mm/early_ioremap: add explicit #include of asm/early_ioremap.h
[deliverable/linux.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70
71 #include "af_netlink.h"
72
73 struct listeners {
74 struct rcu_head rcu;
75 unsigned long masks[0];
76 };
77
78 /* state bits */
79 #define NETLINK_S_CONGESTED 0x0
80
81 /* flags */
82 #define NETLINK_F_KERNEL_SOCKET 0x1
83 #define NETLINK_F_RECV_PKTINFO 0x2
84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4
85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8
86 #define NETLINK_F_LISTEN_ALL_NSID 0x10
87 #define NETLINK_F_CAP_ACK 0x20
88
89 static inline int netlink_is_kernel(struct sock *sk)
90 {
91 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
92 }
93
94 struct netlink_table *nl_table __read_mostly;
95 EXPORT_SYMBOL_GPL(nl_table);
96
97 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
98
99 static int netlink_dump(struct sock *sk);
100 static void netlink_skb_destructor(struct sk_buff *skb);
101
102 /* nl_table locking explained:
103 * Lookup and traversal are protected with an RCU read-side lock. Insertion
104 * and removal are protected with per bucket lock while using RCU list
105 * modification primitives and may run in parallel to RCU protected lookups.
106 * Destruction of the Netlink socket may only occur *after* nl_table_lock has
107 * been acquired * either during or after the socket has been removed from
108 * the list and after an RCU grace period.
109 */
110 DEFINE_RWLOCK(nl_table_lock);
111 EXPORT_SYMBOL_GPL(nl_table_lock);
112 static atomic_t nl_table_users = ATOMIC_INIT(0);
113
114 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
115
116 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
117
118 static DEFINE_SPINLOCK(netlink_tap_lock);
119 static struct list_head netlink_tap_all __read_mostly;
120
121 static const struct rhashtable_params netlink_rhashtable_params;
122
123 static inline u32 netlink_group_mask(u32 group)
124 {
125 return group ? 1 << (group - 1) : 0;
126 }
127
128 int netlink_add_tap(struct netlink_tap *nt)
129 {
130 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
131 return -EINVAL;
132
133 spin_lock(&netlink_tap_lock);
134 list_add_rcu(&nt->list, &netlink_tap_all);
135 spin_unlock(&netlink_tap_lock);
136
137 __module_get(nt->module);
138
139 return 0;
140 }
141 EXPORT_SYMBOL_GPL(netlink_add_tap);
142
143 static int __netlink_remove_tap(struct netlink_tap *nt)
144 {
145 bool found = false;
146 struct netlink_tap *tmp;
147
148 spin_lock(&netlink_tap_lock);
149
150 list_for_each_entry(tmp, &netlink_tap_all, list) {
151 if (nt == tmp) {
152 list_del_rcu(&nt->list);
153 found = true;
154 goto out;
155 }
156 }
157
158 pr_warn("__netlink_remove_tap: %p not found\n", nt);
159 out:
160 spin_unlock(&netlink_tap_lock);
161
162 if (found)
163 module_put(nt->module);
164
165 return found ? 0 : -ENODEV;
166 }
167
168 int netlink_remove_tap(struct netlink_tap *nt)
169 {
170 int ret;
171
172 ret = __netlink_remove_tap(nt);
173 synchronize_net();
174
175 return ret;
176 }
177 EXPORT_SYMBOL_GPL(netlink_remove_tap);
178
179 static bool netlink_filter_tap(const struct sk_buff *skb)
180 {
181 struct sock *sk = skb->sk;
182
183 /* We take the more conservative approach and
184 * whitelist socket protocols that may pass.
185 */
186 switch (sk->sk_protocol) {
187 case NETLINK_ROUTE:
188 case NETLINK_USERSOCK:
189 case NETLINK_SOCK_DIAG:
190 case NETLINK_NFLOG:
191 case NETLINK_XFRM:
192 case NETLINK_FIB_LOOKUP:
193 case NETLINK_NETFILTER:
194 case NETLINK_GENERIC:
195 return true;
196 }
197
198 return false;
199 }
200
201 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
202 struct net_device *dev)
203 {
204 struct sk_buff *nskb;
205 struct sock *sk = skb->sk;
206 int ret = -ENOMEM;
207
208 dev_hold(dev);
209 nskb = skb_clone(skb, GFP_ATOMIC);
210 if (nskb) {
211 nskb->dev = dev;
212 nskb->protocol = htons((u16) sk->sk_protocol);
213 nskb->pkt_type = netlink_is_kernel(sk) ?
214 PACKET_KERNEL : PACKET_USER;
215 skb_reset_network_header(nskb);
216 ret = dev_queue_xmit(nskb);
217 if (unlikely(ret > 0))
218 ret = net_xmit_errno(ret);
219 }
220
221 dev_put(dev);
222 return ret;
223 }
224
225 static void __netlink_deliver_tap(struct sk_buff *skb)
226 {
227 int ret;
228 struct netlink_tap *tmp;
229
230 if (!netlink_filter_tap(skb))
231 return;
232
233 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
234 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
235 if (unlikely(ret))
236 break;
237 }
238 }
239
240 static void netlink_deliver_tap(struct sk_buff *skb)
241 {
242 rcu_read_lock();
243
244 if (unlikely(!list_empty(&netlink_tap_all)))
245 __netlink_deliver_tap(skb);
246
247 rcu_read_unlock();
248 }
249
250 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
251 struct sk_buff *skb)
252 {
253 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
254 netlink_deliver_tap(skb);
255 }
256
257 static void netlink_overrun(struct sock *sk)
258 {
259 struct netlink_sock *nlk = nlk_sk(sk);
260
261 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
262 if (!test_and_set_bit(NETLINK_S_CONGESTED,
263 &nlk_sk(sk)->state)) {
264 sk->sk_err = ENOBUFS;
265 sk->sk_error_report(sk);
266 }
267 }
268 atomic_inc(&sk->sk_drops);
269 }
270
271 static void netlink_rcv_wake(struct sock *sk)
272 {
273 struct netlink_sock *nlk = nlk_sk(sk);
274
275 if (skb_queue_empty(&sk->sk_receive_queue))
276 clear_bit(NETLINK_S_CONGESTED, &nlk->state);
277 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
278 wake_up_interruptible(&nlk->wait);
279 }
280
281 #ifdef CONFIG_NETLINK_MMAP
282 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
283 {
284 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
285 }
286
287 static bool netlink_rx_is_mmaped(struct sock *sk)
288 {
289 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
290 }
291
292 static bool netlink_tx_is_mmaped(struct sock *sk)
293 {
294 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
295 }
296
297 static __pure struct page *pgvec_to_page(const void *addr)
298 {
299 if (is_vmalloc_addr(addr))
300 return vmalloc_to_page(addr);
301 else
302 return virt_to_page(addr);
303 }
304
305 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
306 {
307 unsigned int i;
308
309 for (i = 0; i < len; i++) {
310 if (pg_vec[i] != NULL) {
311 if (is_vmalloc_addr(pg_vec[i]))
312 vfree(pg_vec[i]);
313 else
314 free_pages((unsigned long)pg_vec[i], order);
315 }
316 }
317 kfree(pg_vec);
318 }
319
320 static void *alloc_one_pg_vec_page(unsigned long order)
321 {
322 void *buffer;
323 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
324 __GFP_NOWARN | __GFP_NORETRY;
325
326 buffer = (void *)__get_free_pages(gfp_flags, order);
327 if (buffer != NULL)
328 return buffer;
329
330 buffer = vzalloc((1 << order) * PAGE_SIZE);
331 if (buffer != NULL)
332 return buffer;
333
334 gfp_flags &= ~__GFP_NORETRY;
335 return (void *)__get_free_pages(gfp_flags, order);
336 }
337
338 static void **alloc_pg_vec(struct netlink_sock *nlk,
339 struct nl_mmap_req *req, unsigned int order)
340 {
341 unsigned int block_nr = req->nm_block_nr;
342 unsigned int i;
343 void **pg_vec;
344
345 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
346 if (pg_vec == NULL)
347 return NULL;
348
349 for (i = 0; i < block_nr; i++) {
350 pg_vec[i] = alloc_one_pg_vec_page(order);
351 if (pg_vec[i] == NULL)
352 goto err1;
353 }
354
355 return pg_vec;
356 err1:
357 free_pg_vec(pg_vec, order, block_nr);
358 return NULL;
359 }
360
361
362 static void
363 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec,
364 unsigned int order)
365 {
366 struct netlink_sock *nlk = nlk_sk(sk);
367 struct sk_buff_head *queue;
368 struct netlink_ring *ring;
369
370 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
371 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
372
373 spin_lock_bh(&queue->lock);
374
375 ring->frame_max = req->nm_frame_nr - 1;
376 ring->head = 0;
377 ring->frame_size = req->nm_frame_size;
378 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
379
380 swap(ring->pg_vec_len, req->nm_block_nr);
381 swap(ring->pg_vec_order, order);
382 swap(ring->pg_vec, pg_vec);
383
384 __skb_queue_purge(queue);
385 spin_unlock_bh(&queue->lock);
386
387 WARN_ON(atomic_read(&nlk->mapped));
388
389 if (pg_vec)
390 free_pg_vec(pg_vec, order, req->nm_block_nr);
391 }
392
393 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
394 bool tx_ring)
395 {
396 struct netlink_sock *nlk = nlk_sk(sk);
397 struct netlink_ring *ring;
398 void **pg_vec = NULL;
399 unsigned int order = 0;
400
401 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
402
403 if (atomic_read(&nlk->mapped))
404 return -EBUSY;
405 if (atomic_read(&ring->pending))
406 return -EBUSY;
407
408 if (req->nm_block_nr) {
409 if (ring->pg_vec != NULL)
410 return -EBUSY;
411
412 if ((int)req->nm_block_size <= 0)
413 return -EINVAL;
414 if (!PAGE_ALIGNED(req->nm_block_size))
415 return -EINVAL;
416 if (req->nm_frame_size < NL_MMAP_HDRLEN)
417 return -EINVAL;
418 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
419 return -EINVAL;
420
421 ring->frames_per_block = req->nm_block_size /
422 req->nm_frame_size;
423 if (ring->frames_per_block == 0)
424 return -EINVAL;
425 if (ring->frames_per_block * req->nm_block_nr !=
426 req->nm_frame_nr)
427 return -EINVAL;
428
429 order = get_order(req->nm_block_size);
430 pg_vec = alloc_pg_vec(nlk, req, order);
431 if (pg_vec == NULL)
432 return -ENOMEM;
433 } else {
434 if (req->nm_frame_nr)
435 return -EINVAL;
436 }
437
438 mutex_lock(&nlk->pg_vec_lock);
439 if (atomic_read(&nlk->mapped) == 0) {
440 __netlink_set_ring(sk, req, tx_ring, pg_vec, order);
441 mutex_unlock(&nlk->pg_vec_lock);
442 return 0;
443 }
444
445 mutex_unlock(&nlk->pg_vec_lock);
446
447 if (pg_vec)
448 free_pg_vec(pg_vec, order, req->nm_block_nr);
449
450 return -EBUSY;
451 }
452
453 static void netlink_mm_open(struct vm_area_struct *vma)
454 {
455 struct file *file = vma->vm_file;
456 struct socket *sock = file->private_data;
457 struct sock *sk = sock->sk;
458
459 if (sk)
460 atomic_inc(&nlk_sk(sk)->mapped);
461 }
462
463 static void netlink_mm_close(struct vm_area_struct *vma)
464 {
465 struct file *file = vma->vm_file;
466 struct socket *sock = file->private_data;
467 struct sock *sk = sock->sk;
468
469 if (sk)
470 atomic_dec(&nlk_sk(sk)->mapped);
471 }
472
473 static const struct vm_operations_struct netlink_mmap_ops = {
474 .open = netlink_mm_open,
475 .close = netlink_mm_close,
476 };
477
478 static int netlink_mmap(struct file *file, struct socket *sock,
479 struct vm_area_struct *vma)
480 {
481 struct sock *sk = sock->sk;
482 struct netlink_sock *nlk = nlk_sk(sk);
483 struct netlink_ring *ring;
484 unsigned long start, size, expected;
485 unsigned int i;
486 int err = -EINVAL;
487
488 if (vma->vm_pgoff)
489 return -EINVAL;
490
491 mutex_lock(&nlk->pg_vec_lock);
492
493 expected = 0;
494 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
495 if (ring->pg_vec == NULL)
496 continue;
497 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
498 }
499
500 if (expected == 0)
501 goto out;
502
503 size = vma->vm_end - vma->vm_start;
504 if (size != expected)
505 goto out;
506
507 start = vma->vm_start;
508 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
509 if (ring->pg_vec == NULL)
510 continue;
511
512 for (i = 0; i < ring->pg_vec_len; i++) {
513 struct page *page;
514 void *kaddr = ring->pg_vec[i];
515 unsigned int pg_num;
516
517 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
518 page = pgvec_to_page(kaddr);
519 err = vm_insert_page(vma, start, page);
520 if (err < 0)
521 goto out;
522 start += PAGE_SIZE;
523 kaddr += PAGE_SIZE;
524 }
525 }
526 }
527
528 atomic_inc(&nlk->mapped);
529 vma->vm_ops = &netlink_mmap_ops;
530 err = 0;
531 out:
532 mutex_unlock(&nlk->pg_vec_lock);
533 return err;
534 }
535
536 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
537 {
538 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
539 struct page *p_start, *p_end;
540
541 /* First page is flushed through netlink_{get,set}_status */
542 p_start = pgvec_to_page(hdr + PAGE_SIZE);
543 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
544 while (p_start <= p_end) {
545 flush_dcache_page(p_start);
546 p_start++;
547 }
548 #endif
549 }
550
551 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
552 {
553 smp_rmb();
554 flush_dcache_page(pgvec_to_page(hdr));
555 return hdr->nm_status;
556 }
557
558 static void netlink_set_status(struct nl_mmap_hdr *hdr,
559 enum nl_mmap_status status)
560 {
561 smp_mb();
562 hdr->nm_status = status;
563 flush_dcache_page(pgvec_to_page(hdr));
564 }
565
566 static struct nl_mmap_hdr *
567 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
568 {
569 unsigned int pg_vec_pos, frame_off;
570
571 pg_vec_pos = pos / ring->frames_per_block;
572 frame_off = pos % ring->frames_per_block;
573
574 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
575 }
576
577 static struct nl_mmap_hdr *
578 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
579 enum nl_mmap_status status)
580 {
581 struct nl_mmap_hdr *hdr;
582
583 hdr = __netlink_lookup_frame(ring, pos);
584 if (netlink_get_status(hdr) != status)
585 return NULL;
586
587 return hdr;
588 }
589
590 static struct nl_mmap_hdr *
591 netlink_current_frame(const struct netlink_ring *ring,
592 enum nl_mmap_status status)
593 {
594 return netlink_lookup_frame(ring, ring->head, status);
595 }
596
597 static void netlink_increment_head(struct netlink_ring *ring)
598 {
599 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
600 }
601
602 static void netlink_forward_ring(struct netlink_ring *ring)
603 {
604 unsigned int head = ring->head;
605 const struct nl_mmap_hdr *hdr;
606
607 do {
608 hdr = __netlink_lookup_frame(ring, ring->head);
609 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
610 break;
611 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
612 break;
613 netlink_increment_head(ring);
614 } while (ring->head != head);
615 }
616
617 static bool netlink_has_valid_frame(struct netlink_ring *ring)
618 {
619 unsigned int head = ring->head, pos = head;
620 const struct nl_mmap_hdr *hdr;
621
622 do {
623 hdr = __netlink_lookup_frame(ring, pos);
624 if (hdr->nm_status == NL_MMAP_STATUS_VALID)
625 return true;
626 pos = pos != 0 ? pos - 1 : ring->frame_max;
627 } while (pos != head);
628
629 return false;
630 }
631
632 static bool netlink_dump_space(struct netlink_sock *nlk)
633 {
634 struct netlink_ring *ring = &nlk->rx_ring;
635 struct nl_mmap_hdr *hdr;
636 unsigned int n;
637
638 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
639 if (hdr == NULL)
640 return false;
641
642 n = ring->head + ring->frame_max / 2;
643 if (n > ring->frame_max)
644 n -= ring->frame_max;
645
646 hdr = __netlink_lookup_frame(ring, n);
647
648 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
649 }
650
651 static unsigned int netlink_poll(struct file *file, struct socket *sock,
652 poll_table *wait)
653 {
654 struct sock *sk = sock->sk;
655 struct netlink_sock *nlk = nlk_sk(sk);
656 unsigned int mask;
657 int err;
658
659 if (nlk->rx_ring.pg_vec != NULL) {
660 /* Memory mapped sockets don't call recvmsg(), so flow control
661 * for dumps is performed here. A dump is allowed to continue
662 * if at least half the ring is unused.
663 */
664 while (nlk->cb_running && netlink_dump_space(nlk)) {
665 err = netlink_dump(sk);
666 if (err < 0) {
667 sk->sk_err = -err;
668 sk->sk_error_report(sk);
669 break;
670 }
671 }
672 netlink_rcv_wake(sk);
673 }
674
675 mask = datagram_poll(file, sock, wait);
676
677 /* We could already have received frames in the normal receive
678 * queue, that will show up as NL_MMAP_STATUS_COPY in the ring,
679 * so if mask contains pollin/etc already, there's no point
680 * walking the ring.
681 */
682 if ((mask & (POLLIN | POLLRDNORM)) != (POLLIN | POLLRDNORM)) {
683 spin_lock_bh(&sk->sk_receive_queue.lock);
684 if (nlk->rx_ring.pg_vec) {
685 if (netlink_has_valid_frame(&nlk->rx_ring))
686 mask |= POLLIN | POLLRDNORM;
687 }
688 spin_unlock_bh(&sk->sk_receive_queue.lock);
689 }
690
691 spin_lock_bh(&sk->sk_write_queue.lock);
692 if (nlk->tx_ring.pg_vec) {
693 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
694 mask |= POLLOUT | POLLWRNORM;
695 }
696 spin_unlock_bh(&sk->sk_write_queue.lock);
697
698 return mask;
699 }
700
701 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
702 {
703 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
704 }
705
706 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
707 struct netlink_ring *ring,
708 struct nl_mmap_hdr *hdr)
709 {
710 unsigned int size;
711 void *data;
712
713 size = ring->frame_size - NL_MMAP_HDRLEN;
714 data = (void *)hdr + NL_MMAP_HDRLEN;
715
716 skb->head = data;
717 skb->data = data;
718 skb_reset_tail_pointer(skb);
719 skb->end = skb->tail + size;
720 skb->len = 0;
721
722 skb->destructor = netlink_skb_destructor;
723 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
724 NETLINK_CB(skb).sk = sk;
725 }
726
727 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
728 u32 dst_portid, u32 dst_group,
729 struct scm_cookie *scm)
730 {
731 struct netlink_sock *nlk = nlk_sk(sk);
732 struct netlink_ring *ring;
733 struct nl_mmap_hdr *hdr;
734 struct sk_buff *skb;
735 unsigned int maxlen;
736 int err = 0, len = 0;
737
738 mutex_lock(&nlk->pg_vec_lock);
739
740 ring = &nlk->tx_ring;
741 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
742
743 do {
744 unsigned int nm_len;
745
746 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
747 if (hdr == NULL) {
748 if (!(msg->msg_flags & MSG_DONTWAIT) &&
749 atomic_read(&nlk->tx_ring.pending))
750 schedule();
751 continue;
752 }
753
754 nm_len = ACCESS_ONCE(hdr->nm_len);
755 if (nm_len > maxlen) {
756 err = -EINVAL;
757 goto out;
758 }
759
760 netlink_frame_flush_dcache(hdr, nm_len);
761
762 skb = alloc_skb(nm_len, GFP_KERNEL);
763 if (skb == NULL) {
764 err = -ENOBUFS;
765 goto out;
766 }
767 __skb_put(skb, nm_len);
768 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
769 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
770
771 netlink_increment_head(ring);
772
773 NETLINK_CB(skb).portid = nlk->portid;
774 NETLINK_CB(skb).dst_group = dst_group;
775 NETLINK_CB(skb).creds = scm->creds;
776
777 err = security_netlink_send(sk, skb);
778 if (err) {
779 kfree_skb(skb);
780 goto out;
781 }
782
783 if (unlikely(dst_group)) {
784 atomic_inc(&skb->users);
785 netlink_broadcast(sk, skb, dst_portid, dst_group,
786 GFP_KERNEL);
787 }
788 err = netlink_unicast(sk, skb, dst_portid,
789 msg->msg_flags & MSG_DONTWAIT);
790 if (err < 0)
791 goto out;
792 len += err;
793
794 } while (hdr != NULL ||
795 (!(msg->msg_flags & MSG_DONTWAIT) &&
796 atomic_read(&nlk->tx_ring.pending)));
797
798 if (len > 0)
799 err = len;
800 out:
801 mutex_unlock(&nlk->pg_vec_lock);
802 return err;
803 }
804
805 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
806 {
807 struct nl_mmap_hdr *hdr;
808
809 hdr = netlink_mmap_hdr(skb);
810 hdr->nm_len = skb->len;
811 hdr->nm_group = NETLINK_CB(skb).dst_group;
812 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
813 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
814 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
815 netlink_frame_flush_dcache(hdr, hdr->nm_len);
816 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
817
818 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
819 kfree_skb(skb);
820 }
821
822 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
823 {
824 struct netlink_sock *nlk = nlk_sk(sk);
825 struct netlink_ring *ring = &nlk->rx_ring;
826 struct nl_mmap_hdr *hdr;
827
828 spin_lock_bh(&sk->sk_receive_queue.lock);
829 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
830 if (hdr == NULL) {
831 spin_unlock_bh(&sk->sk_receive_queue.lock);
832 kfree_skb(skb);
833 netlink_overrun(sk);
834 return;
835 }
836 netlink_increment_head(ring);
837 __skb_queue_tail(&sk->sk_receive_queue, skb);
838 spin_unlock_bh(&sk->sk_receive_queue.lock);
839
840 hdr->nm_len = skb->len;
841 hdr->nm_group = NETLINK_CB(skb).dst_group;
842 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
843 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
844 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
845 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
846 }
847
848 #else /* CONFIG_NETLINK_MMAP */
849 #define netlink_skb_is_mmaped(skb) false
850 #define netlink_rx_is_mmaped(sk) false
851 #define netlink_tx_is_mmaped(sk) false
852 #define netlink_mmap sock_no_mmap
853 #define netlink_poll datagram_poll
854 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0
855 #endif /* CONFIG_NETLINK_MMAP */
856
857 static void netlink_skb_destructor(struct sk_buff *skb)
858 {
859 #ifdef CONFIG_NETLINK_MMAP
860 struct nl_mmap_hdr *hdr;
861 struct netlink_ring *ring;
862 struct sock *sk;
863
864 /* If a packet from the kernel to userspace was freed because of an
865 * error without being delivered to userspace, the kernel must reset
866 * the status. In the direction userspace to kernel, the status is
867 * always reset here after the packet was processed and freed.
868 */
869 if (netlink_skb_is_mmaped(skb)) {
870 hdr = netlink_mmap_hdr(skb);
871 sk = NETLINK_CB(skb).sk;
872
873 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
874 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
875 ring = &nlk_sk(sk)->tx_ring;
876 } else {
877 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
878 hdr->nm_len = 0;
879 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
880 }
881 ring = &nlk_sk(sk)->rx_ring;
882 }
883
884 WARN_ON(atomic_read(&ring->pending) == 0);
885 atomic_dec(&ring->pending);
886 sock_put(sk);
887
888 skb->head = NULL;
889 }
890 #endif
891 if (is_vmalloc_addr(skb->head)) {
892 if (!skb->cloned ||
893 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
894 vfree(skb->head);
895
896 skb->head = NULL;
897 }
898 if (skb->sk != NULL)
899 sock_rfree(skb);
900 }
901
902 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
903 {
904 WARN_ON(skb->sk != NULL);
905 skb->sk = sk;
906 skb->destructor = netlink_skb_destructor;
907 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
908 sk_mem_charge(sk, skb->truesize);
909 }
910
911 static void netlink_sock_destruct(struct sock *sk)
912 {
913 struct netlink_sock *nlk = nlk_sk(sk);
914
915 if (nlk->cb_running) {
916 if (nlk->cb.done)
917 nlk->cb.done(&nlk->cb);
918
919 module_put(nlk->cb.module);
920 kfree_skb(nlk->cb.skb);
921 }
922
923 skb_queue_purge(&sk->sk_receive_queue);
924 #ifdef CONFIG_NETLINK_MMAP
925 if (1) {
926 struct nl_mmap_req req;
927
928 memset(&req, 0, sizeof(req));
929 if (nlk->rx_ring.pg_vec)
930 __netlink_set_ring(sk, &req, false, NULL, 0);
931 memset(&req, 0, sizeof(req));
932 if (nlk->tx_ring.pg_vec)
933 __netlink_set_ring(sk, &req, true, NULL, 0);
934 }
935 #endif /* CONFIG_NETLINK_MMAP */
936
937 if (!sock_flag(sk, SOCK_DEAD)) {
938 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
939 return;
940 }
941
942 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
943 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
944 WARN_ON(nlk_sk(sk)->groups);
945 }
946
947 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
948 * SMP. Look, when several writers sleep and reader wakes them up, all but one
949 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
950 * this, _but_ remember, it adds useless work on UP machines.
951 */
952
953 void netlink_table_grab(void)
954 __acquires(nl_table_lock)
955 {
956 might_sleep();
957
958 write_lock_irq(&nl_table_lock);
959
960 if (atomic_read(&nl_table_users)) {
961 DECLARE_WAITQUEUE(wait, current);
962
963 add_wait_queue_exclusive(&nl_table_wait, &wait);
964 for (;;) {
965 set_current_state(TASK_UNINTERRUPTIBLE);
966 if (atomic_read(&nl_table_users) == 0)
967 break;
968 write_unlock_irq(&nl_table_lock);
969 schedule();
970 write_lock_irq(&nl_table_lock);
971 }
972
973 __set_current_state(TASK_RUNNING);
974 remove_wait_queue(&nl_table_wait, &wait);
975 }
976 }
977
978 void netlink_table_ungrab(void)
979 __releases(nl_table_lock)
980 {
981 write_unlock_irq(&nl_table_lock);
982 wake_up(&nl_table_wait);
983 }
984
985 static inline void
986 netlink_lock_table(void)
987 {
988 /* read_lock() synchronizes us to netlink_table_grab */
989
990 read_lock(&nl_table_lock);
991 atomic_inc(&nl_table_users);
992 read_unlock(&nl_table_lock);
993 }
994
995 static inline void
996 netlink_unlock_table(void)
997 {
998 if (atomic_dec_and_test(&nl_table_users))
999 wake_up(&nl_table_wait);
1000 }
1001
1002 struct netlink_compare_arg
1003 {
1004 possible_net_t pnet;
1005 u32 portid;
1006 };
1007
1008 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
1009 #define netlink_compare_arg_len \
1010 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
1011
1012 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
1013 const void *ptr)
1014 {
1015 const struct netlink_compare_arg *x = arg->key;
1016 const struct netlink_sock *nlk = ptr;
1017
1018 return nlk->portid != x->portid ||
1019 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
1020 }
1021
1022 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
1023 struct net *net, u32 portid)
1024 {
1025 memset(arg, 0, sizeof(*arg));
1026 write_pnet(&arg->pnet, net);
1027 arg->portid = portid;
1028 }
1029
1030 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1031 struct net *net)
1032 {
1033 struct netlink_compare_arg arg;
1034
1035 netlink_compare_arg_init(&arg, net, portid);
1036 return rhashtable_lookup_fast(&table->hash, &arg,
1037 netlink_rhashtable_params);
1038 }
1039
1040 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1041 {
1042 struct netlink_compare_arg arg;
1043
1044 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1045 return rhashtable_lookup_insert_key(&table->hash, &arg,
1046 &nlk_sk(sk)->node,
1047 netlink_rhashtable_params);
1048 }
1049
1050 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1051 {
1052 struct netlink_table *table = &nl_table[protocol];
1053 struct sock *sk;
1054
1055 rcu_read_lock();
1056 sk = __netlink_lookup(table, portid, net);
1057 if (sk)
1058 sock_hold(sk);
1059 rcu_read_unlock();
1060
1061 return sk;
1062 }
1063
1064 static const struct proto_ops netlink_ops;
1065
1066 static void
1067 netlink_update_listeners(struct sock *sk)
1068 {
1069 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1070 unsigned long mask;
1071 unsigned int i;
1072 struct listeners *listeners;
1073
1074 listeners = nl_deref_protected(tbl->listeners);
1075 if (!listeners)
1076 return;
1077
1078 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1079 mask = 0;
1080 sk_for_each_bound(sk, &tbl->mc_list) {
1081 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1082 mask |= nlk_sk(sk)->groups[i];
1083 }
1084 listeners->masks[i] = mask;
1085 }
1086 /* this function is only called with the netlink table "grabbed", which
1087 * makes sure updates are visible before bind or setsockopt return. */
1088 }
1089
1090 static int netlink_insert(struct sock *sk, u32 portid)
1091 {
1092 struct netlink_table *table = &nl_table[sk->sk_protocol];
1093 int err;
1094
1095 lock_sock(sk);
1096
1097 err = -EBUSY;
1098 if (nlk_sk(sk)->portid)
1099 goto err;
1100
1101 err = -ENOMEM;
1102 if (BITS_PER_LONG > 32 &&
1103 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1104 goto err;
1105
1106 nlk_sk(sk)->portid = portid;
1107 sock_hold(sk);
1108
1109 err = __netlink_insert(table, sk);
1110 if (err) {
1111 /* In case the hashtable backend returns with -EBUSY
1112 * from here, it must not escape to the caller.
1113 */
1114 if (unlikely(err == -EBUSY))
1115 err = -EOVERFLOW;
1116 if (err == -EEXIST)
1117 err = -EADDRINUSE;
1118 nlk_sk(sk)->portid = 0;
1119 sock_put(sk);
1120 }
1121
1122 err:
1123 release_sock(sk);
1124 return err;
1125 }
1126
1127 static void netlink_remove(struct sock *sk)
1128 {
1129 struct netlink_table *table;
1130
1131 table = &nl_table[sk->sk_protocol];
1132 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1133 netlink_rhashtable_params)) {
1134 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1135 __sock_put(sk);
1136 }
1137
1138 netlink_table_grab();
1139 if (nlk_sk(sk)->subscriptions) {
1140 __sk_del_bind_node(sk);
1141 netlink_update_listeners(sk);
1142 }
1143 if (sk->sk_protocol == NETLINK_GENERIC)
1144 atomic_inc(&genl_sk_destructing_cnt);
1145 netlink_table_ungrab();
1146 }
1147
1148 static struct proto netlink_proto = {
1149 .name = "NETLINK",
1150 .owner = THIS_MODULE,
1151 .obj_size = sizeof(struct netlink_sock),
1152 };
1153
1154 static int __netlink_create(struct net *net, struct socket *sock,
1155 struct mutex *cb_mutex, int protocol,
1156 int kern)
1157 {
1158 struct sock *sk;
1159 struct netlink_sock *nlk;
1160
1161 sock->ops = &netlink_ops;
1162
1163 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
1164 if (!sk)
1165 return -ENOMEM;
1166
1167 sock_init_data(sock, sk);
1168
1169 nlk = nlk_sk(sk);
1170 if (cb_mutex) {
1171 nlk->cb_mutex = cb_mutex;
1172 } else {
1173 nlk->cb_mutex = &nlk->cb_def_mutex;
1174 mutex_init(nlk->cb_mutex);
1175 }
1176 init_waitqueue_head(&nlk->wait);
1177 #ifdef CONFIG_NETLINK_MMAP
1178 mutex_init(&nlk->pg_vec_lock);
1179 #endif
1180
1181 sk->sk_destruct = netlink_sock_destruct;
1182 sk->sk_protocol = protocol;
1183 return 0;
1184 }
1185
1186 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1187 int kern)
1188 {
1189 struct module *module = NULL;
1190 struct mutex *cb_mutex;
1191 struct netlink_sock *nlk;
1192 int (*bind)(struct net *net, int group);
1193 void (*unbind)(struct net *net, int group);
1194 int err = 0;
1195
1196 sock->state = SS_UNCONNECTED;
1197
1198 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1199 return -ESOCKTNOSUPPORT;
1200
1201 if (protocol < 0 || protocol >= MAX_LINKS)
1202 return -EPROTONOSUPPORT;
1203
1204 netlink_lock_table();
1205 #ifdef CONFIG_MODULES
1206 if (!nl_table[protocol].registered) {
1207 netlink_unlock_table();
1208 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1209 netlink_lock_table();
1210 }
1211 #endif
1212 if (nl_table[protocol].registered &&
1213 try_module_get(nl_table[protocol].module))
1214 module = nl_table[protocol].module;
1215 else
1216 err = -EPROTONOSUPPORT;
1217 cb_mutex = nl_table[protocol].cb_mutex;
1218 bind = nl_table[protocol].bind;
1219 unbind = nl_table[protocol].unbind;
1220 netlink_unlock_table();
1221
1222 if (err < 0)
1223 goto out;
1224
1225 err = __netlink_create(net, sock, cb_mutex, protocol, kern);
1226 if (err < 0)
1227 goto out_module;
1228
1229 local_bh_disable();
1230 sock_prot_inuse_add(net, &netlink_proto, 1);
1231 local_bh_enable();
1232
1233 nlk = nlk_sk(sock->sk);
1234 nlk->module = module;
1235 nlk->netlink_bind = bind;
1236 nlk->netlink_unbind = unbind;
1237 out:
1238 return err;
1239
1240 out_module:
1241 module_put(module);
1242 goto out;
1243 }
1244
1245 static void deferred_put_nlk_sk(struct rcu_head *head)
1246 {
1247 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1248
1249 sock_put(&nlk->sk);
1250 }
1251
1252 static int netlink_release(struct socket *sock)
1253 {
1254 struct sock *sk = sock->sk;
1255 struct netlink_sock *nlk;
1256
1257 if (!sk)
1258 return 0;
1259
1260 netlink_remove(sk);
1261 sock_orphan(sk);
1262 nlk = nlk_sk(sk);
1263
1264 /*
1265 * OK. Socket is unlinked, any packets that arrive now
1266 * will be purged.
1267 */
1268
1269 /* must not acquire netlink_table_lock in any way again before unbind
1270 * and notifying genetlink is done as otherwise it might deadlock
1271 */
1272 if (nlk->netlink_unbind) {
1273 int i;
1274
1275 for (i = 0; i < nlk->ngroups; i++)
1276 if (test_bit(i, nlk->groups))
1277 nlk->netlink_unbind(sock_net(sk), i + 1);
1278 }
1279 if (sk->sk_protocol == NETLINK_GENERIC &&
1280 atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1281 wake_up(&genl_sk_destructing_waitq);
1282
1283 sock->sk = NULL;
1284 wake_up_interruptible_all(&nlk->wait);
1285
1286 skb_queue_purge(&sk->sk_write_queue);
1287
1288 if (nlk->portid) {
1289 struct netlink_notify n = {
1290 .net = sock_net(sk),
1291 .protocol = sk->sk_protocol,
1292 .portid = nlk->portid,
1293 };
1294 atomic_notifier_call_chain(&netlink_chain,
1295 NETLINK_URELEASE, &n);
1296 }
1297
1298 module_put(nlk->module);
1299
1300 if (netlink_is_kernel(sk)) {
1301 netlink_table_grab();
1302 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1303 if (--nl_table[sk->sk_protocol].registered == 0) {
1304 struct listeners *old;
1305
1306 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1307 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1308 kfree_rcu(old, rcu);
1309 nl_table[sk->sk_protocol].module = NULL;
1310 nl_table[sk->sk_protocol].bind = NULL;
1311 nl_table[sk->sk_protocol].unbind = NULL;
1312 nl_table[sk->sk_protocol].flags = 0;
1313 nl_table[sk->sk_protocol].registered = 0;
1314 }
1315 netlink_table_ungrab();
1316 }
1317
1318 kfree(nlk->groups);
1319 nlk->groups = NULL;
1320
1321 local_bh_disable();
1322 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1323 local_bh_enable();
1324 call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1325 return 0;
1326 }
1327
1328 static int netlink_autobind(struct socket *sock)
1329 {
1330 struct sock *sk = sock->sk;
1331 struct net *net = sock_net(sk);
1332 struct netlink_table *table = &nl_table[sk->sk_protocol];
1333 s32 portid = task_tgid_vnr(current);
1334 int err;
1335 s32 rover = -4096;
1336 bool ok;
1337
1338 retry:
1339 cond_resched();
1340 rcu_read_lock();
1341 ok = !__netlink_lookup(table, portid, net);
1342 rcu_read_unlock();
1343 if (!ok) {
1344 /* Bind collision, search negative portid values. */
1345 if (rover == -4096)
1346 /* rover will be in range [S32_MIN, -4097] */
1347 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
1348 else if (rover >= -4096)
1349 rover = -4097;
1350 portid = rover--;
1351 goto retry;
1352 }
1353
1354 err = netlink_insert(sk, portid);
1355 if (err == -EADDRINUSE)
1356 goto retry;
1357
1358 /* If 2 threads race to autobind, that is fine. */
1359 if (err == -EBUSY)
1360 err = 0;
1361
1362 return err;
1363 }
1364
1365 /**
1366 * __netlink_ns_capable - General netlink message capability test
1367 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1368 * @user_ns: The user namespace of the capability to use
1369 * @cap: The capability to use
1370 *
1371 * Test to see if the opener of the socket we received the message
1372 * from had when the netlink socket was created and the sender of the
1373 * message has has the capability @cap in the user namespace @user_ns.
1374 */
1375 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1376 struct user_namespace *user_ns, int cap)
1377 {
1378 return ((nsp->flags & NETLINK_SKB_DST) ||
1379 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1380 ns_capable(user_ns, cap);
1381 }
1382 EXPORT_SYMBOL(__netlink_ns_capable);
1383
1384 /**
1385 * netlink_ns_capable - General netlink message capability test
1386 * @skb: socket buffer holding a netlink command from userspace
1387 * @user_ns: The user namespace of the capability to use
1388 * @cap: The capability to use
1389 *
1390 * Test to see if the opener of the socket we received the message
1391 * from had when the netlink socket was created and the sender of the
1392 * message has has the capability @cap in the user namespace @user_ns.
1393 */
1394 bool netlink_ns_capable(const struct sk_buff *skb,
1395 struct user_namespace *user_ns, int cap)
1396 {
1397 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1398 }
1399 EXPORT_SYMBOL(netlink_ns_capable);
1400
1401 /**
1402 * netlink_capable - Netlink global message capability test
1403 * @skb: socket buffer holding a netlink command from userspace
1404 * @cap: The capability to use
1405 *
1406 * Test to see if the opener of the socket we received the message
1407 * from had when the netlink socket was created and the sender of the
1408 * message has has the capability @cap in all user namespaces.
1409 */
1410 bool netlink_capable(const struct sk_buff *skb, int cap)
1411 {
1412 return netlink_ns_capable(skb, &init_user_ns, cap);
1413 }
1414 EXPORT_SYMBOL(netlink_capable);
1415
1416 /**
1417 * netlink_net_capable - Netlink network namespace message capability test
1418 * @skb: socket buffer holding a netlink command from userspace
1419 * @cap: The capability to use
1420 *
1421 * Test to see if the opener of the socket we received the message
1422 * from had when the netlink socket was created and the sender of the
1423 * message has has the capability @cap over the network namespace of
1424 * the socket we received the message from.
1425 */
1426 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1427 {
1428 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1429 }
1430 EXPORT_SYMBOL(netlink_net_capable);
1431
1432 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1433 {
1434 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1435 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1436 }
1437
1438 static void
1439 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1440 {
1441 struct netlink_sock *nlk = nlk_sk(sk);
1442
1443 if (nlk->subscriptions && !subscriptions)
1444 __sk_del_bind_node(sk);
1445 else if (!nlk->subscriptions && subscriptions)
1446 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1447 nlk->subscriptions = subscriptions;
1448 }
1449
1450 static int netlink_realloc_groups(struct sock *sk)
1451 {
1452 struct netlink_sock *nlk = nlk_sk(sk);
1453 unsigned int groups;
1454 unsigned long *new_groups;
1455 int err = 0;
1456
1457 netlink_table_grab();
1458
1459 groups = nl_table[sk->sk_protocol].groups;
1460 if (!nl_table[sk->sk_protocol].registered) {
1461 err = -ENOENT;
1462 goto out_unlock;
1463 }
1464
1465 if (nlk->ngroups >= groups)
1466 goto out_unlock;
1467
1468 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1469 if (new_groups == NULL) {
1470 err = -ENOMEM;
1471 goto out_unlock;
1472 }
1473 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1474 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1475
1476 nlk->groups = new_groups;
1477 nlk->ngroups = groups;
1478 out_unlock:
1479 netlink_table_ungrab();
1480 return err;
1481 }
1482
1483 static void netlink_undo_bind(int group, long unsigned int groups,
1484 struct sock *sk)
1485 {
1486 struct netlink_sock *nlk = nlk_sk(sk);
1487 int undo;
1488
1489 if (!nlk->netlink_unbind)
1490 return;
1491
1492 for (undo = 0; undo < group; undo++)
1493 if (test_bit(undo, &groups))
1494 nlk->netlink_unbind(sock_net(sk), undo + 1);
1495 }
1496
1497 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1498 int addr_len)
1499 {
1500 struct sock *sk = sock->sk;
1501 struct net *net = sock_net(sk);
1502 struct netlink_sock *nlk = nlk_sk(sk);
1503 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1504 int err;
1505 long unsigned int groups = nladdr->nl_groups;
1506
1507 if (addr_len < sizeof(struct sockaddr_nl))
1508 return -EINVAL;
1509
1510 if (nladdr->nl_family != AF_NETLINK)
1511 return -EINVAL;
1512
1513 /* Only superuser is allowed to listen multicasts */
1514 if (groups) {
1515 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1516 return -EPERM;
1517 err = netlink_realloc_groups(sk);
1518 if (err)
1519 return err;
1520 }
1521
1522 if (nlk->portid)
1523 if (nladdr->nl_pid != nlk->portid)
1524 return -EINVAL;
1525
1526 if (nlk->netlink_bind && groups) {
1527 int group;
1528
1529 for (group = 0; group < nlk->ngroups; group++) {
1530 if (!test_bit(group, &groups))
1531 continue;
1532 err = nlk->netlink_bind(net, group + 1);
1533 if (!err)
1534 continue;
1535 netlink_undo_bind(group, groups, sk);
1536 return err;
1537 }
1538 }
1539
1540 if (!nlk->portid) {
1541 err = nladdr->nl_pid ?
1542 netlink_insert(sk, nladdr->nl_pid) :
1543 netlink_autobind(sock);
1544 if (err) {
1545 netlink_undo_bind(nlk->ngroups, groups, sk);
1546 return err;
1547 }
1548 }
1549
1550 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1551 return 0;
1552
1553 netlink_table_grab();
1554 netlink_update_subscriptions(sk, nlk->subscriptions +
1555 hweight32(groups) -
1556 hweight32(nlk->groups[0]));
1557 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1558 netlink_update_listeners(sk);
1559 netlink_table_ungrab();
1560
1561 return 0;
1562 }
1563
1564 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1565 int alen, int flags)
1566 {
1567 int err = 0;
1568 struct sock *sk = sock->sk;
1569 struct netlink_sock *nlk = nlk_sk(sk);
1570 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1571
1572 if (alen < sizeof(addr->sa_family))
1573 return -EINVAL;
1574
1575 if (addr->sa_family == AF_UNSPEC) {
1576 sk->sk_state = NETLINK_UNCONNECTED;
1577 nlk->dst_portid = 0;
1578 nlk->dst_group = 0;
1579 return 0;
1580 }
1581 if (addr->sa_family != AF_NETLINK)
1582 return -EINVAL;
1583
1584 if ((nladdr->nl_groups || nladdr->nl_pid) &&
1585 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1586 return -EPERM;
1587
1588 if (!nlk->portid)
1589 err = netlink_autobind(sock);
1590
1591 if (err == 0) {
1592 sk->sk_state = NETLINK_CONNECTED;
1593 nlk->dst_portid = nladdr->nl_pid;
1594 nlk->dst_group = ffs(nladdr->nl_groups);
1595 }
1596
1597 return err;
1598 }
1599
1600 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1601 int *addr_len, int peer)
1602 {
1603 struct sock *sk = sock->sk;
1604 struct netlink_sock *nlk = nlk_sk(sk);
1605 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1606
1607 nladdr->nl_family = AF_NETLINK;
1608 nladdr->nl_pad = 0;
1609 *addr_len = sizeof(*nladdr);
1610
1611 if (peer) {
1612 nladdr->nl_pid = nlk->dst_portid;
1613 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1614 } else {
1615 nladdr->nl_pid = nlk->portid;
1616 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1617 }
1618 return 0;
1619 }
1620
1621 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1622 {
1623 struct sock *sock;
1624 struct netlink_sock *nlk;
1625
1626 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1627 if (!sock)
1628 return ERR_PTR(-ECONNREFUSED);
1629
1630 /* Don't bother queuing skb if kernel socket has no input function */
1631 nlk = nlk_sk(sock);
1632 if (sock->sk_state == NETLINK_CONNECTED &&
1633 nlk->dst_portid != nlk_sk(ssk)->portid) {
1634 sock_put(sock);
1635 return ERR_PTR(-ECONNREFUSED);
1636 }
1637 return sock;
1638 }
1639
1640 struct sock *netlink_getsockbyfilp(struct file *filp)
1641 {
1642 struct inode *inode = file_inode(filp);
1643 struct sock *sock;
1644
1645 if (!S_ISSOCK(inode->i_mode))
1646 return ERR_PTR(-ENOTSOCK);
1647
1648 sock = SOCKET_I(inode)->sk;
1649 if (sock->sk_family != AF_NETLINK)
1650 return ERR_PTR(-EINVAL);
1651
1652 sock_hold(sock);
1653 return sock;
1654 }
1655
1656 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1657 int broadcast)
1658 {
1659 struct sk_buff *skb;
1660 void *data;
1661
1662 if (size <= NLMSG_GOODSIZE || broadcast)
1663 return alloc_skb(size, GFP_KERNEL);
1664
1665 size = SKB_DATA_ALIGN(size) +
1666 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1667
1668 data = vmalloc(size);
1669 if (data == NULL)
1670 return NULL;
1671
1672 skb = __build_skb(data, size);
1673 if (skb == NULL)
1674 vfree(data);
1675 else
1676 skb->destructor = netlink_skb_destructor;
1677
1678 return skb;
1679 }
1680
1681 /*
1682 * Attach a skb to a netlink socket.
1683 * The caller must hold a reference to the destination socket. On error, the
1684 * reference is dropped. The skb is not send to the destination, just all
1685 * all error checks are performed and memory in the queue is reserved.
1686 * Return values:
1687 * < 0: error. skb freed, reference to sock dropped.
1688 * 0: continue
1689 * 1: repeat lookup - reference dropped while waiting for socket memory.
1690 */
1691 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1692 long *timeo, struct sock *ssk)
1693 {
1694 struct netlink_sock *nlk;
1695
1696 nlk = nlk_sk(sk);
1697
1698 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1699 test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1700 !netlink_skb_is_mmaped(skb)) {
1701 DECLARE_WAITQUEUE(wait, current);
1702 if (!*timeo) {
1703 if (!ssk || netlink_is_kernel(ssk))
1704 netlink_overrun(sk);
1705 sock_put(sk);
1706 kfree_skb(skb);
1707 return -EAGAIN;
1708 }
1709
1710 __set_current_state(TASK_INTERRUPTIBLE);
1711 add_wait_queue(&nlk->wait, &wait);
1712
1713 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1714 test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1715 !sock_flag(sk, SOCK_DEAD))
1716 *timeo = schedule_timeout(*timeo);
1717
1718 __set_current_state(TASK_RUNNING);
1719 remove_wait_queue(&nlk->wait, &wait);
1720 sock_put(sk);
1721
1722 if (signal_pending(current)) {
1723 kfree_skb(skb);
1724 return sock_intr_errno(*timeo);
1725 }
1726 return 1;
1727 }
1728 netlink_skb_set_owner_r(skb, sk);
1729 return 0;
1730 }
1731
1732 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1733 {
1734 int len = skb->len;
1735
1736 netlink_deliver_tap(skb);
1737
1738 #ifdef CONFIG_NETLINK_MMAP
1739 if (netlink_skb_is_mmaped(skb))
1740 netlink_queue_mmaped_skb(sk, skb);
1741 else if (netlink_rx_is_mmaped(sk))
1742 netlink_ring_set_copied(sk, skb);
1743 else
1744 #endif /* CONFIG_NETLINK_MMAP */
1745 skb_queue_tail(&sk->sk_receive_queue, skb);
1746 sk->sk_data_ready(sk);
1747 return len;
1748 }
1749
1750 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1751 {
1752 int len = __netlink_sendskb(sk, skb);
1753
1754 sock_put(sk);
1755 return len;
1756 }
1757
1758 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1759 {
1760 kfree_skb(skb);
1761 sock_put(sk);
1762 }
1763
1764 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1765 {
1766 int delta;
1767
1768 WARN_ON(skb->sk != NULL);
1769 if (netlink_skb_is_mmaped(skb))
1770 return skb;
1771
1772 delta = skb->end - skb->tail;
1773 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1774 return skb;
1775
1776 if (skb_shared(skb)) {
1777 struct sk_buff *nskb = skb_clone(skb, allocation);
1778 if (!nskb)
1779 return skb;
1780 consume_skb(skb);
1781 skb = nskb;
1782 }
1783
1784 if (!pskb_expand_head(skb, 0, -delta, allocation))
1785 skb->truesize -= delta;
1786
1787 return skb;
1788 }
1789
1790 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1791 struct sock *ssk)
1792 {
1793 int ret;
1794 struct netlink_sock *nlk = nlk_sk(sk);
1795
1796 ret = -ECONNREFUSED;
1797 if (nlk->netlink_rcv != NULL) {
1798 ret = skb->len;
1799 netlink_skb_set_owner_r(skb, sk);
1800 NETLINK_CB(skb).sk = ssk;
1801 netlink_deliver_tap_kernel(sk, ssk, skb);
1802 nlk->netlink_rcv(skb);
1803 consume_skb(skb);
1804 } else {
1805 kfree_skb(skb);
1806 }
1807 sock_put(sk);
1808 return ret;
1809 }
1810
1811 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1812 u32 portid, int nonblock)
1813 {
1814 struct sock *sk;
1815 int err;
1816 long timeo;
1817
1818 skb = netlink_trim(skb, gfp_any());
1819
1820 timeo = sock_sndtimeo(ssk, nonblock);
1821 retry:
1822 sk = netlink_getsockbyportid(ssk, portid);
1823 if (IS_ERR(sk)) {
1824 kfree_skb(skb);
1825 return PTR_ERR(sk);
1826 }
1827 if (netlink_is_kernel(sk))
1828 return netlink_unicast_kernel(sk, skb, ssk);
1829
1830 if (sk_filter(sk, skb)) {
1831 err = skb->len;
1832 kfree_skb(skb);
1833 sock_put(sk);
1834 return err;
1835 }
1836
1837 err = netlink_attachskb(sk, skb, &timeo, ssk);
1838 if (err == 1)
1839 goto retry;
1840 if (err)
1841 return err;
1842
1843 return netlink_sendskb(sk, skb);
1844 }
1845 EXPORT_SYMBOL(netlink_unicast);
1846
1847 struct sk_buff *__netlink_alloc_skb(struct sock *ssk, unsigned int size,
1848 unsigned int ldiff, u32 dst_portid,
1849 gfp_t gfp_mask)
1850 {
1851 #ifdef CONFIG_NETLINK_MMAP
1852 unsigned int maxlen, linear_size;
1853 struct sock *sk = NULL;
1854 struct sk_buff *skb;
1855 struct netlink_ring *ring;
1856 struct nl_mmap_hdr *hdr;
1857
1858 sk = netlink_getsockbyportid(ssk, dst_portid);
1859 if (IS_ERR(sk))
1860 goto out;
1861
1862 ring = &nlk_sk(sk)->rx_ring;
1863 /* fast-path without atomic ops for common case: non-mmaped receiver */
1864 if (ring->pg_vec == NULL)
1865 goto out_put;
1866
1867 /* We need to account the full linear size needed as a ring
1868 * slot cannot have non-linear parts.
1869 */
1870 linear_size = size + ldiff;
1871 if (ring->frame_size - NL_MMAP_HDRLEN < linear_size)
1872 goto out_put;
1873
1874 skb = alloc_skb_head(gfp_mask);
1875 if (skb == NULL)
1876 goto err1;
1877
1878 spin_lock_bh(&sk->sk_receive_queue.lock);
1879 /* check again under lock */
1880 if (ring->pg_vec == NULL)
1881 goto out_free;
1882
1883 /* check again under lock */
1884 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1885 if (maxlen < linear_size)
1886 goto out_free;
1887
1888 netlink_forward_ring(ring);
1889 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1890 if (hdr == NULL)
1891 goto err2;
1892
1893 netlink_ring_setup_skb(skb, sk, ring, hdr);
1894 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1895 atomic_inc(&ring->pending);
1896 netlink_increment_head(ring);
1897
1898 spin_unlock_bh(&sk->sk_receive_queue.lock);
1899 return skb;
1900
1901 err2:
1902 kfree_skb(skb);
1903 spin_unlock_bh(&sk->sk_receive_queue.lock);
1904 netlink_overrun(sk);
1905 err1:
1906 sock_put(sk);
1907 return NULL;
1908
1909 out_free:
1910 kfree_skb(skb);
1911 spin_unlock_bh(&sk->sk_receive_queue.lock);
1912 out_put:
1913 sock_put(sk);
1914 out:
1915 #endif
1916 return alloc_skb(size, gfp_mask);
1917 }
1918 EXPORT_SYMBOL_GPL(__netlink_alloc_skb);
1919
1920 int netlink_has_listeners(struct sock *sk, unsigned int group)
1921 {
1922 int res = 0;
1923 struct listeners *listeners;
1924
1925 BUG_ON(!netlink_is_kernel(sk));
1926
1927 rcu_read_lock();
1928 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1929
1930 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1931 res = test_bit(group - 1, listeners->masks);
1932
1933 rcu_read_unlock();
1934
1935 return res;
1936 }
1937 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1938
1939 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1940 {
1941 struct netlink_sock *nlk = nlk_sk(sk);
1942
1943 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1944 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1945 netlink_skb_set_owner_r(skb, sk);
1946 __netlink_sendskb(sk, skb);
1947 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1948 }
1949 return -1;
1950 }
1951
1952 struct netlink_broadcast_data {
1953 struct sock *exclude_sk;
1954 struct net *net;
1955 u32 portid;
1956 u32 group;
1957 int failure;
1958 int delivery_failure;
1959 int congested;
1960 int delivered;
1961 gfp_t allocation;
1962 struct sk_buff *skb, *skb2;
1963 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1964 void *tx_data;
1965 };
1966
1967 static void do_one_broadcast(struct sock *sk,
1968 struct netlink_broadcast_data *p)
1969 {
1970 struct netlink_sock *nlk = nlk_sk(sk);
1971 int val;
1972
1973 if (p->exclude_sk == sk)
1974 return;
1975
1976 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1977 !test_bit(p->group - 1, nlk->groups))
1978 return;
1979
1980 if (!net_eq(sock_net(sk), p->net)) {
1981 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
1982 return;
1983
1984 if (!peernet_has_id(sock_net(sk), p->net))
1985 return;
1986
1987 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
1988 CAP_NET_BROADCAST))
1989 return;
1990 }
1991
1992 if (p->failure) {
1993 netlink_overrun(sk);
1994 return;
1995 }
1996
1997 sock_hold(sk);
1998 if (p->skb2 == NULL) {
1999 if (skb_shared(p->skb)) {
2000 p->skb2 = skb_clone(p->skb, p->allocation);
2001 } else {
2002 p->skb2 = skb_get(p->skb);
2003 /*
2004 * skb ownership may have been set when
2005 * delivered to a previous socket.
2006 */
2007 skb_orphan(p->skb2);
2008 }
2009 }
2010 if (p->skb2 == NULL) {
2011 netlink_overrun(sk);
2012 /* Clone failed. Notify ALL listeners. */
2013 p->failure = 1;
2014 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
2015 p->delivery_failure = 1;
2016 goto out;
2017 }
2018 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
2019 kfree_skb(p->skb2);
2020 p->skb2 = NULL;
2021 goto out;
2022 }
2023 if (sk_filter(sk, p->skb2)) {
2024 kfree_skb(p->skb2);
2025 p->skb2 = NULL;
2026 goto out;
2027 }
2028 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
2029 NETLINK_CB(p->skb2).nsid_is_set = true;
2030 val = netlink_broadcast_deliver(sk, p->skb2);
2031 if (val < 0) {
2032 netlink_overrun(sk);
2033 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
2034 p->delivery_failure = 1;
2035 } else {
2036 p->congested |= val;
2037 p->delivered = 1;
2038 p->skb2 = NULL;
2039 }
2040 out:
2041 sock_put(sk);
2042 }
2043
2044 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2045 u32 group, gfp_t allocation,
2046 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2047 void *filter_data)
2048 {
2049 struct net *net = sock_net(ssk);
2050 struct netlink_broadcast_data info;
2051 struct sock *sk;
2052
2053 skb = netlink_trim(skb, allocation);
2054
2055 info.exclude_sk = ssk;
2056 info.net = net;
2057 info.portid = portid;
2058 info.group = group;
2059 info.failure = 0;
2060 info.delivery_failure = 0;
2061 info.congested = 0;
2062 info.delivered = 0;
2063 info.allocation = allocation;
2064 info.skb = skb;
2065 info.skb2 = NULL;
2066 info.tx_filter = filter;
2067 info.tx_data = filter_data;
2068
2069 /* While we sleep in clone, do not allow to change socket list */
2070
2071 netlink_lock_table();
2072
2073 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2074 do_one_broadcast(sk, &info);
2075
2076 consume_skb(skb);
2077
2078 netlink_unlock_table();
2079
2080 if (info.delivery_failure) {
2081 kfree_skb(info.skb2);
2082 return -ENOBUFS;
2083 }
2084 consume_skb(info.skb2);
2085
2086 if (info.delivered) {
2087 if (info.congested && (allocation & __GFP_WAIT))
2088 yield();
2089 return 0;
2090 }
2091 return -ESRCH;
2092 }
2093 EXPORT_SYMBOL(netlink_broadcast_filtered);
2094
2095 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2096 u32 group, gfp_t allocation)
2097 {
2098 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2099 NULL, NULL);
2100 }
2101 EXPORT_SYMBOL(netlink_broadcast);
2102
2103 struct netlink_set_err_data {
2104 struct sock *exclude_sk;
2105 u32 portid;
2106 u32 group;
2107 int code;
2108 };
2109
2110 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2111 {
2112 struct netlink_sock *nlk = nlk_sk(sk);
2113 int ret = 0;
2114
2115 if (sk == p->exclude_sk)
2116 goto out;
2117
2118 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2119 goto out;
2120
2121 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2122 !test_bit(p->group - 1, nlk->groups))
2123 goto out;
2124
2125 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
2126 ret = 1;
2127 goto out;
2128 }
2129
2130 sk->sk_err = p->code;
2131 sk->sk_error_report(sk);
2132 out:
2133 return ret;
2134 }
2135
2136 /**
2137 * netlink_set_err - report error to broadcast listeners
2138 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2139 * @portid: the PORTID of a process that we want to skip (if any)
2140 * @group: the broadcast group that will notice the error
2141 * @code: error code, must be negative (as usual in kernelspace)
2142 *
2143 * This function returns the number of broadcast listeners that have set the
2144 * NETLINK_NO_ENOBUFS socket option.
2145 */
2146 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2147 {
2148 struct netlink_set_err_data info;
2149 struct sock *sk;
2150 int ret = 0;
2151
2152 info.exclude_sk = ssk;
2153 info.portid = portid;
2154 info.group = group;
2155 /* sk->sk_err wants a positive error value */
2156 info.code = -code;
2157
2158 read_lock(&nl_table_lock);
2159
2160 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2161 ret += do_one_set_err(sk, &info);
2162
2163 read_unlock(&nl_table_lock);
2164 return ret;
2165 }
2166 EXPORT_SYMBOL(netlink_set_err);
2167
2168 /* must be called with netlink table grabbed */
2169 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2170 unsigned int group,
2171 int is_new)
2172 {
2173 int old, new = !!is_new, subscriptions;
2174
2175 old = test_bit(group - 1, nlk->groups);
2176 subscriptions = nlk->subscriptions - old + new;
2177 if (new)
2178 __set_bit(group - 1, nlk->groups);
2179 else
2180 __clear_bit(group - 1, nlk->groups);
2181 netlink_update_subscriptions(&nlk->sk, subscriptions);
2182 netlink_update_listeners(&nlk->sk);
2183 }
2184
2185 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2186 char __user *optval, unsigned int optlen)
2187 {
2188 struct sock *sk = sock->sk;
2189 struct netlink_sock *nlk = nlk_sk(sk);
2190 unsigned int val = 0;
2191 int err;
2192
2193 if (level != SOL_NETLINK)
2194 return -ENOPROTOOPT;
2195
2196 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2197 optlen >= sizeof(int) &&
2198 get_user(val, (unsigned int __user *)optval))
2199 return -EFAULT;
2200
2201 switch (optname) {
2202 case NETLINK_PKTINFO:
2203 if (val)
2204 nlk->flags |= NETLINK_F_RECV_PKTINFO;
2205 else
2206 nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
2207 err = 0;
2208 break;
2209 case NETLINK_ADD_MEMBERSHIP:
2210 case NETLINK_DROP_MEMBERSHIP: {
2211 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2212 return -EPERM;
2213 err = netlink_realloc_groups(sk);
2214 if (err)
2215 return err;
2216 if (!val || val - 1 >= nlk->ngroups)
2217 return -EINVAL;
2218 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2219 err = nlk->netlink_bind(sock_net(sk), val);
2220 if (err)
2221 return err;
2222 }
2223 netlink_table_grab();
2224 netlink_update_socket_mc(nlk, val,
2225 optname == NETLINK_ADD_MEMBERSHIP);
2226 netlink_table_ungrab();
2227 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2228 nlk->netlink_unbind(sock_net(sk), val);
2229
2230 err = 0;
2231 break;
2232 }
2233 case NETLINK_BROADCAST_ERROR:
2234 if (val)
2235 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
2236 else
2237 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
2238 err = 0;
2239 break;
2240 case NETLINK_NO_ENOBUFS:
2241 if (val) {
2242 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
2243 clear_bit(NETLINK_S_CONGESTED, &nlk->state);
2244 wake_up_interruptible(&nlk->wait);
2245 } else {
2246 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
2247 }
2248 err = 0;
2249 break;
2250 #ifdef CONFIG_NETLINK_MMAP
2251 case NETLINK_RX_RING:
2252 case NETLINK_TX_RING: {
2253 struct nl_mmap_req req;
2254
2255 /* Rings might consume more memory than queue limits, require
2256 * CAP_NET_ADMIN.
2257 */
2258 if (!capable(CAP_NET_ADMIN))
2259 return -EPERM;
2260 if (optlen < sizeof(req))
2261 return -EINVAL;
2262 if (copy_from_user(&req, optval, sizeof(req)))
2263 return -EFAULT;
2264 err = netlink_set_ring(sk, &req,
2265 optname == NETLINK_TX_RING);
2266 break;
2267 }
2268 #endif /* CONFIG_NETLINK_MMAP */
2269 case NETLINK_LISTEN_ALL_NSID:
2270 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
2271 return -EPERM;
2272
2273 if (val)
2274 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
2275 else
2276 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
2277 err = 0;
2278 break;
2279 case NETLINK_CAP_ACK:
2280 if (val)
2281 nlk->flags |= NETLINK_F_CAP_ACK;
2282 else
2283 nlk->flags &= ~NETLINK_F_CAP_ACK;
2284 err = 0;
2285 break;
2286 default:
2287 err = -ENOPROTOOPT;
2288 }
2289 return err;
2290 }
2291
2292 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2293 char __user *optval, int __user *optlen)
2294 {
2295 struct sock *sk = sock->sk;
2296 struct netlink_sock *nlk = nlk_sk(sk);
2297 int len, val, err;
2298
2299 if (level != SOL_NETLINK)
2300 return -ENOPROTOOPT;
2301
2302 if (get_user(len, optlen))
2303 return -EFAULT;
2304 if (len < 0)
2305 return -EINVAL;
2306
2307 switch (optname) {
2308 case NETLINK_PKTINFO:
2309 if (len < sizeof(int))
2310 return -EINVAL;
2311 len = sizeof(int);
2312 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
2313 if (put_user(len, optlen) ||
2314 put_user(val, optval))
2315 return -EFAULT;
2316 err = 0;
2317 break;
2318 case NETLINK_BROADCAST_ERROR:
2319 if (len < sizeof(int))
2320 return -EINVAL;
2321 len = sizeof(int);
2322 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
2323 if (put_user(len, optlen) ||
2324 put_user(val, optval))
2325 return -EFAULT;
2326 err = 0;
2327 break;
2328 case NETLINK_NO_ENOBUFS:
2329 if (len < sizeof(int))
2330 return -EINVAL;
2331 len = sizeof(int);
2332 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
2333 if (put_user(len, optlen) ||
2334 put_user(val, optval))
2335 return -EFAULT;
2336 err = 0;
2337 break;
2338 case NETLINK_LIST_MEMBERSHIPS: {
2339 int pos, idx, shift;
2340
2341 err = 0;
2342 netlink_table_grab();
2343 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
2344 if (len - pos < sizeof(u32))
2345 break;
2346
2347 idx = pos / sizeof(unsigned long);
2348 shift = (pos % sizeof(unsigned long)) * 8;
2349 if (put_user((u32)(nlk->groups[idx] >> shift),
2350 (u32 __user *)(optval + pos))) {
2351 err = -EFAULT;
2352 break;
2353 }
2354 }
2355 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
2356 err = -EFAULT;
2357 netlink_table_ungrab();
2358 break;
2359 }
2360 case NETLINK_CAP_ACK:
2361 if (len < sizeof(int))
2362 return -EINVAL;
2363 len = sizeof(int);
2364 val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0;
2365 if (put_user(len, optlen) ||
2366 put_user(val, optval))
2367 return -EFAULT;
2368 err = 0;
2369 break;
2370 default:
2371 err = -ENOPROTOOPT;
2372 }
2373 return err;
2374 }
2375
2376 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2377 {
2378 struct nl_pktinfo info;
2379
2380 info.group = NETLINK_CB(skb).dst_group;
2381 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2382 }
2383
2384 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
2385 struct sk_buff *skb)
2386 {
2387 if (!NETLINK_CB(skb).nsid_is_set)
2388 return;
2389
2390 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
2391 &NETLINK_CB(skb).nsid);
2392 }
2393
2394 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2395 {
2396 struct sock *sk = sock->sk;
2397 struct netlink_sock *nlk = nlk_sk(sk);
2398 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2399 u32 dst_portid;
2400 u32 dst_group;
2401 struct sk_buff *skb;
2402 int err;
2403 struct scm_cookie scm;
2404 u32 netlink_skb_flags = 0;
2405
2406 if (msg->msg_flags&MSG_OOB)
2407 return -EOPNOTSUPP;
2408
2409 err = scm_send(sock, msg, &scm, true);
2410 if (err < 0)
2411 return err;
2412
2413 if (msg->msg_namelen) {
2414 err = -EINVAL;
2415 if (addr->nl_family != AF_NETLINK)
2416 goto out;
2417 dst_portid = addr->nl_pid;
2418 dst_group = ffs(addr->nl_groups);
2419 err = -EPERM;
2420 if ((dst_group || dst_portid) &&
2421 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2422 goto out;
2423 netlink_skb_flags |= NETLINK_SKB_DST;
2424 } else {
2425 dst_portid = nlk->dst_portid;
2426 dst_group = nlk->dst_group;
2427 }
2428
2429 if (!nlk->portid) {
2430 err = netlink_autobind(sock);
2431 if (err)
2432 goto out;
2433 }
2434
2435 /* It's a really convoluted way for userland to ask for mmaped
2436 * sendmsg(), but that's what we've got...
2437 */
2438 if (netlink_tx_is_mmaped(sk) &&
2439 iter_is_iovec(&msg->msg_iter) &&
2440 msg->msg_iter.nr_segs == 1 &&
2441 msg->msg_iter.iov->iov_base == NULL) {
2442 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2443 &scm);
2444 goto out;
2445 }
2446
2447 err = -EMSGSIZE;
2448 if (len > sk->sk_sndbuf - 32)
2449 goto out;
2450 err = -ENOBUFS;
2451 skb = netlink_alloc_large_skb(len, dst_group);
2452 if (skb == NULL)
2453 goto out;
2454
2455 NETLINK_CB(skb).portid = nlk->portid;
2456 NETLINK_CB(skb).dst_group = dst_group;
2457 NETLINK_CB(skb).creds = scm.creds;
2458 NETLINK_CB(skb).flags = netlink_skb_flags;
2459
2460 err = -EFAULT;
2461 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2462 kfree_skb(skb);
2463 goto out;
2464 }
2465
2466 err = security_netlink_send(sk, skb);
2467 if (err) {
2468 kfree_skb(skb);
2469 goto out;
2470 }
2471
2472 if (dst_group) {
2473 atomic_inc(&skb->users);
2474 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2475 }
2476 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2477
2478 out:
2479 scm_destroy(&scm);
2480 return err;
2481 }
2482
2483 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2484 int flags)
2485 {
2486 struct scm_cookie scm;
2487 struct sock *sk = sock->sk;
2488 struct netlink_sock *nlk = nlk_sk(sk);
2489 int noblock = flags&MSG_DONTWAIT;
2490 size_t copied;
2491 struct sk_buff *skb, *data_skb;
2492 int err, ret;
2493
2494 if (flags&MSG_OOB)
2495 return -EOPNOTSUPP;
2496
2497 copied = 0;
2498
2499 skb = skb_recv_datagram(sk, flags, noblock, &err);
2500 if (skb == NULL)
2501 goto out;
2502
2503 data_skb = skb;
2504
2505 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2506 if (unlikely(skb_shinfo(skb)->frag_list)) {
2507 /*
2508 * If this skb has a frag_list, then here that means that we
2509 * will have to use the frag_list skb's data for compat tasks
2510 * and the regular skb's data for normal (non-compat) tasks.
2511 *
2512 * If we need to send the compat skb, assign it to the
2513 * 'data_skb' variable so that it will be used below for data
2514 * copying. We keep 'skb' for everything else, including
2515 * freeing both later.
2516 */
2517 if (flags & MSG_CMSG_COMPAT)
2518 data_skb = skb_shinfo(skb)->frag_list;
2519 }
2520 #endif
2521
2522 /* Record the max length of recvmsg() calls for future allocations */
2523 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2524 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2525 16384);
2526
2527 copied = data_skb->len;
2528 if (len < copied) {
2529 msg->msg_flags |= MSG_TRUNC;
2530 copied = len;
2531 }
2532
2533 skb_reset_transport_header(data_skb);
2534 err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2535
2536 if (msg->msg_name) {
2537 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2538 addr->nl_family = AF_NETLINK;
2539 addr->nl_pad = 0;
2540 addr->nl_pid = NETLINK_CB(skb).portid;
2541 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2542 msg->msg_namelen = sizeof(*addr);
2543 }
2544
2545 if (nlk->flags & NETLINK_F_RECV_PKTINFO)
2546 netlink_cmsg_recv_pktinfo(msg, skb);
2547 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
2548 netlink_cmsg_listen_all_nsid(sk, msg, skb);
2549
2550 memset(&scm, 0, sizeof(scm));
2551 scm.creds = *NETLINK_CREDS(skb);
2552 if (flags & MSG_TRUNC)
2553 copied = data_skb->len;
2554
2555 skb_free_datagram(sk, skb);
2556
2557 if (nlk->cb_running &&
2558 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2559 ret = netlink_dump(sk);
2560 if (ret) {
2561 sk->sk_err = -ret;
2562 sk->sk_error_report(sk);
2563 }
2564 }
2565
2566 scm_recv(sock, msg, &scm, flags);
2567 out:
2568 netlink_rcv_wake(sk);
2569 return err ? : copied;
2570 }
2571
2572 static void netlink_data_ready(struct sock *sk)
2573 {
2574 BUG();
2575 }
2576
2577 /*
2578 * We export these functions to other modules. They provide a
2579 * complete set of kernel non-blocking support for message
2580 * queueing.
2581 */
2582
2583 struct sock *
2584 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2585 struct netlink_kernel_cfg *cfg)
2586 {
2587 struct socket *sock;
2588 struct sock *sk;
2589 struct netlink_sock *nlk;
2590 struct listeners *listeners = NULL;
2591 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2592 unsigned int groups;
2593
2594 BUG_ON(!nl_table);
2595
2596 if (unit < 0 || unit >= MAX_LINKS)
2597 return NULL;
2598
2599 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2600 return NULL;
2601
2602 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
2603 goto out_sock_release_nosk;
2604
2605 sk = sock->sk;
2606
2607 if (!cfg || cfg->groups < 32)
2608 groups = 32;
2609 else
2610 groups = cfg->groups;
2611
2612 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2613 if (!listeners)
2614 goto out_sock_release;
2615
2616 sk->sk_data_ready = netlink_data_ready;
2617 if (cfg && cfg->input)
2618 nlk_sk(sk)->netlink_rcv = cfg->input;
2619
2620 if (netlink_insert(sk, 0))
2621 goto out_sock_release;
2622
2623 nlk = nlk_sk(sk);
2624 nlk->flags |= NETLINK_F_KERNEL_SOCKET;
2625
2626 netlink_table_grab();
2627 if (!nl_table[unit].registered) {
2628 nl_table[unit].groups = groups;
2629 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2630 nl_table[unit].cb_mutex = cb_mutex;
2631 nl_table[unit].module = module;
2632 if (cfg) {
2633 nl_table[unit].bind = cfg->bind;
2634 nl_table[unit].unbind = cfg->unbind;
2635 nl_table[unit].flags = cfg->flags;
2636 if (cfg->compare)
2637 nl_table[unit].compare = cfg->compare;
2638 }
2639 nl_table[unit].registered = 1;
2640 } else {
2641 kfree(listeners);
2642 nl_table[unit].registered++;
2643 }
2644 netlink_table_ungrab();
2645 return sk;
2646
2647 out_sock_release:
2648 kfree(listeners);
2649 netlink_kernel_release(sk);
2650 return NULL;
2651
2652 out_sock_release_nosk:
2653 sock_release(sock);
2654 return NULL;
2655 }
2656 EXPORT_SYMBOL(__netlink_kernel_create);
2657
2658 void
2659 netlink_kernel_release(struct sock *sk)
2660 {
2661 if (sk == NULL || sk->sk_socket == NULL)
2662 return;
2663
2664 sock_release(sk->sk_socket);
2665 }
2666 EXPORT_SYMBOL(netlink_kernel_release);
2667
2668 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2669 {
2670 struct listeners *new, *old;
2671 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2672
2673 if (groups < 32)
2674 groups = 32;
2675
2676 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2677 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2678 if (!new)
2679 return -ENOMEM;
2680 old = nl_deref_protected(tbl->listeners);
2681 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2682 rcu_assign_pointer(tbl->listeners, new);
2683
2684 kfree_rcu(old, rcu);
2685 }
2686 tbl->groups = groups;
2687
2688 return 0;
2689 }
2690
2691 /**
2692 * netlink_change_ngroups - change number of multicast groups
2693 *
2694 * This changes the number of multicast groups that are available
2695 * on a certain netlink family. Note that it is not possible to
2696 * change the number of groups to below 32. Also note that it does
2697 * not implicitly call netlink_clear_multicast_users() when the
2698 * number of groups is reduced.
2699 *
2700 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2701 * @groups: The new number of groups.
2702 */
2703 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2704 {
2705 int err;
2706
2707 netlink_table_grab();
2708 err = __netlink_change_ngroups(sk, groups);
2709 netlink_table_ungrab();
2710
2711 return err;
2712 }
2713
2714 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2715 {
2716 struct sock *sk;
2717 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2718
2719 sk_for_each_bound(sk, &tbl->mc_list)
2720 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2721 }
2722
2723 struct nlmsghdr *
2724 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2725 {
2726 struct nlmsghdr *nlh;
2727 int size = nlmsg_msg_size(len);
2728
2729 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2730 nlh->nlmsg_type = type;
2731 nlh->nlmsg_len = size;
2732 nlh->nlmsg_flags = flags;
2733 nlh->nlmsg_pid = portid;
2734 nlh->nlmsg_seq = seq;
2735 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2736 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2737 return nlh;
2738 }
2739 EXPORT_SYMBOL(__nlmsg_put);
2740
2741 /*
2742 * It looks a bit ugly.
2743 * It would be better to create kernel thread.
2744 */
2745
2746 static int netlink_dump(struct sock *sk)
2747 {
2748 struct netlink_sock *nlk = nlk_sk(sk);
2749 struct netlink_callback *cb;
2750 struct sk_buff *skb = NULL;
2751 struct nlmsghdr *nlh;
2752 int len, err = -ENOBUFS;
2753 int alloc_size;
2754
2755 mutex_lock(nlk->cb_mutex);
2756 if (!nlk->cb_running) {
2757 err = -EINVAL;
2758 goto errout_skb;
2759 }
2760
2761 cb = &nlk->cb;
2762 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2763
2764 if (!netlink_rx_is_mmaped(sk) &&
2765 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2766 goto errout_skb;
2767
2768 /* NLMSG_GOODSIZE is small to avoid high order allocations being
2769 * required, but it makes sense to _attempt_ a 16K bytes allocation
2770 * to reduce number of system calls on dump operations, if user
2771 * ever provided a big enough buffer.
2772 */
2773 if (alloc_size < nlk->max_recvmsg_len) {
2774 skb = netlink_alloc_skb(sk,
2775 nlk->max_recvmsg_len,
2776 nlk->portid,
2777 GFP_KERNEL |
2778 __GFP_NOWARN |
2779 __GFP_NORETRY);
2780 /* available room should be exact amount to avoid MSG_TRUNC */
2781 if (skb)
2782 skb_reserve(skb, skb_tailroom(skb) -
2783 nlk->max_recvmsg_len);
2784 }
2785 if (!skb)
2786 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2787 GFP_KERNEL);
2788 if (!skb)
2789 goto errout_skb;
2790 netlink_skb_set_owner_r(skb, sk);
2791
2792 len = cb->dump(skb, cb);
2793
2794 if (len > 0) {
2795 mutex_unlock(nlk->cb_mutex);
2796
2797 if (sk_filter(sk, skb))
2798 kfree_skb(skb);
2799 else
2800 __netlink_sendskb(sk, skb);
2801 return 0;
2802 }
2803
2804 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2805 if (!nlh)
2806 goto errout_skb;
2807
2808 nl_dump_check_consistent(cb, nlh);
2809
2810 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2811
2812 if (sk_filter(sk, skb))
2813 kfree_skb(skb);
2814 else
2815 __netlink_sendskb(sk, skb);
2816
2817 if (cb->done)
2818 cb->done(cb);
2819
2820 nlk->cb_running = false;
2821 mutex_unlock(nlk->cb_mutex);
2822 module_put(cb->module);
2823 consume_skb(cb->skb);
2824 return 0;
2825
2826 errout_skb:
2827 mutex_unlock(nlk->cb_mutex);
2828 kfree_skb(skb);
2829 return err;
2830 }
2831
2832 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2833 const struct nlmsghdr *nlh,
2834 struct netlink_dump_control *control)
2835 {
2836 struct netlink_callback *cb;
2837 struct sock *sk;
2838 struct netlink_sock *nlk;
2839 int ret;
2840
2841 /* Memory mapped dump requests need to be copied to avoid looping
2842 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2843 * a reference to the skb.
2844 */
2845 if (netlink_skb_is_mmaped(skb)) {
2846 skb = skb_copy(skb, GFP_KERNEL);
2847 if (skb == NULL)
2848 return -ENOBUFS;
2849 } else
2850 atomic_inc(&skb->users);
2851
2852 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2853 if (sk == NULL) {
2854 ret = -ECONNREFUSED;
2855 goto error_free;
2856 }
2857
2858 nlk = nlk_sk(sk);
2859 mutex_lock(nlk->cb_mutex);
2860 /* A dump is in progress... */
2861 if (nlk->cb_running) {
2862 ret = -EBUSY;
2863 goto error_unlock;
2864 }
2865 /* add reference of module which cb->dump belongs to */
2866 if (!try_module_get(control->module)) {
2867 ret = -EPROTONOSUPPORT;
2868 goto error_unlock;
2869 }
2870
2871 cb = &nlk->cb;
2872 memset(cb, 0, sizeof(*cb));
2873 cb->dump = control->dump;
2874 cb->done = control->done;
2875 cb->nlh = nlh;
2876 cb->data = control->data;
2877 cb->module = control->module;
2878 cb->min_dump_alloc = control->min_dump_alloc;
2879 cb->skb = skb;
2880
2881 nlk->cb_running = true;
2882
2883 mutex_unlock(nlk->cb_mutex);
2884
2885 ret = netlink_dump(sk);
2886 sock_put(sk);
2887
2888 if (ret)
2889 return ret;
2890
2891 /* We successfully started a dump, by returning -EINTR we
2892 * signal not to send ACK even if it was requested.
2893 */
2894 return -EINTR;
2895
2896 error_unlock:
2897 sock_put(sk);
2898 mutex_unlock(nlk->cb_mutex);
2899 error_free:
2900 kfree_skb(skb);
2901 return ret;
2902 }
2903 EXPORT_SYMBOL(__netlink_dump_start);
2904
2905 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2906 {
2907 struct sk_buff *skb;
2908 struct nlmsghdr *rep;
2909 struct nlmsgerr *errmsg;
2910 size_t payload = sizeof(*errmsg);
2911 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk);
2912
2913 /* Error messages get the original request appened, unless the user
2914 * requests to cap the error message.
2915 */
2916 if (!(nlk->flags & NETLINK_F_CAP_ACK) && err)
2917 payload += nlmsg_len(nlh);
2918
2919 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2920 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2921 if (!skb) {
2922 struct sock *sk;
2923
2924 sk = netlink_lookup(sock_net(in_skb->sk),
2925 in_skb->sk->sk_protocol,
2926 NETLINK_CB(in_skb).portid);
2927 if (sk) {
2928 sk->sk_err = ENOBUFS;
2929 sk->sk_error_report(sk);
2930 sock_put(sk);
2931 }
2932 return;
2933 }
2934
2935 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2936 NLMSG_ERROR, payload, 0);
2937 errmsg = nlmsg_data(rep);
2938 errmsg->error = err;
2939 memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh));
2940 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2941 }
2942 EXPORT_SYMBOL(netlink_ack);
2943
2944 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2945 struct nlmsghdr *))
2946 {
2947 struct nlmsghdr *nlh;
2948 int err;
2949
2950 while (skb->len >= nlmsg_total_size(0)) {
2951 int msglen;
2952
2953 nlh = nlmsg_hdr(skb);
2954 err = 0;
2955
2956 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2957 return 0;
2958
2959 /* Only requests are handled by the kernel */
2960 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2961 goto ack;
2962
2963 /* Skip control messages */
2964 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2965 goto ack;
2966
2967 err = cb(skb, nlh);
2968 if (err == -EINTR)
2969 goto skip;
2970
2971 ack:
2972 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2973 netlink_ack(skb, nlh, err);
2974
2975 skip:
2976 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2977 if (msglen > skb->len)
2978 msglen = skb->len;
2979 skb_pull(skb, msglen);
2980 }
2981
2982 return 0;
2983 }
2984 EXPORT_SYMBOL(netlink_rcv_skb);
2985
2986 /**
2987 * nlmsg_notify - send a notification netlink message
2988 * @sk: netlink socket to use
2989 * @skb: notification message
2990 * @portid: destination netlink portid for reports or 0
2991 * @group: destination multicast group or 0
2992 * @report: 1 to report back, 0 to disable
2993 * @flags: allocation flags
2994 */
2995 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2996 unsigned int group, int report, gfp_t flags)
2997 {
2998 int err = 0;
2999
3000 if (group) {
3001 int exclude_portid = 0;
3002
3003 if (report) {
3004 atomic_inc(&skb->users);
3005 exclude_portid = portid;
3006 }
3007
3008 /* errors reported via destination sk->sk_err, but propagate
3009 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
3010 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
3011 }
3012
3013 if (report) {
3014 int err2;
3015
3016 err2 = nlmsg_unicast(sk, skb, portid);
3017 if (!err || err == -ESRCH)
3018 err = err2;
3019 }
3020
3021 return err;
3022 }
3023 EXPORT_SYMBOL(nlmsg_notify);
3024
3025 #ifdef CONFIG_PROC_FS
3026 struct nl_seq_iter {
3027 struct seq_net_private p;
3028 struct rhashtable_iter hti;
3029 int link;
3030 };
3031
3032 static int netlink_walk_start(struct nl_seq_iter *iter)
3033 {
3034 int err;
3035
3036 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
3037 if (err) {
3038 iter->link = MAX_LINKS;
3039 return err;
3040 }
3041
3042 err = rhashtable_walk_start(&iter->hti);
3043 return err == -EAGAIN ? 0 : err;
3044 }
3045
3046 static void netlink_walk_stop(struct nl_seq_iter *iter)
3047 {
3048 rhashtable_walk_stop(&iter->hti);
3049 rhashtable_walk_exit(&iter->hti);
3050 }
3051
3052 static void *__netlink_seq_next(struct seq_file *seq)
3053 {
3054 struct nl_seq_iter *iter = seq->private;
3055 struct netlink_sock *nlk;
3056
3057 do {
3058 for (;;) {
3059 int err;
3060
3061 nlk = rhashtable_walk_next(&iter->hti);
3062
3063 if (IS_ERR(nlk)) {
3064 if (PTR_ERR(nlk) == -EAGAIN)
3065 continue;
3066
3067 return nlk;
3068 }
3069
3070 if (nlk)
3071 break;
3072
3073 netlink_walk_stop(iter);
3074 if (++iter->link >= MAX_LINKS)
3075 return NULL;
3076
3077 err = netlink_walk_start(iter);
3078 if (err)
3079 return ERR_PTR(err);
3080 }
3081 } while (sock_net(&nlk->sk) != seq_file_net(seq));
3082
3083 return nlk;
3084 }
3085
3086 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
3087 {
3088 struct nl_seq_iter *iter = seq->private;
3089 void *obj = SEQ_START_TOKEN;
3090 loff_t pos;
3091 int err;
3092
3093 iter->link = 0;
3094
3095 err = netlink_walk_start(iter);
3096 if (err)
3097 return ERR_PTR(err);
3098
3099 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
3100 obj = __netlink_seq_next(seq);
3101
3102 return obj;
3103 }
3104
3105 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3106 {
3107 ++*pos;
3108 return __netlink_seq_next(seq);
3109 }
3110
3111 static void netlink_seq_stop(struct seq_file *seq, void *v)
3112 {
3113 struct nl_seq_iter *iter = seq->private;
3114
3115 if (iter->link >= MAX_LINKS)
3116 return;
3117
3118 netlink_walk_stop(iter);
3119 }
3120
3121
3122 static int netlink_seq_show(struct seq_file *seq, void *v)
3123 {
3124 if (v == SEQ_START_TOKEN) {
3125 seq_puts(seq,
3126 "sk Eth Pid Groups "
3127 "Rmem Wmem Dump Locks Drops Inode\n");
3128 } else {
3129 struct sock *s = v;
3130 struct netlink_sock *nlk = nlk_sk(s);
3131
3132 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3133 s,
3134 s->sk_protocol,
3135 nlk->portid,
3136 nlk->groups ? (u32)nlk->groups[0] : 0,
3137 sk_rmem_alloc_get(s),
3138 sk_wmem_alloc_get(s),
3139 nlk->cb_running,
3140 atomic_read(&s->sk_refcnt),
3141 atomic_read(&s->sk_drops),
3142 sock_i_ino(s)
3143 );
3144
3145 }
3146 return 0;
3147 }
3148
3149 static const struct seq_operations netlink_seq_ops = {
3150 .start = netlink_seq_start,
3151 .next = netlink_seq_next,
3152 .stop = netlink_seq_stop,
3153 .show = netlink_seq_show,
3154 };
3155
3156
3157 static int netlink_seq_open(struct inode *inode, struct file *file)
3158 {
3159 return seq_open_net(inode, file, &netlink_seq_ops,
3160 sizeof(struct nl_seq_iter));
3161 }
3162
3163 static const struct file_operations netlink_seq_fops = {
3164 .owner = THIS_MODULE,
3165 .open = netlink_seq_open,
3166 .read = seq_read,
3167 .llseek = seq_lseek,
3168 .release = seq_release_net,
3169 };
3170
3171 #endif
3172
3173 int netlink_register_notifier(struct notifier_block *nb)
3174 {
3175 return atomic_notifier_chain_register(&netlink_chain, nb);
3176 }
3177 EXPORT_SYMBOL(netlink_register_notifier);
3178
3179 int netlink_unregister_notifier(struct notifier_block *nb)
3180 {
3181 return atomic_notifier_chain_unregister(&netlink_chain, nb);
3182 }
3183 EXPORT_SYMBOL(netlink_unregister_notifier);
3184
3185 static const struct proto_ops netlink_ops = {
3186 .family = PF_NETLINK,
3187 .owner = THIS_MODULE,
3188 .release = netlink_release,
3189 .bind = netlink_bind,
3190 .connect = netlink_connect,
3191 .socketpair = sock_no_socketpair,
3192 .accept = sock_no_accept,
3193 .getname = netlink_getname,
3194 .poll = netlink_poll,
3195 .ioctl = sock_no_ioctl,
3196 .listen = sock_no_listen,
3197 .shutdown = sock_no_shutdown,
3198 .setsockopt = netlink_setsockopt,
3199 .getsockopt = netlink_getsockopt,
3200 .sendmsg = netlink_sendmsg,
3201 .recvmsg = netlink_recvmsg,
3202 .mmap = netlink_mmap,
3203 .sendpage = sock_no_sendpage,
3204 };
3205
3206 static const struct net_proto_family netlink_family_ops = {
3207 .family = PF_NETLINK,
3208 .create = netlink_create,
3209 .owner = THIS_MODULE, /* for consistency 8) */
3210 };
3211
3212 static int __net_init netlink_net_init(struct net *net)
3213 {
3214 #ifdef CONFIG_PROC_FS
3215 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3216 return -ENOMEM;
3217 #endif
3218 return 0;
3219 }
3220
3221 static void __net_exit netlink_net_exit(struct net *net)
3222 {
3223 #ifdef CONFIG_PROC_FS
3224 remove_proc_entry("netlink", net->proc_net);
3225 #endif
3226 }
3227
3228 static void __init netlink_add_usersock_entry(void)
3229 {
3230 struct listeners *listeners;
3231 int groups = 32;
3232
3233 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3234 if (!listeners)
3235 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3236
3237 netlink_table_grab();
3238
3239 nl_table[NETLINK_USERSOCK].groups = groups;
3240 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3241 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3242 nl_table[NETLINK_USERSOCK].registered = 1;
3243 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3244
3245 netlink_table_ungrab();
3246 }
3247
3248 static struct pernet_operations __net_initdata netlink_net_ops = {
3249 .init = netlink_net_init,
3250 .exit = netlink_net_exit,
3251 };
3252
3253 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3254 {
3255 const struct netlink_sock *nlk = data;
3256 struct netlink_compare_arg arg;
3257
3258 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3259 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3260 }
3261
3262 static const struct rhashtable_params netlink_rhashtable_params = {
3263 .head_offset = offsetof(struct netlink_sock, node),
3264 .key_len = netlink_compare_arg_len,
3265 .obj_hashfn = netlink_hash,
3266 .obj_cmpfn = netlink_compare,
3267 .automatic_shrinking = true,
3268 };
3269
3270 static int __init netlink_proto_init(void)
3271 {
3272 int i;
3273 int err = proto_register(&netlink_proto, 0);
3274
3275 if (err != 0)
3276 goto out;
3277
3278 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3279
3280 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3281 if (!nl_table)
3282 goto panic;
3283
3284 for (i = 0; i < MAX_LINKS; i++) {
3285 if (rhashtable_init(&nl_table[i].hash,
3286 &netlink_rhashtable_params) < 0) {
3287 while (--i > 0)
3288 rhashtable_destroy(&nl_table[i].hash);
3289 kfree(nl_table);
3290 goto panic;
3291 }
3292 }
3293
3294 INIT_LIST_HEAD(&netlink_tap_all);
3295
3296 netlink_add_usersock_entry();
3297
3298 sock_register(&netlink_family_ops);
3299 register_pernet_subsys(&netlink_net_ops);
3300 /* The netlink device handler may be needed early. */
3301 rtnetlink_init();
3302 out:
3303 return err;
3304 panic:
3305 panic("netlink_init: Cannot allocate nl_table\n");
3306 }
3307
3308 core_initcall(netlink_proto_init);
This page took 0.104491 seconds and 5 git commands to generate.