1834 netlink_overrun(sk);
1835 err1:
1836 sock_put(sk);
1837 return NULL;
1838
1839 out_free:
1840 kfree_skb(skb);
1841 spin_unlock_bh(&sk->sk_receive_queue.lock);
1842 out_put:
1843 sock_put(sk);
1844 out:
1845 #endif
1846 return alloc_skb(size, gfp_mask);
1847 }
1848 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1849
1850 int netlink_has_listeners(struct sock *sk, unsigned int group)
1851 {
1852 int res = 0;
1853 struct listeners *listeners;
1854
1855 BUG_ON(!netlink_is_kernel(sk));
1856
1857 rcu_read_lock();
1858 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1859
1860 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1861 res = test_bit(group - 1, listeners->masks);
1862
1863 rcu_read_unlock();
1864
1865 return res;
1866 }
1867 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1868
1869 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1870 {
1871 struct netlink_sock *nlk = nlk_sk(sk);
1872
1873 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1874 !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1875 netlink_skb_set_owner_r(skb, sk);
1876 __netlink_sendskb(sk, skb);
1877 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1878 }
1879 return -1;
1880 }
1881
1882 struct netlink_broadcast_data {
1883 struct sock *exclude_sk;
1884 struct net *net;
1885 u32 portid;
1886 u32 group;
1887 int failure;
1888 int delivery_failure;
1889 int congested;
1890 int delivered;
1891 gfp_t allocation;
1892 struct sk_buff *skb, *skb2;
1893 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1894 void *tx_data;
1895 };
1896
1897 static void do_one_broadcast(struct sock *sk,
1898 struct netlink_broadcast_data *p)
1899 {
1900 struct netlink_sock *nlk = nlk_sk(sk);
1901 int val;
1902
1903 if (p->exclude_sk == sk)
1904 return;
1905
1906 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1907 !test_bit(p->group - 1, nlk->groups))
1908 return;
1909
1910 if (!net_eq(sock_net(sk), p->net))
1911 return;
1912
1913 if (p->failure) {
1914 netlink_overrun(sk);
1915 return;
1916 }
1917
1918 sock_hold(sk);
1919 if (p->skb2 == NULL) {
1920 if (skb_shared(p->skb)) {
1921 p->skb2 = skb_clone(p->skb, p->allocation);
1922 } else {
1923 p->skb2 = skb_get(p->skb);
1924 /*
1925 * skb ownership may have been set when
1926 * delivered to a previous socket.
1927 */
1928 skb_orphan(p->skb2);
1929 }
1930 }
1931 if (p->skb2 == NULL) {
1932 netlink_overrun(sk);
1933 /* Clone failed. Notify ALL listeners. */
1934 p->failure = 1;
1935 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1936 p->delivery_failure = 1;
1937 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1938 kfree_skb(p->skb2);
1939 p->skb2 = NULL;
1940 } else if (sk_filter(sk, p->skb2)) {
1941 kfree_skb(p->skb2);
1942 p->skb2 = NULL;
1943 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1944 netlink_overrun(sk);
1945 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1946 p->delivery_failure = 1;
1947 } else {
1948 p->congested |= val;
1949 p->delivered = 1;
1950 p->skb2 = NULL;
1951 }
1952 sock_put(sk);
1953 }
1954
1955 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1956 u32 group, gfp_t allocation,
1957 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1958 void *filter_data)
1959 {
1960 struct net *net = sock_net(ssk);
1961 struct netlink_broadcast_data info;
1962 struct sock *sk;
1963
1964 skb = netlink_trim(skb, allocation);
1965
1966 info.exclude_sk = ssk;
1967 info.net = net;
1968 info.portid = portid;
1969 info.group = group;
1970 info.failure = 0;
1971 info.delivery_failure = 0;
1972 info.congested = 0;
1973 info.delivered = 0;
1974 info.allocation = allocation;
1975 info.skb = skb;
1976 info.skb2 = NULL;
1977 info.tx_filter = filter;
1978 info.tx_data = filter_data;
1979
1980 /* While we sleep in clone, do not allow to change socket list */
1981
1982 netlink_lock_table();
1983
1984 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1985 do_one_broadcast(sk, &info);
1986
1987 consume_skb(skb);
1988
1989 netlink_unlock_table();
1990
1991 if (info.delivery_failure) {
1992 kfree_skb(info.skb2);
1993 return -ENOBUFS;
1994 }
1995 consume_skb(info.skb2);
1996
1997 if (info.delivered) {
1998 if (info.congested && (allocation & __GFP_WAIT))
1999 yield();
2000 return 0;
2001 }
2002 return -ESRCH;
2003 }
2004 EXPORT_SYMBOL(netlink_broadcast_filtered);
2005
2006 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2007 u32 group, gfp_t allocation)
2008 {
2009 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2010 NULL, NULL);
2011 }
2012 EXPORT_SYMBOL(netlink_broadcast);
2013
2014 struct netlink_set_err_data {
2015 struct sock *exclude_sk;
2016 u32 portid;
2017 u32 group;
2018 int code;
2019 };
2020
2021 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2022 {
2023 struct netlink_sock *nlk = nlk_sk(sk);
2024 int ret = 0;
2025
2026 if (sk == p->exclude_sk)
2027 goto out;
2028
2029 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2030 goto out;
2031
2032 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2033 !test_bit(p->group - 1, nlk->groups))
2034 goto out;
2035
2036 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2037 ret = 1;
2038 goto out;
2039 }
2040
2041 sk->sk_err = p->code;
2042 sk->sk_error_report(sk);
2043 out:
2044 return ret;
2045 }
2046
2047 /**
2048 * netlink_set_err - report error to broadcast listeners
2049 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2050 * @portid: the PORTID of a process that we want to skip (if any)
2051 * @group: the broadcast group that will notice the error
2052 * @code: error code, must be negative (as usual in kernelspace)
2053 *
2054 * This function returns the number of broadcast listeners that have set the
2055 * NETLINK_RECV_NO_ENOBUFS socket option.
2056 */
2057 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2058 {
2059 struct netlink_set_err_data info;
2060 struct sock *sk;
2061 int ret = 0;
2062
2063 info.exclude_sk = ssk;
2064 info.portid = portid;
2065 info.group = group;
2066 /* sk->sk_err wants a positive error value */
2067 info.code = -code;
2068
2069 read_lock(&nl_table_lock);
2070
2071 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2072 ret += do_one_set_err(sk, &info);
2073
2074 read_unlock(&nl_table_lock);
2075 return ret;
2076 }
2077 EXPORT_SYMBOL(netlink_set_err);
2078
2079 /* must be called with netlink table grabbed */
2080 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2081 unsigned int group,
2082 int is_new)
2083 {
2084 int old, new = !!is_new, subscriptions;
2085
2086 old = test_bit(group - 1, nlk->groups);
2087 subscriptions = nlk->subscriptions - old + new;
2088 if (new)
2089 __set_bit(group - 1, nlk->groups);
2090 else
2091 __clear_bit(group - 1, nlk->groups);
2092 netlink_update_subscriptions(&nlk->sk, subscriptions);
2093 netlink_update_listeners(&nlk->sk);
2094 }
2095
2096 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2097 char __user *optval, unsigned int optlen)
2098 {
2099 struct sock *sk = sock->sk;
2100 struct netlink_sock *nlk = nlk_sk(sk);
2101 unsigned int val = 0;
2102 int err;
2103
2104 if (level != SOL_NETLINK)
2105 return -ENOPROTOOPT;
2106
2107 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2108 optlen >= sizeof(int) &&
2109 get_user(val, (unsigned int __user *)optval))
2110 return -EFAULT;
2111
2112 switch (optname) {
2113 case NETLINK_PKTINFO:
2114 if (val)
2115 nlk->flags |= NETLINK_RECV_PKTINFO;
2116 else
2117 nlk->flags &= ~NETLINK_RECV_PKTINFO;
2118 err = 0;
2119 break;
2120 case NETLINK_ADD_MEMBERSHIP:
2121 case NETLINK_DROP_MEMBERSHIP: {
2122 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2123 return -EPERM;
2124 err = netlink_realloc_groups(sk);
2125 if (err)
2126 return err;
2127 if (!val || val - 1 >= nlk->ngroups)
2128 return -EINVAL;
2129 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2130 err = nlk->netlink_bind(sock_net(sk), val);
2131 if (err)
2132 return err;
2133 }
2134 netlink_table_grab();
2135 netlink_update_socket_mc(nlk, val,
2136 optname == NETLINK_ADD_MEMBERSHIP);
2137 netlink_table_ungrab();
2138 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2139 nlk->netlink_unbind(sock_net(sk), val);
2140
2141 err = 0;
2142 break;
2143 }
2144 case NETLINK_BROADCAST_ERROR:
2145 if (val)
2146 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2147 else
2148 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2149 err = 0;
2150 break;
2151 case NETLINK_NO_ENOBUFS:
2152 if (val) {
2153 nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2154 clear_bit(NETLINK_CONGESTED, &nlk->state);
2155 wake_up_interruptible(&nlk->wait);
2156 } else {
2157 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2158 }
2159 err = 0;
2160 break;
2161 #ifdef CONFIG_NETLINK_MMAP
2162 case NETLINK_RX_RING:
2163 case NETLINK_TX_RING: {
2164 struct nl_mmap_req req;
2165
2166 /* Rings might consume more memory than queue limits, require
2167 * CAP_NET_ADMIN.
2168 */
2169 if (!capable(CAP_NET_ADMIN))
2170 return -EPERM;
2171 if (optlen < sizeof(req))
2172 return -EINVAL;
2173 if (copy_from_user(&req, optval, sizeof(req)))
2174 return -EFAULT;
2175 err = netlink_set_ring(sk, &req, false,
2176 optname == NETLINK_TX_RING);
2177 break;
2178 }
2179 #endif /* CONFIG_NETLINK_MMAP */
2180 default:
2181 err = -ENOPROTOOPT;
2182 }
2183 return err;
2184 }
2185
2186 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2187 char __user *optval, int __user *optlen)
2188 {
2189 struct sock *sk = sock->sk;
2190 struct netlink_sock *nlk = nlk_sk(sk);
2191 int len, val, err;
2192
2193 if (level != SOL_NETLINK)
2194 return -ENOPROTOOPT;
2195
2196 if (get_user(len, optlen))
2197 return -EFAULT;
2198 if (len < 0)
2199 return -EINVAL;
2200
2201 switch (optname) {
2202 case NETLINK_PKTINFO:
2203 if (len < sizeof(int))
2204 return -EINVAL;
2205 len = sizeof(int);
2206 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2207 if (put_user(len, optlen) ||
2208 put_user(val, optval))
2209 return -EFAULT;
2210 err = 0;
2211 break;
2212 case NETLINK_BROADCAST_ERROR:
2213 if (len < sizeof(int))
2214 return -EINVAL;
2215 len = sizeof(int);
2216 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2217 if (put_user(len, optlen) ||
2218 put_user(val, optval))
2219 return -EFAULT;
2220 err = 0;
2221 break;
2222 case NETLINK_NO_ENOBUFS:
2223 if (len < sizeof(int))
2224 return -EINVAL;
2225 len = sizeof(int);
2226 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2227 if (put_user(len, optlen) ||
2228 put_user(val, optval))
2229 return -EFAULT;
2230 err = 0;
2231 break;
2232 default:
2233 err = -ENOPROTOOPT;
2234 }
2235 return err;
2236 }
2237
2238 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2239 {
2240 struct nl_pktinfo info;
2241
2242 info.group = NETLINK_CB(skb).dst_group;
2243 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2244 }
2245
2246 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2247 struct msghdr *msg, size_t len)
2248 {
2249 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2250 struct sock *sk = sock->sk;
2251 struct netlink_sock *nlk = nlk_sk(sk);
2252 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2253 u32 dst_portid;
2254 u32 dst_group;
2255 struct sk_buff *skb;
2256 int err;
2257 struct scm_cookie scm;
2258 u32 netlink_skb_flags = 0;
2259
2260 if (msg->msg_flags&MSG_OOB)
2261 return -EOPNOTSUPP;
2262
2263 if (NULL == siocb->scm)
2264 siocb->scm = &scm;
2265
2266 err = scm_send(sock, msg, siocb->scm, true);
2267 if (err < 0)
2268 return err;
2269
2270 if (msg->msg_namelen) {
2271 err = -EINVAL;
2272 if (addr->nl_family != AF_NETLINK)
2273 goto out;
2274 dst_portid = addr->nl_pid;
2275 dst_group = ffs(addr->nl_groups);
2276 err = -EPERM;
2277 if ((dst_group || dst_portid) &&
2278 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2279 goto out;
2280 netlink_skb_flags |= NETLINK_SKB_DST;
2281 } else {
2282 dst_portid = nlk->dst_portid;
2283 dst_group = nlk->dst_group;
2284 }
2285
2286 if (!nlk->portid) {
2287 err = netlink_autobind(sock);
2288 if (err)
2289 goto out;
2290 }
2291
2292 if (netlink_tx_is_mmaped(sk) &&
2293 msg->msg_iter.iov->iov_base == NULL) {
2294 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2295 siocb);
2296 goto out;
2297 }
2298
2299 err = -EMSGSIZE;
2300 if (len > sk->sk_sndbuf - 32)
2301 goto out;
2302 err = -ENOBUFS;
2303 skb = netlink_alloc_large_skb(len, dst_group);
2304 if (skb == NULL)
2305 goto out;
2306
2307 NETLINK_CB(skb).portid = nlk->portid;
2308 NETLINK_CB(skb).dst_group = dst_group;
2309 NETLINK_CB(skb).creds = siocb->scm->creds;
2310 NETLINK_CB(skb).flags = netlink_skb_flags;
2311
2312 err = -EFAULT;
2313 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2314 kfree_skb(skb);
2315 goto out;
2316 }
2317
2318 err = security_netlink_send(sk, skb);
2319 if (err) {
2320 kfree_skb(skb);
2321 goto out;
2322 }
2323
2324 if (dst_group) {
2325 atomic_inc(&skb->users);
2326 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2327 }
2328 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2329
2330 out:
2331 scm_destroy(siocb->scm);
2332 return err;
2333 }
2334
2335 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2336 struct msghdr *msg, size_t len,
2337 int flags)
2338 {
2339 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2340 struct scm_cookie scm;
2341 struct sock *sk = sock->sk;
2342 struct netlink_sock *nlk = nlk_sk(sk);
2343 int noblock = flags&MSG_DONTWAIT;
2344 size_t copied;
2345 struct sk_buff *skb, *data_skb;
2346 int err, ret;
2347
2348 if (flags&MSG_OOB)
2349 return -EOPNOTSUPP;
2350
2351 copied = 0;
2352
2353 skb = skb_recv_datagram(sk, flags, noblock, &err);
2354 if (skb == NULL)
2355 goto out;
2356
2357 data_skb = skb;
2358
2359 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2360 if (unlikely(skb_shinfo(skb)->frag_list)) {
2361 /*
2362 * If this skb has a frag_list, then here that means that we
2363 * will have to use the frag_list skb's data for compat tasks
2364 * and the regular skb's data for normal (non-compat) tasks.
2365 *
2366 * If we need to send the compat skb, assign it to the
2367 * 'data_skb' variable so that it will be used below for data
2368 * copying. We keep 'skb' for everything else, including
2369 * freeing both later.
2370 */
2371 if (flags & MSG_CMSG_COMPAT)
2372 data_skb = skb_shinfo(skb)->frag_list;
2373 }
2374 #endif
2375
2376 /* Record the max length of recvmsg() calls for future allocations */
2377 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2378 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2379 16384);
2380
2381 copied = data_skb->len;
2382 if (len < copied) {
2383 msg->msg_flags |= MSG_TRUNC;
2384 copied = len;
2385 }
2386
2387 skb_reset_transport_header(data_skb);
2388 err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2389
2390 if (msg->msg_name) {
2391 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2392 addr->nl_family = AF_NETLINK;
2393 addr->nl_pad = 0;
2394 addr->nl_pid = NETLINK_CB(skb).portid;
2395 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2396 msg->msg_namelen = sizeof(*addr);
2397 }
2398
2399 if (nlk->flags & NETLINK_RECV_PKTINFO)
2400 netlink_cmsg_recv_pktinfo(msg, skb);
2401
2402 if (NULL == siocb->scm) {
2403 memset(&scm, 0, sizeof(scm));
2404 siocb->scm = &scm;
2405 }
2406 siocb->scm->creds = *NETLINK_CREDS(skb);
2407 if (flags & MSG_TRUNC)
2408 copied = data_skb->len;
2409
2410 skb_free_datagram(sk, skb);
2411
2412 if (nlk->cb_running &&
2413 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2414 ret = netlink_dump(sk);
2415 if (ret) {
2416 sk->sk_err = -ret;
2417 sk->sk_error_report(sk);
2418 }
2419 }
2420
2421 scm_recv(sock, msg, siocb->scm, flags);
2422 out:
2423 netlink_rcv_wake(sk);
2424 return err ? : copied;
2425 }
2426
2427 static void netlink_data_ready(struct sock *sk)
2428 {
2429 BUG();
2430 }
2431
2432 /*
2433 * We export these functions to other modules. They provide a
2434 * complete set of kernel non-blocking support for message
2435 * queueing.
2436 */
2437
2438 struct sock *
2439 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2440 struct netlink_kernel_cfg *cfg)
2441 {
2442 struct socket *sock;
2443 struct sock *sk;
2444 struct netlink_sock *nlk;
2445 struct listeners *listeners = NULL;
2446 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2447 unsigned int groups;
2448
2449 BUG_ON(!nl_table);
2450
2451 if (unit < 0 || unit >= MAX_LINKS)
2452 return NULL;
2453
2454 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2455 return NULL;
2456
2457 /*
2458 * We have to just have a reference on the net from sk, but don't
2459 * get_net it. Besides, we cannot get and then put the net here.
2460 * So we create one inside init_net and the move it to net.
2461 */
2462
2463 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2464 goto out_sock_release_nosk;
2465
2466 sk = sock->sk;
2467 sk_change_net(sk, net);
2468
2469 if (!cfg || cfg->groups < 32)
2470 groups = 32;
2471 else
2472 groups = cfg->groups;
2473
2474 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2475 if (!listeners)
2476 goto out_sock_release;
2477
2478 sk->sk_data_ready = netlink_data_ready;
2479 if (cfg && cfg->input)
2480 nlk_sk(sk)->netlink_rcv = cfg->input;
2481
2482 if (netlink_insert(sk, net, 0))
2483 goto out_sock_release;
2484
2485 nlk = nlk_sk(sk);
2486 nlk->flags |= NETLINK_KERNEL_SOCKET;
2487
2488 netlink_table_grab();
2489 if (!nl_table[unit].registered) {
2490 nl_table[unit].groups = groups;
2491 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2492 nl_table[unit].cb_mutex = cb_mutex;
2493 nl_table[unit].module = module;
2494 if (cfg) {
2495 nl_table[unit].bind = cfg->bind;
2496 nl_table[unit].unbind = cfg->unbind;
2497 nl_table[unit].flags = cfg->flags;
2498 if (cfg->compare)
2499 nl_table[unit].compare = cfg->compare;
2500 }
2501 nl_table[unit].registered = 1;
2502 } else {
2503 kfree(listeners);
2504 nl_table[unit].registered++;
2505 }
2506 netlink_table_ungrab();
2507 return sk;
2508
2509 out_sock_release:
2510 kfree(listeners);
2511 netlink_kernel_release(sk);
2512 return NULL;
2513
2514 out_sock_release_nosk:
2515 sock_release(sock);
2516 return NULL;
2517 }
2518 EXPORT_SYMBOL(__netlink_kernel_create);
2519
2520 void
2521 netlink_kernel_release(struct sock *sk)
2522 {
2523 sk_release_kernel(sk);
2524 }
2525 EXPORT_SYMBOL(netlink_kernel_release);
2526
2527 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2528 {
2529 struct listeners *new, *old;
2530 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2531
2532 if (groups < 32)
2533 groups = 32;
2534
2535 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2536 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2537 if (!new)
2538 return -ENOMEM;
2539 old = nl_deref_protected(tbl->listeners);
2540 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2541 rcu_assign_pointer(tbl->listeners, new);
2542
2543 kfree_rcu(old, rcu);
2544 }
2545 tbl->groups = groups;
2546
2547 return 0;
2548 }
2549
2550 /**
2551 * netlink_change_ngroups - change number of multicast groups
2552 *
2553 * This changes the number of multicast groups that are available
2554 * on a certain netlink family. Note that it is not possible to
2555 * change the number of groups to below 32. Also note that it does
2556 * not implicitly call netlink_clear_multicast_users() when the
2557 * number of groups is reduced.
2558 *
2559 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2560 * @groups: The new number of groups.
2561 */
2562 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2563 {
2564 int err;
2565
2566 netlink_table_grab();
2567 err = __netlink_change_ngroups(sk, groups);
2568 netlink_table_ungrab();
2569
2570 return err;
2571 }
2572
2573 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2574 {
2575 struct sock *sk;
2576 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2577
2578 sk_for_each_bound(sk, &tbl->mc_list)
2579 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2580 }
2581
2582 struct nlmsghdr *
2583 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2584 {
2585 struct nlmsghdr *nlh;
2586 int size = nlmsg_msg_size(len);
2587
2588 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2589 nlh->nlmsg_type = type;
2590 nlh->nlmsg_len = size;
2591 nlh->nlmsg_flags = flags;
2592 nlh->nlmsg_pid = portid;
2593 nlh->nlmsg_seq = seq;
2594 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2595 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2596 return nlh;
2597 }
2598 EXPORT_SYMBOL(__nlmsg_put);
2599
2600 /*
2601 * It looks a bit ugly.
2602 * It would be better to create kernel thread.
2603 */
2604
2605 static int netlink_dump(struct sock *sk)
2606 {
2607 struct netlink_sock *nlk = nlk_sk(sk);
2608 struct netlink_callback *cb;
2609 struct sk_buff *skb = NULL;
2610 struct nlmsghdr *nlh;
2611 int len, err = -ENOBUFS;
2612 int alloc_size;
2613
2614 mutex_lock(nlk->cb_mutex);
2615 if (!nlk->cb_running) {
2616 err = -EINVAL;
2617 goto errout_skb;
2618 }
2619
2620 cb = &nlk->cb;
2621 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2622
2623 if (!netlink_rx_is_mmaped(sk) &&
2624 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2625 goto errout_skb;
2626
2627 /* NLMSG_GOODSIZE is small to avoid high order allocations being
2628 * required, but it makes sense to _attempt_ a 16K bytes allocation
2629 * to reduce number of system calls on dump operations, if user
2630 * ever provided a big enough buffer.
2631 */
2632 if (alloc_size < nlk->max_recvmsg_len) {
2633 skb = netlink_alloc_skb(sk,
2634 nlk->max_recvmsg_len,
2635 nlk->portid,
2636 GFP_KERNEL |
2637 __GFP_NOWARN |
2638 __GFP_NORETRY);
2639 /* available room should be exact amount to avoid MSG_TRUNC */
2640 if (skb)
2641 skb_reserve(skb, skb_tailroom(skb) -
2642 nlk->max_recvmsg_len);
2643 }
2644 if (!skb)
2645 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2646 GFP_KERNEL);
2647 if (!skb)
2648 goto errout_skb;
2649 netlink_skb_set_owner_r(skb, sk);
2650
2651 len = cb->dump(skb, cb);
2652
2653 if (len > 0) {
2654 mutex_unlock(nlk->cb_mutex);
2655
2656 if (sk_filter(sk, skb))
2657 kfree_skb(skb);
2658 else
2659 __netlink_sendskb(sk, skb);
2660 return 0;
2661 }
2662
2663 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2664 if (!nlh)
2665 goto errout_skb;
2666
2667 nl_dump_check_consistent(cb, nlh);
2668
2669 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2670
2671 if (sk_filter(sk, skb))
2672 kfree_skb(skb);
2673 else
2674 __netlink_sendskb(sk, skb);
2675
2676 if (cb->done)
2677 cb->done(cb);
2678
2679 nlk->cb_running = false;
2680 mutex_unlock(nlk->cb_mutex);
2681 module_put(cb->module);
2682 consume_skb(cb->skb);
2683 return 0;
2684
2685 errout_skb:
2686 mutex_unlock(nlk->cb_mutex);
2687 kfree_skb(skb);
2688 return err;
2689 }
2690
2691 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2692 const struct nlmsghdr *nlh,
2693 struct netlink_dump_control *control)
2694 {
2695 struct netlink_callback *cb;
2696 struct sock *sk;
2697 struct netlink_sock *nlk;
2698 int ret;
2699
2700 /* Memory mapped dump requests need to be copied to avoid looping
2701 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2702 * a reference to the skb.
2703 */
2704 if (netlink_skb_is_mmaped(skb)) {
2705 skb = skb_copy(skb, GFP_KERNEL);
2706 if (skb == NULL)
2707 return -ENOBUFS;
2708 } else
2709 atomic_inc(&skb->users);
2710
2711 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2712 if (sk == NULL) {
2713 ret = -ECONNREFUSED;
2714 goto error_free;
2715 }
2716
2717 nlk = nlk_sk(sk);
2718 mutex_lock(nlk->cb_mutex);
2719 /* A dump is in progress... */
2720 if (nlk->cb_running) {
2721 ret = -EBUSY;
2722 goto error_unlock;
2723 }
2724 /* add reference of module which cb->dump belongs to */
2725 if (!try_module_get(control->module)) {
2726 ret = -EPROTONOSUPPORT;
2727 goto error_unlock;
2728 }
2729
2730 cb = &nlk->cb;
2731 memset(cb, 0, sizeof(*cb));
2732 cb->dump = control->dump;
2733 cb->done = control->done;
2734 cb->nlh = nlh;
2735 cb->data = control->data;
2736 cb->module = control->module;
2737 cb->min_dump_alloc = control->min_dump_alloc;
2738 cb->skb = skb;
2739
2740 nlk->cb_running = true;
2741
2742 mutex_unlock(nlk->cb_mutex);
2743
2744 ret = netlink_dump(sk);
2745 sock_put(sk);
2746
2747 if (ret)
2748 return ret;
2749
2750 /* We successfully started a dump, by returning -EINTR we
2751 * signal not to send ACK even if it was requested.
2752 */
2753 return -EINTR;
2754
2755 error_unlock:
2756 sock_put(sk);
2757 mutex_unlock(nlk->cb_mutex);
2758 error_free:
2759 kfree_skb(skb);
2760 return ret;
2761 }
2762 EXPORT_SYMBOL(__netlink_dump_start);
2763
2764 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2765 {
2766 struct sk_buff *skb;
2767 struct nlmsghdr *rep;
2768 struct nlmsgerr *errmsg;
2769 size_t payload = sizeof(*errmsg);
2770
2771 /* error messages get the original request appened */
2772 if (err)
2773 payload += nlmsg_len(nlh);
2774
2775 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2776 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2777 if (!skb) {
2778 struct sock *sk;
2779
2780 sk = netlink_lookup(sock_net(in_skb->sk),
2781 in_skb->sk->sk_protocol,
2782 NETLINK_CB(in_skb).portid);
2783 if (sk) {
2784 sk->sk_err = ENOBUFS;
2785 sk->sk_error_report(sk);
2786 sock_put(sk);
2787 }
2788 return;
2789 }
2790
2791 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2792 NLMSG_ERROR, payload, 0);
2793 errmsg = nlmsg_data(rep);
2794 errmsg->error = err;
2795 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2796 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2797 }
2798 EXPORT_SYMBOL(netlink_ack);
2799
2800 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2801 struct nlmsghdr *))
2802 {
2803 struct nlmsghdr *nlh;
2804 int err;
2805
2806 while (skb->len >= nlmsg_total_size(0)) {
2807 int msglen;
2808
2809 nlh = nlmsg_hdr(skb);
2810 err = 0;
2811
2812 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2813 return 0;
2814
2815 /* Only requests are handled by the kernel */
2816 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2817 goto ack;
2818
2819 /* Skip control messages */
2820 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2821 goto ack;
2822
2823 err = cb(skb, nlh);
2824 if (err == -EINTR)
2825 goto skip;
2826
2827 ack:
2828 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2829 netlink_ack(skb, nlh, err);
2830
2831 skip:
2832 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2833 if (msglen > skb->len)
2834 msglen = skb->len;
2835 skb_pull(skb, msglen);
2836 }
2837
2838 return 0;
2839 }
2840 EXPORT_SYMBOL(netlink_rcv_skb);
2841
2842 /**
2843 * nlmsg_notify - send a notification netlink message
2844 * @sk: netlink socket to use
2845 * @skb: notification message
2846 * @portid: destination netlink portid for reports or 0
2847 * @group: destination multicast group or 0
2848 * @report: 1 to report back, 0 to disable
2849 * @flags: allocation flags
2850 */
2851 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2852 unsigned int group, int report, gfp_t flags)
2853 {
2854 int err = 0;
2855
2856 if (group) {
2857 int exclude_portid = 0;
2858
2859 if (report) {
2860 atomic_inc(&skb->users);
2861 exclude_portid = portid;
2862 }
2863
2864 /* errors reported via destination sk->sk_err, but propagate
2865 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2866 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2867 }
2868
2869 if (report) {
2870 int err2;
2871
2872 err2 = nlmsg_unicast(sk, skb, portid);
2873 if (!err || err == -ESRCH)
2874 err = err2;
2875 }
2876
2877 return err;
2878 }
2879 EXPORT_SYMBOL(nlmsg_notify);
2880
2881 #ifdef CONFIG_PROC_FS
2882 struct nl_seq_iter {
2883 struct seq_net_private p;
2884 int link;
2885 int hash_idx;
2886 };
2887
2888 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
2889 {
2890 struct nl_seq_iter *iter = seq->private;
2891 int i, j;
2892 struct netlink_sock *nlk;
2893 struct sock *s;
2894 loff_t off = 0;
2895
2896 for (i = 0; i < MAX_LINKS; i++) {
2897 struct rhashtable *ht = &nl_table[i].hash;
2898 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2899
2900 for (j = 0; j < tbl->size; j++) {
2901 struct rhash_head *node;
2902
2903 rht_for_each_entry_rcu(nlk, node, tbl, j, node) {
2904 s = (struct sock *)nlk;
2905
2906 if (sock_net(s) != seq_file_net(seq))
2907 continue;
2908 if (off == pos) {
2909 iter->link = i;
2910 iter->hash_idx = j;
2911 return s;
2912 }
2913 ++off;
2914 }
2915 }
2916 }
2917 return NULL;
2918 }
2919
2920 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
2921 __acquires(nl_table_lock) __acquires(RCU)
2922 {
2923 read_lock(&nl_table_lock);
2924 rcu_read_lock();
2925 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2926 }
2927
2928 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2929 {
2930 struct rhashtable *ht;
2931 const struct bucket_table *tbl;
2932 struct rhash_head *node;
2933 struct netlink_sock *nlk;
2934 struct nl_seq_iter *iter;
2935 struct net *net;
2936 int i, j;
2937
2938 ++*pos;
2939
2940 if (v == SEQ_START_TOKEN)
2941 return netlink_seq_socket_idx(seq, 0);
2942
2943 net = seq_file_net(seq);
2944 iter = seq->private;
2945 nlk = v;
2946
2947 i = iter->link;
2948 ht = &nl_table[i].hash;
2949 tbl = rht_dereference_rcu(ht->tbl, ht);
2950 rht_for_each_entry_rcu_continue(nlk, node, nlk->node.next, tbl, iter->hash_idx, node)
2951 if (net_eq(sock_net((struct sock *)nlk), net))
2952 return nlk;
2953
2954 j = iter->hash_idx + 1;
2955
2956 do {
2957
2958 for (; j < tbl->size; j++) {
2959 rht_for_each_entry_rcu(nlk, node, tbl, j, node) {
2960 if (net_eq(sock_net((struct sock *)nlk), net)) {
2961 iter->link = i;
2962 iter->hash_idx = j;
2963 return nlk;
2964 }
2965 }
2966 }
2967
2968 j = 0;
2969 } while (++i < MAX_LINKS);
2970
2971 return NULL;
2972 }
2973
2974 static void netlink_seq_stop(struct seq_file *seq, void *v)
2975 __releases(RCU) __releases(nl_table_lock)
2976 {
2977 rcu_read_unlock();
2978 read_unlock(&nl_table_lock);
2979 }
2980
2981
2982 static int netlink_seq_show(struct seq_file *seq, void *v)
2983 {
2984 if (v == SEQ_START_TOKEN) {
2985 seq_puts(seq,
2986 "sk Eth Pid Groups "
2987 "Rmem Wmem Dump Locks Drops Inode\n");
2988 } else {
2989 struct sock *s = v;
2990 struct netlink_sock *nlk = nlk_sk(s);
2991
2992 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
2993 s,
2994 s->sk_protocol,
2995 nlk->portid,
2996 nlk->groups ? (u32)nlk->groups[0] : 0,
2997 sk_rmem_alloc_get(s),
2998 sk_wmem_alloc_get(s),
2999 nlk->cb_running,
3000 atomic_read(&s->sk_refcnt),
3001 atomic_read(&s->sk_drops),
3002 sock_i_ino(s)
3003 );
3004
3005 }
3006 return 0;
3007 }
3008
3009 static const struct seq_operations netlink_seq_ops = {
3010 .start = netlink_seq_start,
3011 .next = netlink_seq_next,
3012 .stop = netlink_seq_stop,
3013 .show = netlink_seq_show,
3014 };
3015
3016
3017 static int netlink_seq_open(struct inode *inode, struct file *file)
3018 {
3019 return seq_open_net(inode, file, &netlink_seq_ops,
3020 sizeof(struct nl_seq_iter));
3021 }
3022
3023 static const struct file_operations netlink_seq_fops = {
3024 .owner = THIS_MODULE,
3025 .open = netlink_seq_open,
3026 .read = seq_read,
3027 .llseek = seq_lseek,
3028 .release = seq_release_net,
3029 };
3030
3031 #endif
3032
3033 int netlink_register_notifier(struct notifier_block *nb)
3034 {
3035 return atomic_notifier_chain_register(&netlink_chain, nb);
3036 }
3037 EXPORT_SYMBOL(netlink_register_notifier);
3038
3039 int netlink_unregister_notifier(struct notifier_block *nb)
3040 {
3041 return atomic_notifier_chain_unregister(&netlink_chain, nb);
3042 }
3043 EXPORT_SYMBOL(netlink_unregister_notifier);
3044
3045 static const struct proto_ops netlink_ops = {
3046 .family = PF_NETLINK,
3047 .owner = THIS_MODULE,
3048 .release = netlink_release,
3049 .bind = netlink_bind,
3050 .connect = netlink_connect,
3051 .socketpair = sock_no_socketpair,
3052 .accept = sock_no_accept,
3053 .getname = netlink_getname,
3054 .poll = netlink_poll,
3055 .ioctl = sock_no_ioctl,
3056 .listen = sock_no_listen,
3057 .shutdown = sock_no_shutdown,
3058 .setsockopt = netlink_setsockopt,
3059 .getsockopt = netlink_getsockopt,
3060 .sendmsg = netlink_sendmsg,
3061 .recvmsg = netlink_recvmsg,
3062 .mmap = netlink_mmap,
3063 .sendpage = sock_no_sendpage,
3064 };
3065
3066 static const struct net_proto_family netlink_family_ops = {
3067 .family = PF_NETLINK,
3068 .create = netlink_create,
3069 .owner = THIS_MODULE, /* for consistency 8) */
3070 };
3071
3072 static int __net_init netlink_net_init(struct net *net)
3073 {
3074 #ifdef CONFIG_PROC_FS
3075 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3076 return -ENOMEM;
3077 #endif
3078 return 0;
3079 }
3080
3081 static void __net_exit netlink_net_exit(struct net *net)
3082 {
3083 #ifdef CONFIG_PROC_FS
3084 remove_proc_entry("netlink", net->proc_net);
3085 #endif
3086 }
3087
3088 static void __init netlink_add_usersock_entry(void)
3089 {
3090 struct listeners *listeners;
3091 int groups = 32;
3092
3093 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3094 if (!listeners)
3095 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3096
3097 netlink_table_grab();
3098
3099 nl_table[NETLINK_USERSOCK].groups = groups;
3100 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3101 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3102 nl_table[NETLINK_USERSOCK].registered = 1;
3103 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3104
3105 netlink_table_ungrab();
3106 }
3107
3108 static struct pernet_operations __net_initdata netlink_net_ops = {
3109 .init = netlink_net_init,
3110 .exit = netlink_net_exit,
3111 };
3112
3113 static int __init netlink_proto_init(void)
3114 {
3115 int i;
3116 int err = proto_register(&netlink_proto, 0);
3117 struct rhashtable_params ht_params = {
3118 .head_offset = offsetof(struct netlink_sock, node),
3119 .key_offset = offsetof(struct netlink_sock, portid),
3120 .key_len = sizeof(u32), /* portid */
3121 .hashfn = jhash,
3122 .max_shift = 16, /* 64K */
3123 .grow_decision = rht_grow_above_75,
3124 .shrink_decision = rht_shrink_below_30,
3125 #ifdef CONFIG_PROVE_LOCKING
3126 .mutex_is_held = lockdep_nl_sk_hash_is_held,
3127 #endif
3128 };
3129
3130 if (err != 0)
3131 goto out;
3132
3133 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3134
3135 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3136 if (!nl_table)
3137 goto panic;
3138
3139 for (i = 0; i < MAX_LINKS; i++) {
3140 if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) {
3141 while (--i > 0)
3142 rhashtable_destroy(&nl_table[i].hash);
3143 kfree(nl_table);
3144 goto panic;
3145 }
3146 }
3147
3148 INIT_LIST_HEAD(&netlink_tap_all);
3149
3150 netlink_add_usersock_entry();
3151
3152 sock_register(&netlink_family_ops);
3153 register_pernet_subsys(&netlink_net_ops);
3154 /* The netlink device handler may be needed early. */
3155 rtnetlink_init();
3156 out:
3157 return err;
3158 panic:
3159 panic("netlink_init: Cannot allocate nl_table\n");
3160 }
3161
3162 core_initcall(netlink_proto_init);
This page took 0.840449 seconds and 5 git commands to generate.